Evelyn Lunasin
Afilliation: University of Michigan
Title: Global well-posedness for the 2D Boussinesq system without heat diffusion with anisotropic viscosity
Abstract: In this talk I will discuss global existence and uniqueness theorems
for the two-dimensional non-diffusive Boussinesq system with viscosity
only in the horizontal direction. In proving the uniqueness result, we
have used an alternative approach by writing the transported
temperature (density) as $\theta = \Delta\xi$ and adapting the
techniques of V. Yudovich for the 2D incompressible Euler equations.
This new idea allows us to establish uniqueness results with fewer
assumptions on the initial data for the transported quantity $\theta$.
Furthermore, this new technique allows us to establish uniqueness
results without having to resort to the paraproduct calculus of J.
Bony. This is joint work with A. Larios and E.S. Titi.