Yekaterina Epshteyn
Afilliation: Department of Mathematics, University of Utah
Title: On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows
Abstract: In this talk we will consider a family of large-eddy simulation (LES) models with an arbitrarily high consistency error $O(\delta^{2N+2})$ for $N=1,2,3 \ldots$ that are based on the van Cittert deconvolution procedure. This family of models has been proposed and tested for LES with success by Adams and Stolz.
We will show that these models have quite strong stability property. Using this property we will prove an energy equality, existence, uniqueness, and regularity of strong solutions and will give a rigorous bound on the modeling error.