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1 Review of probability theory
In this section, we review several aspects of probability theory that are im-
portant for our study. Most proofs are contained in standard textbooks and
hence will be omitted.

Recall that a probability space is a triple (Ω,F ,P) which consists of a non-
empty set Ω, a σ-algebra F over Ω and a probability measure on F . A random
variable over (Ω,F ,P) is a real-valued F -measurable function. For 1 6 p <
∞, Lp(Ω,F ,P) denotes the Banach space of (equivalence classes of) random
variables X satisfying E[|X|p] <∞.

The following are a few conventions that we will be using in the course.

• A P-null set is a subset of some F -measurable set with zero probability.

• A property is said to hold almost surely (a.s.) or with probability one if it
holds outside an F -measurable set with zero probability, or equivalently,
the set on which it does not hold is a P-null set.

1.1 Conditional expectations

A fundamental concept in the study of martingale theory and stochastic cal-
culus is the conditional expectation.

Definition 1.1. Let (Ω,F ,P) be a probability space, and let G be a sub-
σ-algebra of F . Given an integrable random variable X ∈ L1(Ω,F ,P), the
conditional expectation of X given G is the unique G-measurable and integrable
random variable Y such that∫

A

Y dP =

∫
A

XdP, ∀A ∈ G. (1.1)

It is denoted by E[X|G].

The existence of the conditional expectation is a standard application of the
Radon-Nikodym theorem, and the uniqueness follows from an easy measure
theoretic argument.

Here we recall a geometric construction of the conditional expectation. We
start with the Hilbert space L2(Ω,F ,P). Since G ⊆ F , the Hilbert space
L2(Ω,G,P) can be regarded as a closed subspace of L2(Ω,F ,P). Given X ∈
L2(Ω,F ,P), let Y be the orthogonal projection of X onto L2(Ω,G,P). Then
Y satisfies the characterizing property (1.1) of the conditional expectation. If
X is a non-negative integrable random variable, we consider Xn = X ∧ n ∈
L2(Ω,F ,P) and let Yn be the orthogonal projection of Xn onto L2(Ω,G,P).
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It follows that Yn is non-negative and increasing. Its pointwise limit, denoted
by Y, is a non-negative, G-measurable and integrable random variable which
satisfies (1.1). The general case is treated by writing X = X+−X− and using
linearity. We left it as an exercise to provide the details of the construction.

The conditional expectation satisfies the following basic properties.
(1) X 7→ E[X|G] is linear.
(2) If X 6 Y, then E[X|G] 6 E[Y |G]. In particular, |E[X|G]| 6 E[|X||G].
(3) IfX and ZX are both integrable, and Z ∈ G, then E[ZX|G] = ZE[X|G].
(4) If G1 ⊂ G2 are sub-σ-algebras of F , then E[E[X|G2]|G1] = E[X|G1].
(5) If X and G are independent, then E[X|G] = E[X].
In addition, we have the following Jensen’s inequality: if ϕ is a convex

function on R, and both X and ϕ(X) are integrable, then

ϕ(E[X|G]) 6 E[ϕ(X)|G]. (1.2)

Applying this to the function ϕ(x) = |x|p for p > 1, we see immediately that
the conditional expectation is a contraction operator on Lp(Ω,F ,P).

The convergence theorems (the monotone convergence theorem, Fatou’s
lemma, and the dominated convergence theorem) also hold for the conditional
expectation, stated in an obvious way.

For every measurable subset A ∈ F , P(A|G) is the conditional probability
of A given G. However, P(A|G) is defined up to a null set which depends
on A, and in general there does not exist a universal null set outside which
the conditional probability A 7→ P(A|G) can be regarded as a probability
measure. The resolution of this issue leads to the notion of regular conditional
expectations.

Definition 1.2. Let (Ω,F ,P) be a probability space and let G be a sub-σ-
algebra of F . A system {p(ω,A)}ω∈Ω,A∈F is called a regular conditional prob-
ability given G if it satisfies the following conditions:

(1) for every ω ∈ Ω, A 7→ p(ω,A) is a probability measure on (Ω,F);
(2) for every A ∈ F , ω 7→ p(ω,A) is G-measurable;
(3) for every A ∈ F and B ∈ G,

P(A
⋂

B) =

∫
B

p(ω,A)P(dω).

The third condition tells us that for every A ∈ F , p(·, A) is a version of
P(A|G). It follows that for every integrable random variable X,

ω 7→
∫
X(ω′)p(ω, dω′)
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is an almost surely well-defined and it is a version of E[X|G].
In many situations, we are interested in the conditional distribution of a

random variable taking values in another measurable space. Suppose that
{p(ω,A)}ω∈Ω,A∈F is a regular conditional probability on (Ω,F ,P) given G. Let
X be a measurable map from (Ω,F) to some measurable space (E, E). We can
define

Q(ω,Γ) = p(ω,X−1Γ), ω ∈ Ω,Γ ∈ E .
Then the system {Q(ω,Γ)}ω∈Ω,Γ∈E satisfies:

(1)’ for every ω ∈ Ω, Γ 7→ Q(ω,Γ) is a probability measure on (E, E);
(2)’ for every Γ ∈ E , ω 7→ Q(ω,Γ) is G-measurable;
(3)’ for every Γ ∈ E and B ∈ G,

P({X ∈ Γ}
⋂

B) =

∫
B

Q(ω,Γ)P(dω).

In particular, we can see that Q(·,Γ) is a version of P(X ∈ Γ|G) for every
Γ ∈ E . The system {Q(ω,Γ)}ω∈Ω,Γ∈E is called a regular conditional distribution
of X given G.

It is a deep result in measure theory that if E is a complete and separable
metric space, and E is the σ-algebra generated by open sets in E, then a
regular conditional distribution of X given G exists. In particular, if (Ω,F)
is a complete and separable metric space, by considering the identity map we
know that a regular conditional probability given G exists. In this course we
will mainly be interested in complete and separable metric spaces.

Sometimes we also consider conditional expectations given some random
variable X. Let X be as before, and let PX be the law of X on (E, E). Similar
to Definition 1.2, a system {p(x,A)}x∈E,A∈F is called a regular conditional
probability given X if it satisfies:

(1)” for every x ∈ E, A 7→ p(x,A) is a probability measure on (Ω,F);
(2)” for every A ∈ F , x 7→ p(x,A) is E-measurable;
(3)” for every A ∈ F and Γ ∈ E ,

P(A
⋂
{X ∈ Γ}) =

∫
Γ

p(x,A)PX(dx).

In particular, p(·, A) gives a version of P(A|X = ·). If (Ω,F) is a complete and
separable metric space, then a regular conditional probability given X exists.

1.2 Uniform integrability

Now we review an important concept which is closely related to the study of
L1-convergence.
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Definition 1.3. A family {Xt : t ∈ T} of integrable random variables over a
probability space (Ω,F ,P) is called uniformly integrable if

lim
λ→∞

sup
t∈T

∫
{|Xt|>λ}

|Xt|dP = 0.

Uniform integrability can be characterized by the following two properties.

Theorem 1.1. Let {Xt : t ∈ T} be a family of integrable random variables.
Then {Xt : t ∈ T} is uniformly integrable if and only if

(1) (uniform boundedness in L1) there exists M > 0, such that∫
Ω

|Xt|dP 6M, ∀t ∈ T ;

(2) (uniform equicontinuity) for every ε > 0, there exists δ > 0, such that
for all A ∈ F with P(A) < δ and t ∈ T,∫

A

|Xt|dP < ε.

The two characterizing properties in Theorem 1.1 might remind us the
Arzelà–Ascoli theorem (in functional analysis) for continuous functions (c.f.
Theorem 1.9). Therefore, it is not unreasonable to expect that uniform in-
tegrability is equivalent to some kind of relative compactness in L1(Ω,F ,P).
This is an important result due to Dunford and Pettis.

Definition 1.4. A sequence {Xn} of integrable random variables is said to
converge weakly in L1 to an integrable random variable X if for every bounded
random variable Y, we have

lim
n→∞

E[XnY ] = E[XY ].

Theorem 1.2. A family {Xt : t ∈ T} of integrable random variables is
uniformly integrable if and only if every sequence in {Xt : t ∈ T} contains
subsequence which converges weakly in L1.

Perhaps the most important property of uniform integrability for our study
lies in its connection with L1-convergence.

Theorem 1.3. Let {Xn} be a sequence of integrable random variables and
let X be another random variable. Then the following two statements are
equivalent:
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(1) Xn converges to X in L1, in the sense that

lim
n→∞

∫
|Xn −X|dP = 0;

(2) Xn converges to X in probability, in the sense that

lim
n→∞

P(|Xn −X| > ε) = 0

for every ε > 0, and {Xn} is uniformly integrable.

1.3 The Borel-Cantelli lemma

Now we review a simple technique which has huge applications in probability
theory and stochastic processes.

Theorem 1.4. Let {An} be a sequence of events over some probability space
(Ω,F ,P).

(1) If
∑

n P(An) <∞, then

P
(

lim sup
n→∞

An

)
= 0.

(2) Suppose further that {An} are independent. If
∑∞

n=1 P(An) =∞, then

P
(

lim sup
n→∞

An

)
= 1.

1.4 The law of large numbers and the central limit the-
orem

The study of limiting behaviors for random sequences is an important topic in
probability theory. Here we review two classical limit theorems for sequences of
independent random variables: the law of large numbers and the central limit
theorem. Heuristically, given a sequence of independent random variables sat-
isfying certain moment conditions, the (strong) law of large numbers describes
the property that the sample average will eventually stabilize at the expected
value, while the central limit theorem quantifies the asymptotic distribution
of the stochastic fluctuation of the sample average around the expected value.
Here we do not pursue the most general cases and we only state the results in
a special setting which are already important on its own and relevant for our
study.
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Definition 1.5. Let Xn, X be random variables with distribution function
Fn(x), F (x) respectively. Xn is said to converge in distribution to X if

lim
n→∞

Fn(x) = F (x)

for every x at which F (x) is continuous.

Note that convergence in distribution is a property that only refers to
distribution functions rather than underlying random variables.

Theorem 1.5. Let {Xn} be a sequence of independent and identically dis-
tributed random variables with µ = E[X1] and σ2 = Var[X1] < ∞. Let
sn = (X1 + · · ·+Xn)/n be the sample average. Then with probability one,

lim
n→∞

sn = µ.

Moreover, the normalized sequence
√
n(sn − µ)/σ converges in distribution to

the standard normal distribution N (0, 1).

1.5 Weak convergence of probability measures

Finally, we discuss an important notion of convergence for probability mea-
sures: weak convergence. This is particularly useful in the infinite dimensional
setting, for instance in studying the distributions of stochastic processes, which
are probability measures on the space of paths.

Let (S, ρ) be a metric space. The Borel σ-algebra B(S) over S is the σ-
algebra generated by open sets in S. We use Cb(S) to denote the space of
bounded continuous functions on S.

Definition 1.6. Let Pn,P be probability measures on (S,B(S)). Pn is said to
converge weakly to P if

lim
n→∞

∫
S

f(x)Pn(dx) =

∫
S

f(x)P(dx), ∀f ∈ Cb(S).

Before the general discussion of weak convergence, let us say a bit more in
the case when S = R1.

Definition 1.7. Let P be a probability measure on (R1,B(R1)). The charac-
teristic function of P is the complex-valued function given by

f(t) =

∫
R1

eitxP(dx), t ∈ R1.
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There are nice regularity properties for characteristic functions. For in-
stance, it is uniformly continuous on R1 and uniformly bounded by 1. The
uniqueness theorem for characteristic functions asserts that two probability
measures on (R1,B(R1)) are identical if and only if they have the same char-
acteristic functions. Moreover, there is a one-to-one correspondence between
probability measures on (R1,B(R1)) and distribution functions (i.e. right con-
tinuous and increasing functions F (x) with F (−∞) = 0 and F (∞) = 1)
through the Lebesgue-Stieltjes construction.

The characteristic function is also a useful concept in studying weak con-
vergence properties. The following result characterizes weak convergence for
probability measures on (R1,B(R1)).

Theorem 1.6. Let Pn,P be probability measures on (R1,B(R1)) with distribu-
tion functions Fn(x), F (x) and characteristic functions fn(t), f(t) respectively.
Then the following statements are equivalent:

(1) Pn converges weakly to P;
(2) Fn converges in distribution to F ;
(3) fn converges to f pointwisely on R1;

Remark 1.1. When we study the distribution of a non-negative random variable
T (for instance a random time), for technical convenience we usually consider
the Laplace transform λ > 0 7→ E

[
e−λT

]
instead of the characteristic function,

which also characterizes the distribution of T.

Remark 1.2. The notion of characteristic functions extends to the multidimen-
sional case. The previous results about the connections between characteristic
functions and probability measures still hold, except for the fact that the no-
tion of distribution functions is no longer natural–they are not in one-to-one
correspondence with probability measures.

Now we come back to the general situation. The notion of characteristic
functions is not well-defined on general metric spaces. However, we still have
following general characterization of weak convergence. Although the proof
is standard, we provide it here to help the reader get comfortable with the
notions.

Theorem 1.7. Let (S, ρ) be a metric space and let Pn,P be probability measures
on (S,B(S)). Then the following results are equivalent:

(1) Pn converges weakly to P;
(2) for every f ∈ Cb(S) which is uniformly continuous,

lim
n→∞

∫
S

f(x)Pn(dx) =

∫
S

f(x)P(dx);
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(3) for every closed subset F ⊆ S,

lim sup
n→∞

Pn(F ) 6 P(F );

(4) for every open subset G ⊆ S,

lim inf
n→∞

Pn(G) > P(G);

(5) for every A ∈ B(S) satisfying P(∂A) = 0 where ∂A , A\Å is the
boundary of A,

lim
n→∞

Pn(A) = P(A).

Proof. (1) =⇒ (2) is obvious.
(2) =⇒ (3). Let F be a closed subset of S. For k > 1, define

fk(x) =

(
1

1 + ρ(x, F )

)k
, x ∈ S,

where ρ(x, F ) is the distance between x and F . It is easy to see that fk is
bounded and uniformly continuous. In particular,

1F (x) 6 fk(x) 6 1,

and fk ↓ 1F as k →∞, where 1F denotes the indicator function of F. Therefore,
from (2) we have

lim sup
n→∞

Pn(F ) 6 lim
n→∞

∫
S

fk(x)Pn(dx)

=

∫
S

fk(x)P(dx)

for every k > 1. From the dominated convergence theorem, by letting k →∞
we conclude that

lim sup
n→∞

Pn(F ) 6 P(F ).

(3)⇐⇒(4) is obvious.
(3)+(4) =⇒ (5). Let A ∈ B(S) be such that P(∂A) = 0. It follows that

P(Å) = P(A) = P(A).

From (3) and (4), we see that

lim sup
n→∞

Pn(A) 6 lim sup
n→∞

Pn(A)

6 P(A) = P(A) = P(Å)

6 lim inf
n→∞

Pn(Å)

6 lim inf
n→∞

Pn(A).
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Therefore, limn→∞ Pn(A) = P(A).
(5) =⇒ (1). Let f be a bounded continuous function on S. By translation

and rescaling we may assume that 0 < f < 1. Since P is a probability measure,
we know that for each n > 1, the set {a ∈ R1 : P(f = a) > 1/n} is finite.
Therefore, the set

{a ∈ R1 : P(f = a) > 0}

is at most countable. Given k > 1, for each 1 6 i 6 k, we choose some
ai ∈ ((i− 1)/k, i/k) such that P(f = ai) = 0. Set a0 = 0, ak+1 = 1, and define
Bi = {ai−1 6 f < ai} for 1 6 i 6 k + 1. Note that |ai − ai−1| < 2/k, and Bi

are disjoint whose union is S. Moreover, from the continuity of f it is easy to
see that

Bi ⊆ {ai−1 6 f 6 ai}, {ai−1 < f < ai} ⊆ B̊i.

Therefore, ∂Bi ⊆ {f = ai−1} ∪ {f = ai} and P(∂Bi) = 0. It follows that∣∣∣∣∫
S

f(x)Pn(dx)−
∫
S

f(x)P(dx)

∣∣∣∣ 6
k+1∑
i=1

∣∣∣∣∫
Bi

f(x)Pn(dx)−
∫
Bi

f(x)P(dx)

∣∣∣∣
6

4

k
+

k+1∑
i=1

ai−1 |Pn(Bi)− P(Bi)| .

By letting n→∞, from (5) we conclude that

lim sup
n→∞

∣∣∣∣∫
S

f(x)Pn(dx)−
∫
S

f(x)P(dx)

∣∣∣∣ 6 4

k
.

Now the result follows as k is arbitrary.

Now we introduce an important characterization of relative compactness
for a family of probability measures with respect to the topology of weak
convergence. This is known as Prokhorov’s theorem. The usefulness of relative
compactness in proving weak convergence is demonstrated in Problem 2.1.

Definition 1.8. A family P of probability measures on a metric space (S,B(S), ρ)
is said to be tight if for every ε > 0, there exists a compact subset K ⊆ S,
such that

P(K) > 1− ε, ∀P ∈ P .

Prokhorov’s theorem relates tightness and relative compactness with re-
spect to the topology of weak convergence.
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Theorem 1.8. Let P be a family of probability measures on a separable metric
space (S,B(S), ρ).

(1) If P is tight, then it is relatively compact, in the sense that every sub-
sequence of P further contains a weakly convergent subsequence.

(2) Suppose in addition that (S, ρ) is complete. If P is relatively compact,
then it is also tight.

Remark 1.3. In the language of general topology, we do not distinguish the
meanings between relative compactness and sequential compactness because
it is known that the topology of weak convergence is metrizable (i.e. there
exists a metric d on the space of probability measures on (S,B(S)), such that
Pn converges weakly to P if and only if d(Pn,P)→ 0).

Now we study an example which plays a fundamental role in our study.
Let W d be the space of continuous paths w : [0,∞) → Rd. We define a

metric ρ on W d by

ρ(w,w′) =
∞∑
n=1

1 ∧maxt∈[0,n] |wt − w′t|
2n

, w, w′ ∈ W d. (1.3)

Therefore, ρ characterizes uniform convergence on compact intervals. It is a
good exercise to show that (W d, ρ) is a complete and separable metric space,
and the Borel σ-algebra over W d coincides with the σ-algebra generated by
cylinder sets of the form

{w ∈ W d : (wt1 , · · · , wtn) ∈ Γ}

for n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ B(Rd×n).
W d is usually known as the (continuous) path space over Rd. It is important

as every continuous stochastic process can be realized on W d. Moreover, when
equipped with the canonical Wiener measure (the distribution of Brownian
motion), W d carries nice analytic structure on which the Malliavin calculus (a
theory of stochastic calculus of variations in infinite dimensions which consti-
tutes a substantial part of modern stochastic analysis) is built.

We finish by proving an important criteria for tightness of probability mea-
sures on W d. This is a simple probabilistic analogue of the Arzelà–Ascoli the-
orem, which is recaptured in the following. We use ∆(δ, n;w) to denote the
modulus of continuity of w ∈ W d over [0, n], i.e.

∆(δ, n;w) = sup
s,t∈[0,n]
|s−t|<δ

|ws − wt|, δ > 0, n ∈ N, w ∈ W d.
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Theorem 1.9. A subset Λ ⊆ (W d, ρ) is relatively compact (i.e. Λ is compact)
if and only if the following two conditions hold:

(1) uniform boundedness:

sup{|w0| : w ∈ Λ} <∞;

(2) uniform equicontinuity: for every n ∈ N,

lim
δ↓0

sup
w∈Λ

∆(δ, n;w) = 0.

Now we have the following result.

Theorem 1.10. Let P be a family of probability measures on (W d,B(W d)).
Suppose that the following two conditions hold:

(1)
lim
a→∞

sup
P∈P

P(|w0| > a) = 0;

(2) for every ε > 0 and n ∈ N,

lim
δ↓0

sup
P∈P

P(∆(δ, n;w) > ε) = 0.

Then P is tight.

Proof. Fix ε > 0. Condition (1) implies that there exists aε > 0 such that

P(|w0| > aε) <
ε

2
, ∀P ∈ P .

In addition, Condition (2) implies that there exists a sequence δε,n ↓ 0 (as
n→∞) such that

P
(

∆(δε,n, n;w) >
1

n

)
< ε · 2−(n+1), ∀P ∈ P and n ∈ N.

Let

Λε = {|w0| 6 aε}
⋂ ∞⋂

n=1

{
∆(δε,n, n;w) 6

1

n

}
⊆ W d.

Then

P(Λc
ε) <

ε

2
+
∞∑
n=1

ε · 2−(n+1) = ε, ∀P ∈ P .

Moreover, it is easy to see that Λε satisfies the two conditions in Arzelà–Ascoli’s
theorem. Therefore, Λε is a relatively compact subset of W d, and

P
(
Λε

)
> P(Λε) > 1− ε, ∀P ∈ P .

In other words, we conclude that P is tight.
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1.6 Problems

Problem 1.1. (1) Establish the following identities for conditional expecta-
tions. We use X, Y to denote integrable random variables defined on some
probability space (Ω,F ,P) and G,H to denote sub-σ-alegras of F .

(i) (?) Suppose that X is bounded. Show that E[XE[Y |G]] = E[Y E[X|G]].
(ii) (?) Let f(x, y) be a bounded measurable function on R2. Suppose that

X is G-measurable, and Y and G are independent. Then

E[f(X, Y )|G] = ϕ(X),

where ϕ(x) , E[f(x, Y )] for x ∈ R1.
(iii) Suppose that σ(σ(X),G) and H are independent (σ(X) denotes the

σ-algebra generated by X). Then

E[X|G,H] = E[X|G].

(2) Let X, Y be two integrable random variables which satisfy

E[X|Y ] = Y, E[Y |X] = X, a.s.

Show that P(X = Y ) = 1.

Problem 1.2. (1) (?) Suppose that X is an integrable random variable on
some probability space (Ω,F ,P), and {Gi : i ∈ I} is a family of sub-σ-algebras
of F . Show that {E[X|Gi] : i ∈ I} is uniformly integrable.

(2) Let {Xt : t ∈ T} be a family of random variables. Suppose that
there exists a non-negative Borel-measurable function ϕ on [0,∞) such that
limx→∞ ϕ(x)/x = ∞ and supt∈T E[ϕ(|Xt|)] < ∞. Show that {Xt : t ∈ T}
is uniformly integrable. In particular, a family of random variables uniformly
bounded in Lp (p > 1) is uniformly integrable.

Problem 1.3. Let {Xn : n > 1} be a sequence of independent and identically
distributed random variables with exponential distribution:

P(Xn > x) = e−x, x > 0.

(1) Compute P(Xn > α log n for infinitely many n) where α > 0 is an
arbitrary constant.

(2) Let L = lim supn→∞(Xn/ log n). Show that L = 1 almost surely.
(3) Let Mn = max16i6nXi − log n. Show that Mn is weakly convergent.

What is the weak limiting distribution of Mn?

Problem 1.4. Prove the equivalence of the first two statements in Theorem
1.6.
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Problem 1.5. Let Pn be the normal distribution N (µn, σ
2
n) on R1, where

µn ∈ R1 and σ2
n is nonnegative.

(1) Show that the family {Pn} is tight if and only if the sequences {µn}
and {σ2

n} are bounded.
(2) Show that Pn is weakly convergent if and only if the sequences µn → µ

and σ2
n → σ2 for some µ and σ2. In this case, the weak limit of Pn is N (µ, σ2).
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2 Generalities on continuous time stochastic pro-
cesses

In this section, we study the basic notions of stochastic processes. The core
concepts are filtrations and stopping times. These notions enable us to keep
track of information evolving in time in a mathematical way. This is an im-
portant feature of stochastic calculus which is quite different from ordinary
calculus.

2.1 Basic definitions

A stochastic process models the evolution of a random system. In this course,
we will be studying the differential calculus with respect to certain important
(continuous) stochastic processes.

Definition 2.1. A (d-dimensional) stochastic process on some probability
space (Ω,F ,P) is a collection {Xt} of Rd-valued random variables indexed
by [0,∞).

Because of the index set being [0,∞), t is usually interpreted as the time
parameter.

From the definition, we know that a stochastic process is a map

X : [0,∞)× Ω → Rd,

(t, ω) 7→ Xt(ω),

such that for every fixed t, as a function in ω ∈ Ω it is F -measurable. There
is yet another way of looking at a stochastic process which is more important
and fundamental: for every ω ∈ Ω, it gives a path in Rd. More precisely, let
(Rd)[0,∞) be the space of functions w : [0,∞) → Rd, with Borel σ-algebra
B
(
(Rd)[0,∞)

)
defined by the σ-algebra generated by cylinder sets of the form{

w ∈ (Rd)[0,∞) : (wt1 , · · · , wtn) ∈ Γ
}

for n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ B(Rd×n). Then the definition of a
stochastic process is equivalent to a measurable map

X : (Ω,F)→
(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
.

For every ω ∈ Ω, the path X(ω) is called a sample path of the stochastic
process.
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Remark 2.1. The path space (Rd)[0,∞) is different from the space W d we in-
troduced in the last section as we do not impose any regularity conditions on
sample paths here. In fact it can be shown thatW d is not even a B

(
(Rd)[0,∞)

)
-

measurable subset of (Rd)[0,∞). However, if we assume that every sample path
of X is continuous, then X descends to a measurable map from (Ω,F) to
(W d,B(W d)).

For technical reasons, in particular for the purpose of integration, we often
require joint measurability properties on a stochastic process.

Definition 2.2. A stochastic process X is called measurable if it is jointly
measurable in (t, ω), i.e. if the map

X : [0,∞)× Ω → Rd,

(t, ω) 7→ Xt(ω),

is B([0,∞))⊗F -measurable.

Nice consequences of measurability are: every sample path is B([0,∞))-
measurable and Fubini’s theorem is applicable to X when ([0,∞),B([0,∞)))
is equipped with a measure.

Another important reason of introducing measurability is, when evaluated
at a random time we always obtain a random variable. To be more precise, if
X is a measurable process and τ is a finite random time (i.e. τ : Ω→ [0,∞)
is F -measurable), then ω 7→ Xτ(ω)(ω) is an F -measurable random variable.
This can be seen easily from the following composition of maps:

Xτ : (Ω,F) → ([0,∞)× Ω,B([0,∞))⊗F) → (Rd,B(Rd)),
ω 7→ (τ(ω), ω) 7→ Xτ(ω)(ω).

Stopping a process at a random time is a very useful notion in the analysis of
stochastic processes.

Sometimes we need to compare different stochastic processes in certain
probabilistic sense.

Definition 2.3. Let Xt, Yt be two stochastic processes defined on some prob-
ability space (Ω,F ,P). We say:

(1) Xt and Yt are indistinguishable if X(ω) = Y (ω) a.s.;
(2) Yt is a modification of Xt if for every t > 0, P(Xt = Yt) = 1;
(3) Xt and Yt have the same finite dimensional distributions if

P((Xt1 , · · · , Xtn) ∈ Γ) = P((Yt1 , · · · , Ytn) ∈ Γ)

for any n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ Rd×n.
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Apparently (1) =⇒ (2) =⇒ (3), but none of the reverse directions is true. If
Xt and Yt have right continuous sample paths, then (1)⇐⇒ (2). Moreover, to
make sense of (3), Xt and Yt do not have to be defined on the same probability
space.

In many situations, we are interested in infinite dimensional probabilistic
properties rather than finite dimensional distributions.

Definition 2.4. The distribution of a stochastic process Xt is the probability
measure PX = P ◦X−1 on

(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
induced by X.

As in Remark 2.1, if X has continuous sample paths, X also induces a
probability measure µX on (W d,B(W d)). When concerning finite dimensional
distribution properties, we do not have to distinguish between PX and µX .
However, it is much more convenient to use µX than PX for studying infinite
dimensional distribution properties, as B((Rd)[0,∞)) is too small to contain
adequate interesting events, for instance an event like {w : sup06t61 |wt| 6 1}.
The view of realizing a continuous stochastic process on (W d,B(W d), µX) is
rather important in stochastic analysis.

2.2 Construction of stochastic processes: Kolmogorov’s
extension theorem

The first question in the study of stochastic processes is their existence. In
particular, is it possible to construct a stochastic process in a canonical way
from the knowledge of its finite dimensional distributions? The answer is the
content of Kolmogorov’s extension theorem.

We first recapture the notion of finite dimensional distributions in a more
general context.

Let Xt be a stochastic process taking values in some metric space S. We
use T to denote the set of finite sequences t = (t1, · · · , tn) of distinct times
on [0,∞) (they need not be ordered in an increasing manner). For each t =
(t1, · · · , tn) ∈ T , we can define a probability measure Qt on (Sn,B(Sn)) by

Qt(Γ) = P ((Xt1 , · · · , Xtn) ∈ Γ) , Γ ∈ B(Sn).

The family {Qt : t ∈ T } of probability measures defines the finite dimensional
distributions of {Xt}. It is straight forward to see that it satisfies the following
two consistency properties:

(1) let t = (t1, · · · , tn) and A1, · · · , An ∈ B(S), then for every permutation
σ of order n,

Qt(A1 × · · · × An) = Qσ(t)

(
Aσ(1) × · · · × Aσ(n)

)
,
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where σ(t) =
(
tσ(1), · · · , tσ(n)

)
;

(2) let t = (t1, · · · , tn) and t′ = (t1, · · · , tn, tn+1), then for every A ∈ B(Sn),

Qt′(A× S) = Qt(A).

Definition 2.5. A family {Qt : t ∈ T } of finite dimensional distributions is
said to be consistent if it satisfies the previous two properties.

We are mainly interested in the reverse direction: is it possible to construct
a stochastic process in a canonical way whose finite dimensional distributions
coincide with a given consistent family of probability measures? The answer
is yes, and the construction is made through a classical measure theoretic
argument.

Recall that S[0,∞) is the space of functions w : [0,∞)→ S and B
(
S[0,∞)

)
is the σ-algebra generated by cylinder sets. Then we have the following result.

Theorem 2.1. Let S be a complete and separable metric space. Suppose that
{Qt : t ∈ T } is a consistent family of finite dimensional distributions. Then
there exists a unique probability measure P on

(
S[0,∞),B

(
S[0,∞)

))
, such that

P((wt1 , · · · , wtn) ∈ Γ) = Qt(Γ)

for every t = (t1, · · · , tn) ∈ T and Γ ∈ B(Sn).

We prove Theorem 2.1 by using Carathéodory’s extension theorem in mea-
sure theory, and we proceed in several steps.

(1) Let C be the family of subsets of S[0,∞) of the form {(wt1 , · · · , wtn) ∈ Γ},
where t = (t1, · · · , tn) ∈ T and Γ ∈ B(Sn). It is straight forward to see that C is
an algebra (i.e. ∅, S[0,∞) ∈ C and it is closed under taking complement or finite
intersection) and B

(
S[0,∞)

)
= σ(C). It suffices to construct the probability

measure on C, as Carathéodory’s extension theorem will then allow us to extend
it to B

(
S[0,∞)

)
.

(2) For Λ ∈ C of the form {(wt1 , · · · , wtn) ∈ Γ}, we define

P(Λ) = Qt(Γ),

where t = (t1, · · · , tn). From the consistency properties of {Qt}, it is not hard
to see that P is well-defined on C and it is finitely additive.

(3) Here comes the key step: P is countably additive on C. It is a general
result in measure theory that this is equivalent to showing that

C 3 Λn ↓ ∅ =⇒ P(Λn) ↓ 0

as n→∞.
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Now let Λn ∈ C be such a sequence and suppose on the contrary that

lim
n→∞

P(Λn) = ε > 0.

We are going to modify the sequence {Λn} to another decreasing sequence
{Dn} which has a more convenient form

Dn = {(wt1 , · · · , wtn) ∈ Γn}

where (t1, · · · , tn, tn+1) is an extension of (t1, · · · , tn), while it still satisfies
Dn ↓ ∅ and limn→∞ P(Dn) = ε. This is done by the following procedure.

First of all, by inserting marginals of the form {wt ∈ S} (of course that
means doing nothing) and reordering, we may assume that Λn has the form

Λn = {(wt1 , · · · , wtmn ) ∈ Γmn},

where Γmn ∈ B(Smn) and mn < mn+1 for every n. Since Λn+1 ⊆ Λn, we know
that Γmn+1 ⊆ Γmn × Smn+1−mn .

Now we set

D1 = {wt1 ∈ S},
· · ·

Dm1−1 = {(wt1 , · · · , wtm1−1) ∈ Sm1−1},
Dm1 = Λ1,

Dm1+1 = {(wt1 , · · · , wtm1
, wtm1+1) ∈ Γm1 × S},

· · ·
Dm2−1 = {(wt1 , · · · , wtm1

, wtm1+1 , · · · , wtm2−1) ∈ Γm1 × Sm2−m1−1},
Dm2 = Λ2,

· · · .

Apparently, {Dn} is just constructed by copying each Λn several times consec-
utively in the original sequence. Therefore, it satisfies the properties Dn ↓ ∅
and limn→∞ P(Dn) = ε.

Now we are going to construct an element (x1, x2, · · · ) ∈ S × S × · · · such
that (x1, · · · , xn) ∈ Γn for every n. It follows that the set

Λ = {w ∈ S[0,∞) : w(ti) = xi for all i}

is a non-empty subset of Dn for every n, which leads to a contradiction. The
construction of this element is made through a compactness argument, which
relies crucially on the following general fact from measure theory (c.f. [7]).
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Proposition 2.1. Let X be a complete and separable metric space. Then every
finite measure µ on (X,B(X)) is (strongly) inner regular, in the sense that

µ(A) = sup{µ(K) : K ⊆ A, K is compact}

for every A ∈ B(X).

According to Proposition 2.1, for every n > 1, there exists a compact subset
Kn of Γn, such that

Qt(n)(Γn\Kn) <
ε

2n
,

where t(n) = (t1, · · · , tn). If we set

En = {(wt1 , · · · , wtn) ∈ Kn},

then we have En ⊆ Dn and

P(Dn\En) = Qt(n)(Γn\Kn) <
ε

2n
.

Now define

Ẽn =
n⋂
k=1

Ek

and

K̃n = (K1 × Sn−1)
⋂

(K2 × Sn−1)
⋂
· · ·
⋂

(Kn−1 × S)
⋂

Kn.

Then we have
Ẽn =

{
(wt1 , · · · , wtn) ∈ K̃n

}
.

On the other hand,

Qt(n)(K̃n) = P(Ẽn) = P(Dn)− P(Dn\Ẽn)

> P(Dn)− P

(
n⋃
k=1

(Dn\Ek)

)

> P(Dn)−
n∑
k=1

P(Dk\Ek)

> ε−
n∑
k=1

ε

2k
> 0.

Therefore, K̃n 6= ∅ and we may choose
(
x

(n)
1 , · · · , x(n)

n

)
∈ K̃n for every n > 1.
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From the construction of K̃n, we know that
{
x

(n)
1

}
n>1
⊆ K1. By compact-

ness, it contains a subsequence x(m1(n))
1 → x1 ∈ K1. Moreover, since{(

x
(m1(n))
1 , x

(m1(n))
2

)}
n>2
⊆ K2,

it further contains a subsequence
(
x

(m2(n))
1 , x

(m2(n))
2

)
→ (x1, x2) ∈ K2. Con-

tinuing the procedure, the desired element (x1, x2, · · · ) is then constructed by
induction.

(4) Finally, the uniqueness of P is a straight forward consequence of the
uniqueness of Carathéodory’s extension since C is a π-system and P is deter-
mined on C by the finite dimensional distributions.

Now the proof of Theorem 2.1 is complete.

Remark 2.2. Kolmogorov’s extension theorem holds in a more general setting
where the state space (S,B(S)) can be an arbitrary measurable space without
any topological or analytic structure. However, the given consistent family of
finite dimensional distributions should satisfy some kind of generalized inner
regularity property which roughly means that they can be well approximated
by some sort of abstract “compact” sets. In any case the nature of Proposition
2.1 plays a crucial role.

2.3 Kolmogorov’s continuity theorem

In the last subsection, a stochastic process is constructed on path space from its
finite dimensional distributions. From this construction we have not yet seen
any regularity properties of sample paths. It is natural to ask whether we could
“detect” any sample path properties from the finite dimensional distributions.
Kolmogorov’s continuity theorem provides an answer to this question.

Theorem 2.2. Let {Xt : t ∈ [0, T ]} be a stochastic process taking values in
a complete metric space (S, d). Suppose that there exist constants α, β, C > 0,
such that

E[d(Xs, Xt)
α] 6 C|t− s|1+β, ∀s, t ∈ [0, T ]. (2.1)

Then there exists a continuous modification
{
X̃t : t ∈ [0, T ]

}
of X, such that

for every γ ∈ (0, β/α), X̃ has γ-Hölder continuous sample paths almost surely,
i.e.

P

 sup
s,t∈[0,T ]
s 6=t

d
(
X̃s, X̃t

)
|t− s|γ

<∞

 = 1.
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To prove Theorem 2.2, without loss of generality we may assume that
T = 1. The main idea of obtaining a continuous modification of X is to show
that when restricted to some dense subset of [0, 1], with probability one X is
uniformly continuous. This is based on the following simple fact.

Lemma 2.1. Let D be a dense subset of [0, 1]. Suppose that f : D → S is a
uniformly continuous function taking values in a complete metric space (S, d).
Then f extends to a continuous function on [0, 1] uniquely.

Proof. Given t ∈ [0, 1], let tn ∈ D be such that tn → t. The uniform continuity
of f implies that the sequence {f(tn)}n>1 is a Cauchy sequence in S. Since
S is complete, the limit limn→∞ f(tn) exists. We define f(t) to be this limit.
Apparently f(t) is independent of the choice of tn, and the resulting function
f : [0, 1]→ S is indeed uniformly continuous. Uniqueness is obvious.

For technical convenience, we are going to work with the dense subset D
of dyadic points in [0, 1]. To be precise, let D = ∪∞n=0Dn, where Dn = {k/2n :
k = 0, 1, · · · , 2n}. The following lemma is elementary.

Lemma 2.2. Let t ∈ D. Then t has a unique expression t =
∑∞

i=0 ai(t)2
−i,

where ai(t) is 0 or 1, and ai(t) = 1 for at most finitely many i . Moreover, for
n > 0, let tn =

∑n
i=0 ai(t)2

−i. Then tn is the largest point in Dn which does
not exceed t.

Now we prove Theorem 2.2.

Proof of Theorem 2.2. Let γ ∈ (0, β/α). For n > 0 and 1 6 k 6 2n, Kol-
mogorov’s criteria (2.1) implies that

P
(
d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
6 2αγnE

[
d
(
X k−1

2n
, X k

2n

)α]
6 2−n(1+β−αγ).

Therefore,

P
(

max
16k62n

d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
= P

(
2n⋃
k=1

{
d
(
X k−1

2n
, X k

2n

)
> 2−γn

})

6
2n∑
k=1

P
(
d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
6 2−n(β−αγ).
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Since β − αγ > 0, it follows from the Borel-Cantelli lemma (c.f. Theorem 1.4,
(1)) that

P
(

max
16k62−n

d
(
X k−1

2n
, X k

2n

)
> 2−γn infinitely often

)
= 0.

In other words, there exists some measurable set Ω∗ such that P(Ω∗) = 1 and
for every ω ∈ Ω∗,

d
(
X k−1

2n
(ω), X k

2n
(ω)
)
6 2−γn, ∀k = 1, · · · , 2n and n > n∗(ω),

where n∗(ω) is some positive integer depending on ω.
Now fix ω ∈ Ω∗. Suppose that s, t ∈ D satisfy 0 < |t− s| < 2−n

∗(ω). Then
there exists a unique m > n∗(ω), such that 2−(m+1) 6 |t− s| < 2−m. Write t =∑∞

i=0 ai(t)2
−i according to Lemma 2.2, and let tn =

∑n
i=0 ai(t)2

−i for n > 0.
Define sn in a similar way from s. Apparently sm = tm or |tm − sm| = 2−m. It
follows that when evaluated at ω,

d(Xs, Xt) 6
∞∑
i=m

d(Xsi+1
, Xsi) + d(Xsm , Xtm) +

∞∑
i=m

d(Xti , Xti+1
)

6 2
∞∑
i=m

2−γ(i+1) + 2−γm

=

(
1 +

2

2γ − 1

)
2−γm

6 2γ
(

1 +
2

2γ − 1

)
|t− s|γ. (2.2)

In particular, this shows that for every ω ∈ Ω∗, X(ω) is uniformly continuous
when restricted on D.

We define X̃ in the following way: if ω /∈ Ω∗, define X̃(ω) ≡ c for some
fxied c ∈ S, and if ω ∈ Ω∗, define X̃(ω) to be the unique extension of X(ω)

to [0, 1] according to Lemma 2.1. Then X̃ has continuous sample paths and
(2.2) still holds for X̃(ω) when ω ∈ Ω∗ and |t − s| < 2−n

∗(ω). Moreover, since
Xtn → X̃t a.s. and Xtn → Xt in probability as tn → t, we conclude that
X̃t = Xt a.s. The process X̃ is the desired one.

Remark 2.3. If the process Xt is defined on [0,∞) and Kolmogorov’s criteria
(2.1) holds on every finite interval [0, T ] with constant C possibly depending
on T, then from the previous proof it is not hard to see that there is a con-
tinuous modification X̃ of X on [0,∞), such that for every γ ∈ (0, β/α), with
probability one, X̃ is γ-Hölder continuous on every finite interval [0, T ].
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2.4 Filtrations and stopping times

In the study of stochastic processes, it is very important to keep track of
information growth in the evolution of time. This leads to the following useful
concept of a filtration.

Definition 2.6. A filtration over a probability space (Ω,F ,P) is a increasing
sequence {Ft : t > 0} of sub-σ-algebras of F , i.e. Fs ⊆ Ft ⊆ F for 0 6 s < t.
We call (Ω,F ,P; {Ft}) a filtered probability space.

We can talk about additional measurability properties of a stochastic pro-
cess when a filtration is presented.

Definition 2.7. Let (Ω,F ,P; {Ft}) be a filtered probability space. A stochas-
tic process X is called {Ft}-adapted if Xt is Ft-measurable for every t > 0. It
is called {Ft}-progressively measurable if for every t > 0, the map

X(t) : [0, t]× Ω → Rd,

(s, ω) 7→ Xs(ω),

is B([0, t])⊗Ft-measurable.

Intuitively, for an adapted process X, when the information of Ft is pre-
sented to an observer, the path s ∈ [0, t] 7→ Xs ∈ Rd is then known to her.

It is apparent that if X is progressively measurable, then it is measurable
and adapted. However, the converse is in general not true. It is true if the
sample paths of X are right (or left) continuous.

Proposition 2.2. Let X be an {Ft}-adapted stochastic process. Suppose that
every sample path of X is right continuous. Then X is {Ft}-progressively
measurable.

Proof. We approximate X by step processes. Let t > 0. For n > 1, define

X(n)
s (ω) =

2n∑
k=1

X k
2n
t(ω)1{s∈[ k−1

2n
, k
2n

)} +Xt(ω)1{s=t}, (s, ω) ∈ [0, t]× Ω.

Since X is adapted, X(n) is B([0, t]) ⊗ Ft-measurable. Moreover, by right
continuity of X, we know that X(n)

s (ω) → Xs(ω) for every (s, ω) ∈ [0, t] ⊗ Ω.
Therefore, X is progressively measurable.

Example 2.1. Let Xt be a stochastic process on some probability space
(Ω,F ,P). We can define the natural filtration of Xt to be

FXt = σ(Xs : 0 6 s 6 t), t > 0.

Apparently, Xt is {FXt }-adapted. According to Proposition 2.2, if Xt has right
continuous sample paths, then it is {FXt }-progressively measurable.
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Another important concept for our study is a stopping time. Intuitively,
a stopping time usually models the first time that some phenomenon occurs,
for instance the first time that the temperature of the classroom reaches 25
degree. A characterizing property for such time τ is: if we keep observing up
to time t, we could decide whether τ is observed or not (i.e. whether the event
{τ 6 t} happens), and if τ is not observed before time t, we have no idea when
exactly in the future the temperature will reach 25 degree. This motivates the
following definition.

Definition 2.8. Let (Ω,F ,P; {Ft}) be a filtered probability space. A random
time τ : Ω→ [0,∞] is called an {Ft}-stopping time if {τ 6 t} ∈ Ft for every
t > 0.

Apparently, every constant time is an {Ft}-stopping time. Moreover, we
can easily construct new stopping times from given ones.

Proposition 2.3. Suppose that σ, τ, τn are {Ft}-stopping times. Then

σ + τ, σ ∧ τ, σ ∨ τ, sup
n
τn

are all {Ft}-stopping times, where “∧” (“∨”, respectively) means taking mini-
mum (taking maximum, respectively).

Proof. Consider the following decomposition:

{σ + τ > t} = {σ = 0, τ > t}
⋃
{0 < σ < t, σ + τ > t}⋃

{σ > t, τ > 0}
⋃
{σ > t, τ = 0}.

The first and fourth events are obviously in Ft. The third event is in Ft because

{σ < t} =
⋃
n

{
σ 6 t− 1

n

}
∈ Ft.

For the second event, if ω ∈ {0 < σ < t, σ + τ > t}, then

τ(ω) > t− σ(ω) > 0.

Keeping in mind that σ(ω) > 0, we can certainly choose r ∈ (0, t) ∩ Q, such
that

τ(ω) > r > t− σ(ω).

Therefore, we see that

{0 < σ < t, σ + τ > t} =
⋃

r∈(0,t)∩Q

{τ > r, t− r < σ < t} ∈ Ft.
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For the other cases, we simply observe that

{σ ∧ τ > t} = {σ > t, τ > t} ∈ Ft,
{σ ∨ τ 6 t} = {σ 6 t, τ 6 t} ∈ Ft,{
sup
n
τn 6 t

}
=

⋂
n

{τn 6 t} ∈ Ft.

Remark 2.4. In general, infn τn, and therefore lim supn→∞ τn, lim infn→∞ τn
may fail to be {Ft}-stopping time even though each τn is. However, it is a
good exercise to show that they are {Ft+}-stopping times, where {Ft+} is the
filtration defined by

Ft+ =
⋂
u>t

Fu ⊇ Ft, t > 0. (2.3)

We could also talk about the accumulated information up to a stopping
time τ . Intuitively, the occurrence of an event A can be determined by such
information if the following condition holds. Suppose that the accumulated
information up to time t is presented. If we observe that τ 6 t, we should
be able to decide whether A happens or not because the information up to
time τ is then known. However, if we observe that τ > t, since in this case we
cannot decide the exact value of τ, part of the information up to τ is missing
and the occurrence of A should be undecidable. This motivates the following
definition.

Definition 2.9. Let τ be an {Ft}-stopping time. The pre-τ σ-algebra Fτ is
defined by

Fτ =
{
A ∈ F∞ : A

⋂
{τ 6 t} ∈ Ft, ∀t > 0

}
,

where F∞ , σ (∪t>0Ft) .

It follows from the definition that Fτ is a sub-σ-algebra of F , and τ is
Fτ -measurable. Moreover, if τ ≡ t, then Fτ = Ft. And we have the following
basic properties.

Proposition 2.4. Suppose that σ, τ are two {Ft}-stopping times.
(1) Let A ∈ Fσ, then A ∩ {σ 6 τ} ∈ Fτ . In particular, if σ 6 τ, then

Fσ ⊆ Fτ .
(2) Fσ∧τ = Fσ ∩ Fτ , and the events

{σ < τ}, {σ > τ}, {σ 6 τ}, {σ > τ}, {σ = τ}

are all Fσ ∩ Fτ -measurable.
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Proof. (1) We have

A
⋂
{σ 6 τ}

⋂
{τ 6 t} = A

⋂
{σ 6 τ}

⋂
{τ 6 t}

⋂
{σ 6 t}

=
(
A
⋂
{σ 6 t}

)⋂
{τ 6 t}

⋂
{σ ∧ t 6 τ ∧ t}.

From definition it is obvious that σ∧ t and τ ∧ t are Ft-measurable. Therefore,
by assumption we know that the above event is Ft-measurable.

(2) Since σ ∧ τ is an {Ft}-stopping time, from the first part we know that
Fσ∧τ ⊆ Fσ ∩ Fτ . Now suppose A ∈ Fσ ∩ Fτ , then

A
⋂
{σ ∧ τ 6 t} = A

⋂(
{σ 6 t}

⋃
{τ 6 t}

)
=

(
A
⋂
{σ 6 t}

)⋃(
A
⋂
{τ 6 t}

)
∈ Ft.

Therefore, A ∈ Fσ∧τ .
Finally, by taking A = Ω in the first part, we know that {σ > τ} = {σ 6

τ}c ∈ Fτ . It follows that

{σ < τ} = {σ ∧ τ < τ} ∈ Fσ∧τ = Fσ
⋂
Fτ .

The other cases follow by symmetry and complementation.

In the study of martingales and strong Markov processes, it is important to
consider conditional expectations given Fτ . We give two basic properties here.

Proposition 2.5. Suppose that σ, τ are two {Ft}-stopping times and X is an
integrable random variable. Then we have:

(1) E
[
1{σ6τ}X|Fσ

]
= E

[
1{σ6τ}X|Fσ∧τ

]
.

(2) E [E[X|Fσ]|Fτ ] = E[X|Fσ∧τ ].

Proof. (1) According to the second part of Proposition 2.4, {σ 6 τ} ∈ Fσ∧τ ⊆
Fσ. Therefore, it suffices to show that 1{σ6τ}E[X|Fσ] is Fσ∧τ -measurable. Ap-
parently it is Fσ-measurable. But the Fτ -measurability is a direct consequence
of the first part of Proposition 2.4 (standard approximation allows us to replace
A by a general Fσ-measurable function in that proposition).

(2) First observe that the same argument allows us to conclude that

A ∈ Fσ =⇒ A
⋂
{σ < τ} ∈ Fτ , (2.4)

and
E
[
1{σ<τ}X|Fσ

]
= E

[
1{σ<τ}X|Fσ∧τ

]
.
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Therefore,

E [E[X|Fσ]|Fτ ] = E
[
1{σ<τ}E[X|Fσ]|Fτ

]
+ E

[
1{σ>τ}E[X|Fσ]|Fτ

]
= E

[
1{σ<τ}E[X|Fσ∧τ ]|Fτ

]
+ E

[
1{σ>τ}E[X|Fσ]|Fσ∧τ

]
= E

[
1{σ<τ}X|Fσ∧τ

]
+ E

[
1{σ>τ}X|Fσ∧τ

]
= E[X|Fσ∧τ ].

Now we consider measurability properties for a stochastic process stopped
at some stopping time.

Proposition 2.6. Let (Ω,F ,P; {Ft}) be a filtered probability space. Sup-
pose that Xt is an {Ft}-progressively measurable stochastic process and τ is
an {Ft}-stopping time. Then the stopped process t 7→ Xτ∧t is also {Ft}-
progressively measurable. In particular, the stopped random variable Xτ1{τ<∞}
is Fτ -measurable.

Proof. Restricted on [0, t] × Ω, the stopped process is given by the following
composition of maps:

[0, t]× Ω → [0, t]× Ω → Rd,
(s, ω) 7→ (τ(ω) ∧ s, ω) 7→ Xτ(ω)∧s(ω).

By assumption, we know that the second map is B([0, t]) ⊗ Ft-measurable.
The B([0, t]) ⊗ Ft-measurability of the first map can be easily seen from the
following fact:

{(s, ω) : (τ(ω) ∧ s, ω) ∈ [0, c]×A} = ([0, c]×A)
⋃(

(c, t]×
(
{τ 6 c}

⋂
A
))

for every c ∈ [0, t] and A ∈ Ft.
The Fτ -measurability of Xτ1{τ<∞} follows from the {Ft}-adaptedness of

the stopped process Xτ∧t (because it is {Ft}-progressively measurable) and
the simple fact that Xτ1{τ6t} = Xτ∧t1{τ6t}.

To conclude this section, we discuss a fundamental class of stopping times:
hitting times for stochastic processes.

Definition 2.10. The hitting time of Γ ⊆ Rd by a stochastic process X is
defined to be

HΓ(ω) = inf{t > 0 : Xt(ω) ∈ Γ},

where inf ∅ ,∞.

29



The following result tells us that under some conditions, a hitting time is
a stopping time.

Proposition 2.7. Let (Ω,F ,P; {Ft}) be a filtered probability space. Suppose
that Xt is an {Ft}-adapted stochastic process such that every sample path of
Xt is continuous. Then for every closed set F, HF is an {Ft}-stopping time.

Proof. For given t > 0 and ω ∈ Ω, by continuity we know that the function

ϕ(s) = dist(Xs(ω), F ), s ∈ [0, t],

is continuous. The result then follows from the following observation:

{HF > t} =
∞⋃
n=1

⋂
r∈[0,t]∩Q

{
dist(Xr, F ) >

1

n

}
∈ Ft.

On the other hand, the hitting time of an open set is in general not a
stopping time even the process have continuous sample paths. The reason is
intuitively simple. Suppose that a sample path of the process first hits the
boundary of an open set G from the outside at time t. It is not possible to
determine whether HG 6 t or not without looking slightly ahead into the
future.

However, we do have the following result. The proof is left as an exercise.

Proposition 2.8. Let (Ω,F ,P; {Ft}) be a filtered probability space, and let X
be an {Ft}-adapted stochastic process such that every sample path of X is right
continuous. Then for every open set G, HG is an {Ft+}-stopping time, where
{Ft+} is the filtration defined by (2.3) in Remark 2.4.

Until now, to some extend we have already seen the inconvenience caused
by the difference between the filtrations {Ft} and {Ft+} (c.f. Remark 2.4 and
Proposition 2.8). In particular, in order to include a richer class of stopping
times, it is usually convenient to assumption that Ft = Ft+ for every t > 0, i.e.
the filtration {Ft}-is right continuous. This seemingly unnatural assumption
is indeed quite mild: the natural filtration of a strong Markov process, when
augmented by null sets, is always right continuous (c.f. [5]).

Another mild and reasonable assumption on the filtered probability space is
to make sure that most probabilistic properties, in particular for those related
to adaptedness and stopping times, are preserved by another stochastic process
which is indistinguishable from the original one. Mathematically speaking, this
is the assumption that F0 contains all P-null sets (recall from our convention
that N is a P-null set if there exists E ∈ F , such that N ⊆ E and P(E) = 0).
In particular, this implies that F and every Ft are P-complete.
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Definition 2.11. A filtration is said to satisfy the usual conditions if it is
right continuous and F0 contains all P-null sets.

Given an arbitrary filtered probability space (Ω,G,P; {Gt}), it can always be
augmented to satisfy the usual conditions. Indeed, let F be the P-completion
of G and let N be the collection of P-null sets. For every t > 0, we define

Ft =
⋂
s>t

σ(Gs,N ) = σ(Gt+,N ).

Then (Ω,F ,P; {Ft}) is the smallest filtered probability space which contains
(Ω,G,P; {Gt}) and satisfies the usual conditions. We call it the usual aug-
mentation of (Ω,G,P; {Gt}). It is a good exercise to provide the details of the
proof.

In Proposition 2.7, if we drop the assumption thatXt has continuous sample
paths, the situation becomes rather subtle. It can still be proved in a tricky
set theoretic way that, under the usual conditions on {Ft}, HF is an {Ft}-
stopping time provided F is a compact set and every sample path of Xt is
right continuous with left limits (c.f. [9]). However, the case when F is a
general Borel set is even much more difficult. The result is stated as follows.
The proof relies on the machinery of Choquet’s capacitability theory (c.f. [2]).
The usual conditions again play a crucial role in the theorem.

Theorem 2.3. Let (Ω,G,P; {Gt}) be a filtered probability space. Suppose that
Xt is a {Gt}-progressively measurable stochastic process. Then for every Γ ∈
B(Rd), HΓ is an {Ft}-stopping time, where {Ft} is the usual augmentation of
{Gt}.

It is true that many interesting and important probabilistic properties will
be preserved if we work with the usual augmentation of the original filtered
probability space. Moreover, the usual conditions have more implications than
just enriching the class of stopping times, for example in questions related to
sample path regularity properties (c.f. Theorem 3.10, 3.11).

However, to remain fairly careful, we will not always assume that we are
working under the usual conditions. We will state clearly whenever they are
assumed.

2.5 Problems

Problem 2.1. (?) Recall that (W d,B(W d), ρ) is the continuous path space
over Rd. Let {Pn} be a sequence of probability measures on (W d,B(Rd)). Show
that Pn is weakly convergent if and only if the following conditions hold:
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(i) the finite dimensional distributions of Pn are weakly convergent, i.e. for
every t = (t1, · · · , tm) with m > 1, t1 < · · · < tm, the sequence of probability
measures

Qn
t (Γ) , Pn((wt1 , · · · , wtm) ∈ Γ), Γ ∈ B(Rd×m),

on (Rd×m,B(Rd×m)) is weakly convergent;
(ii) the family {Pn} is tight.

Problem 2.2. Consider the path space
(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
. LetXt(w) =

wt be the canonical coordinate process.
(1) (?) By using Kolmogorov’s extension theorem, show that there exists a

unique probability measure P on
(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
, such that under P,

(i) X0 = 0 almost surely,
(ii) for every 0 6 s < t, Xt − Xs is normally distributed with mean zero

and covariance matrix (t− s)Id, where Id is the d× d identity matrix;
(iii) for every 0 6 t1 < · · · < tn, the increments Xt1 , Xt2 −Xt1 , · · · , Xtn −

Xtn−1 are independent.
(2) (?) Show that there exists a continuous modification X̃t of Xt on [0,∞),

such that for every 0 < γ < 1/2, with probability one, X̃t has γ-Hölder
continuous sample paths on every finite interval [0, T ].

(3) Let X̃t be the continuous modification of Xt given in (2). Show that
with probability one,

sup
s,t∈[0,T ]
s 6=t

|X̃t − X̃s|
|t− s| 12

=∞ and sup
s,t∈[0,∞)
s 6=t

|X̃t − X̃s|
|t− s|γ

=∞,

for every T <∞ and γ ∈ (0, 1/2).

Remark. The process X̃t constructed in this problem is called a d-dimensional
Brownian motion.

Problem 2.3. (1) Give an example to show that we cannot allow β = 0 in
Kolmogorov’s continuity theorem (i.e. Theorem 2.3).

(2) Give an example to show that, under the assumptions in Kolmogorov’s
continuity theorem, we cannot strengthen the result to conclude that there
exists a P-null set outside which every sample path of X is continuous. What
if we assume further that every sample path of X is right continuous with left
limits?

(3) (?) By adapting the proof of Kolmogorov’s continuity theorem, prove
the following result.

Let X(n)
t be a sequence of d-dimensional stochastic processes with contin-

uous sample paths such that:
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(i) there exist positive constants M and γ, such that

E
[∣∣∣X(n)

0

∣∣∣γ] 6M

for every n;
(ii) there exist positive constants α, β and Mk for k ∈ N, such that

E
[∣∣∣X(n)

t −X(n)
s

∣∣∣α] 6Mk|t− s|1+β

for every n, k and s, t ∈ [0, k].
Then the sequence of probability measures Pn on (W d,B(W d)) induced by

X
(n)
t is tight.

Problem 2.4. Let (Ω,F ,P; {Ft}) be a filtered probability space.
(1) Let τ be an {Ft}-stopping time and σ be a random time such that

σ > τ . Suppose that σ is Fτ -measurable. Show that σ is an {Ft}-stopping
time.

(2) Suppose further that {Ft} is right continuous.
(i) (?) Let {τn} be a decreasing sequence of {Ft}-stopping times, and define

τ = limn→∞ τn. Show that τ is an {Ft}-stopping time and Fτ = ∩∞n=1Fτn .
(ii) (?) Let σ be an {Ft}-stopping time. For t > 0, define Gt = Fσ+t.

Suppose that τ is a {Gt}-stopping time. Show that σ + τ is an {Ft}-stopping
time.

Problem 2.5. Let Xt be a stochastic process on some probability space
(Ω,G,P) with independent increments, i.e. Xt0 , Xt1 − Xt0 , · · · , Xtn − Xtn−1

are independent whenever 0 < t0 < t1 < · · · < tn. Suppose further that Xt has
right continuous sample paths.

(1) For t > 0, show that Ut , σ(Xt+u −Xt : u > 0) and GXt+ are indepen-
dent, where {GXt } is the natural filtration of X.

(2) (?) Let FXt = σ
(
GXt ,N

)
be the augmented natural filtration of Xt,

where N is the collection of P-null sets. Show that {FXt } is right continuous.

Problem 2.6. (?) Let (Ω,F) = (W d,B(W d)). Define Xt(w) = wt to be the
coordinate process on (Ω,F), and FXt , σ(Xs : 0 6 s 6 t) to be the natural
filtration of Xt. Suppose that τ is an {FXt }-stopping time. Show that

FXτ = σ(Xτ∧t : t > 0).
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3 Continuous time martingales
This section is devoted to the study of continuous time martingales. The
theory of martingales and martingale methods lies in the heart of stochastic
analysis. As we will see, we are adopting a very martingale flavored approach
to develop the whole theory of stochastic calculus. The main results in this
section are mainly due to Doob.

3.1 Basic properties and the martingale transform: dis-
crete stochastic integration

We start with the discrete time situation. As we will see, under certain reason-
able regularity conditions on sample paths, parallel results in the continuous
time situation can be derived easily from the discrete case. Therefore, in most
of the topics we consider in this section, we do not really see a substantial dif-
ference between the two situations. However, in Section 5, we will appreciate
many deep and elegant properties of continuous time martingales which do not
have their discrete time counterparts.

Let T = {0, 1, 2, · · · } or [0,∞).

Definition 3.1. Let (Ω,F ,P; {Ft : t ∈ T}) be a filtered probability space. A
real-valued stochastic process {Xt,Ft : t ∈ T} is called a martingale (respec-
tively, submartingale, supermartingale) if:

(1) Xt is {Ft}-adapted;
(2) Xt is integrable for every t ∈ T ;
(3) for every s < t ∈ T,

E[Xt|Fs] = Xs, (respectively, ” > ”, ” 6 ”).

Example 3.1. Let T = [0,∞). Consider the stochastic process
{
X̃t : t ∈ T

}
constructed in Problem 2.2 in dimension d = 1 (the so-called 1-dimensional
Brownian motion). Let

{
F X̃t
}

be the natural filtration of X̃t. Then for 0 6

s < t, X̃t − X̃s is independent of F X̃s with zero mean. Therefore,
{
X̃t,F X̃t

}
is

a martingale.

A useful way of constructing a new submartingale from the old is the fol-
lowing.

Proposition 3.1. Let {Xt,Ft : t ∈ T} be a martingale (respectively, a sub-
martingale). Suppose that ϕ : R1 → R1 is a convex function (respectively, a
convex and increasing function). If ϕ(Xt) is integrable for every t ∈ T, then
{ϕ(Xt),Ft : t ∈ T} is submartingale.
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Proof. The adaptedness and integrability conditions are satisfied. To see the
submartingale property, we apply Jensen’s inequality (c.f. inequality (1.2)) to
obtain that

E[ϕ(Xt)|Fs] > ϕ(E[Xt|Fs]) > ϕ(Xs)

for s < t ∈ T.

Example 3.2. If {Xt,Ft} is a martingale, then X+
t , max(Xt, 0) and |Xt|p

(p > 1) are {Ft}-submartingales, provided Xt is in Lp for every t.

Now we consider the situation when T = {0, 1, 2, · · · }.
In the discrete time setting, stopping times and pre-stopping time σ-algebras

are defined analogously to the continuous time case in an obvious way.
We are going to construct a class of martingales which plays a central role

in this section, in particular in the study of martingale convergence and the
optional sampling theorem.

Definition 3.2. Let {Fn : n > 0} be a filtration. A real-valued random
sequence {Cn : n > 1} is said to be {Fn}-predictable if Cn is Fn−1-measurable
for every n > 1.

Let {Xn : n > 0} and {Cn : n > 1} be two sequences. We define another
sequence {Yn : n > 0} by Y0 = 0 and

Yn =
n∑
k=1

Ck(Xk −Xk−1).

Definition 3.3. The sequence {Yn : n > 0} is called the martingale transform
of Xn by Cn. It is denoted by (C •X)n.

Comparing with Section 5, the martingale transform can be regarded as a
discrete version of stochastic integration.

The following result verifies the name. Its proof is straight forward.

Theorem 3.1. Let {Xn,Fn : n > 0} be a martingale (respectively, submartin-
gale, supermartingale) and let {Cn : n > 1} be an {Fn}-predictable random
sequence which is bounded (respectively, bounded and non-negative). Then the
martingale transform {(C • X)n,Fn : n > 0} of Xn by Cn is a martingale
(respectively, submartingale, supermartingale).

Remark 3.1. The boundedness of Cn is not important–we only need to guar-
antee the integrability of Yn.
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It is helpful to have the following intuition of the martingale transform in
mind. Suppose that you are playing games over the time horizon {1, 2, · · · }.
Cn is interpreted as your stake on game n. Predictability means that you are
making your decision on the stake amount Cn based on the history Fn−1.
Xn − Xn−1 represents your winning at game n per unit stake. Therefore, Yn
is your total winning up to time n.

3.2 The martingale convergence theorems

The (sub or super)martingale property exhibits a trend on average in the long
run. It is therefore not unreasonable to expect that a (sub or super)martingale
can converge (almost surely) if its mean sequence is well controlled.

We first explain a general way of proving the almost sure convergence of a
random sequence.

Let {Xn : n > 0} be a random sequence. Then Xn(ω) is convergent if and
only if lim infn→∞Xn(ω) = lim supn→∞Xn(ω). Therefore,

{Xn does not converge} ⊆
{

lim inf
n→∞

Xn < lim sup
n→∞

Xn

}
⊆

⋃
a<b
a,b∈Q

{
lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

}
.

Therefore, in order to prove that Xn converges a.s., it suffices to show that

P
(

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

)
= 0 (3.1)

for every given a < b. But the event in the bracket implies that a subsequence
of Xn lies below a while another subsequence of Xn lies above b. This further
implies that the total number of upcrossings by the sequence Xn from below
a to above b must be infinite.

Therefore, the convergence of Xn is closely related to controlling the up-
crossing number of an interval [a, b].

Now we define this number mathematically.
Consider the following two sequences of random times:

σ0 = 0,
σ1 = inf{n > 0 : Xn < a}, τ1 = inf{n > σ1 : Xn > b},
σ2 = inf{n > τ1 : Xn < a}, τ2 = inf{n > σ2 : Xn > b},

· · ·
σk = inf{n > τk−1 : Xn < a}, τk = inf{n > σk : Xn > b},

· · · .
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Definition 3.4. ForN > 0, the upcrossing number UN(X; [a, b]) of the interval
[a, b] by the sequence Xn up to time N is define to be random number

UN(X; [a, b]) =
∞∑
k=1

1{τk6N}.

Note that UN(X; [a, b]) 6 N/2. Moreover, if {Fn : n > 0} is a filtration
and Xn is {Fn}-adapted, then σk, τk are {Fn}-stopping times. In particular,
in this case UN(X; [a, b]) is FN -measurable.

The main result of controlling UN(X; [a, b]) in our context is the following.
Here we are in particular working with supermartingales. The technique of
dealing with the submartingale case is actually quite different. However, as
they both lead to the same general convergence theorems, we will omit the
discussion of the submartingale case and focus on supermartingales.

Proposition 3.2 (Doob’s upcrossing inequality). Let {Xn,Fn : n > 0} be a
supermartingale. Then the upcrossing number UN(X; [a, b]) of [a, b] by Xn up
to time N satisfies the following inequality:

E[UN(X; [a, b])] 6
E[(XN − a)−]

b− a
, (3.2)

where x− , max(−x, 0).

The proof of this inequality can be fairly easy as long as we can find a good
way of looking at this upcrossing number.

Suppose in the aforementioned gambling model that Xn−Xn−1 represents
the winning at game n per unit stake. Now consider the following gambling
strategy: repeat the following two steps until forever:

(1) Wait until Xn gets below a;
(2) Play unit stakes onwards until Xn gets above b and stop playing.
Mathematically, this is to say that we define

C1 = 1{X0<a},

Cn = 1{Cn−1=0}1{Xn−1<a} + 1{Cn−1=1}1{Xn−16b}, n > 2.

Let {Yn} be the martingale transform of Xn by Cn. Then YN represents the
total winning up to time N. Note that YN comes from two parts: the playing
intervals corresponding to complete upcrossings, and the last playing inter-
val corresponding to the last incomplete upcrossing (possibly non-existing).
The total winning YN from the first part is obviously bounded below by
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(b−a)UN(X; [a, b]), and the total winning in the last playing interval (possibly
non-existing) is bounded below −(XN − a)−. Therefore, we have

YN > (b− a)UN(X; [a, b])− (XN − a)−.

On the other hand, by definition it is apparent that {Cn} is a bounded and
non-negative {Fn}-predictable sequence. According to Theorem 3.1, {Yn,Fn}
is a supermartingale. Therefore, E[YN ] 6 E[Y0] = 0, which implies (3.2).

Now since UN(X; [a, b]) is increasing in N, we may define

U∞(X; [a, b]) = lim
N→∞

UN(X; [a, b]),

which is the upcrossing number for the whole time horizon.
From Doob’s upcrossing inequality, we can immediately see that if the

supermartingale {Xn,Fn} is bounded in L1, i.e. supn>0 E[|Xn|] <∞, then

E[U∞(X; [a, b])] = lim
N→∞

E[UN(X; [a, b])] 6
supn>0 E[|Xn|] + |a|

b− a
<∞.

In particular, U∞(X; [a, b]) <∞ a.s.
But from the discussion at the beginning of this subsection, we know that{

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

}
⊆ {U∞(X; [a, b]) =∞} .

Therefore, (3.1) holds and we conclude that Xn converges to some X∞ a.s.
Moreover, Fatou’s lemma shows that

E[|X∞|] 6 lim inf
n→∞

E[|Xn|] 6 sup
n>0

E[|Xn|] <∞.

In other words, we have proved the following convergence result.

Theorem 3.2 (Doob’s supermartingale convergence theorem). Let {Xn,Fn :
n > 0} be a supermartingale which is bounded in L1. Then Xn converges almost
surely to an integrable random variable X∞.

Remark 3.2. In the theorem, we can define X∞ = lim supn→∞Xn, so that X∞
is F∞-measurable, where F∞ , σ (∪∞n=0Fn).

Now we consider the question about when the convergence holds in L1.
This is closely related to uniform integrability.
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Theorem 3.3. Let {Xn,Fn : n > 0} be a supermartingale which is bounded in
L1, so that Xn converges almost surely to some X∞ ∈ L1. Then the following
statements are equivalent:

(1) {Xn} is uniformly integrable;
(2) Xn converges to X∞ in L1.

In this case, we have
(3) E[X∞|Fn] 6 Xn a.s.
In addition, if {Xn,Fn} is a martingale, then (1) or (2) is also equivalent

to (3) with “6” replaced by “=”.

Proof. Since almost sure convergence implies convergence in probability, the
equivalence of (1) and (2) is a direct consequence of Theorem 1.3. To see (3),
it suffices to show that∫

A

X∞dP 6
∫
A

XndP, ∀A ∈ Fn. (3.3)

But from the supermartingale property, we know that∫
A

XmdP 6
∫
A

XndP, ∀m > n, A ∈ Fn.

Therefore, (3.3) follows from letting m→∞.
The last part of the theorem in the martingale case is seen from Problem

1.2, (1).

Corollary 3.1 (Lévy’s forward theorem). Let Y be an integrable random vari-
able and let {Fn : n > 0} be a filtration. Then Xn = E[Y |Fn] is a uniformly
integrable martingale such that Xn converges to E[Y |F∞] almost surely and in
L1.

Proof. The martingale property follows from

E[Xm|Fn] = E[E[Y |Fm]|Fn] = E[Y |Fn] = Xn, ∀m > n.

Uniform integrability follows from Problem 1.2, (1). In particular, from Theo-
rem 1.1 we know that {Xn} is bounded in L1. According to Theorem 3.3, Xn

converges to some X∞ almost surely and in L1.
Now it suffices to show that X∞ = E[Y |F∞] a.s. Since ∪∞n=0Fn is a π-

system, we only need to verify∫
A

X∞dP =

∫
A

Y dP, ∀A ∈ Fn, n > 0.
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This follows from letting m→∞ in the identity:∫
A

XmdP =

∫
A

Y dP, ∀m > n, A ∈ Fn.

It is sometimes helpful to consider martingales running backward in time,
or equivalently, to work with negative time parameter, in particular in the
study of continuous time martingales. As we shall see, due to the natural
ordering of negative integers, convergence properties for backward martingales
are simpler and stronger than the forward case.

Let T = {−1,−2, · · · }. By using the natural ordering on T, we define the
notions of (sub or super)martingales in the same way as the non-negative time
parameter case. Now observe that we have a decreasing filtration

G−∞ ,
∞⋂
n=1

G−n ⊆ · · · ⊆ G−(m+1) ⊆ G−m · · · ⊆ G−1

as n→ −∞.
The following convergence theorem plays a crucial role in the passage from

discrete to continuous time.

Theorem 3.4 (The Lévy-Doob backward theorem). Let {Xn,Gn : n 6 −1}
be a supermartingale. Suppose that supn6−1 E[Xn] <∞. Then Xn is uniformly
integrable, and the limit

X−∞ , lim
n→−∞

Xn

exists almost surely and in L1. Moreover, for n 6 −1, we have

E[Xn|G−∞] 6 X−∞, a.s.,

with equality if {Xn,Gn} is a martingale.

Proof. To see that Xn converges almost surely, we use the same technique
as in the proof of Doob’s supermartingale convergence theorem. The main
difference here is that the right hand side of Doob’s upcrossing inequality is
now in terms of X−1 since we are working with negative times. Therefore,
the limit X−∞ , limn→−∞Xn exists almost surely (possibly infinite) without
any additional assumptions. X−∞ can be defined to be G−∞-measurable (c.f.
Remark 3.2).

Now we show uniform integrability.
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Let λ > 0 and n 6 k 6 −1. According to the supermartingale property,
we have

E
[
|Xn|1{|Xn|>λ}

]
= E

[
Xn1{Xn>λ}

]
− E

[
Xn1{Xn<−λ}

]
= E[Xn]− E

[
Xn1{Xn6λ}

]
− E

[
Xn1{Xn<−λ}

]
6 E[Xn]− E

[
Xk1{Xn6λ}

]
− E

[
Xk1{Xn<−λ}

]
= E[Xn]− E[Xk] + E

[
Xk1{Xn>λ}

]
− E

[
Xk1{Xn<−λ}

]
6 E[Xn]− E[Xk] + E

[
|Xk|1{|Xn|>λ}

]
.

Given ε > 0, by the assumption supn6−1 E[Xn] < ∞, there exists k 6 −1,
such that

0 6 E[Xn]− E[Xk] 6
ε

2
, ∀n 6 k.

Moreover, for this particular k, by integrability there exists δ > 0, such that

A ∈ F ,P(A) < δ =⇒ E[|Xk|1A] <
ε

2
.

On the other hand, since {Xn,Gn} is a supermartingale, we know that
{X−n ,Gn} is a submartingale. Therefore,

E[|Xn|] = E[Xn] + 2E[X−n ] 6 E[Xn] + 2E[X−−1], ∀n 6 −1.

This implies thatM , supn6−1 E[|Xn|] <∞ (which by Fatou’s lemma already
implies that X∞ is a.s. finite), and

P(|Xn| > λ) 6
E[|Xn|]
λ

6
M

λ
, ∀n 6 −1, λ > 0.

Now we choose Λ > 0 such that if λ > Λ, then

P(|Xn| > λ) < δ, ∀n 6 k,

and
E
[
|Xn|1{|Xn|>λ}

]
< ε, ∀k < n 6 −1.

The uniform integrability then follows.
With uniform integrability, it follows immediately from Theorem 1.3 that

Xn → X∞ almost surely and in L1 as n→ −∞.
Finally, the last part of the theorem follows from∫

A

XndP 6
∫
A

XmdP, ∀A ∈ G−∞, m 6 n 6 −1,

and letting m→ −∞.
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Remark 3.3. We have seen that the fundamental condition that guarantees con-
vergence is the boundedness in L1. In particular, all the convergence results we
discussed before hold for submartingales as well, since −Xn is a supermartin-
gale if Xn is a submartingale, and applying a minus sign does not affect the
L1-boundedness.

3.3 Doob’s optional sampling theorems

Given a martingale, under certain conditions it is reasonable to expect that
the martingale property is preserved when sampling along stopping times. The
study of this problem leads to the so-called Doob’s optional sampling theorems.

Again we will mainly work with (super)martingales, and all the results
apply to submartingales by applying a minus sign.

Let {Xn,Fn : n > 0} be a (super)martingale, and let τ be an {Fn}-
stopping time.

We first consider the stopped process Xτ
n , Xτ∧n.

As in the proof of Doob’s upcrossing inequality, we can interpret Xτ
n by a

gambling model. The model in this case is quite easy: we keep playing unit
stakes from the beginning and quit immediately after τ. Mathematically, set

Cτ
n = 1{n6τ}, n > 1.

Then (Cτ • X)n = Xτ∧n − X0 (recall that (Cτ • X)n represents the total
winning up to time n). Apparently, the sequence Cτ

n is bounded, non-negative
and {Fn}-predictable. According to Theorem 3.1, we have proved the following
result.

Theorem 3.5. The stopped process Xτ
n is an {Fn}-(super)martingale.

Now we consider the situation when we also stop our filtration at some
stopping time.

We first consider the case in which the stopping times are bounded.

Theorem 3.6. Let {Xn,Fn : n > 0} be a (super)martingale. Suppose that σ, τ
are two bounded {Fn}-stopping times such that σ 6 τ . Then {Xσ,Fσ;Xτ ,Fτ}
is a two-step (super)martingale.

In particular, if τ is an {Fn}-stopping time, then {Xτ∧n,Fτ∧n : n > 0} is
a (super)martingale.

Proof. We only consider the supermartingale case. Assume that σ 6 τ 6 N for
some constant N > 0. Adaptedness and integrability of {Xσ,Fσ;Xτ ,Fτ} are
straight forward. To see the supermartingale property, let F ∈ Fσ. Consider
the sequence

Cn = 1F1{σ<n6τ}, n > 1.
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Then (C • X)N = (Xτ − Xσ)1F . On the other hand, Cn is {Fn}-predictable
because

F
⋂
{σ < n 6 τ} = F

⋂
{σ 6 n− 1}

⋂
(τ 6 n− 1)c ∈ Fn−1, ∀n > 1.

It is also bounded and non-negative. Therefore, according to Theorem 3.1,
{(C •X)n,Fn : n > 0} is a supermartingale. In particular,

E[(C •X)N ] = E[(Xτ −Xσ)1F ] 6 0,

which is the desired supermartingale property.

The case when σ, τ are unbounded is more involved.
In general, since a stopping time τ can be infinite, the definition of Xτ in-

volves its value at∞. Therefore, a natural assumption on our (super)martingale
is to included a “last” element X∞.

Definition 3.5. A (super)martingale with a last element is a (super)martingale
{Xt,Ft : t ∈ T} over the index set T = {0, 1, 2, · · · } ∪ {∞}.

According to Lévy’s forward theorem (c.f. Theorem 3.1), a martingale
{Xn,Fn : 0 6 n 6 ∞} with a last element is uniformly integrable and
Xn → X∞ almost surely and in L1 as n→∞.

The general optional sample theorem for martingales is easy.

Theorem 3.7. Let {Xn,Fn : 0 6 n 6 ∞} be a martingale with a last
element. Suppose that σ, τ are two {Fn}-stopping times such that σ 6 τ. Then
{Xσ,Fσ;Xτ ,Fτ} is a two-step martingale.

Proof. Adaptedness is easy. Integrability follows from

E[|Xτ |] =
∞∑
n=0

E
[
|Xn|1{τ=n}

]
+ E

[
|X∞|1{τ=∞}

]
6

∞∑
n=0

E
[
|X∞|1{τ=n}

]
+ E

[
|X∞|1{τ=∞}

]
= E[|X∞|],

where we have used the fact that {|Xn|,Fn : 0 6 n 6∞} is a submartingale
with a last element.

Now we show that
E[X∞|Fτ ] = Xτ a.s.
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The martingale property will follow from further conditioning on Fσ. Let A ∈
Fτ . For every n > 0, we have

E
[
Xτ1A∩{τ6n}

]
=

n∑
k=0

E
[
Xk1A∩{τ=k}

]
= E

[
X∞1A∩{τ6n}

]
.

Since Xτ and X∞ are both integrable, by the dominated convergence theorem,
we have

E
[
Xτ1A∩{τ<∞}

]
= E

[
X∞1A∩{τ<∞}

]
.

But the identity over {τ =∞} is obvious. Therefore, we have

E[Xτ1A] = E[X∞1A].

To study the case for supermartingales, we need the following lemma.

Lemma 3.1. Every supermartingale with a last element can be written as the
sum of a martingale with a last element and a non-negative supermartingale
with zero last element.

Proof. Let {Xn,Fn : 0 6 n 6 ∞} be a supermartingale with a last element.
Define

Yn = E[X∞|Fn], Zn = Xn − Yn, 0 6 n 6∞.

Then Xn = Yn + Zn is the desired decomposition.

Now we are able to prove the general optional sampling theorem for super-
martingales.

Theorem 3.8. Let {Xn,Fn : 0 6 n 6 ∞} be a supermartingale with a last
element. Suppose that σ, τ are two {Fn}-stopping times such that σ 6 τ. Then
{Xσ,Fσ;Xτ ,Fτ} is a two-step supermartingale.

Proof. According to Theorem 3.7 and Lemma 3.1, it suffices to consider the
case when {Xn,Fn : 0 6 n 6 ∞} is a non-negative supermartingale with a
last element X∞ = 0.

Adaptedness is easy. To see integrability, since

Xσ = Xσ1{σ<∞} +X∞1{σ=∞}

and X∞ is integrable, we only need to show that Xσ1{σ<∞} is integrable. But

Xσ1{σ<∞} = lim
n→∞

Xσ∧n1{σ<∞},
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and according to Theorem 3.6, we know that

E
[
Xσ∧n1{σ<∞}

]
6 E[Xσ∧n] 6 E[X0].

The integrability of Xσ1{σ<∞} then follows from Fatou’s lemma.
Now we show the supermartingale property. Let A ∈ Fσ. According to

Proposition 2.4, for every n > 0, A∩{σ 6 n} ∈ Fσ∩Fn = Fσ∧n. From Theorem
3.6, we know that {Xσ∧n,Fσ∧n;Xτ∧n,Fτ∧n} is a two-step supermartingale.
Therefore, ∫

A∩{σ6n}
Xτ∧ndP 6

∫
A∩{σ6n}

Xσ∧ndP =

∫
A∩{σ6n}

XσdP.

Moreover, we know that∫
A∩{σ6n}

Xτ∧ndP >
∫
A∩{σ6n}∩{τ<∞}

Xτ∧ndP

as Xn is non-negative, and we also have

Xτ1A∩{τ<∞} = lim
n→∞

Xτ∧n1A∩{σ6n}∩{τ<∞}.

Fatou’s lemma then implies that∫
A∩{τ<∞}

XτdP 6 lim
n→∞

∫
A∩{σ6n}

XσdP 6
∫
A

XσdP.

But the left hand side of the above inequality is equal to
∫
A
XτdP sinceX∞ = 0.

This yields the desired supermartingale property.

Corollary 3.2. Let {Xn,Fn : 0 6 n 6 ∞} be a (super)martingale with a
last element. Suppose that {τm : m > 1} is a increasing sequence of {Fn}-
stopping times. Define X̃m = Xτm and F̃m = Fτm . Then {X̃m, F̃m : m > 1}
is a (super)martingale.

3.4 Doob’s martingale inequalities

By using Doob’s optional sampling theorem for bounded stopping times, we
are going to derive several fundamental inequalities in martingale theory which
are important in the analytic aspect of stochastic calculus.

Here we will work with submartingales instead.
The central inequality is known as Doob’s maximal inequality, which is

the first part of the following result. As a submartingale exhibits an increas-
ing trend on average, it is not surprising that its running maximum can be
controlled by the terminal value in some sense.
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Theorem 3.9. Let {Xn,Fn : n > 0} be a submartingale. Then for every
N > 0 and λ > 0, we have the following inequalities:

(1) λP
(
sup06n6N Xn > λ

)
6 E[X+

N ];
(2) λP (inf06n6N Xn 6 −λ) 6 E[X+

N ]− E[X0].

Proof. (1) Let σ = inf{n 6 N : Xn > λ} and we define σ = N if no such
n 6 N exists. Clearly σ is an {Fn}-stopping time bounded by N . According
to Theorem 3.6, we have

E[XN ] > E[Xσ] = E
[
Xσ1{sup06n6N Xn>λ}

]
+ E

[
XN1{sup06n6N Xn<λ}

]
> λP

({
sup

06n6N
Xn > λ

})
+ E

[
XN1{sup06n6N Xn<λ}

]
.

Therefore,

λP
({

sup
06n6N

Xn > λ

})
6 E

[
XN1{sup06n6N Xn>λ}

]
6 E[X+

N ].

The desired inequality then follows.
(2) Let τ = inf{n 6 N : Xn 6 −λ} and we define τ = N if no such

n 6 N exists. Then τ is an {Fn}-stopping time bounded by N . The desired
inequality follows in a similar manner by considering E[X0] 6 E[Xτ ].

An important corollary of Doob’s maximal inequality is Doob’s Lp-inequality
for the maximal functional. We first need the following lemma.

Lemma 3.2. Suppose that X, Y are two non-negative random variables such
that

P(X > λ) 6
E[Y 1{X>λ}]

λ
, ∀λ > 0. (3.4)

Then for any p > 1, we have

‖X‖p 6 q‖Y ‖p, (3.5)

where q , p/(p− 1) (so that 1/p+ 1/q = 1).

Proof. Suppose ‖Y ‖p <∞ (otherwise the result is trivial). Write

E[Xp] = E
[∫ X

0

pλp−1dλ

]
= E

[∫ ∞
0

pλp−11{X>λ}dλ

]
.
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By Fubini’s theorem, we have

E
[∫ ∞

0

pλp−11{X>λ}dλ

]
=

∫ ∞
0

pλp−1P(X > λ)dλ

6
∫ ∞

0

pλp−2E
[
Y 1{X>λ}

]
dλ

= E
[
Y

∫ X

0

pλp−2dλ

]
=

p

p− 1
E[Y Xp−1].

First we assume that ‖X‖p <∞. It follows from Hölder’s inequality that

E[Y Xp−1] 6 ‖Y ‖p‖Xp−1‖q = ‖Y ‖p‖X‖p−1
p .

Therefore, (3.5) follows.
For the general case, let XN = X ∧ N (N > 1). By considering λ > N

and λ 6 N, we can see that the condition (3.4) also holds for XN and Y. The
desired inequality (3.5) follows by first considering XN and then applying the
monotone convergence theorem.

Corollary 3.3 (Doob’s Lp-inequality). Let {Xn,Fn : n > 0} be a non-
negative submartingale. Suppose that p > 1 and Xn ∈ Lp for all n. Then for
every N > 0, X∗N , sup06n6N Xn ∈ Lp, and we have the following inequality:

‖X∗N‖p 6 q‖XN‖p,

where q , p/(p− 1).

Proof. The result follows from the first part of Theorem 3.9 and Lemma 3.2.

3.5 The continuous time analogue

The key to the passage from discrete to continuous time is an additional as-
sumption on the right continuity for sample paths. With this right continuity
assumption, the generalizations of all the results in Section 3.1, 3.2 and 3.3
to the continuous time setting are almost straight forward. It will be seen in
Theorem 3.10 that this is not at all a luxurious assumption.

Suppose that (Ω,F ,P; {Ft : t > 0}) is a filtered probability space, and
all stochastic processes are defined on [0,∞) (except in the backward case in
which the parameter set is (−∞,−1]). In the following discussion, we always
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assume that the underlying (sub or super)martingales have right continuous
sample paths.

1. The martingale convergences theorems: Theorem 3.2, Theorem
3.3, Corollary 3.1 and Theorem 3.4 (just for backward martingales) also hold
in the continuous time setting.

Proof. Indeed, the only place which needs care is the definition of upcrossing
numbers. Suppose that Xt is an {Ft}-adapted stochastic process. Let a < b
be two real numbers. For a finite subset F ⊆ [0,∞), we define UF (X; [a, b]) to
be the upcrossing number of [a, b] by the process {Xt : t ∈ F}, defined in the
same way as in the discrete time case. For a general subset I ⊆ [0,∞), set

UI(X; [a, b]) = sup{UF (X; [a, b]) : F ⊆ I, F is finite}.

If Xt has right continuous sample paths, we may approximate U[0,n](X; [a, b])
by rational time indices to conclude that U[0,n](X; [a, b]) and U[0,∞)(X; [a, b])
are measurable. The remaining details of proving the continuous time analogue
of these convergence results are then straight forward.

2. Doob’s optional sampling theorems: Theorem 3.6 and Theorem
3.8 also hold in the continuous time setting.

Proof. We only prove the analogue of Theorem 3.8. The case for bounded
stopping times is treated in a similar way.

Suppose that {Xt,Ft : 0 6 t 6∞} is a supermartingale with a last element.
Let σ 6 τ be two {Ft}-stopping times. For n > 1, define

σn =
∞∑
k=1

k

2n
1{ k−1

2n
6σ< k

2n} + σ · 1{σ=∞}

and define τn in the same way. It is apparent that σn 6 τn, and σn ↓ σ,
τn ↓ τ. Moreover, given t > 0, let k be the unique integer such that t ∈
[(k − 1)/2n, k/2n). From {σn 6 t} = {σ < (k − 1)/2n}, we can see that σn is
an {Ft}-stopping time and the same is true for τn.

Since σn, τn take discrete values {k/2n : k > 1} ∪ {∞}, we can apply
Theorem 3.8 to conclude that

E[Xτn|Fσn ] 6 Xσn , ∀n > 1.

In other words, ∫
A

XτndP 6
∫
A

XσndP, ∀A ∈ Fσn , n > 1. (3.6)
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By Proposition 2.4, we know that Fσ ⊆ Fσn and hence (3.6) is true for every
A ∈ Fσ.

Now a key observation is that {Xσn ,Fσn : n > 1} is a backward super-
martingale with supn>1 E[Xσn ] <∞. This follows from the fact that σn+1 6 σn
and E[Xσn ] 6 E[X0] for all n. The same is true for {Xτn ,Fτn : n > 1}.
Under the assumption that Xt has right continuous sample paths (so that
Xσn → Xσ, Xτn → Xτ as n → ∞), Theorem 3.4 enables us to conclude
that Xσ, Xτ ∈ L1 and to take limit on both sides of (3.6) for every A ∈ Fσ.
Therefore, {Xσ,Fσ;Xτ ,Fτ} is a two-step supermartingale.

Remark 3.4. Although here the backward supermartingale is indexed by pos-
itive integers, the reader should easily find it equivalent with having negative
time parameter as in Theorem 3.4 by setting m = −n for n > 1.

3. Doob’s martingale inequalities: Theorem 3.9 and Corollary 3.3 also
hold in the continuous time setting.

Proof. The right continuity of sample paths implies that

sup
t∈[0,N ]

Xt = sup
t∈[0,N ]∩Q

Xt,

and the same is true for the infimum. Now the results follow easily.

Finally, we demonstrate that we can basically only work with right con-
tinuous (sub or super)martingales without much loss of generality. We can
also see how the usual conditions for filtration (c.f. Definition 2.11) come in
naturally.

Definition 3.6. A function x : [0,∞) → R is called càdlàg if it is right
continuous with left limits everywhere.

Definition 3.7. A function x : Q+ → R is called regularizable if

lim
q↓t

xq exists finitely for every t > 0

and
lim
q↑t

xq exists finitely for every t > 0.

The following classical fact about real functions is important.

Lemma 3.3. Let x : Q+ → R be a real function. Suppose that for every
N ∈ N, a, b ∈ Q with a < b, we have

sup
q∈Q+∩[0,N ]

|xq| <∞ and UQ+∩[0,N ](x; [a, b]) <∞,
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where U[0,N ](x; [a, b]) is the upcrossing number of [a, b] by x|Q+∩[0,N ]. Then the
function x is regularizable. Moreover, the regularization x̃ of x, defined by

x̃t = lim
q↓t

xq, t > 0,

is a càdlàg function on [0,∞).

Proof. Suppose on the contrary that at some t > 0 we have

lim inf
q↓t

xq < lim sup
q↓t

xq.

Then there exist a < b ∈ Q, such that U[0,N ](x; [a, b]) = ∞ for every N > t,
which is a contradiction. Therefore, limq↓t xq exists in [−∞,∞]. The bound-
edness assumption guarantees the finiteness of this limit. The case of q ↑ t is
treated in the same way. Therefore, x is regularizable.

Now suppose tn ↓ t > 0. We choose qn ∈ (tn+1, tn) be such that |xqn −
x̃tn+1| 6 1/n. It follows that qn ↓ t and hence x̃tn → x̃t. Similarly, we can show
that lims↑t x̃s = limq↑t xq for every t > 0. Therefore, x̃ is a càdlàg function.

Recall that the usual augmentation of a filtered space (Ω,G,P; {Gt}) is
given by Ft = σ(Gt+,N ), where N is the collection of P-null sets. Now we
have the following regularization theorem due to Doob.

Theorem 3.10. Let {Xt,Gt} be a supermartingale defined over a filtered prob-
ability space (Ω,G,P; {Gt}). Then:

(1) almost every sample path of Xt, when restricted to Q+, is regularizable;
(2) the regularization X̃t of Xt, defined as in Lemma 3.3, is a supermartin-

gale with respect to the usual augmentation {Ft} of (Ω,G,P; {Gt});
(3) X̃t is a modification of Xt if and only if Xt is right continuous in L1,

i.e.
lim
t↓s

E[|Xt −Xs|] = 0, ∀s > 0.

Proof. (1) According to Lemma 3.3, it suffices to show that, for any given
N ∈ N, a, b ∈ Q with a < b, with probability one we have

sup
q∈Q+∩[0,N ]

|Xq| <∞, UQ+∩[0,N ](X; [a, b]) <∞.

Indeed, let Qn be an increasing sequence of finite subsets of Q+ ∩ [0, N ] con-
taining {0, N}, such that ∪∞n=1Qn = Q+ ∩ [0, N ]. According to Theorem 3.9,
we have

P

(
sup

q∈Q+∩[0,N ]

|Xq| > λ

)
= lim

n→∞
P
(

sup
q∈Qn
|Xq| > λ

)
6

2

λ
E[X+

N ] +
1

λ
E[X−0 ],
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and according to Doob’s upcrossing inequality (3.2), we have

E[UQ+∩[0,N ](X; [a, b])] = lim
n→∞

E[UQn(X; [a, b])] 6
E[|XN |] + |a|

b− a
.

The result then follows.
(2) Define X̃t as in Lemma 3.3 on the set where Xt is regularizable and

set X̃ ≡ 0 otherwise. From the construction, it is apparent that X̃t is {Ft}-
adapted. Now suppose s < t, and let pn < qn ∈ Q+ be such that pn ↓ s, qn ↓ t.
It follows that {Xpn ,Gpn} is a backward supermartingale with supn E[Xpn ] <
∞, and the same is true for {Xqn ,Gqn}. Therefore,

Xpn → X̃s, Xqn → X̃t,

almost surely and in L1 as n→∞. In particular, X̃s and X̃t are integrable. The
supermartingale property follows by taking limit in the following inequality:∫

A

XqndP 6
∫
A

XpndP, ∀A ∈ Gs+.

(3) Necessity. We only need a weaker assumption that X has a right
continuous modification X̂. In this case, given t0 > 0, let tn (n > 1) be an
arbitrary sequence such that tn ↓ t0. Then with probability one, X̂tn = Xtn for
all n > 0. Since X̂t has right continuous sample paths, we obtain that Xtn →
Xt0 almost surely. On the other hand, the same backward supermartingale
argument as in the second part implies that Xtn → Xt0 in L1. Therefore, Xt

is right continuous in L1.
Sufficiency. Given t > 0, let qn ∈ Q+ be such that qn ↓ t. Then Xqn → X̃t

in L1. Since Xqn also converges to Xt in L1 by assumption, we conclude that
X̃t = Xt.

Remark 3.5. By adjusting the proof slightly, one can show that if {Xt,Gt} is a
supermartingale with right continuous sample paths, then almost every sample
path of Xt also has left limits everywhere.

If we start with a filtration satisfying the usual conditions, we have the
following nice and stronger result.

Theorem 3.11. Let {Xt,Ft} be a supermartingale defined over a filtered prob-
ability space (Ω,F ,P; {Ft}) which satisfies the usual conditions. Then X has a
càdlàg modification X̃ if and only if the function t 7→ E[Xt] is right continuous.
Moreover, in this case

{
X̃t,Ft

}
is also a supermartingale.
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Proof. Necessity follows from the same argument as in the proof of Theorem
3.10, (3). For the sufficiency, let X̃ be the regularization ofX given by Theorem
3.10. Then for t > 0, qn ∈ Q+ with qn > t, we have∫

A

XqndP 6
∫
A

XtdP, ∀A ∈ Ft.

By letting qn ↓ t, we conclude that E
[
X̃t|Ft

]
6 Xt a.s. But X̃t is {Ft}-adapted

since {Ft} satisfies the usual conditions. Therefore, X̃t 6 Xt a.s. But from
the right continuity of t 7→ E[Xt], we see that E

[
X̃t

]
= E[Xt]. Therefore,

X̃t = Xt a.s. Finally, it is trivial that every modification of X is also an
{Ft}-supermartingale.

It follows from Theorem 3.11 that every martingale has a càdlàg modifica-
tion, provided that the underlying filtration satisfies the usual conditions.

3.6 The Doob-Meyer decomposition

Now we discuss a result which is fundamental in the study of stochastic inte-
gration and lies in the heart of continuous time martingale theory. This will
also be the first time that the continuous time situation becomes substantially
harder than the discrete time setting.

Roughly speaking, the intuition behind the whole discussion can be sum-
marized as: the tendency of increase for a submartingale can be extracted in
a pathwise way, and what remains is a martingale part.

As before, we first consider the easy case: the discrete time situation. This
is known as Doob’s decomposition.

Definition 3.8. An increasing sequence {An : n > 0} over a filtered prob-
ability space (Ω,F ,P; {Fn}) is an {Fn}-adapated sequence such that with
probability one we have 0 = A0(ω) 6 A1(ω) 6 A2(ω) 6 · · · , and E[An] < ∞
for all n.

Theorem 3.12 (Doob’s decomposition). Let {Xn,Fn : n > 0} be a sub-
martingale defined over a filtered probability space (Ω,F ,P; {Fn}). Then X
has a decomposition

Xn = Mn + An, n > 0,

where {Mn,Fn} is a martingale, {An,Fn} is an increasing sequence which is
{Fn}-predictable. Moreover, such a decomposition is unique with probability
one.
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Proof. We first show uniqueness. Suppose that Xn has such a decomposition.
Then

Xn −Xn−1 = Mn −Mn−1 + An − An−1.

Since Mn is an {Fn}-martingale and An is {Fn}-predictable, we have

E[Xn −Xn−1|Fn−1] = An − An−1.

Therefore,

An =
n∑
k=1

E[Xk −Xk−1|Fk−1]. (3.7)

Existence follows from defining An by (3.7) and Mn , Xn − An.

Remark 3.6. Predictability is an important condition for the uniqueness of
Doob’s decomposition. Indeed, if {Mn,Fn} is a square integrable martingale
with M0 = 0, then

M2
n = Vn +Bn

where Bn =
∑n

k=1(Mk−Mk−1)2 is another decomposition of the submartingale
M2

n into a martingale part Vn and an increasing sequence Bn. However, Bn

here is not {Fn}-predictable.
To understand the continuous time analogue of Theorem 3.12, we first

need to recapture the predictability property in a way which extends to the
continuous time case naturally.

Definition 3.9. An increasing sequence An defined over some filtered proba-
bility space (Ω,F ,P; {Fn}) is called natural if

n∑
k=1

E[mk(Ak − Ak−1)] =
n∑
k=1

E[mk−1(Ak − Ak−1)], ∀n > 1, (3.8)

for every bounded martingale {mn,Fn}.

Note that from the martingale property, the left hand side of (3.8) is equal
to E[mnAn]. Moreover, simple calculation yields

n∑
k=1

mk−1(Ak − Ak−1) = mnAn −
n∑
k=1

Ak(mk −mk−1) = mnAn − (A •m)n,

where (A • m)n is the martingale transform of mn by An. Therefore, An is
natural if and only if

E[(A •m)n] = 0, ∀n > 1,

for every bounded martingale {mn,Fn}.
Now we have the following simple fact.
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Proposition 3.3. Suppose that F0 contains all P-null sets. Then an increasing
sequence An is {Fn}-predictable if and only if it is natural.

Proof. Suppose that An is {Fn}-predictable. Let {mn,Fn} be a bounded mar-
tingale. According to Theorem 3.1, we know that {(A•m)n,Fn} is a martingale
null at 0. Therefore, An is natural.

Conversely, suppose that An is natural and hence we know that

E[An(mn −mn−1)] = 0, ∀n > 1,

for every bounded martingale {mn,Fn}. It follows that for every n > 1,

E[mn(An − E[An|Fn−1])]

= E[mnAn]− E[mnE[An|Fn−1]]

= E[mnAn]− E[Anmn−1] (by Problem 1.1, (1))

= 0. (3.9)

Now for fixed n > 1, define Z = sgn(An−E[An|Fn−1]), and set mk = E[Z|Fk]
if k 6 n and mk = Z if k > n. It follows from {mn,Fn} is a bounded
martingale, and from (3.9) we know that E[|An−E[An|Fn−1]|] = 0. Therefore,
An = E[An|Fn−1] almost surely, which implies that An is {Fn}-predictable.

Now we discuss the continuous time situation. In the rest of this subsection,
we will always work over a filtered probability space (Ω,F ,P; {Ft : t > 0})
which satisfies the usual conditions.

To study the corresponding decomposition, we first need the analogue of
increasing sequences.

Definition 3.10. A increasing process {At : t > 0} is an {Ft}-adapted
process At such that with probability one we have A0(ω) = 0 and t 7→ At(ω)
is increasing and right continuous, and E[At] <∞ for all t > 0.

Definition 3.11. An increasing processAt is called natural if for every bounded
and càdlàg martingale {mt,Ft}, we have

E
[∫ t

0

msdAs

]
= E

[∫ t

0

ms−dAs

]
, ∀t > 0, (3.10)

where the integrals inside the expectations are understood in the Lebesgue-
Stieltjes sense.

Note that every continuous, increasing process is natural, since a càdlàg
function can have at most countably many jumps. Moreover, the left hand
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side of (3.10) is equal to E[mtAt]. Indeed, let P : 0 = t0 < t1 < · · · < tn = t
be an arbitrary finite partition of [0, t]. Then as in the discrete time case, we
see that

n∑
k=1

E[mtk(Atk − Atk−1
)] = E[mtAt]. (3.11)

Since mt is right continuous, by the dominated convergence theorem, the left
hand side of (3.11) converges to E

[∫ t
0
msdAs

]
as mesh(P)→ 0.

Remark 3.7. In the continuous time setting, there is also a notion of pre-
dictability which is crucial for the study of stochastic calculus for processes
with jumps. This is technically much more complicated than the discrete time
case. Under this notion of predictability, it can be shown that an increasing
process is natural if and only if it is predictable (c.f. [1]).

Unlike discrete time submartingales, not every càdlàg submartingale has a
Doob-type decomposition (see Problem 5.2 for a counterexample). We first ex-
amine what condition should the submartingale satisfy if such a decomposition
exists.

Suppose that {Xt,Ft} is a càdlàg submartingale with a decomposition

Xt = Mt + At,

where {Mt,Ft} is a càdlàg martinagle and At is an increasing process. Given
T > 0, let ST be the set of {Ft}-stopping times τ satisfying τ 6 T a.s.
According to the optional sampling theorem, we haveMτ = E[MT |Fτ ] for every
τ ∈ ST . It follows from Problem 1.2, (1) that {Mτ : τ ∈ ST} is uniformly
integrable. Moreover, since AT is integrable and Aτ 6 AT a.s. for every
τ ∈ ST , we conclude that {Xτ : τ ∈ ST} is uniformly integrable.

Definition 3.12. A càdlàg submartingale {Xt,Ft} is said to be of class (DL)
if for every T > 0, the family {Xτ : τ ∈ ST} is uniformly integrable.

Now we prove the converse. This is the famous Doob-Meyer decomposition
theorem.

Theorem 3.13. Let {Xt,Ft} be a càdlàg submartingale of class (DL). Then
Xt can be written as the sum of a càdlàg martingale and an increasing process
which is natural. Moreover, such decomposition is unique with probability one.

Proof. The main idea is to apply discrete approximation by using Doob’s de-
composition for discrete time submartingales.

(1) We first prove uniqueness.
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Suppose that Xt has two such decompositions:

Xt = Mt + At = M ′
t + A′t.

Then ∆t , A′t−At = Mt−M ′
t is an {Ft}-martingale. Therefore, fix t > 0, for

any bounded and càdlàg martingale {ms,Fs}, we have

E
[∫ t

0

ms−d∆s

]
= lim

mesh(P)→0

n∑
k=1

E
[
mtk−1

(
∆tk −∆tk−1

)]
= 0,

where P : 0 = t0 < t1 < · · · < tn = t is a finite partition of [0, t]. Since A and
A′ are both natural, it follows that E[mt∆t] = 0. For an arbitrary bounded Ft-
measurable random variable ξ, let ms be a càdlàg version of E[ξ|Fs]. It follows
that E[ξ∆t] = 0. By taking ξ = 1{At<A′t}, we conclude that almost surely
ξ∆t = 0 and hence At > A′t. Similarly, At 6 A′t almost surely. Therefore,
At = A′t almost surely. The uniqueness follows from right continuity of sample
paths.

(2) To prove existence, it suffices to prove it on every finite interval [0, T ],
as the uniqueness will then enable us to extend the construction to the whole
interval [0,∞).

For n > 1, let Dn : tnk = kT/2n (0 6 k 6 2n) be the n-th dyadic partition
of [0, T ]. Let

Xt = M
(n)
t + A

(n)
t , t ∈ Dn,

be the Doob decomposition for the discrete time submartingale X|Dn given by
Theorem 3.12. Since

{
M

(n)
t ,Ft : t ∈ Dn

}
is a martingale, we have

A
(n)
t = Xt − E[XT |Ft] + E

[
A

(n)
T |Ft

]
, t ∈ Dn. (3.12)

(3) The key step is to prove that
{
A

(n)
T : n > 1

}
is uniformly integrable,

which then enables us to get a weak limit AT along a subsequence according to
the Dunford-Pettis theorem (c.f. Theorem 1.2). In view of (3.12), the desired
increasing process At can then be constructed in terms of AT and Xt easily.

Given λ > 0, define

τ
(n)
λ , inf

{
tnk ∈ Dn : A

(n)
tnk+1

> λ
}
,

where inf ∅ , T . Since
{
A

(n)
t : t ∈ Dn

}
is {Ft : t ∈ Dn}-predictable, we see

that τ (n)
λ ∈ ST . Moreover,

{
A

(n)
T > λ

}
=
{
τ

(n)
λ < T

}
∈ F

τ
(n)
λ
. By applying the
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optional sampling theorem to the identity (3.12), we obtain that

E
[
A

(n)
T 1{

A
(n)
T >λ

}]
= E

[
XT1{

τ
(n)
λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]+ E
[
A

(n)

τ
(n)
λ

1{
τ
(n)
λ <T

}]
6 E

[
XT1{

τ
(n)
λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]+ λP
(
τ

(n)
λ < T

)
. (3.13)

On the other hand, since
{
τ

(n)
λ < T

}
⊆
{
τ

(n)
λ/2 < T

}
, we have

E
[(
A

(n)
T − A

(n)

τ
(n)
λ/2

)
1{

τ
(n)
λ/2

<T
}] > E

[(
A

(n)
T − A

(n)

τ
(n)
λ/2

)
1{

τ
(n)
λ <T

}]
>
λ

2
P
(
τ

(n)
λ < T

)
. (3.14)

Again from the optional sampling theorem, we know that the left hand side

of (3.14) is equal to E
[(
XT −Xτ

(n)
λ/2

)
1{

τ
(n)
λ/2

<T
}]. Therefore, from (3.13) we

arrive at

E
[
A

(n)
T 1{

A
(n)
T >λ

}] 6 E
[
XT1{

τ
(n)
λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]
+2E

[
XT1{

τ
(n)
λ/2

<T
}]− 2E

[
X
τ
(n)
λ/2

1{
τ
(n)
λ/2

<T
}] .(3.15)

Now observe that

P
(
τ

(n)
λ < T

)
= P

(
A

(n)
T > λ

)
6

1

λ
E
[
A

(n)
T

]
=

1

λ
E[XT −X0]→ 0

uniformly in n as λ→∞. Since Xt is of class (DL), we conclude that the right
hand side of (3.15) converges to 0 uniformly in n as λ → ∞. In particular,
this implies that

{
A

(n)
T : n > 1

}
is uniformly integrable.

(4) According to the Dunford-Pettis Theorem (c.f. Theorem 1.2), there ex-
ist a subsequence A(nj)

T and some AT ∈ L1(Ω,FT ,P), such that A(nj)
T converges

to AT weakly in L1(Ω,FT ,P). In view of (3.12), now we define (taking a right
continuous version)

At = Xt − E[XT |Ft] + E[AT |Ft], t ∈ [0, T ]. (3.16)

It remains to show that At is a natural increasing process.
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First of all, given any bounded FT -measurable random variable ξ, from
Problem 1.1, (1), (i), we know that

E[ξE[AT |Ft]] = E[ATE[ξ|Ft]],

and the same is true when AT is replaced by A
(n)
T . In view of (3.12) and

(3.16), we see that A(nj)
t converges to At weakly in L1(Ω,FT ,P) for any given

t ∈ D , ∪∞n=1Dn.
To see the increasingness of A, let s < t ∈ D and ξ = 1{As>At}. It follows

that ξ(As − At) > 0. But

E[ξ(As − At)] = lim
j→∞

E
[
ξ
(
A(nj)
s − A(nj)

t

)]
6 0.

Therefore, As 6 At almost surely. The increasingness of At then follows from
right continuity.

To see the naturality of A, first note that
{
A

(n)
t : t ∈ Dn

}
is {Ft : t ∈ Dn}-

predictable, and A
(n)
t , At differ from Xt by martingales. Therefore, for any

given bounded and càdlàg martingale {mt,Ft : t ∈ [0, T ]}, we have

E
[
mTA

(n)
T

]
=

2n∑
k=1

E
[
mT

(
A

(n)
tnk
− A(n)

tnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
A

(n)
tnk
− A(n)

tnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
Xtnk
−Xtnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
Atnk − Atnk−1

)]
.

By taking limit along the subsequence nj, we conclude that

E[mTAT ] = E
[∫ T

0

ms−dAs

]
. (3.17)

Now given t ∈ [0, T ], by applying (3.17) to the bounded and càdlàg martingale
mt
s , mt∧s (s ∈ [0, T ]), we obtain that

E[mtAt] = E
[∫ t

0

ms−dAs

]
.

Therefore, the naturality of A follows.
Now the proof of Theorem 3.13 is complete.

It is usually important to understand the relationship between regularity
properties of a submartingale and of its Doob-Meyer decomposition.
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Definition 3.13. A càdlàg submartingale {Xt,Ft} is called regular if for every
T > 0 and τn, τ ∈ ST with τn ↑ τ, we have

lim
n→∞

E[Xτn ] = E[Xτ ].

Note that from the optional sampling theorem, every càdlàg martingale is
regular.

Lemma 3.4. Let {Xt,Ft} be a regular càdlàg submartingale which is of class
(DL), and let At be the natural increasing process in the Doob-Meyer decom-
position of Xt. Then for any τn, τ ∈ ST with τn ↑ τ, Aτn ↑ Aτ almost surely.

Proof. 0 6 Aτn 6 Aτ 6 AT implies that {Aτn : n > 1} is uniformly integrable.
Let B = limn→∞Aτn . Then E[B] = limn→∞ E[Aτn ]. On the other hand, At is
also regular and B 6 Aτ . Therefore, E[B] = E[Aτ ], which implies that B = Aτ
almost surely.

Now we have the following general result.

Theorem 3.14. Let {Xt,Ft} be a càdlàg submartingale which is of class (DL),
and let Xt = Mt + At be its Doob-Meyer decomposition. Then Xt is regular if
and only if At is continuous.

Proof. Sufficiency is obvious. Now we show necessity.
Since At is increasing and right continuous, we use the following global

way to establish the continuity of At over an arbitrary finite interval [0, T ]: it
suffices to show that, for every λ > 0,

E
[∫ T

0

At ∧ λdAt
]

= E
[∫ T

0

At− ∧ λdAt
]
. (3.18)

Indeed, since At ∧ λ is also increasing and right continuous, it has at most
countably many discontinuities. Therefore,∫ T

0

At ∧ λdAt −
∫ T

0

At− ∧ λdAt =
∑
t6T

(At ∧ λ− At− ∧ λ)(At − At−)

>
∑
t6T

(At ∧ λ− At− ∧ λ)2,

where the summation is over all discontinuities of At ∧ λ on [0, T ]. Therefore,
(3.18) implies that with probability one, At ∧ λ does not have jumps on [0, T ].
Since λ is arbitrary, we conclude that At is continuous almost surely.

Now we establish (3.18). This looks quite similar to the naturality property
of At, except for the fact that the integrand At ∧ λ is not a martingale. To
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get around this issue, we use piecewise martingales to approximate At ∧ λ in
a reasonable sense.

As in the proof of Theorem 3.13, let Dn be the n-th dyadic partition of
[0, T ]. Define (taking a right continuous version)

A
(n)
t = E

[
Atnk ∧ λ|Ft

]
, t ∈ (tnk−1, t

n
k ], 1 6 k 6 2n.

By applying the naturality property of At on each (tnk−1, t
n
k ], we obtain that

E
[∫ T

0

A
(n)
t dAt

]
= E

[∫ T

0

A
(n)
t− dAt

]
.

Now we prove that A(n)
t converges uniformly in t ∈ [0, T ] to At ∧ λ in

probability. This will imply that along a subsequence A(nj)
t converges uniformly

in t ∈ [0, T ] to At ∧ λ almost surely, which concludes (3.18) by the dominated
convergence theorem.

Note that with probability one, A(n)
t > At∧λ and A(n)

t is decreasing in n for
every t ∈ [0, T ]. Given ε > 0, let σ(n)

ε = inf
{
t ∈ [0, T ] : A

(n)
t − At ∧ λ > ε

}
(inf ∅ , T ). Then σ

(n)
ε is an increasing sequence of {Ft}-stopping times in

ST . Let σε = limn→∞ σ
(n)
ε . Now define another τ (n)

ε ∈ ST by τ
(n)
ε = tnk if

σ
(n)
ε ∈ (tnk−1, t

n
k ]. It is apparent that σ(n)

ε 6 τ
(n)
ε and τ (n)

ε ↑ σε as well.
For fixed 1 6 k 6 2n, by applying the optional sampling theorem to the

martingale Ã(n)
t = E

[
Atnk ∧ λ|Ft

]
(t ∈ [0, T ]), we obtain that

E
[
A

(n)

σ
(n)
ε

1{
tnk−1<σ

(n)
ε 6tnk

}] = E
[
Ã

(n)

σ
(n)
ε

1{
tnk−1<σ

(n)
ε 6tnk

}]
= E

[
Atnk ∧ λ1

{
tnk−1<σ

(n)
ε 6tnk

}]
= E

[
A
τ
(n)
ε
∧ λ1{

tnk−1<σ
(n)
ε 6tnk

}] .
By summing over k, we arrive at E

[
A

(n)

σ
(n)
ε

]
= E

[
A
τ
(n)
ε
∧ λ
]
. Therefore,

E
[
A
τ
(n)
ε
∧ λ− A

σ
(n)
ε
∧ λ
]

= E
[
A

(n)

σ
(n)
ε

− A
σ
(n)
ε
∧ λ
]
> εP

(
σ(n)
ε < T

)
.

On the other hand, according to Lemma 3.4, we know that

lim
n→∞

A
σ
(n)
ε
∧ λ = lim

n→∞
A
τ
(n)
ε
∧ λ = Aσε ∧ λ, a.s.

Therefore, by the monotone convergence theorem, we conclude that

lim
n→∞

P
(
σ(n)
ε < T

)
= 0.
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But
{
σ

(n)
ε < T

}
=
{

supt∈[0,T ](A
(n)
t − At ∧ λ) > ε

}
. In other words, A(n)

t con-
verges uniformly in t ∈ [0, T ] to At ∧ λ in probability.

Now the proof of Theorem 3.14 is complete.

3.7 Problems

Problem 3.1. (1) (?) Suppose that {Xt,Ft : t > 0} is a right continu-
ous supermartingale and τ is an {Ft}-stopping time. Show that the stopped
process Xτ

t , Xτ∧t is a supermartingale both with respect to the filtrations
{Ft : t > 0} and {Fτ∧t : t > 0}.

(2) (?) Let {Xt : t > 0} be an {Ft}-adapted and right continuous stochastic
process. Suppose that for any bounded {Ft}-stopping times σ 6 τ, Xσ, Xτ are
integrable and E[Xσ] 6 E[Xτ ]. Show that {Xt,Ft} is a submartingale.

Problem 3.2. Let (Ω,F ,P; {Ft : t > 0}) be a filtered probability space which
satisfies the usual conditions. Suppose that Q is another probability measure
on (Ω,F ,P) satisfying Q� P when restricted on Ft for every t > 0.

(1) Let Mt be a version of dQ/dP when P,Q are restricted on Ft. Show
that {Mt,Ft} is a martingale.

(2) Take a càdlàg modification ofMt and still denote it byMt for simplicity.
Show that {Mt} is uniformly integrable if and only if Q � P when restricted
on F∞. In this case, we have:

(i) M∞ , limt→∞Mt = dQ/dP when restricted on F∞,
(ii) for every {Ft}-stopping time τ , Q � P when restricted on Fτ and

Mτ = dQ/dP on Fτ .

Problem 3.3. (?) Let {Xt,Ft} be a right continuous martingale which is
bounded in Lp for some p > 1 (i.e. sup06t<∞ E[|Xt|p] < ∞). Show that Xt

converges to some X∞ almost surely and in Lp.

Problem 3.4. (1) Show that log t 6 t/e for every t > 0, and conclude that

a log+ b 6 a log+ a+
b

e

for every a, b > 0, where log+ t = max{0, log t} (t > 0).
(2) Suppose that {Xt,Ft : t > 0} is a non-negative and right continuous

submartingale. Let ρ : [0,∞) → R be an increasing and right continuous
function with ρ(0) = 0. Show that

E[ρ(X∗T )] 6 E
[
XT

∫ X∗T

0

λ−1dρ(λ)

]
, ∀T > 0,
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where X∗T , supt∈[0,T ] Xt.
(3) By choosing ρ(t) = (t− 1)+ (t > 0), show that

E[X∗T ] 6
e

e− 1
(1 + E[XT log+ XT ]), ∀T > 0.

Problem 3.5. Suppose that {Xt,Ft : t > 0} is a continuous martingale
vanishing at t = 0 and

sup
t>0

Xt(ω) =∞, inf
t>0

Xt(ω) = −∞, ∀ω ∈ Ω.

Define τ0 = 0, and τn = inf
{
t > τn−1 : |Xt −Xτn−1| = 1

}
(n > 1). Show

that τn are finite {Ft}-stopping times. What is the distribution of the random
sequence {Xτn : n > 1}?

Problem 3.6. Let {Xt,Ft} be a continuous and uniformly integrable mar-
tingale with X0 = 0. Suppose that there exists a constant MX > 0 such
that

E[|X∞ −Xτ ||Fτ ] 6MX a.s.,

for every {Ft}-stopping time τ , where X∞ = limt→∞Xt which exists almost
surely and in L1 according to uniform integrability. Let X∗ = supt>0 |Xt|.

(1) Show that for every λ, µ > 0,

P(X∗ > λ+ µ) 6
MX

µ
P(X∗ > λ).

(2) By using the result of (1), show that

P(X∗ > λ) 6 e
2− λ

e·MX , ∀λ > 0.

In particular, eαX
∗ is integrable when 0 < α < (eMX)−1, which also implies

that X∗ ∈ Lp for every p > 1.

Problem 3.7. Let {Xt,Ft : t > 0} be a càdlàg submartingale over a filtered
probability space which satisfies the usual conditions.

(1) (?) Suppose that Xt is non-negative, show that Xt is of class (DL).
Suppose further that Xt is continuous, show that Xt is regular.

(2) Suppose that Xt is non-negative and uniformly integrable. Show that
Xt is of class (D) in the sense that {Xτ : τ ∈ S} is uniformly integrable,
where S is the set of finite {Ft}-stopping times. Moreover, A∞ , limt→∞At
is integrable, where At is the natural increasing process in the Doob-Meyer
decomposition of Xt.
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4 Brownian motion
In this section, we study a fundamental example of stochastic processes: the
Brownian motion.

In 1905, based on principles of statistical physics, Albert Einstein discov-
ered the mechanism governing the random movement of particles suspended
in a fluid, a phenomenon first observed by the botanist Robert Brown. In
physics, such random motion is known as the Brownian motion. However,
it was Louis Bachelier in 1900 who first used the distribution of Brownian
motion to model Paris stock market and evaluate stock options. The precise
mathematical model of Brownian motion was established by Nobert Wiener
in 1923.

Brownian motion is the most important object in stochastic analysis, since
it lies in the intersection of all fundamental stochastic processes: it is a Gaus-
sian process, a martingale, a (strong) Markov process and a diffusion. More-
over, being an elegant mathematical object on its own, it also connects stochas-
tic analysis with other parts of mathematics, e.g. partial differential equations,
harmonic analysis, differential geometry etc. as well as applied areas such as
physics and mathematical finance.

From this section we will start appreciating the great power of martingale
methods developed in the last section.

4.1 Basic properties

Definition 4.1. A (d-dimensional) stochastic process {Bt : t > 0} is called a
(d-dimensional) Brownian motion if:

(1) B0 = 0 almost surely;
(2) for every 0 6 s < t, Bt − Bs is normally distributed with mean zero

and covariance matrix (t− s)Id, where Id is the d× d identity matrix;
(3) for every 0 < t1 < · · · < tn, the random variablesBt1 , Bt2−Bt1 , · · · , Btn−

Btn−1 are independent;
(4) with probability one, t 7→ Bt(ω) is contiuous.

Direct computation shows that a Brownian motion is a d-dimensional Gaus-
sian process with i.i.d. components, each having covariance function ρ(s, t) =
s ∧ t (s, t > 0).

As usual, it is also important to keep track of information when a filtration
is presented.

Definition 4.2. Let {Ft : t > 0} be a filtration. A stochastic process {Bt :
t > 0} is called an {Ft}-Brownian motion if it is a Brownian motion such that
it is {Ft}-adapted and Bt −Bs is independent of Fs for every s < t.
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Apparently, every Brownian motion is a Brownian motion with respect
to its natural filtration. Moreover, every {Ft}-Brownian motion is an {Ft}-
martingale.

The existence of a Brownian motion on some probability space is proved in
Problem 2.2 by using Kolmogorov’s extension and continuity theorems. From
a mathematical point of view, it is also important and convenient to realize a
Brownian motion on the continuous path space (W d,B(W d), ρ) (c.f. Section
1.5). Suppose that Bt is a Brownian motion on (Ω,F ,P) and every sample
path of Bt is continuous. It is straight forward to see that the map B : ω 7→
(Bt(ω))t>0 is F/B(W d) measurable. Let µd , P ◦B−1.

Definition 4.3. µd is called the (d-dimensional) Wiener measure (or the law
of Brownian motion).

From the definition of Brownian motion and the uniqueness of Carathéodory’s
extension, we can see that µd is the unique probability measure on (W d,B(W d))
under which the coordinate process Xt(w) , wt is a Brownian motion.

The following invariance properties of Brownian motion are obvious by
definition.

Proposition 4.1. Let Bt be a Brownian motion. Then we have:
(1) translation invariance: for every s > 0, {Bt+s − Bs : t > 0} is a

Brownian motion;
(2) reflection symmetry: −Bt is a Brownian motion;
(3) scaling invariance: for every λ > 0, {λ−1Bλ2t : t > 0} is a Brownian

motion.

4.2 The strong Markov property and the reflection prin-
ciple

Now we demonstrate a very important property of Brownian motion: the
strong Markov property.

Heuristically, the Markov property means that knowing the present state,
history on the past does not provide any new information on predicting the
distribution of future states. “Strong” means that the meaning of “present”
can be randomized by a stopping time.

Let
pt(x, y) =

1

(2πt)
d
2

e−
|x−y|2

2 , t > 0, x, y ∈ Rd. (4.1)

It is easy to see that

∂

∂t
pt(x, y) =

1

2
∆xpt(x, y), t > 0.
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Let Bb(Rd) be the space of bounded measurable functions on Rd, equipped
with the supremum norm. Define a family {Pt : t > 0} of continuous linear
operators on Bb(Rd) by

Ptf(x) =

{∫
Rd pt(x, y)f(y)dy, t > 0;

f(x), t = 0.

Routine calculation shows the following semigroup property:

Pt+s = Pt ◦ Ps = Ps ◦ Pt, ∀s, t > 0.

This is known as the Chapman-Kolmogorov equation, which is a basic feature
of Markov processes.

Now let Bt be an {Ft}-Brownian motion with respect to some filtration
{Ft}. The Markov property of Bt can be stated as follows.

Theorem 4.1. For every 0 6 s < t and f ∈ Bb(Rd), we have

E[f(Bt+s)|Fs] = E[f(Bt+s)|Bs] a.s.

Proof. Note that

E[f(Bt+s −Bs + x)] = Ptf(x), ∀x ∈ Rd.

Since Bt+s −Bs is independent of Fs and Bs is Fs-measurable, from Problem
1.1, (1), (ii), we conclude that

E[f(Bt+s)|Fs] = E[f(Bt+s −Bs +Bs)|Fs] = Ptf(Bs) a.s.

The result then follows by conditioning on Bs.

The kernel pt(x, y) is called the Brownian transition density (or the heat
kernel). Heuristically, it gives the probability density of finding a Brownian
particle at position y after time t whose initial position is x. Respectively, the
semigroup {Pt} is called the Brownian transition semigroup (or the heat semi-
group). The relationship between the Brownian motion Bt and the Laplace
operator ∆ lies in the fact that ∆ is the infinitesimal generator of Bt, in the
sense that

1

2
∆f = lim

t→0
(Ptf − f)/t in Bb(Rd),

at least for f ∈ C2
c (Rd), the space of twice continuously differentiable func-

tions with compact support. We will come back to this point when we study
stochastic differential equations and diffusion processes.

The strong Markov property of Brownian motion takes essentially the same
form as Theorem 4.1, but with s replaced by a stopping time. Indeed, we will
establish a finer result. The proof exploits the optional sampling theorem of
martingales.
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Theorem 4.2. Suppose that F0 contains all P-null sets. Let Bt be an {Ft}-
Brownian motion and let τ be an {Ft}-stopping time which is finite almost
surely. Then the process B(τ) = {Bτ+t − Bτ : t > 0} is a Brownian motion
which is independent of Fτ . In particular, for every t > 0 and f ∈ Bb(Rd), we
have

E[f(Bτ+t)|Fτ ] = E[f(Bτ+t)|Bτ ] a.s. (4.2)

Proof. From classical probability theory, it is sufficient to show that:

E
[
ξe
i
∑n
k=1

〈
θk,B

(τ)
tk
−B(τ)

tk−1

〉]
= E[ξ] · e−

1
2

∑n
k=1 |θk|2(tk−tk−1) (4.3)

for every ξ bounded Fτ -measurable, 0 = t0 < t1 < · · · < tn and θ1, · · · , θn ∈
Rd.

In general, given θ ∈ Rd, define

M
(θ)
t = ei〈θ,Bt〉+

1
2
|θ|2t, t > 0.

It is easily seen that
{
M

(θ)
t ,Ft

}
is a continuous martingale. Therefore, given

an almost surely finite {Ft}-stopping time σ and t > 0, according to the
optional sampling theorem, we have

E
[
ei〈θ,Bσ∧N+t〉+ 1

2
|θ|2(σ∧N+t)|Fσ∧N

]
= ei〈θ,Bσ∧N 〉+

1
2
|θ|2σ∧N , ∀N ∈ N.

Equivalently,

E
[
ei〈θ,Bσ∧N+t−Bσ∧N 〉|Fσ∧N

]
= e−

1
2
|θ|2t, ∀N ∈ N. (4.4)

Note that Fσ = ∪N∈NFσ∧N (A ∈ Fσ =⇒ A ∩ {σ 6 N} ∈ Fσ∧N for all N ,
so A ∩ {σ < ∞} ∈ ∪N∈NFσ∧N . But A ∩ {σ = ∞} ∈ F0 by assumption.) By
using the definition of conditional expectation and the dominated convergence
theorem, we may take limit N →∞ in (4.4) to conclude that

E
[
ei〈θ,Bσ+t−Bσ〉|Fσ

]
= e−

1
2
|θ|2t. (4.5)

Now (4.3) follows from taking conditional expectations and applying (4.5)
recursively, starting from σ = τ + tn−1, t = tn − tn−1 and θ = θn.

In the same way as before, the strong Markov property (4.2) follows from
the fact that

E[f(Bτ+t)|Fτ ] = Ptf(Bτ ) a.s.
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In the one dimensional case, an important application of the strong Markov
property is the so-called reflection principle, which yields immediately the
explicit distributions of passage times and maximal functionals.

Let Bt be a one dimensional Brownian motion, and let {FBt } be the aug-
mented natural filtration of Bt (i.e. FBt = σ(GBt ,N ) where {GBt } is the natural
filtration of Bt and N is the collection of P-null sets).

For x > 0, set
τx = inf{t > 0 : Bt = x}.

Then τx is an {FBt }-stopping time. To see it is finite almost surely, we need
the following simple fact.

Proposition 4.2. We have:

P
(

sup
t>0

Bt =∞
)

= P
(

inf
t>0

Bt = −∞
)

= 1.

In particular, τx <∞ almost surely.

Proof. Let M = supt>0Bt. According to the scaling invariance of Brownian
motion (c.f. Proposition 4.1, (2)), for every λ > 0, we have

{λ−1Bλ2t : t > 0} law
= {Bt : t > 0}.

This certainly implies that λ−1M
law
= M . Now we have:

P(M > λ) = P(M > 1)
λ→∞
=⇒ P(M =∞) = P(M > 1),

P(M 6 λ) = P(M 6 1)
λ→0
=⇒ P(M 6 0) = P(M 6 1).

Since M > 0 almost surely, we conclude that M is supported on {0,∞}.
On the other hand, observe that

P(M = 0) 6 P(B1 6 0, Bu 6 0 ∀u > 1)

6 P
(
B1 6 0, sup

t>0
(B1+t −B1) = 0

)
= P(B1 6 0) · P(M = 0)

=
1

2
P(M = 0),

where the second inequality follows from the fact that supt>0(B1+t − B1) is
either 0 or∞ since {B1+t−B1 : t > 0} is again a Brownian motion. Therefore,
P(M = 0) = 0 and M =∞ almost surely.

The infimum case follows from the reflection symmetry of Brownian motion.
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The reflection principle asserts that the law of Brownian motion is invariant
under reflection with respect to the position x after time τx. Here is the
mathematical statement.

Proposition 4.3. Define

B̃t =

{
Bt, t < τx;

2x−Bt, t > τx.
(4.6)

Then B̃t is also a Brownian motion.

Proof. According to Theorem 4.2, the process B(τx)
t , Bτx+t−Bτx = Bτx+t−x

is a Brownian motion which is independent of Fτx . Therefore, −B
(τx)
t is also a

Brownian motion being independent of Fτx . Let Yt , Bτx∧t be the Brownian
motion stopped at τx. Note that the map ω 7→ Y·(ω) is Fτx/B(W 1

0 )-measurable,
whereW 1

0 is the space of continuous path w ∈ W 1 with w0 = 0. It follows that
as random variables taking values in the spaceW 1

0 × [0,∞)×W 1
0 ,
(
Y, τx, B

(τx)
)

has the same distribution as
(
Y, τx,−B(τx)

)
.

Now define a map ϕ : W 1
0 × [0,∞) ×W 1

0 → W 1
0 by ϕ(x, t, y)(s) = xs +

ys−t1{s>t} (s > 0). Then ϕ
(
Y, τx, B

(τx)
)

= B and ϕ
(
Y, τx,−B(τx)

)
= B̃.

Therefore, B̃ is also a Brownian motion.

4.3 The Skorokhod embedding theorem and the Donsker
invariance principle

In this subsection, we apply the strong Markov property to study the funda-
mental connections between Brownian motion and random walk in dimension
one. On the one hand, it is not hard to imagine that the Brownian motion
can be regarded as the continuum limit of scaled random walks. The precise
form of this result is known as the Donsker invariance principle. On the other
hand, it is highly non-trivial that every random walk can be embedded into
a Brownian motion evaluated along a sequence of stopping times. This em-
bedding result is an easy consequece of the well known Skorokhod embedding
theorem.

We first establish the Skorokhod embedding theorem. As we will see, based
on this theorem, the Donsker invariance principle is a consequence of the con-
tinuity of Brownian motion.

Suppose that Bt is a one dimensional Brownian motion with {FBt } being
its augmented natural filtration.

The Skorokhod embedding theorem can be stated as follows.
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Theorem 4.3. Let X be a real-valued random variable such that E[X] = 0
and E[X2] < ∞. Then there exists an integrable {FBt }-stopping time τ, such
that Bτ

law
= X and E[τ ] = E[X2].

The proof of this theorem is highly non-trivial but the starting point is
simple.

Consider the simplest case where X takes two values a < 0 < b. The
condition E[X] = 0 implies that

P(X = a) =
b

b− a
, P(X = b) =

−a
b− a

, E[X2] = −ab.

On the other hand, define

τa,b = inf{t > 0 : Bt /∈ (a, b)}.

From Proposition 4.2, we know that τa,b is an almost surely finte {FBt }-stopping
time.

Proposition 4.4. We have:

P(Bτa,b = a) =
b

b− a
, P(Bτa,b = b) =

−a
b− a

, E[τa,b] = −ab.

In particular, τa,b gives a solution to the Skorokhod embedding problem for the
distribution of X.

Proof. By applying the optional sampling theorem to the {FBt }-martingales
Bt and B2

t − t, we have

E[Bτa,b∧n] = 0, E[B2
τa,b∧n] = E[τa,b ∧ n].

Since |Bτa,b∧n| 6 max(|a|, |b|) for every n, by the dominated convergence the-
orem, we conclude that

E[Bτa,b ] = 0, E[B2
τa,b

] = E[τa,b]. (4.7)

As Bτa,b takes the two values a and b, the first identity of (4.7) shows that
Bτa,b

law
= X. The second identity of (4.7) then shows that τa,b is integrable and

E[τa,b] = E[X2] = −ab.

Remark 4.1. In general, it is a good exercise to show that: for every integrable
{FBt }-stopping time τ, Bτ is square integrable, and

E[Bτ ] = 0, E[B2
τ ] = E[τ ].

This is called Wald’s identities. Therefore, E[X] = 0 and E[X2] = 0 are
necessary conditions for the existence of Skorokhod’s embedding.
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The general solution of the Skorokhod embedding is motivated from the
simple two-value case. The idea is the following. We approximate the general
random variable X by a binary splitting martingale sequence Xn, so that the
desired stopping time τ can be constructed as the limit of a sequence τn of
stopping times each of which corresponding to a two-value case but starting
from the previous one. The strong Markov property will play an important
role in the construction.

Definition 4.4. A sequence {Xn : n > 1} of random variables is called
binary splitting if for each n > 1, there exists some Borel measurable function
fn : Rn−1 × {±1} → R and a {±1}-valued random variable Dn, such that

Xn = fn(X1, · · · , Xn−1, Dn) a.s.

It is called a binary splitting martingale if it is also martingale with respect to
its natural filtration.

Intuitively, if {Xn} is binary splitting sequence, the conditional distribution
of Xn given (X1, · · · , Xn−1) is supported on at most two values.

We first establish the approximation result.

Proposition 4.5. Let X be a square integrable random variable. Then there
exists a binary splitting martingale {Xn : n > 1} which is square integrable,
such that Xn → X almost surely and in L2 as n→∞.

Proof. Define

D1 =

{
1, X > E[X];

−1, otherwise,

F1 = σ(D1), and X1 = E[X|F1]. Inductively, for n > 2, define

Dn =

{
1, X > Xn−1;

−1, otherwise,

Fn = σ(D1, · · · , Dn), and Xn = E[X|Fn]. It follows that Xn = gn(D1, · · · , Dn)
almost surely for some measurable function gn on {±1}n.

Now the key observation is that for each n > 1, Dn is a function of
X1, · · · , Xn. When n = 1, this is apparent since X1 = a1{D1=1}+ b1{D1=−1} for
some constants a, b, so that we can obtain 1{D1=1} (and hence D1) from X1.
Suppose that this fact is true for k 6 n − 1. By the definition of Xn, we can
write

Xn =
∑

i1,··· ,in=±1

ci1,··· ,in1{D1=i1,··· ,Dn=in} = ξ11{Dn=1} + ξ21{Dn=−1} a.s.,
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where ξ1, ξ2 are functions of 1{D1=1}, · · · ,1{Dn−1=1}. By the induction hypoth-
esis, ξ1, ξ2 are functions of X1, · · · , Xn−1.Therefore, 1{Dn=1} (and hence Dn)
can be obtained from X1, · · · , Xn. Therefore, Xn has the form

Xn = fn(X1, · · · , Xn−1, Dn)

almost surely, which shows that Xn is a binary splitting sequence. The fact
that it is a martingale with respect to its natural filtration follows from Fn =
σ(X1, · · · , Xn) (up to P-null sets).

Since X ∈ L2, from Jensen’s inequality we know that Xn is bounded in L2.
From Problem 3.3, we conclude that Xn → X∞ almost surely and in L2 for
some X∞. It remains to show that X = X∞ almost surely.

First of all, we have

lim
n→∞

Dn(X −Xn) = |X −X∞| a.s. (4.8)

Indeed, if ω ∈ {X = X∞}, (4.8) is trivial. If ω ∈ {X > X∞}, then X(ω) >
Xn(ω) when n is large. By the definition of Dn, it follows that Dn(ω) = 1
when n is large. Therefore, (4.8) holds at ω. The case when ω ∈ {X < X∞}
is similar. Now observe that

E[Dn(X −Xn)] = E[DnE[(X −Xn)|Fn]] = 0, ∀n > 1.

Since Dn(X − Xn) is bounded in L2 (and hence uniformly integrable), we
conclude that

E[|X −X∞|] = lim
n→∞

E[Dn(X −Xn)] = 0,

which implies that X = X∞ almost surely.

Now we are able to prove the Skorokhod embedding theorem.

Proof of Theorem 4.3. Let Xn be the binary splitting martingale given by
Proposition 4.5, so that Xn has the form Xn = fn(X1, · · · , Xn, Dn) for ev-
ery n. By the martingale property, we know that

Xn−1 = E[Xn|X1, · · · , Xn−1].

Moreover,Xn takes values in {fn(X1, · · · , Xn−1, 1), fn(X1, · · · , Xn−1,−1)} when
conditioned on (X1, · · · , Xn−1). This implies that the conditional distribution
of Xn given (X1, · · · , Xn−1) is a two-point distribution with mean Xn−1.

Now define τ0 = 0, and for n > 1, define

τn = inf
{
t > τn−1 : Bt /∈

(
fn(Bτ1 , · · · , Bτn−1 ,−1), fn(Bτ1 , · · · , Bτn−1 ,+1)

)}
.
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By the strong Markov property, for each n > 1, {Bτn−1+t−Bτn−1 : t > 0} is a
Brownian motion independent of FBτn−1

. According to Proposition 4.4, the con-
ditional distribution of Bτn given (Bτ1 , · · · , Bτn−1) is a two-point distribution
with mean Bτn−1 .

Therefore, (X1, · · · , Xn)
law
= (Bτ1 , · · · , Bτn) for every n. Moreover,

E[τn − τn−1] = E[E[τn − τn−1|FBτn−1
]] = E[E[(Bτn −Bτn−1)

2|Fτn−1 ]]

= E[(Bτn −Bτn−1)
2] = E[(Xn −Xn−1)2].

Since Xn ∈ L2, the martingale property gives

E[τn] =
n∑
k=1

E[(Xk −Xk−1)2] = E[X2
n].

Finally, as τn is increasing, we set τ = limn→∞ τn. Since Xn → X almost
surely and in L2, we conclude that E[τ ] = E[X2] < ∞. This particularly
implies that τ < ∞ almost surely, and thus Bτn → Bτ almost surely which
yields that Bτ

law
= X.

By applying the strong Markov property, we easily obtain the following
important fact: in the distributional sense, a random walk can be embedding
into a Brownian motion evaluated along a sequence of stopping times.

Proposition 4.6. Let F be a distribution function on R1 with mean zero and
finite variance σ2. Suppose that {Sn : n > 1} is a random walk with step
distribution F (i.e. Sn = X1 + · · ·+Xn where {Xn} is an i.i.d. sequence with
distribution F ).Then there exists a sequence {τn : n > 1} of integrable {FBt }-
stopping times, such that {τn − τn−1} are i.i.d. with mean σ2, and Bτn

law
= Sn

for every n.

Proof. By the Skorokhod embedding theorem, there exists an integrable {FBt }-
stopping time τ1, such that Bτ1

law
= F and E[τ1] = σ2. Applying the Skorokhod

embedding theorem again to the Brownian motion B(τ1)
t = Bτ1+t−Bτ1 with its

augmented natural filtration
{
FB(τ1)

t

}
, we get an integrable

{
FB(τ1)

t

}
-stopping

time τ ′2, such that B(τ1)

τ ′2

law
= F and E[τ ′2] = σ2. Define τ2 = τ1 + τ ′2. According

to Theorem 4.2, we know that Bτ2
law
= S2. Moreover, according to Problem 2.5,

(2), we know that {FBt } is right continuous. Therefore, the fact that τ2 is an
{FBt }-stopping time follows from Problem 2.4, (2), (ii).

Now the result follows by induction.
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Finally, we establish the Donsker invariance principle, which asserts that
the Brownian motion is the weak scaling limit of a random walk.

Let Sn be a random walk with step distribution F , where F has mean zero
and finite variance σ2. From the identity E[(Bt − Bs)

2] = t− s, it is not hard
to write down the right scaling of Sn: define

S
(n)
t =

n
1
2

σ

((
k

n
− t
)
Sk−1 +

(
t− k − 1

n

)
Sk

)
, t ∈

[
k − 1

n
,
k

n

]
, k > 1,

(4.9)
with S0 = 0. In other words, S(n)

t is a piecewise linear continuous process taking
value Sk/(σ

√
n) at each vertex point k/n (k > 0). Let P(n) be the distribution

of the process S(n)
t on W 1. The Donsker invariance principle can be stated as

follows.

Theorem 4.4. Let µ1 be the one dimensional Wiener measure. Then P(n)

converges weakly to µ1 as n→∞.

Proof. Without loss of generality, we may assume that σ = 1. Since we are
only concerned with distributions, we may futher assume that the random
walk Sn = Bτn , where {τn} is the sequence of {FBt }-stopping times given in
Proposition 4.6. Construct S(n) by (4.9) based on this random walk and define
B

(n)
t = n−1/2Bnt, which is again a Brownian motion. Note that Sn and Bt are

defined on some given probability space (Ω,F ,P).
It is sufficient to show that: for every fixed T > 0,

sup
06t6T

∣∣∣S(n)
t −B

(n)
t

∣∣∣→ 0 in prob. (4.10)

as n→∞. Indeed, suppose that (4.10) holds. From the definition of the metric
ρ on W 1 (c.f. (1.3)), we see that ρ

(
S(n), B(n)

)
→ 0 in probability. Now let F

be an arbitrary closed subset of W 1. Then for every ε > 0,

P(n)(F ) = P(S(n) ∈ F )

6 P(ρ(S(n), B(n)) > ε) + P(ρ(B(n), F ) 6 ε)

= P(ρ(S(n), B(n)) > ε) + µ1(ρ(w,F ) 6 ε).

By letting n→∞, we conclude that

lim sup
n→∞

P(n)(F ) 6 µ1(ρ(w,F ) 6 ε).

Since ε is arbitrary, the result of the theorem follows from Theorem 1.7, (3).
Now we prove (4.10). Without loss of generality, we assume T = 1.
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If ω ∈
{

sup06t61

∣∣∣S(n)
t −B

(n)
t

∣∣∣ > ε
}
, then

∣∣∣S(n)
t (ω)−B(n)

t (ω)
∣∣∣ > ε for some

t and k with t ∈ [(k − 1)/n, k/n]. Since Sk(ω) = Bτk(ω)(ω), from the def-
inition of S(n)

t and the intermediate value theorem, there exists some v ∈
[τk−1(ω), τk(ω)], such that S(n)

t (ω) = Bv(ω)/
√
n. Write v = nu, we then have

u ∈ [τk−1(ω)/n, τk(ω)/n] and S(n)
t (ω) = B

(n)
u (ω). Therefore,

∣∣∣B(n)
u (ω)−B(n)

t (ω)
∣∣∣ >

ε. From the continuity of Brownian motion, it is now clear that the key step
is to demonstrate τk/n and k/n are close to each other (so are u and t) in a
suitable sense.

Given ε > 0, by the continuity of Brownian motion, there exists 0 < δ < 1,
such that

P

 ⋃
s,t∈[0,2]
|t−s|6δ

{|Bt −Bs| > ε}

 < ε/2.

On the other hand, from Proposition 4.6 we know that {τn − τn−1} are i.i.d.
with unit mean and τn =

∑n
k=1(τk−τk−1). By the strong law of large numbers,

τn/n→ 1 almost surely. In general, it is an elementary fact that

an > 0,
an
n
→ 0 =⇒ 1

n
sup

16k6n
ak → 0.

Taking an = |τn − n| in our case, we conclude that sup16k6n |τk − k|/n → 0
almost surely. In particular, the convergence holds in probability. Therefore,
there exists N > 1, such that for any n > N, we have

P
(

1

n
sup

16k6n
|τk − k| >

δ

5

)
<
ε

2
.

In addition, if n > 5/δ, by the previous discussion, we see that

{
sup

06t61

∣∣∣S(n)
t −B

(n)
t

∣∣∣ > ε,
1

n
sup

16k6n
|τk − k| 6

δ

5

}
⊆


⋃

s,t∈[0,2]
|t−s|6δ

{|B(n)
t −B(n)

s | > ε

 .

Therefore, we conclude that for any n > max(N, 3/δ),

P
(

sup
06t61

∣∣∣S(n)
t −B

(n)
t

∣∣∣ > ε

)
< ε,

which gives the desired convergence in probability.
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By the Donsker invariance principle, we can easily obtain the central limit
theorem in the i.i.d. case without using any characteristic function method!

Corollary 4.1. Let {Xn} be a sequence of i.i.d. random variables with σ2 ,
E[X2

1 ] <∞, and define Sn = X1 + · · ·+Xn. Then for every x ∈ R1,

lim
n→∞

P
(
Sn − E[Sn]

σ
√
n

6 x

)
= Φ(x),

where Φ(x) , (2π)−1/2
∫ x
−∞ e−u

2/2du is the standard normal distribution func-
tion.

Proof. Without loss of generality, we may assume that E[X1] = 0. Let π1 :
W 1 → R1 be the projection defined by π1(w) = w1. It follows that π1

(
S(n)

)
=

Sn/(σ
√
n). By the Donsker invariance principle, for every bounded continuous

function f on R1, we have:

lim
n→∞

E
[
f

(
Sn
σ
√
n

)]
= lim

n→∞
E
[
f ◦ π1

(
S(n)

)]
= E[f ◦ π1(B)] = E[f(B1)].

But B1 is a standard normal random variable. Now the result follows from
Theorem 1.6.

4.4 Passage time distributions

In this subsection, we apply martingale methods, the strong Markov property
and the reflection principle to perform a series of explicit computations related
to passage times.

Given c ∈ R1, define a process Xt = Bt + ct, where Bt is a one dimensional
Brownian motion. Xt is called the Brownian motion with drift c.

ConsiderMt , exp(θXt−λt), where θ ∈ R1 and λ > 0 are two parameters.
It is straight forward to see that Mt is a martingale (with respect to the
aumented natural filtration of Bt) if and only if

1

2
θ2 − (λ− cθ) = 0,

i.e. θ = α , −c −
√
c2 + 2λ < 0 or θ = β , −c +

√
c2 + 2λ > 0. Now we use

Mt to compute the Laplace transform of passage times for Xt.
We first consider the passage time of a single barrier.
For x > 0, define

τx = inf{t > 0 : Xt = x}.
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Proposition 4.7. The Laplace transform of τx is given by:

E[e−λτx ] = e−x(
√
c2+2λ−c), λ > 0. (4.11)

In particular, we have

P(τx <∞) =

{
1, c > 0;

e2cx, c < 0.
(4.12)

Proof. By applying the optional sampling theorem to the martingale Mt with
θ = β, we know that

E
[
eβXτx∧n−λτx∧n

]
= 1, ∀n > 1.

But
eβx−λτx1{τx<∞}

n→∞←− eβXτx∧n−λτx∧n 6 eβx.

Therefore,
E
[
eβx−λτx1{τx<∞}

]
= 1,

which yields (4.11). (4.12) follows from letting λ ↓ 0 in (4.11).

Now we consider the passage time of a double barrier.
For a < 0 < b, define τa, τb as before and τa,b , τa ∧ τb.

Proposition 4.8. The Laplace transform of τa,b is given by:

E
[
e−λτa,b

]
=

eβb − eαb + eαa − eβa

eβb+αa − eβa+αb
, λ > 0. (4.13)

Proof. Similarly with the proof of Proposition 4.7, by applying the optional
sampling theorem to the martingale Mt with θ = α and θ = β respectively, we
conclude that

E
[
eαXτa,b−λτa,b

]
= 1, E

[
eβXτa,b−λτa,b

]
= 1. (4.14)

The first identity of (4.14) gives

E
[
eαa−λτa,b1{τa<τb}

]
+ E

[
eαb−λτa,b1{τa>τb}

]
= 1,

and the second identity (4.14) gives

E
[
eβa−λτa,b1{τa<τb}

]
+ E

[
eβb−λτa,b1{τa>τb}

]
= 1.

By solving these two equations for E
[
e−λτa,b1{τa<τb}

]
and E

[
e−λτa,b1{τa>τb}

]
,

we obtain (4.13) which is the sum of these two terms.
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By using the martingaleMt, we have seen how convenient it is in computing
the Laplace transform of passage times. The Laplace transform can be used to
compute moments fairly easily via differentiation. However, in many situations
we are more interested in the entire distribution than just in the Laplace
transform, and inverting the Laplace transform is often rather difficult.

In what follows, we are going to use the strong Markov property and the
reflection principle to compute distributions related to passage times. The
results are more general and powerful. For simplicity, we only consider the
Brownian motion case without drift. The case with drift is treated in Problem
4.6 by using an inspiring and far-reaching method: change of measure.

Again we first consider the single barrier case.
For t > 0, let St = max06s6tBs be the running maximum of Brownian

motion up to time t. We start by establishing a general formula for the joint
distribution of (St, Bt). The distribution of passage times then follows easily.

Proposition 4.9. For any x, y > 0, we have

P(St > x, Bt 6 x− y) = P(Bt > x+ y) =
1√
2π

∫ ∞
x+y√
t

e−
u2

2 du. (4.15)

In particular, the joint density of (St, Bt) is given by

P(St ∈ dx, Bt ∈ dy) =
2(2x− y)√

2πt3
e−

(2x−y)2
2t dxdy, x > 0, x > y, (4.16)

and the density of τx (x > 0) is given by

P(τx ∈ dt) =
x√
2πt3

e−
x2

2t dt, t > 0. (4.17)

Proof. Let B̃t be the reflection of Bt at x defined by (4.6), and define S̃t
accordingly. From the reflection principle (c.f. Proposition 4.3), we know
that B̃t is also a Brownian motion. Together with the simple observation that
{St > x} =

{
S̃t > x

}
, we arrive at

2P(Bt > x).

= P
(
S̃t > x, B̃t 6 x− y

)
= P

(
St > x, B̃t 6 x− y

)
= P(St > x, Bt > x+ y) = P(Bt > x+ y).
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Therefore, (4.15) follows. Now (4.16) follows by differentiation, and (4.17)
follows from the fact that

P(τx 6 t) = P(St > x)

= P(St > x, Bt 6 x) + P(St > x, Bt > x)

= 2P(Bt > x). (4.18)

Remark 4.2. We see from (4.18) that for each t > 0, St
law
= |Bt|. In addition,

it is a good exercise to show from the formula (4.16) that for each t > 0,

St−Bt
law
= |Bt|, and 2St−Bt

law
= |B(3)

t |, where B
(3)
t is the standard 3-dimensional

Brownian motion. What is more remarkable is the fact that S−B law
= |B| and

2S − B law
= |B(3)| as stochastic processes. This result is closely related to the

study of local times and excursion theory.
The formula (4.15) also gives the marginal distribution of the absorbed

Brownian motion. Given x > 0, let Bx
t be a one dimensional Brownian motion

starting at position x. Define τ0 to be the passage time of position 0 for Bx
t .

Corollary 4.2. For t > 0, we have:

P(Bx
t ∈ dy, τ0 > t) = pt(x, y)− pt(x,−y), y > 0,

where pt(x, y) is the Brownian transition density defined by (4.1) for d = 1.

Proof. According to the formula (4.15), we have

P(Bx
t > y, τ0 6 t) = P(Bx

t 6 −y).

Therefore,
P(Bx

t > y, τ0 > t) = P(Bx
t > y)− P(Bx

t 6 −y).

Now the result follows from differentiation.

Finally, we consider the double barrier case. This is much more involved
than the single barrier case.

Again let Bx
t be a one dimensional Brownian motion starting at x, where

0 < x < a. Define τ0,a = τ0 ∧ τa to be the first exit time of the interval (0, a)
by Bx

t .

Proposition 4.10. For t > 0, we have:

P(Bx
t ∈ dy, τ0,a > t) =

∞∑
n=−∞

(pt(x, y + 2na)− pt(x,−y − 2na)) dy, 0 < y < a.

(4.19)
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In particular,

P(τ0,a ∈ dt) =
1√
2πt3

∞∑
n=−∞

(
(2na+ x)e−

(2na+x)2

2t

+(2na+ a− x)e−
(2na+a−x)2

2t

)
dt, t > 0. (4.20)

Proof. Define σ0 = 0, θ0 = τ0, and for n > 1, define σn = inf{t > θn−1 : Bt =
a}, θn = inf{t > σn : Bt = 0}. By using the reflection principle (indeed a
slightly more general version for the stopping time θn, but the proof is the
same), we can see that for every y > 0,

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y, θn 6 t).

But by the definition of σn and θn, we know that {Bx
t 6 −y, θn 6 t} = {Bx

t 6
−y, σn 6 t}. Therefore, we have

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y, σn 6 t). (4.21)

Similarly, for every y < a, we have

P(Bx
t 6 y, σn 6 t) = P(Bx

t > 2a− y, σn 6 t) = P(Bx
t > 2a− y, θn−1 6 t).

(4.22)
Now (4.21) and (4.22) can be used recursively in pair to obtain that for every
0 < y < a,

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y − 2na),

P(Bx
t 6 y, σn 6 t) = P(Bx

t 6 y − 2na).

By differentiation, we arrive at

P(Bx
t ∈ dy, θn 6 t) = pt(x,−y − 2na)dy,

P(Bx
t ∈ dy, σn 6 t) = pt(x, y − 2na)dy, (4.23)

for 0 < y < a.
Symmetrically, we define π0 = 0, ρ0 = τa and for n > 1, define πn =

inf{t > ρn−1 : Bt = 0}, ρn = inf{t > πn : Bt = a}. By the same argument,
we conclude that for every 0 < y < a,

P(Bx
t ∈ dy, ρn 6 t) = pt(x,−y + 2(n+ 1)a)dy,

P(Bx
t ∈ dy, πn 6 t) = pt(x, y + 2na)dy. (4.24)
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Now the key observation is that θn−1∨ρn−1 = σn∧πn and σn∨πn = θn∧ρn
for every n > 1, which can be seen easily by considering the cases τ0 < τa and
τ0 > τa. Therefore, we have

P(Bx
t ∈ dy, θ0 ∧ ρ0 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, θ0 ∨ ρ0 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, σ1 ∧ π1 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, σ1 6 t)

−P(Bx
t ∈ dy, π1 6 t) + P(Bx

t ∈ dy, θ1 ∧ ρ1 6 t).

By induction, we arrive at

P(Bx
t ∈ dy, θ0 ∧ ρ0 6 t) =

n∑
k=1

(P(Bx
t ∈ dy, θk−1 6 t) + P(Bx

t ∈ dy, ρk−1 6 t)

−P(Bx
t ∈ dy, σk 6 t)− P(Bx

t ∈ dy, πk 6 t))

+P(Bx
t ∈ dy, θn ∧ ρn 6 t). (4.25)

Finally, to see that the last term vanishes as n → ∞, first note that ac-
cording to the strong Markov property, both θn − σn and σn − θn−1 have the
same distribution as the passage time of a for a Brownian motion starting at
the origin. In particular, according to (4.11), the Laplace transforms of θn−σn
and σn − θn−1 are both given by e−a

√
2λ. Moreover,

θn = θ0 + (σ1 − θ0) + (θ1 − σ1) + · · ·+ (σn − θn−1) + (θn − σn)

is a sum of indepentent random variables. Therefore, the Laplace transform of

θn is given by e−x
√

2λ ·
(

e−a
√

2λ
)2n

= e−(x+2na)
√

2λ. In particular, θn has the same
distribution as the passage time of x+ 2na for a Brownian motion starting at
the origin. From (4.18) we conclude that

P(θn 6 t) = 2P(Bt > x+ 2na)→ 0

as n→∞. Similarly, limn→∞ P(ρn 6 t) = 0. Therefore,

lim
n→∞

P(Bx
t ∈ dy, θn ∧ ρn 6 t) = 0.

Now (4.19) follows from substituting (4.23), (4.24) in (4.25), letting n → ∞
and rearranging terms.

(4.20) follows from integrating over 0 < y < a in (4.19) and differentiating
with respect to t.

80



The careful reader might use (4.11) and (4.17) to conclude that

L

[
1√
2πt3

∞∑
n=−∞

(2na+ x)e−
(2na+x)2

2t dt (t > 0)

]
= E

[
e−τ01{τ0<τa}

]
,

L

[
1√
2πt3

∞∑
n=−∞

(2na+ a− x)e−
(2na+a−x)2

2t dt (t > 0)

]
= E

[
e−τa1{τa<τ0}

]
,

where L denotes the Laplace transform operator, and the expectations on the
right hand side are indeed computed in the proof of Proposition 4.8 by using
martingale methods. Therefore, we obtain the following corollary.

Corollary 4.3. We have:

P(τ0 ∈ dt, τ0 < τa) =
1√
2πt3

∞∑
n=−∞

(2na+ x)e−
(2na+x)2

2t dt,

P(τa ∈ dt, τa < τ0) =
1√
2πt3

∞∑
n=−∞

(2na+ a− x)e−
(2na+a−x)2

2t dt, t > 0.

Remark 4.3. From the results obtained so far, we are indeed able to derive the
distributions of Bx

t∧τ0 (the single barrier case) and Bx
t∧τ0,a (the double barrier

case) respectively for given t > 0.

4.5 Sample path properties: an overview

So far we have been dealing with distributional properties of Brownian motion.
However, the study of sample path properties of Brownian motion is also a huge
and important topic, in which we may find a variety of interesting and striking
results. As we are mainly interested in the probabilistic side in this course, we
will only give an overview on the basic results along this direction. We do give
a detailed proof of the fact that almost every Brownian sample path has infinite
p-variation (1 6 p < 2) on every finite interval. This reveals the fundamental
obstacle to expecting a classical deterministic theory of differential calculus for
Brownian motion.

We assume that Bt is a one dimensional Brownian motion.
1. Oscillations
We know from Problem 2.2, (2) that with probability one, for each 0 <

γ < 1/2, the Brownian motion is γ-Hölder continuous on every finite interval.
Moreover, the Hölder continuity fails when γ = 1/2. It is then natural to ask
what is the precise rate of oscillation for Brownian motion.

At every given point t > 0, the exact rate of oscillation is given by Khinchin
in his celebrated law of the iterated logarithm.
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Theorem 4.5. Let ϕ(h) =
√

2h log log 1/h (h > 0). Then for every given
t > 0, we have:

P
(

lim sup
h↓0

Bt+h −Bt

ϕ(h)
= 1

)
= 1.

It is far from being true that Khinchin’s law of the iterated logarithm holds
uniformly in t with probability one. Indeed, it is Lévy who discovered the exact
modulus of continuity for Brownian motion.

Theorem 4.6. Let ψ(h) =
√

2h log 1/h (h > 0). Then for every T > 0, we
have:

P

lim sup
h↓0

sup
06s<t6T
t−s6h

|Bt −Bs|
ψ(h)

= 1

 = 1.

The curious reader might wonder how big the gap is between Khinchin’s law
of the iterated logarithm and Lévy’s modulus of continuity theorem. Indeed,
the set of times at which Khinchin’s law of the iterated logarithm fails is much
larger than we can imagine: with probability one, the random set{

t ∈ [0, 1] : lim sup
h↓0

Bt+h −Bt

ψ(h)
= 1

}
is uncountable and dense in [0, 1], and random the set{

t ∈ [0, 1] : lim sup
h↓0

Bt+h −Bt

ϕ(h)
=∞

}
has Hausdorff dimension one (c.f. [6]).

2. Irregularity
If this is the first time that we encounter Brownian motion, it is really hard

to believe how irregular a Brownian sample path can be.

Theorem 4.7. With probability one, the following properties hold:
(1) t 7→ Bt(ω) is nowhere differentiable;
(2) the set of local maximum points for t 7→ Bt(ω) is countable and dense

in [0,∞), and every local maximum is a strict local maximum;
(3) t 7→ Bt(ω) has no points of increase (t is a point of increase of a path

x if there exists δ > 0, such that xs 6 xt 6 xu for all s ∈ ((t − δ)+, t) and
u ∈ (t, t+ δ));

(4) for given x ∈ R1, the level set {t > 0 : Bt(ω) = x} is closed,unbounded,
with zero Lebesgue measure, and does not contain isolated points.
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3. The p-variation of Brownian motion
Let x : [0,∞)→ (E, ρ) be a continuous path in some metric space (E, ρ).

Recall that for p > 1, the p-variation of x over [s, t] is define to be

‖x‖p−var;[s,t] = sup
P

(∑
k

ρ(xtk−1
, xtk)

p

) 1
p

,

where the supremum runs over all finite partitions P of [s, t].
We first show that Bt has finite 2-variation (or finite quadratic variation)

on any finite interval in certain probabilistic sense.

Proposition 4.11. Given t > 0, let Pn : 0 = tn0 < tn1 < · · · < tnmn = t be a
sequence of finite partitions of [0, t] such that mesh(Pn)→ 0 as n→∞. Then

lim
n→∞

mn∑
k=1

(Btnk
−Btnk−1

)2 = t in L2.

If we further assume that
∑∞

n=1 mesh(Pn) < ∞, then the convergence holds
almost surely.

Proof. Since B has independent increments, we have

E

( mn∑
k=1

(
Btnk
−Btnk−1

)2

− t

)2


= E

( mn∑
k=1

((
Btnk
−Btnk−1

)2

− (tnk − tnk−1)

))2


=
mn∑
k=1

E

[((
Btnk
−Btnk−1

)2

− (tnk − tnk−1)

)2
]

= 2
mn∑
k=1

(tnk − tnk−1)2

6 2t ·mesh(Pn), (4.26)

where we have also used the fact that Bv − Bu ∼ N (0, v − u) for u < v
and E[Y 4] = 3 (E[Y 2])

2 for a centered Gaussian random variable Y. The L2-
convergence then follows immediately from (4.26). If we further assume that∑∞

n=1 mesh(Pn) < ∞, then by the Chebyshev inequality and (4.26), we con-
clude that

∞∑
n=1

P

(∣∣∣∣∣
mn∑
k=1

(
Btnk
−Btnk−1

)2

− t

∣∣∣∣∣ > ε

)
<∞
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for every ε > 0. The almost sure convergence then follows from the Borel-
Cantelli lemma.

Proposition 4.11 enables us to prove the following sample path property,
which puts a serious negative effect to the theory.

Corollary 4.4. For every 1 6 p < 2, with probability one, Bt has infinite
p-variation on every finite interval [s, t].

Proof. Given any finite partition P : s = t0 < t1 < · · · < tn = t of [s, t], we
know that∑

k

∣∣Btk −Btk−1

∣∣2 6
(

max
k

∣∣Btk −Btk−1

∣∣2−p) ·∑
k

∣∣Btk −Btk−1

∣∣p
6

(
max
k

∣∣Btk −Btk−1

∣∣2−p) ‖B‖pp−var;[s,t] . (4.27)

If we take a sequence of finite partitions Pn of [s, t] such that
∑∞

n=1 mesh(Pn) <
∞, by Proposition 4.11 and the continuity of Brownian motion, we know that
with probability one, the left hand side of (4.27) converges to t − s > 0 and
the first term on the right hand side of (4.27) converges to zero. Therefore,
‖B‖p−var;[s,t] = ∞ almost surely. To see that the statement is uniform with
respect to all [s, t], we only need to run over all possible s, t ∈ Q.

Remark 4.4. From the local Hölder continuity of Brownian sample paths, it
is easy to see that for every p > 2, with probability one, Bt has finite p-
variation on every finite interval. However, on the borderline p = 2, the fact
that ‖B‖2−var;[s,t] =∞ almost surely is much harder to establish (c.f. [3]).

The result of Corollary 4.4 destroys any hope of establishing a pathwise
theory of integration and differential equations for Brownian motion in the
classical sense of Lebesgue-Stieltjes (p = 1) or Young (1 < p < 2). It is indeed
the fact that Bt and B2

t − t are both martingales leads us to the realm of
Itô’s calculus, an elegant L2-theory of stochastic integration and differential
equations, which has profound impacts on pure and applied mathematics.

4.6 Problems

Problem 4.1. Let Bt be a d-dimensional Brownian motion.
(1) Show that Xt , O · Bt and Yt , 〈µ,Bt〉 are both Brownian motions,

where O is a d × d orthogonal matrix (i.e. OTO = Id) and µ is a unit vector
in Rd.

(2) Given s < u < t, compute E[Bu|Bs, Bt].
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Problem 4.2. Let Bt be a one dimensional Brownian motion.
(1) Show that

Xt ,

{
tB 1

t
, t > 0;

0, t = 0,

is a Browninan motion.
(2) Show that with probability one, there exist two sequences of positive

times sn ↓ 0, tn ↓ 0, such that Bsn < 0 and Btn > 0 for every n.
(3) Show that with probabiliy one, B is not differentiable at t = 0, and

hence conclude that with probability one, t 7→ Bt(ω) is almost everywhere
non-differentiable.

Problem 4.3. Let Bt be an {Ft}-Brownian motion on a filtered probability
space (Ω,F ,P; {Ft}), where F0 contains all P-null sets. Let σ, τ be two finite
{Ft}-stopping times such that τ ∈ Fσ and σ 6 τ. Show that for any bounded
Borel measurable function f,

E[f(Bτ )|Fσ] = Ptf(x) |t=τ−σ, x=Bσ .

Is it true that Bτ −Bσ and Fσ are independent?

Problem 4.4. Let Bt be a one dimensional Brownian motion with {FBt } being
its augmented natural filtration. Construct an {FBt }-stopping time τ explicitly
which satisfies the Skorokhod embedding theorem for the uniform distribution
on the set {−2,−1, 0, 1, 2}. Draw a picture to illustrate the construction as
well.

Problem 4.5. Let Bt be a 2-dimensional Brownian motion starting at i =
(0, 1) with {FBt } being its augmented natural filtration.

(1) Show that for each λ ∈ R1, the process Xλ
t , eλi·Bt is an {FBt }-

martingale, where the multiplication in the exponential function is the complex
multiplication.

(2) Let τ be the hitting time of the real axis by Bt. Show that Bτ ∈ R1 is
Cauchy distributed (i.e. P(Bτ ∈ dx) = (π(1 + x2))−1, x ∈ R1).

Problem 4.6. Let Xt(w) , wt be the coordinate process on W 1 and let {Ft}
be the natural filtration of Xt. Denote Px,c on (W 1,B(W 1)) as the law of a one
dimensional Brownian motion starting at x with drift c.

(1) Show that when restricted on each Ft, Px,c is absolutely continuous
with respect to Px,0, with density given by

dPx,c

dPx,0

∣∣∣∣ = ec(Xt−x)− 1
2
c2t.

(2) (?) Define St = max06s6tXs. Compute P0,c (St ∈ dx, Xt ∈ dy) (x >
0, x > y).
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Problem 4.7. (1) Let Bt be a d-dimensional Brownian motion with {FBt }
being its augmented natural filtration.

(i) Given θ ∈ Rd, define eθ(x) = ei〈x,θ〉 for x ∈ Rd. Show that the process

eθ(Bt)− 1− 1

2

∫ t

0

(∆eθ)(Bs)ds, t > 0,

is an {FBt }-martingale.
(ii) Let f be a smooth function on Rd with compact support. Taking as

granted the fact that there exists a rapidly decreasing function φ on Rd (i.e.
supx∈Rd

∣∣xα∂βφ(x)
∣∣ <∞ for all α, β), such that

f(x) =

∫
Rd

ei〈x,θ〉φ(θ)dθ, ∀x ∈ Rd,

show that the process

f(Bt)− f(0)− 1

2

∫ t

0

(∆f)(Bs)ds, t > 0,

is an {FBt }-martingale.
(2) Let Xt(w) , wt be the coordinate process on W d. Denote Pxd on

(W d,B(W d)) as the law of a d-dimensional Brownian motion starting at x ∈
Rd.

(i) Show that f(x) , log |x| (in dimension d = 2) and f(x) = |x|2−d (in
dimension d > 3) are harmonic on Rd\{0} (i.e. ∆f(x) = 0 for every x 6= 0).

(ii) Let 0 < a < |x| < b. Define τa (respectively, τb) to be the hitting time
of the sphere |y| = a (respectively, |y| = b) by Xt. By choosing suitable f in
Part (1), (ii), compute Pxd(τa < τb) and Pxd(τa <∞) in all dimensions d > 2.

(iii) Let U be a non-empty, bounded open subset of Rd. Define σ = sup{t >
0 : Xt ∈ U}. Show that P0

d(σ = ∞) = 1 in dimension d = 2, while P0
d(σ <

∞) = 1 in dimension d > 3. Therefore, the Brownian motion is neighbourhood-
recurrent in dimension d = 2 and neighbourhood-transient in dimension d > 3.

(iv) For every dimension d > 2, show that P0
d(σy < ∞) = 0 for every

y ∈ Rd, where σy , inf{t > 0 : Xt = y}. Therefore, the Brownian motion is
point-recurrent only in dimension one.

Remark. It can be shown that in dimension d = 2, with probability one, there
exists y ∈ R2 such that the set {t > 0 : Xt = y} has cardinality of the
continuum.
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5 Stochastic integration
In this section, we develop Itô’s theory of stochastic integration. As we have
seen in the last section, the sample path properties of Brownina motion force
us to deviate from the classical approach, and we should look for a more prob-
abilistic counterpart of calculus in the context of Brownian motion, or more
generally, of continuous semimartingales. A price to pay is that differentiation
is no longer meaningful, and everything is understood in an integral sense.
The core result in the theory is the renowed Itô’s formula–a general change
of variable formula for continuous semimartingales which is fumdamentally
differential from the classical one. We will see a long series of exciting and
important applications of Itô’s formula in the rest of our study.

Through out the rest of this section, unless otherwise stated, we always
assume that (Ω,F ,P; {Ft}) is a filtered probability space which satisfies the
usual conditions. All stochastic processes are defined on this setting.

5.1 L2-bounded martingales and the bracket process

Taking a functional analytic viewpoint, the key ingredient to establishing Itô’s
integration is the use of a Hilbert structure and an isometry. Hence we start
with the study of L2-bounded martingales.

Definition 5.1. A càdlàg martingale {Mt,Ft} is called an L2-bounded mar-
tingale if

sup
t>0

E[M2
t ] <∞.

The space of L2-bounded martingales is denoted by H2. We use H2 (H2
0 , re-

spectively) to denote the subspace of L2-bounded continuous martingales (van-
ishing at t = 0, respectively).

It is immediate that an L2-bounded martingale {Mt,Ft} is uniformly inte-
grable. Therefore, Mt converges to some M∞ ∈ F∞ almost surely and in L1,
and we have

Mt = E[M∞|Ft]. (5.1)
Moreover, from Problem 3.3, we know that the convergence holds in L2 as well.
Therefore, the relation (5.1) sets up a one-to-one correspondence between H2

(modulo indistinguishability) and L2(Ω,F∞,P).

Proposition 5.1. The space H2 (modulo indistinguishability) is a Hilbert space
when equipped with the inner product

〈M,N〉H2 , E[M∞N∞], M,N ∈ H2.

The space H2
0 is a closed subspace of H2.
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Proof. The first claim follows simply because L2(Ω,F∞,P) is a Hilbert space.
To prove the second claim, let M (n) be a sequence of L2-bounded continuous
martingales converging to some M ∈ H2 under the H2-metric. An application
of Doob’s Lp-inequality with p = 2 (c.f Corollary 3.3 and Section 3.5) shows
that

E

[(
sup
t>0

∣∣∣M (n)
t −Mt

∣∣∣)2
]
6 4

∥∥M (n)
∞ −M∞

∥∥2

L2 .

In particular, along a subsequence M (nk), we know that with probability one,
M

(nk)
t converges to Mt uniformly in t as k → ∞. This shows that Mt is

continuous.

In this course, we only consider continuous martingales. The following
result tells us that a continuous martingale cannot have very nice sample paths.

Lemma 5.1. Let {Mt,Ft} be a continuous martingale such that with probabil-
ity one, the sample paths of Mt has bounded variation on every finite interval.
Then Mt ≡M0 for all t.

Proof. By considering Mt − M0 we may assume that M0 = 0. Let Vt =
‖M‖1−var;[0,t] be the one variation process of Mt. We first consider the case
when Vt is uniformly bounded by some constant C > 0. In this case, for a
given finite partition P of [0, t], we have

E[M2
t ] =

∑
i∈P

E[M2
ti
−M2

ti−1
] =

∑
i∈P

E[(Mti −Mti−1
)2]

6 E
[
Vt ·max

i∈P
|Mti −Mti−1

|
]
6 CE

[
max
i∈P
|Mti −Mti−1

|
]
. (5.2)

Since M is continuous, from the dominated convergence theorem we know
that the right hand side of (5.2) converges to zero as mesh(P)→ 0. Therefore,
Mt = 0.

In the general case, let τn = inf{t > 0 : Vt > n}. Then τn is an {Ft}-
stopping time with τn ↑ ∞ almost surely. From Problem 3.1, (1), we know that
the stopped process M τn

t , Mτn∧t is an {Ft}-martingale whose one variation
process is bounded by n. Therefore, M τn

t = 0. By letting n→∞, we conclude
that Mt = 0.

The following result plays a fundamental role in establishing an L2-theory
of stochastic integration.

Theorem 5.1. Let M ∈ H2
0 . Then there exists a unique (up to indistinguisha-

bility) continuous, {Ft}-adapted process 〈M〉t which vanishes at t = 0 and has
bounded variation on every finite interval, such that M2

t − 〈M〉t is an {Ft}-
martingale.
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Proof. We first prove uniqueness. Suppose At and A′t are two such processes.
Then {A′t−At,Ft} is a continuous martingale with bounded variation on every
finite interval. According to Lemma 5.1, we conclude that A = A′.

Since {M2
t ,Ft} is a non-negative and continuous submartingale, from Prob-

lem 3.7, (1), we know thatM2
t is of class (DL) and regular (c.f. Definition 3.12

and Definition 3.13). The existence of 〈M〉t then follows immediately from the
Doob-Meyer decomposition theorem (c.f Theorem 3.13) and Theorem 3.14.

It is immediate to see that 〈M〉t is an increasing process in the sense of
Definition 3.10 and ‖M‖H2 =

√
E[〈M〉∞] <∞ for M ∈ H2

0 .

Definition 5.2. The process 〈M〉t defined in Theorem 5.1 is called the quadratic
variation process of Mt.

In general, the class H2
0 is too restrictive to serve our study in many inter-

esting situations. It is unnatural to impose a priori integrability conditions on
the process we are considering. To extend our study, it is important to have
some kind of localization method. We have already seen this in the proof of
Lemma 5.1.

Definition 5.3. A continuous, {Ft}-adapted processMt is called a continuous
local martingale if there exists a sequence τn of {Ft}-stopping times such that
τn ↑ ∞ almost surely, and the stopped process (M −M0)τnt , Mτn∧t −M0 is
an {Ft}-martingale for every n. We use Mloc (Mloc

0 , respectively) to denote
the space of continuous local martingales (vanishing at t = 0, respectively).

Remark 5.1. If Mt is a continuous, {Ft}-adapted process vanishing at t = 0,
we can define a sequence of finite {Ft}-stopping times by σn = inf{t > 0 :
|Mt| > n} ∧ n. It follows that σn ↑ ∞ almost surely. If M ∈ Mloc

0 with a
localization sequence τn, then Mσn∧τn

t is a bounded {Ft}-martingale for each
n. Therefore, for M ∈Mloc

0 , whenever convenient, it is not harmful to assume
that the stopped martingale M τn

t in Definition 5.3 is bounded for each n.
From the definition, it is easy to see thatMloc is a vector space. Moreover,

if {Mt,Ft} is a continuous local martingale and τ is an {Ft}-stopping time,
then the stopped process M τ

t is also a continuous local martingale.
Every continuous martingale is a continuous local martingale (simply take

τn = n). However, we must point out that a continuous local martingale can
fail to be a martingale, even if we impose strong integrability conditions (for
instance, exponential integrability or uniform integrability). We will encounter
important examples of continuous local martingales which are not martingales
in the study of stochastic differential equations.

The following result gives us a simple idea about the relationships between
local martingales and martingales.
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Proposition 5.2. A non-negative, integrable, continuous local martingale is
a supermartingale. A continuous local martingale is a martingale if and only
if it is of class (DL).

Proof. The first part follows from Fatou’s lemma for conditional expectations.
For the second part, necessity follows from Doob’s optional sampling theorem,
and sufficiency follows from Theorem 1.3.

By a standard localization argument, we can also define the quadratic vari-
ation of a local martinagle M ∈Mloc

0 .

Theorem 5.2. Let M ∈ Mloc
0 . Then there exists a unique (up to indistin-

guishability) continuous, {Ft}-adapted process 〈M〉t which vanishes at t = 0
and has bounded variation on every finite interval, such thatM2−〈M〉 ∈ Mloc

0 .
Moreover, the sample paths of the process 〈M〉t are increasing.

Proof. We first prove existence.
According to Remark 5.1, we may assume that there exists a sequence

τn of finite {Ft}-stopping times such that τn ↑ ∞ almost surely and M τn
t is a

bounded {Ft}-martingale vanishing at t = 0 for each n. According to Theorem
5.1, we can define the quadratic variation process 〈M τn〉t for M τn

t such that
(M τn

t )2 − 〈M τn〉t is an {Ft}-martingale.
Now we know that M2

τn+1∧τn∧t − 〈M
τn+1〉τn∧t = M2

τn∧t − 〈M
τn+1〉τn∧t and

M2
τn∧t − 〈M

τn〉t are both {Ft}-martingales. By Lemma 5.1, with probability
one, we have

〈M τn+1〉τn∧t = 〈M τn〉t, ∀t > 0.

In other words, 〈M τn+1〉t = 〈M τn〉t on [0, τn]. This enables us to define a
continuous, {Ft}-adapted process 〈M〉t , limn→∞〈M τn〉t which vanishes at
t = 0 and obviously has increasing sample paths. Moreover, since 〈M〉τn∧t =
〈M τn〉t, we conclude that M2

τn∧t − 〈M〉τn∧t is an {Ft}-martingale. Therefore,
M2 − 〈M〉 ∈ Mloc

0 .
The uniqueness of 〈M〉t follows from the fact that Lemma 5.1 holds for

continuous local martingales as well, which can be easily shown by a similar
localization argument.

For M ∈ Mloc
0 , the process 〈M〉t is also called the quadratic variation

process of Mt.
In the intrinsic characterization of stochastic integrals as we will see later

on, it is important to consider more generally the “bracket” of two local mar-
tingales.

Let M,N ∈Mloc
0 . Define

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t) .
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Since Mloc
0 is a vector space, we can see that 〈M,N〉t is the unique (up to

indistinguishability) continuous, {Ft}-adapted process which vanishes at t = 0
and has bounded variation on every finite interval, such thatM ·N−〈M,N〉 ∈
Mloc

0 .

Definition 5.4. For M,N ∈ Mloc
0 , the process 〈M,N〉t is called the bracket

process of M and N .

The bracket process is compatible with localization.

Proposition 5.3. Let M,N ∈Mloc
0 and let τ be an {Ft}-stopping time. Then

〈M τ , N τ 〉 = 〈M τ , N〉 = 〈M,N〉τ .

Proof. The fact that 〈M τ , N τ 〉 = 〈M,N〉τ follows from the stability of Mloc
0

under stopping and the uniqueness property of the bracket process. To see the
other identity, it suffices to show that M τ (N − N τ ) ∈ Mloc

0 . By localization
along a suitable sequence of {Ft}-stopping times, we may assume that M,N
are both bounded {Ft}-martingales. In this case, for s < t, we have

E[Mτ∧t(Nt −Nτ∧t)|Fs] = E[Mτ∧t1{τ6s}(Nt −Nτ∧t)|Fs]
+E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fs].

The first term equals

E[Mτ∧s1{τ6s}(Nt −Nτ∧t)|Fs] = Mτ∧s1{τ6s}E[Nt −Nτ∧t|Fs]
= Mτ∧s1{τ6s}(Ns −Nτ∧s)

= Mτ∧s(Ns −Nτ∧s).

The second term equals

E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fτ∧s] = E
[
E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fτ∧t]|Fτ∧s

]
= E

[
Mτ∧t1{τ>s}E[Nt −Nτ∧t|Fτ∧t]|Fτ∧s

]
= 0.

Therefore, M τ
t (Nt −N τ

t ) is an {Ft}-martingale.

The bracket process behaves pretty much like an inner product. Indeed,
we have the following simple but useful properties.

Proposition 5.4. Let M,M1,M2 ∈Mloc
0 , and let α, β ∈ R1. Then with prob-

ability one, we have:
(1) 〈αM1 + βM2,M〉 = α〈M1,M〉+ β〈M2,M〉;
(2) 〈M1,M2〉 = 〈M2,M1〉;
(3) 〈M,M〉 = 〈M〉 > 0, and 〈M〉 = 0 if and only if M = 0.

91



Proof. We only prove the last part of (3). All the rest assertions are straight
forward applications of the uniqueness property of the bracket process. Sup-
pose that 〈M〉 = 0. It follows that M2 ∈ Mloc

0 . Let τn be a sequence of {Ft}-
stopping times such that τn ↑ ∞ almost surely and (M2)τnt is a bounded {Ft}-
martingale. Then we have E[M2

τn∧t] = E[M2
0 ] = 0 for any given t > 0, which

implies that Mτn∧t = 0. By letting n→∞, we conclude that Mt = 0.

In exactly the same way as for inner products, Proposition 5.4 enables us
to prove the following Cauchy-Schwarz inequality.

Proposition 5.5. Let M,N ∈Mloc
0 . Then |〈M,N〉| 6 〈M〉1/2 · 〈N〉1/2 almost

surely. More generally, with probability one, we have:

|〈M,N〉t − 〈M,N〉s| 6 (〈M〉t − 〈M〉s)
1
2 · (〈N〉t − 〈N〉s)

1
2 , ∀0 6 s < t. (5.3)

What is really useful for us is the following extension of inequality (5.3).

Proposition 5.6 (The Kunita-Watanabe inequality). Let M,N ∈ Mloc
0 , and

let Xt, Yt be two stochastic processes which have measurable sample paths al-
most surely. Then with probability one, we have:∫ t

0

|Xs| · |Ys|d‖〈M,N〉‖s 6
(∫ t

0

X2
sd〈M〉s

) 1
2

·
(∫ t

0

Y 2
s d〈N〉s

) 1
2

, ∀t > 0,

(5.4)
where ‖〈M,N〉‖t denotes the total variation process of 〈M,N〉t.

Proof. We may assume that the right hand side of (5.4) is always finite, oth-
erwise there is nothing to prove.

Define
ϕt =

1

2
(〈M〉t + 〈N〉t), t > 0.

From (5.3), we know that with probability one, the measures d‖〈M,N〉‖t,
d〈M〉t and d〈N〉t are all absolutely continuous with respect to dϕt. Therefore,
we may write

〈M,N〉t(ω) =

∫ t

0

f1(u, ω)dϕu(ω),

〈M〉t(ω) =

∫ t

0

f2(u, ω)dϕu(ω),

〈N〉t(ω) =

∫ t

0

f3(u, ω)dϕu(ω),

for some measurable functions fi(t, ω) (i = 1, 2, 3).
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Therefore, according to Proposition 5.4, for each pair (α, β) of rational
numbers, there exists Ωα,β ∈ F with P(Ωα,β) = 1, such that for every ω ∈ Ωα,β,
we have:

0 6 〈αM + βN〉t − 〈αM + βN〉s

=

∫ t

s

(
α2f2(u, ω) + 2αβf1(u, ω) + β2f3(u, ω)

)
dϕu(ω), ∀0 6 s < t.

This implies that there exists some Tα,β(ω) ∈ B([0,∞)) depending on ω and
(α, β), such that

∫
Tα,β(ω)

dϕu(ω) = 0 and

α2f2(t, ω) + 2αβf1(t, ω) + β2f3(t, ω) > 0 (5.5)

is true for all t /∈ Tα,β(ω).

Now take Ω̃ = ∩(α,β)∈Q2Ωα,β and T̃ (ω) = ∪(α,β)∈Q2Tα,β(ω) for every ω ∈ Ω̃.

It follows that (5.5) is true for ω ∈ Ω̃, t /∈ T̃ (ω) and (α, β) ∈ Q2 (thus
for all (α, β) ∈ R2). Fix such ω and t, replace α by α|Xt(ω)| and β by
|Yt(ω)| · sgn(f1(t, ω)) respectively, we obtain that

α2|Xt(ω)|2f2(t, ω) + 2α|Xt(ω)| · |Yt(ω)| · |f1(t, ω)|+ |Yt(ω)|2f3(t, ω) > 0

for every ω ∈ Ω̃, t ∈ T̃ and α ∈ R1.
Inequality (5.4) then follows from integrating against dϕt(ω) and optimizing

α.

Now we illustrate the reason why 〈M〉t is called the quadratic variation
process of Mt.

Proposition 5.7. Let M ∈ Mloc
0 . Given t > 0, let Pn be a sequence of finite

partitions over [0, t] such that mesh(Pn)→ 0. Then∑
ti∈Pn

(Mti −Mti−1
)2 → 〈M〉t in probability

as n→∞.

Proof. To simplify the notation, for ti ∈ Pn, we write ∆iM ,Mti −Mti−1
and

∆i〈M〉 , 〈M〉ti − 〈M〉ti−1.

We first assume that M and 〈M〉 are both uniformly bounded by some
constant K. In this case, Mt and M2

t − 〈M〉t are both martinagles. Now we
show that ∑

i

(∆iM)2 → 〈M〉t
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in L2 as mesh(Pn)→ 0. Indeed, we have:

E

∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣
2
 = E

∣∣∣∣∣∑
i

(
(∆iM)2 −∆i〈M〉

)∣∣∣∣∣
2


=
∑
i

E
[(

(∆iM)2 −∆i〈M〉
)2
]

6 2

(∑
i

E
[
(∆iM)4

]
+
∑
i

E
[
(∆i〈M〉)2

])
,

where the second equality follows from the fact that

E[((∆iM)2 −∆i〈M〉)((∆jM)2 −∆j〈M〉)] = 0

for i 6= j, which can be easily shown by conditioning.
On the one hand, since 〈M〉 is continuous, we have∑

i

(∆i〈M〉)2 6 〈M〉t ·max
i

∆i〈M〉 6 K ·max
i

∆i〈M〉 → 0

as mesh(Pn) → 0. According to the dominated convergence theorem, we see
that ∑

i

E[(∆i〈M〉)2 → 0

as mesh(Pn)→ 0.
On the other hand, we have

∑
i

(∆iM)4 6

(∑
i

(∆iM)2

)
·max

i
(∆iM)2, (5.6)

and thus

∑
i

E[(∆iM)4] 6

E

(∑
i

(∆iM)2

)2
 1

2

·
(
E
[
max
i

(∆iM)4
]) 1

2
. (5.7)

We first show that E[(
∑

i(∆
iM)2)2] is uniformly bounded. Indeed,

E

(∑
i

(∆iM)2

)2
 =

∑
i

E[(∆iM)4] + 2
∑
i

∑
j>i

E[(∆iM)2(∆jM)2]. (5.8)
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Since E[
∑

i(∆
iM)2] = E[M2

t ] 6 K2, from (5.6) we can easily see that∑
i

E[(∆iM)4] 6 4K4.

Moreover, by conditioning we can also see that the second term of (5.8) equals

2
∑
i

E
[
(∆iM)2(M2

t −M2
ti

)
]
6 2K2

∑
i

E[(∆iM)2] 6 2K4.

Therefore, E[(
∑

i(∆
iM)2)2] 6 6K4. Applying the dominated convergence the-

orem to (5.7), we obtain that∑
i

E[(∆iM)4]→ 0

as mesh(Pn)→ 0.
Therefore, we conclude that∑

i

(∆iM)2 → 〈M〉t

in L2 as mesh(Pn)→ 0.
Coming back to the local martingale situation, we again apply a localization

argument. Let τm be a sequence of {Ft}-stopping times increasing to ∞ such
that M τm

t is a bounded {Ft}-martingale and 〈M τm〉t is bounded. Given δ > 0,
there exists m > 1 such that P(τm 6 t) < δ. For this particular m, we have

P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε

)

6 P(τm 6 t) + P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε, τm > t

)

6 δ + P

(∣∣∣∣∣∑
i

(∆iM τm)2 − 〈M τm〉t

∣∣∣∣∣ > ε

)
.

Since L2 convergence implies convergence in probability, by applying what we
just proved in the bounded case, we obtain that

lim sup
n→∞

P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε

)
6 δ.

As δ is arbitrary, we get the desired convergence in probability.
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Combining the existence of quadratic variation in the sense of Prosposition
5.7 and the global positive definiteness of the quadradic variation process in the
sense of Proposition 5.4, (3), we can further show the following local positive
definiteness property.

Proposition 5.8. Let M ∈Mloc
0 . Then there exists a P-null set N, such that

for every ω ∈ N c, we have

Mt = Ma ∀t ∈ [a, b] ⇐⇒ 〈M〉a = 〈M〉b,

for each a < b.

Proof. First of all, since convergence in probability implies almost sure con-
vergence along a subsequence, according to Proposition 5.7, we can see that
for each given pair of rational numbers p < q, there exists a P-null set Np,q,
such that for every ω /∈ Np,q, we have

Mt(ω) = Mp(ω) ∀t ∈ [p, q] =⇒ 〈M〉p(ω) = 〈M〉q(ω).

Take N1 , ∪p,q∈Q,p<qNp,q. Given any ω /∈ N1 and a < b, if Mt(ω) = Ma(ω)
on [a, b], then the same holds on any subinterval [p, q] ⊆ [a, b] with p, q ∈ Q.
Therefore, 〈M〉p(ω) = 〈M〉q(ω). By the continuity of t 7→ 〈M〉t(ω), we conclude
that 〈M〉a(ω) = 〈M〉b(ω). This is true for arbitrary a < b.

To see the other direction, first assume thatMt is a bounded {Ft}-martinagale.
For each q ∈ Q, define M̃t = Mt+q −Mq and Gt = Ft+q. Then

{
M̃t,Gt

}
is

a martingale with quaratic variation process
〈
M̃
〉
t

= 〈M〉t+q − 〈M〉q. Let

τq , inf
{
t > 0 :

〈
M̃
〉
t
> 0
}
. It follows that

〈
M̃ τq

〉
=
〈
M̃
〉τq

= 0, and thus

M̃ τq = 0 by Proposition 5.4, (3). In particular, for every ω outside some P-null
set N ′q, we haveMt(ω) = Mq(ω) for every t ∈ [q, q+τq(ω)]. Let N2 , ∪p∈Q+N ′q.
Given ω /∈ N2 and a < b, suppose that 〈M〉a(ω) = 〈M〉b(ω). Then for any
q ∈ (a, b), 〈M〉q(ω) = 〈M〉b(ω). This implies that τq(ω) > b− q. In particular,
Mt(ω) = Mq(ω) for every t ∈ [q, b]. This is true for every q ∈ (a, b). By the
continuity of t 7→Mt(ω), we conclude that Mt(ω) = Ma(ω) on [a, b].

Therefore, the result of the proposition is proved for the case of bounded
martingales. For a general M ∈ Mloc

0 , let τn be a sequence of {Ft}-stopping
times such that τn ↑ ∞ almost surely, and M τn

t is a bounded {Ft}-martingale
for every n. Then there exists a P-null set Nn for each n, such that outside
Nn the result holds for the martingale M τn

t . By taking N , ∪∞n=1Nn, we know
that outside N the result holds for Mt.
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5.2 Stochastic integrals

The most natural way of defining the integral
∫

ΦtdBt for a stochastic process
Φt and a Brownian motion Bt is to consider the Riemann sum approximation∑

i Φui(Bti − Bti−1
) for a given partition P , where ui ∈ [ti−1, ti]. However, as

mesh(P)→ 0, we can not expect that the Riemnann sum would converge in a
pathwise sense due to the fact that sample paths of Bt have infinite 1-variation
on every finite interval. If instead we look for convergence in some probabilistic
sense, we have to be careful about the choice of ui.

Suppose that Φt is uniformly bounded and {Ft}-adapted. If we choose
ui = ti−1 (the left endpoint), nice things will occur: for m > n,

E

[
m∑
i=1

Φti−1
(Bti −Bti−1

)|Ftn

]

=
n∑
i=1

Φti−1
(Bti −Bti−1

) +
m∑

i=n+1

E
[
E[Φti−1

(Bti −Bti−1
)|Fti−1

]|Ftn
]

=
n∑
i=1

Φti−1
(Bti −Bti−1

).

This suggests that we might look for a construction under which
∫

ΦtdBt is a
martingale. Another observation is that

E

( n∑
i=1

Φti−1
(Bti −Bti−1

)

)2
 = E

[
n∑
i=1

Φ2
ti−1

(ti − ti−1)

]
.

This suggests that if we define a norm on Φ by ‖Φ‖B =
(
E
[∫

Φ2
tdt
])1/2

, then
the integration map Φ 7→

∫
ΦtdBt should be an isometry into L2. Therefore, it

sheds light on constructing stochastic integrals through a functional analytic
approach (more precisely, a Hilbert space approach).

A technical point is to identify suitable functional spaces on which the
integration map is to be built. To make sure

∫
ΦtdBt will again be {Ft}-

adapted, a natural measurability condition on Φt is progressive measurability
(c.f. Definition 2.7).

It is remarkable that Itô already had this deep insight in his original con-
struction of stochastic integrals before Doob’s martingale theory was available.
The more intrinsic approach within the martingale framework that we are go-
ing to present here is due to Kunita-Watanabe.

Suppose that M ∈ H2
0 is an L2-bounded continuous martingale vanishing

at t = 0 (c.f. Definition 5.1).

97



Define L2(M) to be the space of progressively measurable processes Φt such
that

‖Φ‖M ,

(
E
[∫ ∞

0

Φ2
td〈M〉t

]) 1
2

<∞. (5.9)

If we define a measure PM on ([0,∞)× Ω,B([0,∞))⊗F) by

PM(Λ) , E
[∫ ∞

0

1Λ(t, ω)d〈M〉t(ω)

]
, Λ ∈ B([0,∞))⊗F ,

then L2(M) is just the space of PM -square integrable, progressively measurable
processes. Note that PM is a finite measure since M ∈ H2

0 . Define L2(M) to
be the space of PM -equivalence classes of elements in L2(M).

Remark 5.2. We will adopt the convention of not being too careful in distin-
guishing between a process and its equivalence class. It will be clear that if
Φ,Ψ are equivalent, then

∫
ΦtdMt,

∫
ΨtdMt are indistinguishable.

Lemma 5.2. (L2(M), ‖ · ‖M) is a Hilbert space.

Proof. The only thing which is not immediately clear is the progressive mea-
surability for a limit process. Let Φ(n) be a sequence in L2(M) converging to
some measurable process Φ under ‖ · ‖M . Along a subsequence Φ(nk) we know
that the set {(t, ω) : limk→∞Φ

(nk)
t (ω) 6= Φt(ω)} is a PM -null set. In general,

Φt might not be progressively measurable. But the process 1A, where

A , {(t, ω) : lim
k→∞

Φ
(nk)
t (ω) exists finitely},

is easily seen to be progressively measurale. Moreover, the process Ψ ,
lim supk→∞Φ(nk) · 1A is PM -equivalent to Φ. Since Φ(nk) is progressively mea-
surable for each k, we conclude that Ψ is progressively measurable.

The construction of stochastic integrals with respect to M is contained in
the following result.

Theorem 5.3. For each Φ ∈ L2(M), there exists a unique IM(Φ) ∈ H2
0 (up

to indistinguishability), such that for any N ∈ H2
0 ,

〈IM(Φ), N〉 = Φ • 〈M,N〉, (5.10)

where Φ • 〈M,N〉 denotes the integral process
∫ t

0
Φsd〈M,N〉s, defined path-

wisely. Moreover, the map IM : Φ 7→ IM(Φ) defines a linear isometry from
L2(M) into H2

0 .
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Proof. We first prove uniqueness. Suppose that X, Y ∈ H2
0 both satisfy (5.10).

It follows that
〈Y −X,N〉 = 0, ∀N ∈ H2

0 .

In particular, by taking N = Y −X, we know that 〈Y −X〉 = 0. Therefore,
X = Y.

Now we show existence. Given Φ ∈ L2(M), define a linear functional FΦ

on H2
0 by

FΦ(N) , E
[∫ ∞

0

Φtd〈M,N〉t
]
, N ∈ H2

0 .

According to the Kunita-Watanabe inequality (c.f. (5.4)), we have∣∣∣∣∫ ∞
0

Φtd〈M,N〉t
∣∣∣∣ 6 (∫ ∞

0

Φ2
td〈M〉t

) 1
2

· 〈N〉
1
2∞.

Therefore, by the Cauchy-Schwarz inequality, we have∣∣FΦ(N)
∣∣ 6 (E [∫ ∞

0

Φ2
td〈M〉t

]) 1
2

· E[〈N〉∞]
1
2 = ‖Φ‖M · ‖N‖H2 .

In particular, FΦ defines a bounded linear functional on H2
0 . It follows from

the Riesz representation theorem that there exists X ∈ H2
0 , such that

FΦ(N) = 〈X,N〉H2 = E[X∞N∞], ∀N ∈ H2
0 . (5.11)

To establish (5.10) for X, suppose that τ is an arbitrary {Ft}-stopping
time. Then for any N ∈ H2

0 , we have

E[XτNτ ] = E[E[X∞|Fτ ]Nτ ] = E[X∞Nτ ].

Note that N τ ∈ H2
0 and Nτ = N τ

∞. Therefore, according to (5.11) and Propo-
sition 5.3, we arrive at

E[XτNτ ] = E[X∞N
τ
∞] = FΦ(N τ ) = E

[∫ ∞
0

Φtd〈M,N τ 〉t
]

= E
[∫ ∞

0

Φtd〈M,N〉τt
]

= E
[∫ τ

0

Φtd〈M,N〉t
]
.

By Problem 3.1, (2), we conclude that XN−Φ•〈M,N〉 is a martingale, which
implies (5.10).

It is apparent that the map IM : Φ 7→ X = IM(Φ) is linear. Moreover,
from (5.11) and (5.10), we have:

‖X‖2
H2 = E[X2

∞] = E
[∫ ∞

0

Φtd〈M,X〉t
]

= E
[∫ ∞

0

Φ2
td〈M〉t

]
= ‖Φ‖M ,

Therefore, IM is a linear isometry from L2(M) into H2
0 .
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Definition 5.5. For Φ ∈ L2(M), IM(Φ) is called the stochastic integral of Φ
with respect toM. As a stochastic process, IM(Φ)t is also denoted as

∫ t
0

ΦsdMs.
The map IM : L2(M)→ H2

0 is called the stochastic integration map.

The reason why IM is called the stochastic integration map is the following.
Let Φt be a stochastic process of the form

Φ = Φ01{0} +
∞∑
i=1

Φti−1
1(ti−1,ti],

where 0 = t0 < t1 < · · · < tn < · · · is a partition of [0,∞), Φtn is {Ftn}-
measurable for each n, and they are uniformly bounded by some constant
C > 0. Then Φ ∈ L2(M) and∫ t

0

ΦsdMs =
n−1∑
i=1

Φti−1
(Mti−Mti−1

)+Φtn−1(Mt−Mti−1
), t ∈ [tn−1, tn]. (5.12)

The proof follows by computing the bracket with N ∈ H2
0 of the right hand

side of (5.12), which is left as an exercise.
Now we present some basic properties of stochastic integrals.

Proposition 5.9. LetM,N ∈ H2
0 and let Φ ∈ L2(M),Ψ ∈ L2(N) respectively.

Suppose that σ 6 τ are two {Ft}-stopping times. Then we have:
(1)

E
[
IM(Φ)t∧τ − IM(Ψ)t∧σ|Fσ

]
= 0.

(2)

E
[
(IM(Φ)t∧τ − IM(Φ)t∧σ)(IN(Ψ)t∧τ − IN(Ψ)t∧σ)|Fσ

]
= E

[∫ t∧τ

t∧σ
ΦsΨsd〈M,N〉s|Fσ

]
.

Proof. The result follows from applying the optional sampling theorem to the
underlying martinagles stopped at t. Note that〈

IM(Φ), IN(Ψ)
〉

= Φ •
〈
M, IN(Ψ)

〉
= (ΦΨ) • 〈M,N〉.

Remark 5.3. σ = s < τ = t or M = N are important special cases of Proposi-
tion 5.9. In particular, 〈IM(Φ)〉 = Φ2 • 〈M〉.

The next property is associativity.
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Proposition 5.10. LetM ∈ H2
0 . Suppose that Φ ∈ L2(M) and Ψ ∈ L2(IM(Φ)).

Then Ψ · Φ ∈ L2(M) and IM(ΨΦ) = II
M (Φ)(Ψ).

Proof. Since
〈
IM(Φ)

〉
t

=
∫ t

0
Φ2
sd〈M〉s and Ψ ∈ L2(IM(Φ)), we see that Ψ ·Φ ∈

L2(M). Moreover, for every N ∈ H2
0 , we have〈

IM(ΨΦ), N
〉

= (ΨΦ) • 〈M,N〉 = Ψ • (Φ • 〈M,N〉)

= Ψ •
(
〈IM(Φ), N〉

)
=
〈
II

M (Φ)(Ψ), N
〉
.

Therefore, IM(ΨΦ) = II
M (Φ)(Ψ).

The associativity enables us to show compatibility with stopping easily.

Proposition 5.11. Let τ be an {Ft}-stopping time. Then for M ∈ H2
0 and

Φ ∈ L2(M), we have

IM
τ

(Φ) = IM(Φ1[0,τ ]) = IM
τ

(Φτ ) = IM(Φ)τ .

Proof. Firstly, observe that 1[0,τ ] ∈ L2(M) and IM(1[0,τ ]) = M τ (note that
the process (t, ω) 7→ 1[0,τ(ω)](t) is progressively measurable). Moreover, it
is apparent that Φ,Φτ ∈ L2(M τ ). Therefore, the first equality follows from
Proposition 5.10, and the other inequalities follow from taking bracket with
N ∈ H2

0 .

So far our stochastic integration does not even cover the case of Brownian
motion, as the Brownian motion is not bounded in L2. The way to enlarging
our scope of stochastic integration is localization.

Definition 5.6. Let M ∈ Mloc
0 be a continuous local martingale vanishing

at t = 0. We use L2
loc(M) to denote the space of progressively measurable

processes Xt, such that with probability one,∫ t

0

Φ2
sd〈M〉s <∞, ∀t > 0.

We aim at defining the stochastic integral IM(Φ) ∈Mloc
0 for Φ ∈ L2

loc(M).
This is contained in the following theorem.

Theorem 5.4. Let M ∈Mloc
0 and let Φ ∈ L2

loc(M). Then there exists a unique
IM(Φ) ∈Mloc

0 , such that for any N ∈Mloc
0 , we have

〈IM(Φ), N〉 = Φ • 〈M,N〉, (5.13)

where the integral process Φ • 〈M,N〉 is finitely almost surely according to the
Kunita-Watanabe inequality (c.f. (5.4)).
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Proof. Uniqueness is obvious.
Now we show existence. For n > 1, define

τn = inf

{
t > 0 : |Mt| > n or

∫ t

0

Φ2
sd〈M〉s > n

}
.

Then τn is a sequence of {Ft}-stopping times such that τn ↑ ∞ almost surely.
Moreover, for each n, we have M τn ∈ H2

0 and Φτn ∈ L2(M τn). Therefore,
X(n) , IM

τn
(Φτn) ∈ H2

0 is well-defined. According to Proposition 5.11, we
know that (

X(n+1)
)τn

= IM
τn

(Φτn) = X(n). (5.14)

This implies that we can define a process Xt on [0,∞) such that Xt = X
(n)
t on

[0, τn]. It is apparent that Xt is continuous and {Ft}-adapted. From (5.14) we
also know that X(n)

t = const. for t > τn. Therefore, Xτn = X(n). This implies
that X ∈ Mloc

0 . Finally, to see (5.13), let N ∈ H2
0 (the general case where

N ∈Mloc
0 follows easily by further localizing N to be bounded). Then

〈X,N〉τnt = 〈X(n), N〉t =

∫ t

0

Φτn
s d〈M τn , N〉s =

∫ τn∧t

0

Φsd〈M,N〉s

for every n. (5.13) follows from letting n→∞.

Remark 5.4. For M ∈ Mloc
0 , we can define the space L2(M) ⊆ L2

loc(M) in
the same way as (5.9). Exactly the same proof of Theorem 5.3 allows us to
conclude that for each Φ ∈ L2(M), there exists a unique X ∈ H2

0 satisfying
the characterizing property (5.10). The map Φ 7→ X is a linear isometry from
L2(M) into H2

0 . This part has nothing to do with the martingale property of
M . Of course X coincides with IM(Φ) which is defined in Theorem 5.4 in the
sense of local martingales.

Although the stochastic integral IM(Φ) is constructed from a global point
of view, we also have the following local property.

Proposition 5.12. Let M ∈ Mloc
0 and let Φ ∈ L2

loc(M). Then there exists a
P-null set N, such that for every ω ∈ N c,

Φt ≡ 0 or Mt ≡Ma on [a, b] =⇒ IM(Φ)t ≡ IM(Φ)a on [a, b]

for each a < b.

Proof. The result is a direct consequence of Proposition 5.8 and the fact that
〈IM(Φ)〉 = Φ2 • 〈M〉.
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As we will see in the next subsection, if M is a local martingale and f is a
nice function, f(M) is in general not a local martingale, but it is a local martin-
gale (a stochastic integral) plus a process with bounded variation. Moreover, in
the study of stochastic differential equations, we also consider systems having
such a general decomposition, namely dXt = µ(Xt)dt + σ(Xt)dBt. Therefore,
it is necessary to further extend our scope of integration.

Definition 5.7. A continuous, {Ft}-adapted process Xt is called a continuous
semimartingale if it has the decomposition

Xt = X0 +Mt + At, (5.15)

where M ∈Mloc
0 is a continuous local martingale vanishing at t = 0, and At is

a continuous, {Ft}-adapted process such that with probability one, A0(ω) = 0
and t 7→ At(ω) has bounded variation on every finite interval.

Given two continuous semimartingales Xt = X0 + Mt + At and Yt = Y0 +
Nt+Bt, the bracket process of X and Y is 〈X, Y 〉t , 〈M,N〉t, and the qradratic
variation process of X is 〈X〉t , 〈M〉t.

By the local continuous martingale version of Lemma 5.1, we see that the
decomposition (5.15) for a continuous semimartingale is unique. Moreover, the
quadratic variation process also satisfies Proposition 5.7.

When we talk about stochastic integrals with respect to continuous semi-
martingales, it is convenient to have a universal class of integrands which is
independent of the underlying semimartingales.

Definition 5.8. A progressively measurable process Φt is called locally bounded
if there exists a sequence τn of {Ft}-stopping times increasing to infinity and
positive constants Cn, such that

|Φτn
t | 6 Cn, ∀t > 0,

for every n > 1.

Every continuous, {Ft}-adapted process Φt with bounded Φ0 is locally
bounded. Indeed, we can simply define τn = inf{t > 0 : |Φt| > n}. Moreover,
if Φt is locally bounded, then for every M ∈Mloc

0 , we have Φ ∈ L2
loc(M).

Definition 5.9. Let Xt = X0 +Mt +At be a continuous semimartingale and
let Φt be a locally bounded process. The stochastic integral of Φt with respect
to Xt is defined to be the continuous semimartingale

IX(Φ)t = IM(Φ)t + IA(Φ)t, t > 0,

where the second term IA(Φ)t ,
∫ t

0
ΦsdAs is understood in the Lebesgue sense.

The stochastic integral IX(Φ)t is also denoted as
∫ t

0
ΦsdXs.
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When Xt is a Brownian motion, the stochastic integral is usually known as
Itô’s integral.

It is important to point out that IM(Φ) can fail to be a martingale if
M ∈ Mloc

0 , so the integrability properties in Proposition 5.9 may not hold in
general. However, we still have the following properties. The proof is similar
to the non-local case and is hence omitted.

Proposition 5.13. (1) IX(Φ) is linear in X and in Φ.
(2) IX(ΨΦ) = II

X(Φ)(Ψ) for any locally bounded Φ,Ψ.
(3) IXτ

(Φ) = IX(Φ1[0,τ ]) = IX
τ
(Φτ ) = IX(Φ)τ for any {Ft}-stopping time

τ.

Remark 5.5. In the definition of stochastic integrals and in Proposition 5.13,
assuming local boundedness is just for technical convenience. Everything works
well as long as we assume that all the Itô integals and Lebesgue integrals are
well defined in their right sense respectively.

To conclude this subsetion, we establish a useful tool which acts as the
stochastic counterpart of the dominated convergence theorem.

Proposition 5.14. Let Xt be a continuous semimartingale. Suppose that Φn
t is

a sequence of locally bounded processes converges to zero pointwisely, and there
exists a locally bounded process Φ such that |Φn| 6 Φ. Then IX(Φn)t converges
to zero in probability uniformly on every finite interval, i.e. for every T > 0,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

Φn
sdXs

∣∣∣∣→ 0 in probability

as n→∞.

Proof. We only consider the situation where X ∈ Mloc
0 as the other case is

easier. Let τm be a sequence of {Ft}-stopping times increasing to infinity, such
that for each m, Xτm ∈ H2

0 and Φτm , Xτm , 〈X〉τm are all bounded. Given
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ε, δ > 0, choose m such that P(τm 6 T ) < δ. It follows that

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Φn
sdXs

∣∣∣∣ > ε

)

6 P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Φn
sdXs

∣∣∣∣ > ε, τm > T

)

= P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣∫ τm∧t

0

Φn
sdXs

∣∣∣∣ > ε, τm > T

)

= P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Φn)τms dXτm
s

∣∣∣∣ > ε, τm > T

)

6 δ + P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Φn)τms dXτm
s

∣∣∣∣ > ε

)
.

Since (Φn)τm ∈ L2(Xτm) for each n, we know that IXτm
((Φn)τm) ∈ H2

0 . Ac-
cording to Doob’s Lp-inequality, we have

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Φn)τms dXτm
s

∣∣∣∣ > ε

)
6

1

ε2
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Φn)τms dXτm
s

∣∣∣∣2
]

6
4

ε2
E

[(∫ T

0

(Φn)τms dXτm
s

)2
]

=
4

ε2
E
[∫ T

0

|(Φn)τms |
2 d〈Xτm〉s

]
,

which converges to zero as n → ∞ by the dominated convergence theorem.
Therefore,

lim sup
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Φn
sdXs

∣∣∣∣ > ε

)
6 δ,

which implies the desired convergence as δ is arbitrary.

A direct consequence of Proposition 5.14 is the following intuitive interpre-
tation of stochastic integrals.

Corollary 5.1. Let Φt be a left continuous and locally bounded process, and
let Xt be a continuous semimartingale. For given t > 0, let Pn be a sequence
of finite partitions over [0, t] such that mesh(Pn)→ 0. Then

lim
n→∞

∑
ti∈Pn

Φti−1
(Xti −Xti−1

) =

∫ t

0

ΦsdXs in probability. (5.16)
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Proof. We only consider the case where X ∈Mloc
0 . Suppose that X ∈ H2

0 and
Φ is bounded. Define

Φn
s = Φ01{0}(s) +

∑
ti∈Pn

Φti−1
1(ti−1,ti](s) + Φt1(t,∞)(s).

Then Φn is uniformly bounded and Φn → Φ pointwisely on [0, t] × Ω. Note
that (c.f. (5.12)) ∫ t

0

Φn
sdXs =

∑
ti∈Pn

Φti−1
(Xti −Xti−1

).

According to Proposition 5.14, we know that∑
ti∈Pn

Φti−1
(Xti −Xti−1

)→
∫ t

0

ΦsdXs

in probability as n→∞. The general case follows from the same localization
argument as in the proof of Proposition 5.14.

Remark 5.6. Taking left endpints in the Riemann sum approximation is an
important feature of stochastic integrals. Indeed, (5.16) does not hold any
more if we are not taking left endpoints.

5.3 Itô’s formula

In classical analysis, if xt is a smooth path, we have the differentiation rule
df(xt) = f ′(xt)dxt, or equivalently, f(xt)− f(x0) =

∫ t
0
f ′(xs)dxs. In the prob-

abilistic setting, a natural question is: what happens if we replace xt by a
Brownian motion Bt? The answer is surprisingly different from the classical
situation: we have f(Bt)− f(B0) =

∫ t
0
f ′(Bs)dBs + 1

2

∫ t
0
f ′′(Bs)ds. This is the

renowned Itô’s formula. We can see why it takes this form in the following naive
way. Take the Taylor approximation up to degree 2 (it is reasonable to expect
that all higher degrees are negligible): df(Bt) = f ′(Bt)dBt+(1/2)f ′′(Bt)(dBt)

2.
Here comes the key point: we have (dBt)

2 = dt 6= 0. This is not entirely obvi-
ous at the moment, and it is crucially related to the martingale nature of Bt

and the existence of its quadratic variation process. Therefore, Itô’s formula
follows naively.

Now we develop the mathematics.
We first consider the case when f(x) = x2. This is also known as the

integration by parts formula.
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Proposition 5.15. Suppose that Xt, Yt are two continuous semimartingales.
Then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X, Y 〉t.

In particular,

X2
t = X2

0 + 2

∫ t

0

XsdXs + 〈X〉t. (5.17)

Proof. It suffices to prove (5.17). The general case follows immediately from
considering (Xt + Yt)

2, (Xt − Yt)2 and linearity. Indeed, for any given finite
partition P of [0, t], we have

X2
t −X2

0 = 2
∑
ti∈P

Xti−1
(Xti −Xti−1

) +
∑
ti∈P

(Xti −Xti−1
)2.

According to Corollary 5.1 and the semimartingale version of Proposition 5.7,
the result follows from taking limit in probability as mesh(P)→ 0.

If we take X = M ∈Mloc
0 , (5.17) tells us that

M2
t − 〈M〉t = 2

∫ t

0

MsdMs.

We have already seen in Subsection 5.1 that M2 − 〈M〉 ∈ Mloc
0 . Therefore,

(5.17) gives us an explicit formula for this local martingale.
The general Itô’s formula is stated as follows.

Theorem 5.5. Let Xt = (X1
t , · · · , Xd

t ) be a vector of d continuous semimartin-
gales. Suppose that F ∈ C2(Rd) (continuously differentiable up to degree 2).
Then F (Xt) is a continuous semimartingale given by

F (Xt) = F (X0) +
d∑
i=1

∫ t

0

∂F

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(Xs)d〈X i, Xj〉s.

(5.18)

Proof. Suppose that F ∈ C2(Rd) satisfies Itô’s formula (5.18). Let G(x) =
xiF (x) for some 1 6 i 6 d. According to the integration by parts formula (c.f.
Proposition 5.15), we see that G(Xt) also satisfies Itô’s formula. Therefore,
Itô’s formula holds for all polynomials.

For a general F ∈ C2(Rd), we first assume that |Xt| 6 K uniformly for
some K > 0. Let G ∈ C2(Rd) be such that G = F for |x| 6 K and G = 0
for |x| > 2K. We only need to verify Itô’s formula for G in this case. From
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classical analysis, we know that there exists a sequence pn of polynomials on
Rd, such that for |α| 6 2,

sup
|x|62K

|Dαpn(x)−DαG(x)| → 0

as n → ∞, where “Dα” means the α-th derivative. Since Itô’s formula holds
for each pn, according to the stochastic dominated convergence theorem (c.f.
Proposition 5.14), we conclude that Itô’s formula holds for G as well.

For a general Xt, we need to apply a localization argument. For each n > 1,
define

τn =

{
0, |X0| > n;

inf{t > 0 : |Xt| > n}, |X0| < n,

and set
X

(n)
t = X01{|X0|<n} +M τn

t + Aτnt ,

whereMt, At are the (vector-valued) martingale and bounded variation parts of
Xt respectively. Then X

(n)
t is a uniformly bounded continuous semimartingale.

By the previous discussion, Itô’s formula holds for X(n)
t . On the other hand,

since the stopped process Xτn = X(n) on {τn > 0}, by Proposition 5.12 we
conclude that Itô’s formula holds forXτn on {τn > 0}. Since ∪∞n=1{τn > 0} = Ω,
by letting n→∞, we conclude that Itô’s formula holds for Xt and F.

Remark 5.7. The same result holds if F ∈ C2(U) for some open subset U ⊆
Rd and with probability one, the process Xt takes values in U. The proof is
identical but we need to use compact subsets to approximate U and localize
on each of these compact subsets.

Formally, we usually write Itô’s formula in the following differential form
although it should always be understood in the integral sense:

dF (Xt) =
d∑
i=1

∂F

∂xi
(Xt)dX

i
t +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(Xt)d〈X i, Xj〉t.

Now we present an important class of examples for Itô’s formula.

Proposition 5.16. Suppose that f(x, y) ∈ C2(R × R) is a complex-valued
function which satisfies

∂f

∂y
+

1

2

∂2f

∂x2
= 0.

Then for every M ∈Mloc
0 , f(Mt, 〈M〉t) is a continuous local martingale.
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Proof. This is a straight forward application of Itô’s formua to the vector
semimartingale (Mt, 〈M〉t) and the function f.

A particular f satisfying Proposition 5.16 is the exponential function

fλ(x, y) = eλx−
1
2
λ2y

for given λ ∈ C. The resulting continuous local martingale

Eλ(M)t , eλMt− 1
2
λ2〈M〉t = 1 + λ

∫ t

0

Eλ(M)sdMs

is known as the exponential martingale. This (local) martingale is important in
the study of change of measure. In the case whenMt = Bt (Brownian motion),
from the distribution of Bt we can see directly that Eλ(B)t is a martingale, a
fact which was already used to prove the strong Markov property of Brownian
motion and to compute passage time distributions.

5.4 The Burkholder-Davis-Gundy Inequalities

It is absolutely not unreasonable to say that Itô’s formula is the most funda-
mental result in stochastic calculus. Starting from here we will begin a long
journey of applying Itô’s formula to a rich class of interesting topics.

To appreciate the profoundness of Itô’s formula, in this subsection we are
going to (solely) use it in a pretty non-trivial way to obtain a fundamental type
of martingale inequalities. These inequalities were first proved by Burkholder,
Davis and Gundy and we usually refer them as the BDG inequalities. They
play a fundamental role in the connection with harmonic analysis.

Let Mt be a continuous and square integrable martingale. Define M∗
t ,

sup06s6t |Ms| to be the running maximum process. According to Doob’s Lp-
inequality (in the case when p = 2) and the definition of quadratic variation,
it is seen that

E[〈M〉t] = E[M2
t ] 6 E[(M∗

t )2] 6 4E[M2
t ] = 4E[〈M〉t] (5.19)

for every t > 0. In other words, the running maximum and the quadratic
variation control each other in some universal way which is independent of
the underlying martingale. In a more functional analytic language, it suggests
that the norm

‖M‖′ ,
√

E[(M∗
∞)2]

on H2
0 is equivalent to the original norm ‖ · ‖H2 , where M∗

∞ , sup06t<∞ |Mt|.
However, this simple fact relies on the special L2-structure, in which we have
E[M2

t ] = E[〈M〉t] making the story a lot easier.
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The BDG inequalities investigates the Lp-situation for all 0 < p <∞. Here
is the main theorem.

Theorem 5.6. For each 0 < p <∞, there exist universal constants C1,p, C2,p >
0, such that for every continuous local martingale M ∈Mloc

0 , we have

C1,pE[〈M〉pt ] 6 E[(M∗
t )2p] 6 C2,pE[〈M〉pt ], ∀t > 0, (5.20)

where M∗
t , sup06s6t |Ms|.

Proof. We prove the theorem by several steps. To simplify our notation, we
will always use Cp to denote a universal constant which depends only on p
although it may be different from line to line.

(1) By localization, we may assume that M and 〈M〉 are both uniformly
bounded. Indeed, if we are able to prove the theorem for this case, since the
constants C1,p, C2,p will be universal, it is not hard to see that the general case
follows by removing the localization.

(2) The case p = 1. This is done in view of (5.19). In this case, we have
C1,1 = 1 and C2,1 = 4.

(3) The case p > 1.
We first prove the right hand side of (5.20). Let f(x) = x2p. Then f ∈

C2(R1), and
f ′(x) = 2px2p−1, f ′′(x) = 2p(2p− 1)x2(p−1).

According to Itô’s formula, we have

M2p
t = 2p

∫ t

0

M2p−1
s dMs + p(2p− 1)

∫ t

0

M2(p−1)
s d〈M〉s. (5.21)

Since M and 〈M〉 are bounded, we can see that the local martingale part in
(5.21) is indeed a martingale. Therefore,

E[M2p
t ] = p(2p− 1)E

[∫ t

0

M2(p−1)
s d〈M〉s

]
6 p(2p− 1)E

[
(M∗

t )2(p−1)〈M〉t
]
.

On the one hand, Doob’s Lp-inequality gives that

E[(M∗
t )2p] 6 CpE[M2p

t ],

while on the other hand, Hölder’s inequality gives that

E
[
(M∗

t )2(p−1)〈M〉t
]
6 ‖〈M〉t‖p

∥∥(M∗
t )2(p−1)

∥∥
q
,

where q , p/(p− 1) is the Hölder conjugate of p. By rearranging the resulting
inequality, we arrive at

E
[
(M∗

t )2p
]
6 CpE[〈M〉pt ].
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To see the left hand side of (5.20), let At , 〈M〉t. To estimate Apt =∫ t
0
pAp−1

s dAs, the key is to regard it as the quadratic variation process of some
martingale and use Itô’s formula to estimate this martingale. More precisely,
define Nt ,

∫ t
0
A

p−1
2

s dMs. Then 〈N〉t = Apt/p. On the other hand, since the

process A
p−1
2

t is bounded and increasing, Itô’s formula yields that

MtA
p−1
2

t = Nt +

∫ t

0

MsdA
p−1
2

s .

Therefore, |Nt| 6 2M∗
t A

p−1
2

t and thus

1

p
E[Apt ] = E[〈N〉t] = E[|Nt|2] 6 4E[(M∗

t )2Ap−1
t ].

By applying Hölder’s inequality on the right hand side and rearranging the
resulting inequality, we arrive at

E[Apt ] 6 CpE[(M∗
t )2p].

(4) The case 0 < p < 1. We still use At to denote 〈M〉t.
We first prove the right hand side of (5.20). Again we defineNt ,

∫ t
0
A

p−1
2

s dMs

so that 〈N〉t = Apt/p. According to the associativity of stochastic integrals (c.f.
Proposition 5.10), we see that Mt =

∫ t
0
A

1−p
2

s dNs. Since the process A
1−p
2

t is
bounded and increasing, by Itô’s formula, we have

NtA
1−p
2

t = Mt +

∫ t

0

NsdA
1−p
2

s .

Therefore, |Mt| 6 2N∗t A
1−p
2

t . Since this is true for all t > 0, we see that
M∗

t 6 2N∗t A
1−p
2

t and thus

E[(M∗
t )2p] 6 22pE

[
(N∗t )2pA

p(1−p)
t

]
6 22pE[(N∗t )2]p · E[Apt ]

1−p

6 22p4pE[N2
t ]p · E[Apt ]

1−p

= 22p4pE[〈N〉t]p · E[Apt ]
1−p

=
16p

pp
E[Apt ].

Finally, we prove the left hand side of (5.20). Given α > 0, consider

Apt = Apt (α +M∗
t )−2p(1−p)(α +M∗

t )2p(1−p)
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and Hölder’s inequality gives

E[Apt ] 6
(
E[At(α +M∗

t )−2(1−p)]
)p (E[(α +M∗

t )2p]
)1−p

. (5.22)

Here the reason of introducing α is to avoid the singularity in the term (α +
M∗

t )−2(1−p). Now since

At(α +M∗
t )−2(1−p) 6

∫ t

0

(α +M∗
s )−2(1−p)dAs, (5.23)

we introduce the martingale Nt =
∫ t

0
(α + M∗

s )−(1−p)dMs so that its quadratic
variation process coincides with the right hand side of (5.23). Since the process
(α+M∗

t )−(1−p) is bounded and has bounded variation, from Itô’s formula, we
know that

(α +M∗
t )−(1−p)Mt = Nt +

∫ t

0

Msd(α +M∗
s )p−1

= Nt + (p− 1)

∫ t

0

Ms(α +M∗
s )p−2dM∗

s .

Therefore,

|Nt| 6 (α +M∗
t )p−1M∗

t + (1− p)
∫ t

0

M∗
s (α +M∗

s )p−2dM∗
s

6 (M∗
t )p +

1− p
p

(M∗
t )p

=
1

p
(M∗

t )p.

It follows that
E[〈N〉t] = E[N2

t ] 6
1

p2
E[(M∗

t )2p].

Combining this with inequalities (5.22) and (5.23), we arrive at

E[Apt ] 6
1

p2p

(
E[(M∗

t )2p]
)p · (E[(α +M∗

t )2p]
)1−p

.

Since this is true for all α > 0, the result follows by letting α ↓ 0.

Remark 5.8. From the proof, we can actually see that the constants C1,p and
C2,p can be written down explicitly, although there is no need to do so.
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5.5 Lévy’s characterization of Brownian motion

It is a rather deep and remarkable fact that most Markov processes can be char-
acterized by certain martingale properties. This is the renowned martingale
problem of Stroock and Varadhan, which we will touch at an introductory level
when we study stochastic differential equations. Here we investigate the special
case of Brownian motion, which is the content of Lévy’s characterization the-
orem. This result, along with the series of martingale representation theorems
that we shall prove in the sequel, reveals the intimacy between continuous
martingales and Brownian motion. Probably this explains why martingale
methods are so powerful and why the Brownian motion is so fundamental in
the theory of Itô’s calculus.

Suppose that Bt = (B1
t , · · · , Bd

t ) is a d-dimensional {Ft}-Brownian motion.
Apparently, we have 〈Bi〉t = t for each 1 6 i 6 d. Moreover, for i 6= j, from
the simple observation that

√
2

2
(Bi

t ±B
j
t ) are both {Ft}-Brownian motions, we

conclude that
〈√

2
2

(Bi ±Bj)
〉
t

= t. Therefore, 〈Bi, Bj〉t = 0. In other words,

we know that 〈Bi, Bj〉t = δijt for all 1 6 i, j 6 d. Lévy’s characterization
theorem tells us that this property characterizes the Brownian motion.

Theorem 5.7. Let Mt = (M1
t , · · · ,Md

t ) be a vector of continuous {Ft}-local
martingales vanishing at t = 0. Suppose that

〈M i,M j〉t = δijt, t > 0.

Then Mt is an {Ft}-Brownian motion.

Proof. The key is to use the following neat characterization of an {Ft}-Brownian
motion in terms of characteristic functions (see also the proof of Theorem 4.2):
it suffices to show that

E
[
ei〈θ,Mt−Ms〉|Fs

]
= e−

1
2
|θ|2(t−s), ∀θ ∈ Rd and s < t. (5.24)

Let f = (f1, · · · , fd) ∈ L2([0,∞);Rd) and define the (complex-valued)
exponential martingale

E if (M)t , exp

(
i

d∑
j=1

∫ t

0

fj(s)dM
j
s +

1

2

d∑
j=1

∫ t

0

f 2
j (s)ds

)
, t > 0.

By applying Itô’s formula to the vector semimartingale(
d∑
j=1

∫ t

0

fj(s)dM
j
s ,

d∑
j=1

∫ t

0

f 2
j (s)ds

)
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in R2 and the function f(x, y) = eix+y/2, it can be easily seen that E if (M)t is
a continuous local martingale (starting at 1). Since it is uniformly bounded,
we know that it is indeed a martingale (c.f. Proposition 5.2).

Now let θ ∈ Rd. For T > 0, consider f , θ1[0,T ] ∈ L2([0,∞);Rd). In this
case, we conclude that

E if (M)t = ei〈θ,MT∧t〉+ 1
2
|θ|2T∧t, t > 0,

is a martingale. This is true for every T > 0. Therefore, if we consider s < t <
T, then for any A ∈ Fs, we have

E
[
ei〈θ,Mt−Ms〉1A

]
= E

[
e−i〈θ,Ms〉1AE

[
ei〈θ,Mt〉|Fs

]]
= E

[
1Ae−

1
2
|θ|2(t−s)

]
= P(A)e−

1
2
|θ|2(t−s),

which implies (5.24).

5.6 Continuous local martingales as time-changed Brow-
nian motions

Sometimes it can be useful if we change the speed of a process. In particular,
if we change the speed of a continuous martingale in a proper way, we can get
a Brownian motion! Because the Brownian motion is so simple and explicit,
this technique could have lots of nice applications.

We should not be too surprised about this fact. Heuristically, let Mt be
a continuous martingale with quadratic variation process 〈M〉t. Since 〈M〉t is
increasing, we can define an “inverse” process τt of 〈M〉t. If we run M at speed
τ, i.e. considering the process M̂t , Mτt , the optional sampling theorem will
imply that M̂t is a martingale with respect to the filtration {Fτt}. Therefore,
it is not unreasonable to expect that 〈M̂〉 = 〈M〉τt = t as τt is the “inverse”
of 〈M〉t. Lévy’s characterization theorem then implies that M̂t is a Brownian
motion.

Now we put this philosophy in a rigorous mathematical form, which is
however technically quite involved.

We start with the discussion of a general time-change. This part is com-
pletely deterministic. Let a : [0,∞)→ [0,∞) be a continuous and increasing
function which vanishes at t = 0. Define

ct , inf{s > 0 : as > t}, t > 0.

Definition 5.10. The function ct is called the time-change associated with at.
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The following properties are elementary and should be clear when a picture
is drawn. They provide a good intuition about what the time-change looks
like. The proof is routine and we leave it to the reader as an exercise. Denote
a∞ , limt→∞ at.

Proposition 5.17. The time-change ct of at satisfies the following properties.
(1) ct is strictly increasing and right continuous for t < a∞, and ct =∞ if

t > a∞. If a∞ =∞, then c∞ , limt→∞ ct =∞.
(2) For every s, t, ct < s ⇐⇒ as > t.
(3) Let t = as. Then ct− 6 s 6 ct. Moreover, for every t, a ≡ constant

on [ct−, ct]. This implies that the size of every jump for ct corresponds to an
interval of constancy for at and vice versa.

(4) For every t 6 a∞, act = t, and for every s 6 ∞, cas > s. If s is an
increasing point of a (i.e. a(s′) > a(s) for all s′ > s), then cas = s.

The time-change can give us a useful change of variable formula for inte-
gration. But we need to be a bit careful as it should involve some continuity
property with respect to the time-change.

Definition 5.11. A continuous function x : [0,∞)→ R1 is called c-continuous
if x is constant on [ct−, ct] for each t, where c0− , 0.

Under c-continuity, we can prove the following change of variable formula.

Proposition 5.18. Let x be a c-continuous function which has bounded varia-
tion on each finite interval. Then for any measurable function y : [0,∞)→ R1,
we have ∫

[ct1 ,ct2 ]

yudxu =

∫
[t1,t2]

ycvdxcv ,

provided that t1 < t2 < a∞ and the integrals make sense.

Proof. First of all, observe that a|[ct1 ,ct2 ] : [ct1 , ct2 ] → [t1, t2] is well-defined
and surjective. For simplicity we still denote it by a. Respectively, dx denotes
the Lebesgue-Stieltjes measure induced by x on [ct1 , ct2 ] and µ denotes the
push-forward of dx by a on [t1, t2]. It follows that for any [v1, v2] ⊆ [t1, t2],

[cv1 , cv2 ] ⊆ {u ∈ [ct1 , ct2 ] : v1 6 au 6 v2} ⊆ [cv1−, cv2 ].

Since x is c-continuous, we conclude that

µ([v1, v2]) = dx({u ∈ [ct1 , ct2 ] : v1 6 au 6 v2}) = xcv2 − xcv1 .

In particular, µ coincides with the Lebesgue-Stieltjes measure induced by the
function xcv on [t1, t2].
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According to the classical change of variable formula in measure theory, we
have ∫

[t1,t2]

ycvdxcv =

∫
[t1,t2]

ycvdµ =

∫
[ct1 ,ct2 ]

ycaudxu,

whenever the integrals make sense. But we know that cau = u for every
increasing point u of a, and apparently there are at most countably many
intervals of constancy for a. Therefore, from the c-continuity of x, we conclude
that ∫

[ct1 ,ct2 ]

ycaudxu =

∫
[ct1 ,ct2 ]

yudxu,

which then completes the proof.

Now we put everything in a probabilistic context.
Recall that (Ω,F ,P; {Ft}) is a filtered probability space which satisfies the

usual conditions. Let At be an {Ft}-adapted process such that with probability
one, every sample path t 7→ At(ω) is continuous and increasing which vanishes
at t = 0. Define the process

Ct , inf{s > 0 : As > t}, t > 0,

to be the time-change associated with At.
Since the filtration {Fs} is right continuous, according to Proposition 5.17,

(2), for every t > 0, Ct is an {Fs}-stopping time. Therefore, we may define
a new filtration F̂t , FCt associated with the time-change. Since Ct is right
continuous, from Problem 2.4, (2), (i), we know that {F̂t} also satisfies the
usual conditions. In addition, for every s > 0, As is an {F̂t}-stopping time.

Now assume further that A∞ =∞ almost surely, so that with probability
one, Ct <∞ for all t.

Definition 5.12. Let {Xt} be an {Ft}-progressively measurable stochastic
process. X̂t , XCt is called the time-changed process of Xt by Ct.

We are mainly interested in how a continuous local martingale behaves
under a time-change. To emphasize the dependence on the filtration, we use
Mloc

0 ({Ft}) to denote that space of continuous {Ft}-local martingales vanish-
ing at t = 0.

It is quite a subtle point that a time-changed continuous martingale can
fail to be a local martingale even it is continuous. Here is a counterexample.

Example 5.1. Let Bt be a Brownian motion with augmented natural filtration
{FBt }. Define At , max06s6tBs. Then At is a continuous and increasing
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process vanishing at t = 0, and A∞ = ∞ almost surely. Let Ct be the time-
change associated with At. Then we have BCt = t. Indeed, apparently we have
BCt 6 ACt = t. If BCt < ACt , by the continuity of Brownian motion, we know
that Au = ACt = t on [Ct, Ct + δ] for some small δ > 0. It follows from the
definition of Ct that Ct > Ct + δ, which is a contradiction. Therefore, BCt = t.
In particular, BCt cannot be a continuous local martingale regardless of what
filtration we take since it has bounded variation on finite intervals.

To expect that a time-changed continuous local martingale is again a con-
tinuous local martingale, we need the C-continuity. A stochastic process Xt

is called C-continuous if with probability one, X is constant on [Ct−, Ct] for
each t, where C0− , 0 (c.f. Definition 5.11).

Proposition 5.19. Let A∞ =∞ almost surely, and let Ct be the time-change
associated with At. Suppose that M ∈Mloc

0 ({Ft}) is C-continuous.
(1) Let M̂t be the time-changed process of Mt by Ct. Then M̂ ∈Mloc

0 ({F̂t})
and 〈M̂〉 = 〈̂M〉.

(2) Let Φ ∈ L2
loc(M) with respect to {Ft}. Then Φ̂ ∈ L2

loc(M̂) with respect
to {F̂t} and IM̂(Φ̂) = ÎM(Φ).

Proof. (1) SinceMt is C-continuous, we know that M̂t is continuous and M̂0 =

0. Moreover, it is easily seen that M̂t is {F̂t}-adapted.
Now let τ be a finite {Ft}-stopping time such that the stopped process M τ

t

is a bounded {Ft}-martingale. Define τ̂ = Aτ . From Proposition 5.17, (2), we
see that {τ̂ > t} = {Ct < τ}. Therefore, τ̂ is a finite {F̂t}-stopping time. In
addition, by definition we have

M̂ τ̂
t = M̂τ̂∧t = MCτ̂∧t .

If τ̂ > t, then Ct < τ and M̂ τ̂
t = MCt = Mτ∧Ct . If τ̂ 6 t, then M̂ τ̂

t = MCτ̂ . But
from Proposition 5.17, (3), we know that Cτ̂− 6 τ 6 Cτ̂ . By the C-continuity
of M, M is constant on [τ, Cτ̂ ]. Therefore, M̂ τ̂

t = Mτ = Mτ∧Ct since Ct > τ in
this case. In other words, we conclude that M̂ τ̂

t = M τ
Ct

for all t. In particular,
M̂ τ̂

t is a bounded process. Applying the optional sampling theorem to the
bounded {Ft}-martingale M τ

t which thus has a last element (c.f. Corollary
3.2), we conclude that M̂ τ̂

t is an {F̂t}-martingale. If we let τ = τn ↑ ∞, then
τ̂ = Aτn ↑ A∞ =∞. Therefore, M̂ ∈Mloc

0 ({F̂t}).
Finally, since Mt is C-continuous, according to Proposition 5.8, we see

that 〈M〉t is also C-continuous. Therefore, M2 − 〈M〉 ∈ Mloc
0 ({Ft}) is C-

continuous. From what was just proved, we know that M̂2−〈̂M〉 ∈ Mloc
0 ({F̂t}).

Therefore, 〈M̂〉 = 〈̂M〉.
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(2) First of all, it is apparent that
∫ t

0
Φ̂2
sd〈M̂〉s =

∫ Ct
C0

Φ2
sd〈M〉s <∞ almost

surely for every t.
To prove the last claim, we first need to observe a slightly more general

fact than what was proved in (1): if M,N ∈ Mloc
0 ({Ft}) are C-continuous,

then 〈M,N〉t is C-continuous, and 〈M̂, N̂〉 = ̂〈M,N〉. Indeed, the fact that
〈M,N〉t is C-continuous follows from the identity

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t).

Therefore, MN − 〈M,N〉 ∈ Mloc
0 is C-continuous, which proves the claim

according to (1).
Coming back to the proposition, in order to show that IM̂(Φ̂) = ÎM(Φ), it

suffices to show that
〈
IM̂(Φ̂)− ÎM(Φ)

〉
= 0. On the one hand, we have〈

IM̂(Φ̂)
〉
t

=

∫ t

0

Φ̂2
sd〈M̂〉s =

∫ Ct

0

Φ2
sd〈M〉s =

〈
ÎM(Φ)

〉
t
.

On the other hand,〈
IM̂(Φ̂), ÎM(Φ)

〉
t

= Φ̂ •
〈
M̂, ÎM(Φ)

〉
= Φ̂ • ̂〈M, IM(Φ)〉

= Φ̂ •
(

Φ̂ • 〈M〉
)

=
〈
IM̂(Φ̂)

〉
.

Therefore, the result follows.

Now we are able to prove the main result of this subsection. This is known
as the Dambis-Dubins-Schwarz theorem.

Theorem 5.8. Let M ∈ Mloc
0 ({Ft}) be such that 〈M〉∞ = ∞ almost surely.

Define Ct to be the time-change associated with 〈M〉t. Then Bt , MCt is an
{FCt}-Brownian motion and Mt = B〈M〉t .

Proof. From Proposition 5.17, (3), we know that 〈M〉t, and hence Mt, is
C-continuous. Therefore, by Proposition 5.19, (1), B ∈ Mloc

0 ({FCt}) and
〈B〉t = 〈̂M〉t = 〈M〉Ct = t. According to Lévy’s characterization theorem (c.f.
Theorem 5.7), we conclude that Bt is an {FCt}-Brownian motion. Finally, for
each t > 0, from Proposition 5.17, (3) again, we know that 〈M〉, and hence
M , is constant on [C〈M〉t−, C〈M〉t ], as well as t ∈ [C〈M〉t−, C〈M〉t ]. Therefore,
Mt = MC〈M〉t

= B〈M〉t .

The condition 〈M〉∞ = ∞ almost surely in the Dambis-Dubins-Schwarz
theorem ensures that the underlying probability space is rich enough to support
a Brownian motion. To generalize the theorem to the case when 〈M〉∞ < ∞
with positive probability, we need to enlarge the underlying probability space.
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Definition 5.13. An enlargement of a filtered probability space (Ω,F ,P; {Ft})
is another filtered probability space (Ω̃, F̃ , P̃; {F̃t}) together with a projection
π : Ω̃ → Ω, such that P̃ ◦ π−1 = P, π−1(F) ⊆ F̃ and π−1(Ft) ⊆ π−1(F̃t) for
all t.

If (Ω̃, F̃ , P̃; {F̃t}) is an enlargement of (Ω,F ,P; {Ft}), then associated with
any given stochastic process Xt on Ω, we can define a process X̃t on Ω̃ by

X̃t(ω̃) , Xt(π(ω̃)), ω̃ ∈ Ω̃, (5.25)

canonically. Apparently, the law of X̃ is the same as the law of X by the
definition of enlargement. For simplicity, we may use the same notation X to
denote X̃.

Now we have the following extension of the Dambis-Dubins-Schwarz the-
orem. Recall from Problem 5.1, (3) that if M ∈ Mloc

0 , then with probability
one, M∞ = limt→∞Mt exists finitely on the event {〈M〉∞ <∞}.

Theorem 5.9. LetM ∈Mloc
0 ({Ft}). Let Ct be the time-change associated with

〈M〉t. Then there exists an enlargement (Ω̃, F̃ , P̃; {F̃t}) of (Ω,F ,P; {FCt}) and
a Brownian motion β̃ on Ω̃ which is independent of M , such that the process

Bt ,

{
MCt , t < 〈M〉∞;

M∞+ β̃t − β̃t∧〈M〉∞,t > 〈M〉∞,

is an {F̃t}-Brownian motion. Moreover, Mt = B〈M〉t .

Proof. Let (Ω′,F ′,P′; {F ′t}) be a filtered probability space on which an {F ′t}-
Brownian motion βt is defined. Let (Ω̃, F̃ , P̃; {F̃t}) be the usual augmen-
tation of (Ω × Ω′,F × F ′,P × P′; {FCt × F ′t}). Apparently, (Ω̃, F̃ , P̃; {F̃t})
is an enlargement of (Ω,F ,P; {FCt}) with projection π((ω, ω′)) = ω. Define
β̃t((ω, ω

′)) , βt(ω
′). Then β̃t is a Brownian motion on Ω̃. It is apparent that

β̃ and M are independent.
An important general fact for this enlargement is that for every X ∈

Mloc
0 ({FCt}) on Ω, we have X̃ ∈ Mloc

0 ({F̃t}) and 〈X̃〉 = 〈̃X〉 almost surely
on Ω̃, where X̃ (〈̃X〉, respectively) is the process on Ω̃ defined by pulling back
X (〈X〉, respectively) via the projection π (c.f. (5.25)). Similarly, for every
{FCt}-stopping time τ on Ω, τ̃ is an {F̃t}-stopping time on Ω̃.

Now we rewrite the definition of Bt in the following form:

Bt = MCt +

∫ t

0

1(〈M〉∞,∞)(s)dβ̃s.
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On the one hand, by adapting the argument in the proof of Proposition 5.19,
(1), we can see that MC· ∈ Mloc

0 ({F̃t}) with quadratic variation process t ∧
〈M〉∞. On the other hand,

∫ ·
0
1(〈M〉∞,∞)(s)dβ̃s ∈ Mloc

0 ({F̃t}) with quadratic
variation process t− t ∧ 〈M〉∞. Therefore, B ∈Mloc

0 ({F̃t}) and

〈B〉t = t+ 2

∫ t

0

1(〈M〉∞,∞)(s)d〈MC· , β̃〉s.

Finally, by the independence of of π−1(F∞) and (π′)−1(F ′∞), it is not hard to see
thatMC· β̃ ∈Mloc

0 ({F̃t}). Therefore, 〈MC· , β̃〉 = 0, which implies that 〈B〉t = t.

According to Lévy’s characterization theorem, Bt is an {F̃t}-Brownian motion.
The fact that Mt = B〈M〉t follows from the same reason as in the proof of
Theorem 5.8.

A natural question is whether the Dambis-Dubins-Schwarz theorem can be
extended to multidimensions. This is the content of Knight’s theorem.

Theorem 5.10. Let Mt = (M1
t , · · · ,Md

t ) be d continuous {Ft}-local martin-
gales vanishing at t = 0, such that 〈M j,Mk〉t = 0 for j 6= k. Then there exists
an enlargement (Ω̃, F̃ , P̃) of (Ω,F ,P) and a d-dimensional Brownian motion
β on Ω̃ which is independent of M , such that the process Bt = (B1

t , · · · , Bd
t )

defined by

Bj
t =

{
M j

Cjt
, t < 〈M j〉∞;

M j
∞ + βjt − β

j
t∧〈Mj〉∞ , t > 〈M j〉∞,

is a d-dimensional Brownian motion.

Proof. From the proof of Theorem 5.9, we can see that on some enlargement
(Ω̃, F̃ , P̃) of (Ω,F ,P), every Bj

t is a one dimensional Brownian motion. It
remains to show that B1, · · · , Bd are independent. To this end, we again use
the method of characteristic functions. Let fj (1 6 j 6 d) be a real step
function of the form

fj(t) =
m∑
k=1

λkj1(tk−1,tk](t).

We only need to show that E[L] = 1, where

L , exp

(
i

d∑
j=1

∫ ∞
0

fj(s)dB
j
s +

1

2

d∑
j=1

∫ ∞
0

f 2
j (s)ds

)
.

The independence then follows immediately since the equation E[L] = 1 (for
arbitrary λkj and tk) gives the right characteristic functions for the finite di-
mensional distributions of Bt.
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We use Ajt to denote 〈M j〉t. Since s < Aju 6 t ⇐⇒ Cj
s < u 6 Cj

t , we know
that

M j

Cjt
−M j

Cjs
=

∫ ∞
0

1(Cjs ,C
j
t ](u)dM j

u =

∫ ∞
0

1(s,t](A
j
u)dM

j
u.

Therefore, by the definition of Bj and fj, we have∫ ∞
0

fj(t)dB
j
t =

∫ Aj∞

0

fj(t)dB
j
t +

∫ ∞
Aj∞

fj(t)dβ
j
t

=

∫ ∞
0

fj(A
j
t)dM

j
t +

∫ ∞
Aj∞

fj(t)dβ
j
t . (5.26)

On the other hand, a simple change of variables also shows that∫ ∞
0

f 2
j (t)dt =

∫ ∞
0

f 2
j (Ajt)dA

j
t +

∫ ∞
Aj∞

f 2
j (t)dt. (5.27)

Now define

It , exp

(
i

d∑
j=1

∫ t

0

fj(A
j
s)dM

j
s +

1

2

d∑
j=1

∫ t

0

f 2
j (Ajs)dA

j
s

)
, t > 0.

From Itô’s formula and the assumption that 〈M j,Mk〉t = 0 for j 6= k, It is a
bounded {Ft}-martingale. Therefore, E[I∞] = E[I0] = 1. Moreover, define

J , exp

(
i

d∑
j=1

∫ ∞
Aj∞

fj(t)dβ
j
t +

1

2

d∑
j=1

∫ ∞
Aj∞

f 2
j (t)dt

)
.

From (5.26) and (5.27) we know that L = I∞J . But E
[
J |FM

]
= 1 where

FM is the σ-algebra generated by M , since the conditional distribution of∑d
j=1

∫∞
Aj∞

fj(t)dβ
j
t given M is Gaussian distributed with mean 0 and variance∑d

j=1

∫∞
Aj∞

f 2
j (t)dt. Therefore,

E[L] = E[I∞J ] = E
[
E
[
I∞J |FM

]]
= E

[
I∞E

[
J |FM

]]
= E[I∞] = 1,

which completes the proof.

Remark 5.9. Although Knight’s theorem is a generalization of the Dambis-
Dubins-Schwarz theorem to higher dimensions, it is somehow less precise be-
cause there is no counterpart of a filtration with respect to which the time-
changed process Bt is a Brownian motion.
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5.7 Continuous local martingales as Itô’s integrals

Now we take up the question about when a continuous local martingaleMt can
be represented as an Itô’s integral

∫ t
0

ΦsdBs where Bt is a Brownian motion.
Formally speaking, the main results can be summarized as two parts:

(1) If a Brownian motion is given, then every continuous local martingale
with respect to the Brownian filtration has such a representation.

(2) Given general continuous local martingale M, if d〈M〉t is absolutely
continuous with respect to dt, then M has such a representation for some
Brownian motion defined possibly on an enlarged probability space.

Now we develop the first part, which is indeed much more surprising than
the second one.

Suppose that Bt is a one dimensional Brownian motion and {FBt } is its
augmented natural filtration.

Let T be the space of real step functions on [0,∞) of the form

f(t) =
m∑
k=1

λk1(tk−1,tk](t), t > 0,

For an f ∈ T , define

Eft , exp

(∫ t

0

f(s)dBs −
1

2

∫ t

0

f 2(s)ds

)
, t > 0,

to be the associated exponential martingale. It is apparent that Eft is uniformly
bounded in L2.

The following lemma reveals why the Brownian filtration is crucial.

Lemma 5.3. The set {Ef∞ : f ∈ T } is total in L2(Ω,FB∞,P).

Proof. Let Y ∈ L2(Ω,FB∞,P) be such that E[Y Ef∞] = 0 for all f ∈ T . We want
to show that Y = 0. Define a finite signed measure µ on (Ω,FB∞) by

µ(A) ,
∫
A

Y dP, A ∈ FB∞.

It is equivalent to showing that µ = 0. Since FB∞ is generated by the Brownian
motion, it then suffices to prove that the induced finite signed measure ν on
(Rn,B(Rn)) given by

ν(Γ) =

∫
Ω

Y 1{(Bt1 ,··· ,Btn )∈Γ}dP, Γ ∈ B(Rn),

is identically zero, for every choice of n > 1 and 0 6 t1 < t2 < · · · < tn < ∞.
But this is equivalent to showing that the Fourier transform of ν is zero.
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By definition, the Fourier transform of ν is given by

ϕ(λ) ,
∫
Rn

ei(λ1x1+···+λnxn)ν(dx), λ = (λ1, · · · , λn) ∈ Rn.

Moreover, by the definition of ν and a standard approximation argument by
simple functions, we see that∫

Rn
g(x1, · · · , xn)ν(dx) = E[Y g(Bt1 , · · · , Btn)]

for any bounded Borel measurable function g on Rn. In particular,

ϕ(λ) = E
[
Y ei(λ1Bt1+···+λnBtn )

]
.

To see why ϕ(λ) is identically zero, we define a complex-valued function Φ
on Cn by

Φ(z) , E
[
Y ez1Bt1+···+znBtn

]
, z = (z1, · · · , zn) ∈ Cn.

It is apparent that Φ(z) is analytic on Cn. Moreover, when z ∈ Rn, by assump-
tion we have

Φ(z) = e
1
2

∫∞
0 f2(s)ds · E

[
Y Ef∞

]
= 0,

where

f(t) ,
n∑
k=1

z′k1(tk−1,tk](t) ∈ T

with z′k , zk + · · ·+zn. According to the identity theorem in complex analysis,
we conclude that Φ is identically zero on Cn. Therefore, by taking z = iλ, we
know that ϕ(λ) = 0.

Now we are able to prove the following representation theorem.

Theorem 5.11. Let ξ ∈ L2(Ω,FB∞,P). Then there exists a unique element
Φ ∈ L2(B), such that

ξ = E[ξ] +

∫ ∞
0

ΦsdBs. (5.28)

Proof. Suppose that Φ and Φ′ both satisfy (5.28). Then
∫∞

0
(Φs−Φ′s)dBs = 0,

which implies that

E
[∫ ∞

0

(Φs − Φ′s)
2ds

]
= 0,

as
∫ ·

0
(Φs−Φ′s)dBs ∈ H2

0 . Therefore, Φ = Φ′ in L2(B) and the uniqueness holds.
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To see the existence, we first show that the space H of elements ξ ∈
L2(Ω,FB∞,P) which has a representation (5.28) is a closed subspace of L2(Ω,FB∞,P).
Indeed, let

ξn = E[ξn] +

∫ ∞
0

Φ(n)
s dBs

be a sequence converging to some ξ ∈ L2(Ω,FB∞,P). It follows that E[ξn] →
E[ξ]. Moreover, from∥∥∥∥∫ ∞

0

Φ(m)
s dBs −

∫ ∞
0

Φ(n)
s dBs

∥∥∥∥2

L2

= E
[∫ ∞

0

(Φ(m)
s − Φ(n)

s )2ds

]
,

we know that Φ(n) is a Cauchy sequence in L2(B). According to Lemma 5.2,
Φ(n) → Φ ∈ L2(B). Therefore,

∫ ·
0

Φ
(n)
s dBs →

∫ ·
0

ΦsdBs in H2
0 , which implies

that
ξ = E[ξ] +

∫ ∞
0

ΦsdBs.

Therefore, H is a closed subspace of L2(Ω,FB∞,P).
Now the existence follows from the simple fact that H contains elements

of the form Ef∞ for f ∈ T and Lemma 5.3, since

Ef∞ = 1 +

∫ ∞
0

f(s)Efs dBs,

where Eft is the exponential martingale defined by

Eft , exp

(∫ t

0

f(s)dBs −
1

2

∫ t

0

f 2(s)ds

)
= 1 +

∫ t

0

f(s)Efs dBs

according to Itô’s formula, and apparently f · Ef ∈ L2(B).

Remark 5.10. From the proof of Theorem 5.11, we can see that the uniqueness
of Φ is equivalent to saying that if Φ,Φ′ ∈ L2(B) both satisfy (5.28), then with
probability one, we have ∫ ∞

0

(Φs − Φ′s)
2ds = 0.

On the other hand, if we remove the restriction that Φ ∈ L2(B), then unique-
ness fails in the class L2

loc(B) even provided
∫∞

0
ΦsdBs = limt→∞

∫ t
0

ΦsdBs

exists finitely (c.f. Problem 5.5).
Remark 5.11. The reader should be able to write down a local version of
Theorem 5.11, i.e. the representation of ξ ∈ L2(Ω,FBT ,P) as an Itô’s integral
over [0, T ] for given T > 0.
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Theorem 5.11 enables us to prove the following representation for continu-
ous local martingales with respect to the Brownian filtration. This is the main
result of the first part.

Theorem 5.12. Let Mt be a continuous {FBt }-local martingale. Then Mt has
the representation

Mt = M0 +

∫ t

0

ΦsdBs, (5.29)

for some Φ ∈ L2
loc(B). Such representation is unique in the following sense: if

Φ′ is another process in L2
loc(B) which also satisfies (5.29), then Φ·(·) = Φ′·(·)

P× dt-almost everywhere, or equivalently, with probability one, Φ·(ω) = Φ′·(ω)
dt-almost everywhere.

Proof. We may assume that M0 = 0 so that M ∈Mloc
0 ({FBt }).

If M ∈ H2
0 , according to Theorem 5.11, we know that

M∞ =

∫ ∞
0

ΦsdBs

for some Φ ∈ L2(B). Therefore,

Mt = E
[
M∞|FBt

]
= E

[∫ ∞
0

ΦsdBs|FBt
]

=

∫ t

0

ΦsdBs,

which proves the representation for M.
In general, suppose τn is a sequence of finite {FBt }-stopping times increasing

to infinity such that M τn ∈ H2
0 for each n. Write M τn

t =
∫ t

0
Φ

(n)
s dBs for

Φ(n) ∈ L2(B). According to Proposition 5.11, we have∫ t

0

Φ(n)
s dBs = M τn

t = (M τn+1)τnt =

∫ t

0

Φ(n+1)
s 1[0,τn](s)dBs.

Therefore, with probability one, Φ
(n)
· (ω) = Φ

(n+1)
· (ω)1[0,τn(ω)](·) dt-almost ev-

erywhere. This implies that with probability one, Φ
(n+1)
· (ω) = Φ

(n)
· (ω) on

[0, τn(ω)], which enables us to patch all those Φ(n)’s to define a single process
Φ. More precisely, let

Φ ,

(
lim sup
n→∞

Φ(n)

)
· 1{lim supn→∞ Φ(n) is finite}.

Apparently, Φ is progressively measurable, and Φ ∈ L2
loc(B). To see that

Mt =
∫ t

0
ΦsdBs, let N ∈Mloc

0 ({FBt }). Then

〈M,N〉τn∧t = 〈M τn , N〉t =

∫ t

0

Φ(n)
s d〈B,N〉s
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for each n. But from the Kunita-Watanabi inequality (c.f. (5.4)) and the fact
that with probability one, Φ

(n)
· (ω) = Φ·(ω) dt-almost everywhere on [0, τn(ω)],

we know that
∫ t

0
Φ

(n)
s d〈B,N〉s =

∫ t
0

Φsd〈B,N〉s whenever t 6 τn. Therefore,
by letting n→∞, we conclude that

〈M,N〉t =

∫ t

0

Φsd〈B,N〉s.

Since this is true for arbitrary N ∈Mloc
0 ({FBt }), we obtain the desired repre-

sentation.
Finally, the uniqueness follows from the fact that if Φ ∈ L2

loc(B) satisfies∫ t
0

ΦsdBs = 0 for every t, then with probability one,∫ t

0

Φ2
sds = 0, ∀t > 0.

Remark 5.12. Since B0 = 0 and {FBt } is the augmented natural filtration of
Bt, every F0-measurable random variable is therefore a constant. In particular,
M0 is a constant for a continuous {FBt }-local martingale.

The same argument extends to the multidimensional case without any dif-
ficulty. We only state the main result and leave the details to the reader.

Theorem 5.13. Let Bt be a d-dimensional Brownian motion and let {FBt } be
its augmented natural filtration. Then for any continuous {FBt }-local martin-
gale Mt, there exists Φj ∈ L2

loc(B
j), such that

Mt = M0 +
d∑
j=1

∫ t

0

Φj
sdB

j
s .

These Φj’s are unique in the sense that if Ψj’s satisfy the same property, then
with probability one,

(Φ1
· (ω), · · · ,Φd

· (ω)) = (Ψ1
· (ω), · · · ,Ψd

· (ω)), dt− a.e.

An analogous result of Theorem 5.11 also holds in the multidimensional
case, and we will not state it here.

Now we turn to the second part: what if the underlying filtration is not
the Brownian filtration?

Suppose that Mt =
∫ t

0
ΦsdBs for some Brownian motion. Then 〈M〉t =∫ t

0
Φ2
sds. Therefore, a necessary condition for M having the representation as
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a stochastic integral is that d〈M〉t is absolutely continuous with respect to
the Lebesgue measure. Moreover, if we know the Radon-Nikodym derivative
d〈M〉t/dt = γt > 0, then Bt ,

∫ t
0
γ
−1/2
s dMs will be a Brownian motion by

Lévy’s characterization theorem, and from the associativity of stochastic inte-
grals, of course we have Mt =

∫ t
0
γ

1/2
s dBt. If γt is simply non-negative, in order

to support a Brownian motion we need to enlarge the underlying probability
space as we have seen in the last subsection.

To be precise, we are going to prove the following main result in the multi-
dimensional setting. Let (Ω,F ,P; {Ft}) be a filtered probability space which
satisfies the usual conditions.

We are going to use matrix notation exclusively and apply results from
standard linear algebra. To treat things in an elegant way, we first fix some
notation. For a real m × n matrix A, A∗ is denoted as the transpose of A,
and we define the norm of A to be ‖A‖ , max16i6m,16j6n |Aij|. The space
of real m × n matrices is denoted by Mat(m,n). If Mt = (M1

t , · · · ,Md
t ) is a

vector of continuous {Ft}-local martingales, we use 〈M〉t to denote the ma-
trix (〈M i,M j〉t)16i,j6d . It is apparent that this matrix is symmetric and non-
negative definite for each t. If Ψt is a matrix-valued process, we use Ψ •M
to denote the vector-valued stochastic integral

∫
Ψ · dM as long as the ma-

trix multiplication and the stochastic integral make sense in a componentwise
manner. Apparently, 〈Ψ •M〉 = Ψ · 〈M〉 ·Ψ∗.

Recall that every real d×d matrix A has a singular value decomposition as
A = UΛV ∗, where U, V are orthogonal matrices, Λ is a diagonal matrix with
non-negative entries on the diagonal. Moreover, the nonzero elements on the
diagonal of Λ are the square roots of nonzero eigenvalues of AA∗ counted with
multiplicity.

Theorem 5.14. Let Mt = (M1
t , · · · ,Md

t ) be a vector of d continuous {Ft}-
local martingales. Suppose that there exist matrix-valued progressively measur-
able processes γt and Φt taking values in Mat(d, d) and Mat(d, r) respectively,
such that:

(1) with probability one,
∫ t

0
‖Φs‖2ds <∞ for every t > 0;

(2) 〈M〉t =
∫ t

0
γsds for every t > 0;

(3) γt = Φt · Φ∗t for every t > 0.

Then on an enlargement (Ω̃, F̃ , P̃; {F̃t}) of (Ω,F ,P; {Ft}), there exists an r-
dimensional {F̃t}-Brownian motion, such that

Mt = M0 +

∫ t

0

Φs · dBs.

Proof. We may assume that M0 = 0. By adding M i = 0 or Φi
j = 0 when

necessary, it suffices to prove the theorem in the case d = r.
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First of all, let Φ = βρσ∗ be a singular value decomposition of Φ. Note
that β, ρ, σ are matrix-valued processes, where β, σ are orthogonal and ρ is
diagonal . It follows that

γ = ΦΦ∗ = βρσ∗σρβ∗ = βρ2β∗.

This also gives the diagonalization of γ. Let α , βρ and λ , θβ∗, where θ is
the diagonal matrix formed by replacing each nonzero element on the diagonal
of ρ by its reciprocal. It is important to note that all these matrix-valued
process constructed here are progressively measurable, as they are constructed
from a pointwise manner.

Now define ζt , rank(γt), and let Pζt to be the matrix-valued process given
by (Pζt)

i
j = 1 if i = j 6 ζt and (Pζt)

i
j = 0 otherwise. Define the stochastic

integral process N , λ •M. It follows that

d〈N〉t = λ · d〈M〉 · λ∗ = λγλ∗dt = θβ∗βρ2β∗βθdt = Pζdt.

Next define X , α •N . Then we have

d〈X〉t = αPζα
∗dt = βρPζρβ

∗dt = βρ2β∗dt = γdt = d〈M〉t,

and

d〈X,M〉t = d〈M,X〉∗ = αλd〈M〉t = αλγdt

= βρθβ∗βρ2β∗dt = γdt.

Therefore, 〈X −M〉 = 0, which implies that X = M.

To finish the proof, let (Ω̃, F̃ , P̃; {F̃t}) be an enlargement of (Ω,F ,P; {Ft})
which supports a d-dimensional Brownian motion Wt independent of M. The
construction of (Ω̃, F̃ , P̃; {F̃t}) is similar to the one in the proof of Theorem
5.9. Define

W , N + (Id− Pζ) •W.
Then

d〈W 〉t = d〈N〉t + (Id− Pζ)dt = dt,

where we have used the fact that 〈N,W 〉 = 0 due to independence (the same
reason as in the last part of the proof of Theorem 5.9). Therefore, W t is an
{F̃t}-Brownian motion according to Lévy’s characterization theorem. More-
over, by the definition of α, we know that

α •W = α •N + (α(Id− Pζ)) •W = X = M.

Since α = Φσ, we conclude that M = Φ • (σ •W ). But B , σ •W is also
an {F̃t}-Brownian motion according to Lévy’s characterization theorem as σ
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takes values in the space of orthogonal matrices. Therefore, we arrive at the
representation

Mt =

∫ t

0

Φs · dBs.

Remark 5.13. The underlying idea of proving Theorem 5.14 is quite simple.
The complexity arises from the possibility that γ is degenerate. If we further
assume that γt is positive definite everywhere, then B , Φ−1 •M will be an
{Ft}-Brownian motion, and M = Φ • B. In particular, in this case we do not
need to enlarge the underlying probability space.

5.8 The Cameron-Martin-Girsanov transformation

In Section 5.6, we have seen the notion of a random time-change. Now we
study another important technique: change of measure. This technique is
quite useful in the study of stochastic differential equations.

It is well known that the Lebesgue measure on Rd is translation invariant,
in the sense that given any h ∈ Rd, the measure induced by the translation
map x 7→ x + h is again the Lebesgue measure. The Lebesgue measure is
essentially a finite dimensional object: there is no counterpart of Lebesgue
measure in infinite dimensions in any obvious way.

However, a Gaussian measure is quite different: for instance, a natural in-
finite dimensional counterpart of a finite dimensional Gaussian measure is just
the law of Brownian motion defined on the continuous path space. A natu-
ral question therefore arises: what is the invariance property for a Gaussian
measure with respect to translation?

We first illustrate the motivation by doing a series of formal calculations.
Let us first consider the finite dimensional situation. Let

µ(dx) =
1

(2π)d/2
e−
|x|2
2 dx

be the standard Gaussian measure on (Rd,B(Rd)), so that the coordinate ran-
dom variables ξi(x) , xi define a standard Gaussian vector ξ = (ξ1, · · · , ξd) ∼
N (0, Id) under the probability measure µ. Now fix h ∈ Rd. Consider the trans-
lation map Th : Rd → Rd defined by Th(x) , x + h, and let µh , µ ◦ (T h)−1

be the push-forward of µ by Th. From the simple relation that for any nice
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test function f : Rd → R1,∫
Rd
f(y)µh(dy) =

∫
Rd
f(x+ h)µ(dx)

=
1

(2π)d/2

∫
Rd
f(x+ h)e−

|x|2
2 dx

=

∫
Rd
f(y)e〈h,y〉−

1
2
|h|2µ(dy),

we see that µh is absolutely continuous with respect to µ, and the Radon-
Nikodym derivative is given by

dµh

dµ
= e〈h,x〉−

1
2
|h|2 . (5.30)

This property is usually known as the quasi-invariance of Gaussian measures.
Another way of looking that this fact is the following: if we define µh by the

formula (5.30), then η , ξ − h is a standard Gaussian vector under µh, since
its distribution, which is the push-forward of µh by the map T−h : x 7→ x− h,
is just µ.

Now we look for the infinite dimensional counterpart of this simple obser-
vation. For simplicity, let W0 be the space of continuous paths w : [0, 1]→ R1

vanishing at t = 0, and let µ be the law of a one dimensional Brownian motion
over [0, 1], which is a probability measure on (W0,B(W0)). Define Bt(w) , wt,
so that Bt is a Brownian motion under µ. Now fix h ∈ W0, which is in this
case a continuous path. We assume that h has “nice” regularity properties and
let us do not bother with what they are at the moment. Again consider the
translation map Th : W0 → W0 defined by Th(w) = w + h, and let µh be the
push-forward of µ by Th.

To understand the relationship between µh and µ, we need some kind of
finite dimensional approximations. For each n > 1, consider the partition
Pn : 0 = t0 < t1 < · · · < tn = 1 of [0, 1] into n sub-intervals with equal length
1/n. Given w ∈ W0, let w(n) ∈ W0 be the piecewise linear interpolation of w
over Pn. More precisely, w(n)

ti = wti for ti ∈ Pn and w(n) is linear on each
sub-interval associated with Pn. Given a nice test function f : W → R1, we
define an approximation f (n) of f by f (n)(w) , f(w(n)). A crucial observation
is that f (n) depends only on the values {wt1 , · · · , wtn}. Therefore, f (n) is a
finite dimensional function, in the sense that there exists H : Rn → R1, such
that f (n)(w) = H(wt1 , · · · , wtn) for all w ∈ W0.
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Now we do a similar calculation as in the finite dimensional case:∫
W0

f (n)(w)µh(dw)

=

∫
W0

f (n)(w + h)µ(dw)

=

∫
W0

H(wt1 + ht1 , · · · , wtn + htn)µ(dw)

= C

∫
Rn
H(x1 + ht1 , · · · , xn + htn) exp

(
−1

2

n∑
i=1

|xi − xi−1|2

ti − ti−1

)
dx

= C

∫
Rn
H(y1, · · · , yn) exp

(
n∑
i=1

hti − hti−1

ti − ti−1

· (yi − yi−1)− 1

2

n∑
i=1

(hti − hti−1
)2

ti − ti−1

−1

2

n∑
i=1

(yi − yi−1)2

ti − ti−1

)
dy

=

∫
W0

f (n)(w) exp

(
n∑
i=1

hti − hti−1

ti − ti−1

· (wti − wti−1
)− 1

2

n∑
i=1

(hti − hti−1
)2

ti − ti−1

)
µ(dw),

where C , (2π)−n/2(t1(t2 − t1) · · · (tn − tn−1))−1/2. Here comes the crucial
observation. If we let n → ∞, it is natural to expect that f (n)(w) → f(w),
and also

n∑
i=1

hti − hti−1

ti − ti−1

· (wti − wti−1
) →

∫ 1

0

h′tdBt,

n∑
i=1

(hti − hti−1
)2

ti − ti−1

=
n∑
i=1

(hti − hti−1
)2

(ti − ti−1)2
· (ti − ti−1) →

∫ 1

0

(h′t)
2dt, (5.31)

where the first limit is Itô’s integral! Therefore, formally we arrive at∫
W0

f(w)µh(dw) =

∫
W0

f(w) exp

(∫ 1

0

h′tdBt −
1

2

∫ 1

0

(h′t)
2dt

)
µ(dw),

which suggests that µh is absolutely continuous with respect to µ, and the
Radon-Nikodym derivative is given by

dµh

dµ
= exp

(∫ 1

0

h′tdBt −
1

2

∫ 1

0

(h′t)
2dt

)
. (5.32)

Another way of looking at this fact is the following: if we define µh by the
formula (5.32), then under the new measure µh, B̃t , Bt − ht = Bt −

∫ t
0
h′sds
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is a Brownian motion, since its distribution, which is the push-forward of µh
by the map T−h : w 7→ w − h, is just µ.

The above argument outlines the philosophy of Cameron-Martin’s original
work. The main technical difficulty lies in verifying the convergence in (5.31)
for the right class of h. Here the right regularity assumption on h is the
following: h needs to be absolutely continuous and

∫ 1

0
(h′t)

2dt <∞. Cameron-
Martin’s result can be stated as follows. We refer the reader to [10] for a
modern proof.

Theorem 5.15. Let H be the space of absolutely continuous paths h ∈ W0

with
∫ 1

0
(h′t)

2dt < ∞. Then for any h ∈ H, µh is absolutely continuous with
respect to µ with Radon-Nikodym derivative given by (5.32), and wt −

∫ t
0
h′sds

is a Brownian motion under µh. In addition, for any h /∈ H, µh and µ are
singular to each other.

Remark 5.14. We can see from Cameron-Martin’s theorem that the infinite
dimensional situation is quite different from the finite dimensional one: the
quasi-invariance property is true and only true along directions in H. This
spaceH, which is known as the Cameron-Martin subspace, plays a fundamental
role in the stochastic analysis on the space (W0,B(W0), µ).

After Cameron-Martin’s important work, Girsanov pushed this idea further
into a more general situation. It is Girsanov’s work that we will explore in
details with the help of martingale methods.

Let (Ω,F ,P; {Ft}) be a filtered probability space which satisfies the usual
conditions, and let Bt = (B1

t , · · · , Bd
t ) be a d-dimensional {Ft}-Brownian mo-

tion. Suppose that Xt = (X1
t , · · · , Xd

t ) is a stochastic process with X i ∈
L2

loc(B
i) for each i.

Motivated from the previous discussion on Cameron-Martin’s work, we
define the exponential martingale

EXt , exp

(
d∑
i=1

∫ t

0

X i
sdB

i
s −

1

2

∫ t

0

|Xs|2ds

)
, t > 0. (5.33)

According to Itô’s formula, we have

EXt = 1 +
d∑
i=1

∫ t

0

EXs X i
sdB

i
s.

Therefore, EXt is a continuous local martingale. Now take a localization se-
quence τn ↑ ∞ of stopping times such that EXτn∧t is martingale for each n,
i.e.

E[EXτn∧t|Fs] = EXτn∧s.
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Fatou’s lemma then allows us to conclude that EXt is a supermartingale and
E[EXt ] 6 E[EX0 ] = 1 for all t > 0. In general, EXt can fail to be a martingale.
However, we have the following simple fact.

Proposition 5.20. EXt is a martingale if and only if E[EXt ] = 1 for all t > 0.

Proof. Since EXt is a supermartingale, given s < t, we have∫
A

EXt dP 6
∫
A

EXs dP, ∀A ∈ Fs. (5.34)

If EXt has constant expectation, then∫
Ac
EXt dP >

∫
Ac
EXs dP, ∀A ∈ Fs. (5.35)

But (5.34) and (5.35) are true for all A ∈ Fs. It follows that∫
A

EXt dP =

∫
A

EXs dP, ∀A ∈ Fs,

which implies the martingale property.

Remark 5.15. In Cameron-Martin’s work, given h ∈ H, since
∫ t

0
h′sdBs is Gaus-

sian distributed with mean 0 and variance
∫ t

0
(h′s)

2ds (c.f. Problem 5.1, (2)),
we know from Proposition 5.20 that the exponential martingale

Eht , exp

(∫ t

0

(h′s)dBs −
1

2

∫ t

0

(h′s)
2ds

)
is indeed a martingale.

Now we make the following assumption exclusively and explore its conse-
quences. At the end of this subsection, we will establish a useful condition
which verifies the assumption.

Assumption 5.1. {EXt ,Ft} is a martingale.

As in Cameron-Martin’s formula (5.32), for each given T > 0, we define

P̃T (A) , E[1AEXT ], A ∈ FT .

According to Assumption 5.1, P̃T is a probability measure on (Ω,FT ) which is
obviously equivalent to P.

The following lemma tells us how to compute conditional expectations un-
der P̃T .
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Lemma 5.4. Let 0 6 s 6 t 6 T. Suppose that Y is an {Ft}-measurable
random variable which is integrable with respect to P̃T . Then we have:

ẼT [Y |Fs] =
1

EXs
E[Y EXt |Fs], P and P̃T − a.s.,

where ẼT is the expectation under P̃T .

Proof. For any A ∈ Fs, by the martingale property of EX under P, we have

ẼT [Y 1A] = E
[
Y 1AEXT

]
= E

[
Y 1AEXt

]
= E

[
1AE[Y EXt |Fs]

]
= E

[
EXT
EXs

1AE[Y EXt |Fs]
]

= ẼT
[

1

EXs
1AE[Y EXt |Fs]

]
.

Therefore, the result follows.

With the help of Lemma 5.4, we are able to understand the relationship
between continuous local martingales under P and P̃T . Given T > 0, we use
the notationMloc

0;T (respectively, M̃loc
0;T ) to denote the space of continuous local

martingales {Mt,Ft : 0 6 t 6 T} on (Ω,FT ,P) (respectively, on (Ω,FT , P̃T ))
which vanishes at t = 0. The meaning of a local martingale defined on a finite
interval [0, T ] should be clear to the reader.

Theorem 5.16. For T > 0, the transformation map

GT : Mloc
0;T → M̃loc

0;T ,

Mt 7→ M̃t ,Mt −
d∑
i=1

∫ t

0

X i
sd〈M,Bi〉s,

is a linear isomorphism and respects the bracket, i.e. 〈M̃, Ñ〉 = 〈M,N〉 for all
M,N ∈Mloc

0;T , where the bracket processes are computed under the appropriate
probability measures.

Proof. We first show that M̃ = GT (M) ∈ M̃loc
0;T for M ∈ Mloc

0;T . By localiza-
tion, we may assume that all involved local martingales and bounded variation
processes are uniformly bounded. By the definition of M̃ and the integration
by parts formula (c.f. Proposition5.15), we have

M̃tEXt =

∫ t

0

EXs dMs +
d∑
i=1

∫ t

0

M̃sEXs X i
sdB

i
s,
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which shows that M̃tEXt is a martingale under P. Therefore, by Lemma 5.4,

ẼT [M̃t|Fs] =
1

EXs
E[M̃tEXt |Fs] = M̃s,

showing that M̃t is a martingale under P̃T . This proves that GT maps Mloc
0;T

toMloc
0;T . It is apparent that GT is linear.

Now we show that GT respects the bracket. Indeed, again localizing in the
bounded setting, exactly the same but longer calculation based on the integra-
tion by parts formula shows that (M̃tÑt− 〈M,N〉t)EXt is a linear combination
of stochastic integrals, which proves that it is a martingale under P. Therefore,
Lemma 5.4 again shows that M̃tÑt − 〈M,N〉t is a martingale under P̃T . This
proves that 〈M̃, Ñ〉 = 〈M,N〉.

In particular, GT is injective since

M̃ = 0 =⇒ 〈M̃〉 = 〈M〉 = 0 =⇒ M = 0.

Finally, we show that GT is surjective. Let M̃ ∈ M̃loc
0;T . If M̃ is bounded,

by Lemma 5.4, we know that

E[M̃tEXt |Fs] = EXs ẼT [M̃t|Fs] = M̃sEXs .

Therefore, M̃tEXt is a martingale under P. Since M̃t = (M̃tEXt )/EXt , after re-
moving the localization, Itô’s formula shows that M̃t is a continuous semi-
martingale under P. Therefore, we may assume that under P, M̃t = Mt + At
for some M ∈ Mloc

0;T and some bounded variation process A. Now define
M , GT (M) ∈ M̃loc

0;T . It follows that

M̃t −M t = At +
d∑
i=1

∫ t

0

X i
sd〈M,Bi〉s.

This shows that M̃ −M is a bounded variation process. But M̃ −M ∈ M̃loc
0;T .

Therefore, M̃ = M = GT (M), which shows that GT is also surjective.

From the characterization of stochastic integrals, a direct corollary of The-
orem 5.16 is that the transformation map GT respects stochastic integration.

Corollary 5.2. Let M ∈ Mloc
0;T , and let Φt be a progressively measurable pro-

cess on [0, T ] such that P
(∫ T

0
Φ2
sd〈M〉s <∞

)
= 1. Then ĨM(Φ) = IM̃(Φ).

135



Proof. Since 〈M̃〉 = 〈M〉, we have P̃T
(∫ T

0
Φ2
sd〈M̃〉s <∞

)
= 1. The last claim

follows from the fact that〈
ĨM(Φ), Ñ

〉
= 〈IM(Φ), N〉 = Φ • 〈M,N〉

= Φ • 〈M̃, Ñ〉 =
〈
IM̃(Φ), Ñ

〉
, ∀Ñ ∈Mloc

0;T .

Another direct consequence of Theorem 5.16 is the following result. This
is the original Girsanov’s theorem.

Theorem 5.17. Define the process B̃t = (B̃1
t , · · · , B̃d

t ) by

B̃i
t , Bi

t −
∫ t

0

X i
sds, t > 0, 1 6 i 6 d. (5.36)

Then for each T > 0, the process {B̃t,Ft : 0 6 t 6 T} is a d-dimensional
Brownian motion on (Ω,FT , P̃T ).

Proof. From Theorem 5.16, we know that B̃i = GT (Bi) ∈ M̃loc
0;T for each

1 6 i 6 d. Moreover, we have

〈B̃i, B̃j〉t = 〈Bi, Bj〉t = δijdt, t ∈ [0, T ].

Therefore, according to Lévy’s characterization theorem, we conclude that B̃t

is an {Ft}-Brownian motion on [0, T ] under P̃T .

The careful reader might ask if there exists a single probability measure
P̃ on (Ω,F∞), such that P̃ = P̃T on FT for every T > 0. This is not true in
general. Indeed, if such P̃ exists, then P̃ is absolutely continuous with respect
to P on F∞ (A ∈ F∞, P(A) = 0 implies A ∈ F0, and hence P̃(A) = P̃0(A) = 0).
In this case, if we let ξ , dP̃/dP on (Ω,F∞), then it is not hard to see that
EXt = E[ξ|Ft] so that EXt is uniformly integrable. Certainly this is too strong
to assume in general (for instance, the martingale eBt−

1
2
t2 is not uniformly

integrable). Conversely, if EXt is uniformly integrable, then EXt = E[ξ|Ft] for
ξ , limt→∞ EXt ∈ F∞. If we define P̃(A) =

∫
A
ξdP for A ∈ F∞, then P̃ = P̃T

on FT for every T > 0. Therefore, we see that an extension P̃ of {P̃T : T > 0}
exists on (Ω,F∞) if and only if EXt is uniformly integrable, in which case P̃
is absolutely continuous with respect to P on F∞. This is crucially related to
the fact that we assume F0 contains all P-null sets, which is part of the usual
conditions. Also note that in this case, the process B̃t defined by (5.36) is an
{Ft}-Brownian motion on [0,∞) under P̃.
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However, if we only consider the natural filtration and do not take its usual
augmentation, then we do have such an extension P̃ even without the uniform
integrability of EXt , and the process B̃t is a Brownian motion on [0,∞) under
P̃.

To be more precise, let us consider the continuous path space (W d,B(W d), µ),
where µ is the d-dimensional Wiener measure. Let Bt(w) , wt be the coor-
dinate process and let {GBt } be the natural filtration of Bt. It follows that
{Bt,GBt } is a Brownian motion under µ. Now consider a {GBt }-progressively
measurable process Xt which satisfies

∫ t
0
X2
s (ω)ds <∞ for every (t, ω). Define

the exponential martingale EXt by (5.33) and assume that it is a martingale
(technically speaking, in order to make sense of the stochastic integrals in-
volved, we need to define EXt with respect to the augmented natural filtration
{FBt }, and assume that EXt is a martingale under this filtration). Then

P̃T (A) ,
∫
A

EXT dµ, A ∈ GBT ,

defines a compatible family of probability measures. Therefore, they extend
to a probability measure on the π-system ∪T>0GBT . By verifying the conditions
in Carathéodory’s extension theorem, we get a single probability measure P̃
on GB∞ = B(W d) which extends those P̃T ’s. Apparently, B̃t , Bt −

∫ t
0
Xsds is

{GBt }-adapted and it is indeed a {GBt }-Brownian motion on [0,∞) under P̃.
In general, althought P̃ is absolutely continuous with respect to µ when

restricted on each GBT (because P̃T is by definition), it can fail to be so on
GB∞. A simple example is the following: consider X ≡ c 6= 0. Then under the
new probability measure P̃, B̃t = Bt − ct is a Brownian motion and therefore
Bt = B̃t + ct is a Brownian motion with drift c. Let

Λ , {w ∈ W d : lim
t→∞

wt/t = c} ∈ GB∞.

Then P̃(Λ) = 1 but µ(Λ) = 0.
We leave the reader to think about these details.
To finish this part, we give a useful condition, known as Novikov’s condition,

under which Assumption 5.1 holds.

Theorem 5.18. Let M ∈Mloc
0 . Suppose that

E
[
e

1
2
〈M〉t

]
<∞, ∀t > 0.

Then
EMt , eMt− 1

2
〈M〉t , t > 0,

is an {Ft}-martingale.
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The idea of the proof is not hard: we try to use the Dambis-Dubins-Schwarz
theorem, which tells us that Mt = B〈M〉t for a Brownian motion possibly de-
fined on some enlarged probability space. Since eBs−

1
2
s is obviously a martin-

gale and 〈M〉t is a stopping time with respect to the relevant filtration, by
applying the optional sampling theorem formally, it is entirely reasonable to
expect that

E
[
eMt− 1

2
〈M〉t

]
= E

[
eB〈M〉t−

1
2
〈M〉t

]
= 1.

Therefore, the result follows according to Proposition 5.20. To make this idea
work, we need to overcome the issue of integrability by a technical trick.

Proof of Theorem 5.18. According to the generalized Dambis-Dubins-Schwarz
theorem (c.f. Theorem 5.9), there exists an {F̃t}-Brownian motion Bt, pos-
sibly defined on some enlarged space (Ω̃, F̃ , P̃; {F̃t}), such that Mt = B〈M〉t .

Moreover, 〈M〉t is an {F̃s}-stopping time for every t > 0.
For each b < 0, define

τb , inf{s > 0 : Bs − s = b}.

Note that in Problem 4.6, (2), we have computed the marginal distribution of
the running maximum process for the Brownian motion with drift. From that
formula it is not hard to see that the density of τb is given by

P(τb ∈ ds) =
|b|√
2πs3

e−
(b+s)2

2s ds, t > 0.

In particular,

E
[
e

1
2
τb
]

=

∫ ∞
0

e
1
2
s · |b|√

2πs3
e−

(b+s)2

2s ds = e−b, (5.37)

where we applied the change of variables u = |b|/
√
s.

Apparently, Zs , eBs−
1
2
s is an {F̃s}-martingale. Therefore, Zτb

s is also an
{F̃s}-martingale. Moreover, since τb <∞ almost surely,

Zτb
∞ = eBτb−

1
2
τb = e

1
2
τb+b.

Now on the one hand, Fatou’s lemma tells us that {Zτb
s , F̃s : 0 6 s 6∞} is a

supermartingale with a last element. On the other hand, (5.37) tells us that
E[Zτb

∞] = E[Zτb
s ] = 1 for all s. Therefore, similar to the proof of Proposition

5.20, we know that {Zτb
s , F̃s : 0 6 s 6∞} is a martingale with a last element.

This allows us to use the optional sampling theorem to conclude that

E
[
Zτb
〈M〉t

]
= E

[
eBτb∧〈M〉t−

1
2
τb∧〈M〉t

]
= 1

= E
[
1{〈M〉t>τb}e

1
2
τb+b
]

+ E
[
1{〈M〉t<τb}e

Mt− 1
2
〈M〉t

]
.
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As b→ −∞, the first term goes to zero by the dominated convergence theorem,
since the integrand is controlled by ebe

1
2
〈M〉t (note that E[e

1
2
〈M〉t ] <∞ according

to the assumption) and τb →∞. Therefore,

E
[
eMt− 1

2
〈M〉t

]
= 1.

As this is true for all t, according to Proposition 5.20, we conclude that EMt is
an {Ft}-martingale.

Combing back to the setting of the Cameron-Martin-Girsanov theorem, we
have the following direct corollary.

Corollary 5.3. Suppose that X i ∈ L2
loc(B

i) for i = 1, · · · , d. Suppose that

E
[
exp

(
1

2

∫ t

0

|Xs|2ds
)]

<∞, ∀t > 0.

Then the exponential martingale EXt defined by (5.33) is indeed a martingale.

5.9 Local times for continuous semimartingales

From Itô’s formula, we know that the space of continuous semimartingales is
stable under composition by C2-functions. Now a natural question is: what
happens if the function fails to be in C2?

Let us consider the simplest case: f(x) = |x|. Then f ′(x) = sgn(x) and
f ′′(x) = 2δ0(x), where δ0 is the Dirac δ-function at 0. Applying Itô’s formula
for the one dimensional Brownian motion and f in a formal way, we have

|Bt| =
∫ t

0

sgn(Bs)dBs +

∫ t

0

δ0(Bs)ds.

Heuristically,
∫ t

0
δ0(Bs)ds measures the “amount of time” before t that the

Brownian motion is at the zero level. Of course this is not m({s ∈ [0, t] : Bs =
0}) (m is the Lebesgue measure), because level sets of Brownian motion are
Lebesgue null sets with probability one. More precise, the term

∫ t
0
δ0(Bs)ds

should be understood as∫ t

0

δ0(Bs)ds = lim
ε↓0

1

2ε
m({s ∈ [0, t] : |Bs| < ε}), (5.38)

so it measures some kind of occupation density at the zero level.
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This motivates the definition of local time, and with which we can extend
Itô’s formula to functions with singularities. The theory of local times for
Brownian motion is a rich subject, and it leads to deep distributional properties
related to Brownian motion. In this subsection, we introduce the basic theory
for local times of general continuous semimartingales. In the next subsection,
we study the distribution of the Brownian local time.

We start with the following result. Let Xt = X0 +Mt +At be a continuous
semimartingale.

Theorem 5.19. Let f be a convex function on R1. Then there exists a unique
{Ft}-adapted process Aft with continuous, increasing sample paths vanishing
at t = 0, such that

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs + Aft ,

where f ′− is the left derivative of f. In particular, f(Xt) is a continuous semi-
martingale.

Proof. Let ρ ∈ C∞(R1) be a non-negative function with compact support on
(−∞, 0] and

∫
R1 ρ(y)dy = 1. We can think of ρ as a mollifier. For each n > 1,

define ρn(y) = nρ(ny) and fn(x) ,
∫
R1 f(x + y)ρn(y)dy. Then fn ∈ C∞(R1)

and fn(x) → f(x) for every x ∈ R1. Moreover, since f is convex, it is locally
Lipschitz. Therefore, f ′ exists almost everywhere and f ′− is locally bounded.
By the dominated convergence theorem, we have

f ′n(x) =

∫
R1

f ′−(x+ y)ρn(y)dy =

∫
R1

f ′−

(
x+

z

n

)
ρ(z)dz.

But we know that for a convex function f , f ′− is left continuous. As ρ is
supported on (−∞, 0], we conclude that f ′n(x)→ f ′−(x) for every x ∈ R1.

Now we define

τm ,

{
0, |X0| > m;

inf{t > 0 : |Xt| > m}, |X0| < m,

and X
(m)
t , X01{|X0|<m} + M τm

t + Aτmt in the same way as in the proof of
Itô’s formula. Then each X(m) is a bounded continuous semimartingale. By
applying Itô’s formula to X(m) and the function fn, we have

fn

(
X

(m)
t

)
= fn

(
X

(m)
0

)
+

∫ t

0

f ′n
(
X(m)
s

)
dX(m)

s + An,mt ,
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where An,mt , 1
2

∫ t
0
f ′′n

(
X

(m)
s

)
d
〈
X(m)

〉
s
. If we let n → ∞, according to the

stochastic and ordinary dominated convergence theorems (c.f. Proposition
5.14), we conclude that

f
(
X

(m)
t

)
= f

(
X

(m)
0

)
+

∫ t

0

f ′−
(
X(m)
s

)
dX(m)

s + Amt ,

where Amt , limn→∞A
n,m
t which has to exist. In addition, as {τm > 0} ↑ Ω

and X(m) = Xτm on {τm > 0}, by letting m→∞, we arrive that

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs + At,

where At , limm→∞A
m
t which also has to exist. Since fn is convex, we know

that f ′′n > 0. Therefore, An,mt is increasing in t for every n,m. This implies that
At is increasing in t. Therefore, we can simply define

Aft , f(Xt)− f(X0)−
∫ t

0

f ′−(Xs)dXs, (5.39)

which is continuous and has to be a modification of At. Aft will be the desired
process, and uniqueness is obvious as it has to be given by the formula (5.39).

The reader might think that Theorem 5.19 is quite general and the increas-
ing process Aft can depend on f in some complicated way. In fact, this is not
true. The process Aft can be written down in a fairly explicit way in terms of
the local time of X which we are going to define now.

We define sgn(x) = 1 if x > 0 and and sgn(x) = −1 if x 6 0. If f(x) = |x|,
then f ′−(x) = sgn(x).

Theorem 5.20 (Tanaka’s formula). For any real number a ∈ R1, there exists
a unique {Ft}-adapted process Lat with continuous, increasing sample paths
vanishing at t = 0, such that

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + Lat ,

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a}dXs +
1

2
Lat ,

(Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs6a}dXs +
1

2
Lat .

In particular, |Xt − a|, (Xt − a)± are all continuous semimartingales.
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Proof. We apply Theorem 5.19 for the function f(x) = |x − a| and define
Lat , Aft in the theorem. Then the first identity holds. Let Bt and Ct be
the increasing processes arising from Theorem 5.19 applied to the functions
(x− a)± respectively, i.e.

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a}dXs +Bt,

(Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs6a}dXs + Ct.

Adding the two identities gives Bt + Ct = Lat , while subtracting them gives
Bt − Ct = 0 as

Xt = X0 +

∫ t

0

dXs.

Therefore, Bt = Ct = Lat /2.

Definition 5.14. The process {Lat : t > 0} is called the local time at a of the
continuous semimartingale X.

Example 5.2. Let Bt be a one dimensional Brownian motion. Then the
first identity in Tanaka’s formula gives the Doob-Meyer decomposition for the
submartingale |Bt−a|, where the corresponding increasing process is the local
time at a, and the martingale part is |B0 − a| +

∫ t
0

sgn(Bs − a)dBs, which
interestingly, is a Brownian motion starting at |B0 − a| according to Lévy’s
characterization theorem.

Since Lat is increasing in t, it induces a (random) Lebesgue-Stieltjes measure
dLa on [0,∞). The first property of Lat is that the random measure dLa is
almost surely carried by the set Λa , {t > 0 : Xt = a} in the following sense.

Proposition 5.21. With probability one, dLa(Λc
a) = 0.

Proof. By applying Itô’s formula to the continuous semimartingale |Xt − a|
given by the first identity of Tanaka’s formula and the function f(x) = x2, we
have

(Xt − a)2 = (X0 − a)2 + 2

∫ t

0

|Xs − a| · sgn(Xs − a)dXs

+2

∫ t

0

|Xs − a|dLas + 〈X〉t

= (X0 − a)2 + 2

∫ t

0

(Xs − a)dXs + 2

∫ t

0

|Xs − a|dLas + 〈X〉t.
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On the other hand, Itô’s formula applied to Xt − a and the same function
f(x) = x2 gives that

(Xt − a)2 = (X0 − a)2 + 2

∫ t

0

(Xs − a)dXs + 〈X〉t.

Therefore,
∫ t

0
|Xs−a|dLas = 0 for all t > 0. This implies that dLa(Λc

a) = 0.

So far the local time process is defined for each given a ∈ R1. In order to
obtain more interesting results from the analysis of local times, we should first
look for better versions of Lat as a process in the pair (a, t). At the very least,
we should expect a jointly measurable version of Lat . This is the content of the
next result.

Proposition 5.22. There exists a B(R1) ⊗ B([0,∞)) ⊗ F-measurable L̃ :

(a, t, ω) 7→ L̃at (ω), such that for every a ∈ R1, the processes {L̃at : t > 0}
and {Lat : t > 0} are indistinguishable.

Proof. This is a direct consequence of the stochastic Fubini’s theorem (c.f.
Problem 5.3).

With this jointly measurable version of local time process (which is still
denoted as Lat ), we are able to prove the following so-called Itô-Tanaka’s for-
mula. This result gives an explicit formula for the process Aft arising from
Theorem 5.19 in terms of the local time Lat .

Theorem 5.21. Let f be a convex function on R1 and let Xt be a continuous
semimartingale. Then

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +
1

2

∫
R1

Latµ(da),

where µ is the second derivative measure of f on (R1,B(R1)) induced by

µ([a, b)) , f ′−(b)− f ′−(a)

for a < b. In particular, f(Xt) is a continuous semimartingale.

Proof. The main idea is to represent a convex function in some more explicit
way. This part involves some notions from generalized functions.

First assume that µ is compactly supported. Define the convex function

g(x) ,
1

2

∫
R1

|x− a|µ(da), x ∈ R1. (5.40)
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We claim that f(x)−g(x) = αx+β for some α, β ∈ R1. To this end, it suffices
to show that µ = g′′ in the sense of distributions. Let ϕ ∈ C∞c (R1) be a smooth
function with compact support. Then

Tg′′(ϕ) = −
∫
R1

g′ϕ′dx =

∫
R1

gϕ′′dx

=
1

2

∫
R1

(∫
R1

|x− a|µ(da)

)
ϕ′′(x)dx

=
1

2

∫
R1

µ(da)

∫
R1

2δa(x)ϕ(x)dx

=

∫
R1

ϕ(a)µ(da),

where we have used the fact that |x−a|′′ = 2δa(x) in the sense of distributions.
Therefore, the claim holds. Since the theorem is apparently true for any affine
function αx+ β (in which case µ = 0), it remains to show that it is true for g
given by (5.40).

Integrating the first identity of Tanaka’s formula with respect to µ and
applying the stochastic Fubini’s theorem (c.f. Problem 5.3), we have

g(Xt) = g(X0) +

∫ t

0

(
1

2

∫
R1

sgn(Xs − a)µ(da)

)
dXs +

1

2

∫
R1

Latµ(da)

= g(X0) +

∫ t

0

g′−(Xs)dXs +
1

2

∫
R1

Latµ(da).

Therefore, the theorem holds for g.
In general, if µ is not compactly supported, we define fn to be a convex

function such that fn = f on [−n, n] and its second derivative measure µn is
compactly supported on [−n, n]. By stopping along a sequence τn of stopping
times, we then localize Xt inside [−n, n] in the same way as in the proofs of
Itô’s formula and Theorem 5.19. It follows that the theorem holds for f on each
[0, τn] provided {τn > 0}, and therefore holds globally by letting n→∞.

Itô-Tanaka’s formula immediately gives the following so-called occupation
times formula.

Corollary 5.4. There exists a P-null set outside which we have∫ t

0

Φ(Xs)d〈X〉s =

∫
R1

Φ(x)Lxt dx (5.41)

for all t > 0 and all non-negative Borel measurable functions Φ.
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Proof. Let Φ ∈ Cc(R1) be a non-negative continuous function with compact
support. Let f ∈ C2(R1) be a convex function whose second derivative is Φ.
By comparing Itô’s formula and Itô-Tanaka’s formula for f, we conclude that
outside a P-null set NΦ,∫ t

0

Φ(Xs)d〈X〉s =

∫
R1

Φ(x)Lxt dx, ∀t > 0. (5.42)

To obtain a single P-null set independent of Φ, let H = {Φq1,q2,q3,q4 : q1 < q2 <
q3 < q4 ∈ Q} be the countable family of functions defined by

Φq1,q2,q3,q4(x) ,


0, x 6 q1 or x > q4;
x−q1
q2−q1 , q1 < x < q2;

1, q2 6 x 6 q3;
q4−x
q4−q3 , q3 < x < q4.

Let N , ∪Φ∈HNΦ. Then N is a P-null set outside which (5.42) holds for all
Φ ∈ H. From a standard approximation argument, this is sufficient to conclude
that (5.42) holds for all non-negative Borel measurable functions.

It is tempting to choose Φn → δa so that we obtain Lat =
∫ t

0
δa(Xs)d〈X〉s,

at least in the sense of (5.38), which verifies the intuitive meaning of local time
(in the Brownian motion case) that we explained at the beginning. To do so,
we need an even better version of Lat .

Theorem 5.22. Suppose that Xt = X0 +Mt+At is a continuous semimartin-
gale. Then there exists a modification {L̃at : a ∈ R1, t > 0} of the process
{Lat : a ∈ R1, t > 0}, such that with probability one, the map (a, t) 7→ L̃at (ω)
is continuous in t and càdlàg in a. Moreover, for each a ∈ R1,

L̃at − L̃a−t = 2

∫ t

0

1{Xs=a}dAs = 2

∫ t

0

1{Xs=a}dXs. (5.43)

In particular, if Xt is a continuous local martingale, then there exists a bicon-
tinuous modification of the process {Lat : a ∈ R1, t > 0}.

Proof. We start with the jointly measurable modification Lat given by Propo-
sition 5.22, which allows us to integrate with respect to a. From the second
identity of Tanaka’s formula, we have

1

2
Lat = (Xt − a)+ − (X0 − a)+ −

∫ t

0

1{Xs>a}dMs −
∫ t

0

1{Xs>a}dAs. (5.44)
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We first show that the family M̂a
t ,

∫ t
0
1{Xs>a}dMs of continuous local

martingales possesses a bicontinuous modification in the pair (a, t). To this end,
given T > 0, let WT be the space of continuous paths on [0, T ], equipped with
the uniform topology. It suffices to show that, when restricted on t ∈ [0, T ],

the WT -valued stochastic process {M̂a : a ∈ R1} possesses a continuous
modification in a.

Indeed, for given a < b and k > 1, the BDG inequalities (c.f. (5.20))
implies that

E
[

sup
06t6T

∣∣∣M̂a
t − M̂ b

t

∣∣∣2k] 6 CkE

[(∫ T

0

1{a<Xs6b}d〈M〉s
)k]

. (5.45)

By applying the occupation times formula (c.f. (5.41)) to the function Φ =
1(a,b], the right hand side of (5.45) is equal to

CkE

[(∫ b

a

LxTdx

)k]
6 Ck(b− a)kE

[(
1

b− a

∫ b

a

Lx∞dx

)k]

6 Ck(b− a)kE
[

1

b− a

∫ b

a

(Lx∞)kdx

]
6 Ck(b− a)k sup

x∈R1

E[(Lx∞)k].

Now from (5.44), we can see that

Lx∞ 6 2

(
sup
t>0
|Xt −X0|+ sup

t>0

∣∣∣∣∫ t

0

1{Xs>x}dMs

∣∣∣∣+

∫ ∞
0

d‖A‖s
)
,

where ‖A‖t is the total variation process of At. The BDG inequalities again
implies that

E[(Lx∞)k] 6 C ′kE

[
sup
t>0
|Xt −X0|k + 〈M〉k/2∞ +

(∫ ∞
0

d‖A‖s
)k]

.

Observe that the right hand side is independent of x. If it is finite, then
our claim follows from Kolmogorov’s continuity theorem with state space WT

which is a complete metric space. In general, we define

τn , inf

{
t > 0 : |Xt −X0|k + 〈M〉k/2t +

(∫ t

0

d‖A‖s
)k

> n

}
.

Then the previous argument applied to the stopped process Xτn (note that in
this case the corresponding local time Lx∞ will be the local time of the stopped
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process) implies that for each n, the family (M̂a)τn possesses a bicontinuous
modification in (a, t) ∈ R1× [0, T ].We denote such modification as M̃a,n

t . Note
that when a, n are fixed, the relevant processes are always continuous in t.
Therefore, for each given n > 1 and a, t > 0,

M̃a,n+1
τn∧t = M̃a,n

t a.s. (5.46)

From the bicontinuity property, outside a single null set (5.46) holds for all
n, a, t. In particular, we are able to define a single process M̃a

t on R1 × [0, T ]

such that M̃a
t = M̃a,n

t on [0, τn∧T ]. Of course M̃a
t is bicontinuous in (a, t) with

probability one and it is a modification of M̂a
t .

Now consider the family of pathwise integral processes Âat ,
∫ t

0
1{Xs>a}dAs.

Apparently,

Âa−t = lim
ε↓0

∫ t

0

1{Xs>a−ε}dAs =

∫ t

0

1{Xs>a}dAs, (5.47)

Âa+
t = lim

ε↓0

∫ t

0

1{Xs>a+ε}dAs =

∫ t

0

1{Xs>a}dAs = Âat .

Since Âat is already continuous in t and càdlàg in a pathwisely, there is no way
to improve the continuity of Âat by taking a modification.

Therefore, there exists a modification L̃at of Lat which is continuous in t and
càdlàg in a with probability one. If Xt is a continuous local martingale, then
A = 0 and we obtain a bicontinuous modification.

It remains to show (5.43). The first part is clear from (5.47). To see the
second part, it suffices to show that∫ t

0

1{Xs=a}dMs = 0, ∀t > 0,

for each given a. But from the occupation times formula applied to the function
Φ = 1{a}, we know that∫ t

0

1{Xs=a}d〈M〉s =

∫ t

0

1{Xs=a}d〈X〉s =

∫
R1

1{a}(x)L̃xt dx = 0, ∀t > 0.

Therefore the result follows.

Remark 5.16. It is important to point out that, in general, when the bounded
variation part At of Xt is present, we cannot expect a modification of local time
which is bicontinuous in (a, t) (a good example is illustrated in Problem 5.7).
However, such possible discontinuity is not a pure effect of the presence of At.
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Indeed, if M = 0, by the occupation times formula we have
∫
R1 Φ(x)Lxt dx = 0

for all non-negative Borel measurable Φ. In particular, Lxt = 0 for almost every
x ∈ R1. Since Lxt is càdlàg in x, we conclude that Lxt = 0 for all (x, t). Therefore,
the possible discontinuity of Lat in a is a consequence of the interaction between
the martingale part and the bounded variation part of X.

Remark 5.17. From the proof of Theorem 5.22, if X is a continuous local
martingale, we have indeed shown that there exists a modification L̃at of {Lat :

a ∈ R1, t > 0}, such that with probability one, a 7→ L̃at is locally γ-Hölder
continuous uniformly on every finite t-interval for every γ ∈ (0, 1/2) :

P

 sup
t∈[0,T ]

sup
0<|a−b|<C

∣∣∣L̃at − L̃bt∣∣∣
|a− b|γ

<∞

 = 1

for every T,C > 0 and γ ∈ (0, 1/2).

Now we use the version Lat of local time that we obtain in Theorem 5.22.
Then we have the following result which verifies (5.38) at the beginning.

Corollary 5.5. With probability one, we have

Lat = lim
ε↓0

1

ε

∫ t

0

1[a,a+ε)(Xs)d〈X〉s ∀a ∈ R1, t > 0. (5.48)

If Xt is a continuous local martingale, we also have

Lat = lim
ε↓0

1

2ε

∫ t

0

1(a−ε,a+ε)(Xs)d〈X〉s, ∀a ∈ R1, t > 0. (5.49)

In particular, in the Brownian motion case, (5.38) holds with the left hand side
being the local time at 0 of the Brownian motion.

Proof. From the occupation times formula, we know that with probability one,

1

ε

∫ t

0

1[a,a+ε)(Xs)d〈X〉s =
1

ε

∫ a+ε

a

Lxt dx, ∀a, t, ε.

But Lat is right continuous in a, so we have (5.48) by letting ε→ 0. If Xt is a
continuous local martingale, then Lat is continuous in a, in which case (5.49)
follows from the same reasoning but with Φ = 1(a−ε,a+ε) when applying the
occupation times formula.
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5.10 Lévy’s theorem for Brownian local time

The Brownian local time is special and important. It is related to deep distri-
butional properties of functionals on Brownian motion.

Let Lt be the local time at 0 of the Brownian motion. In this subsection,
we are interested in the distribution of Lt.

The following deterministic lemma plays a crucial role in the discussion. It
is due to Skorokhod.

Lemma 5.5. Let y : [0,∞) be a continuous function such that y0 > 0. Then
there exist a unique pair (z, a) of continuous functions on [0,∞), such that:

(1) z = y + a;
(2) z is non-negative;
(3) a is increasing, vanishing at t = 0, and the associated Lebesgue-Stieltjes

measure da is carried by the set {t > 0 : zt = 0}.

Proof. For the existence, define at , sups6t y
−
s and zt , yt + at. Let us only

verify the last part of the third property as all other properties are straight
forward. Let t1 < t2 be such that zt > 0 for all t ∈ [t1, t2]. It follows that
at > −yt for all t ∈ [t1, t2]. This implies that

sup
s6t1

y−s = sup
s6t

y−s , ∀t ∈ [t1, t2].

In particular, da([t1, t2]) = 0. Therefore, da({t > 0 : zt > 0}) = 0, which
means that da is carried by the set {t > 0 : zt = 0}.

For the uniqueness, suppose that (z1, a1) and (z2, a2) both satisfy the same
properties. Then z1 − z2 = a1 − a2. According to the deterministic chain rule,

(z1
t − z2

t )
2 = 2

∫ t

0

(z1
s − z2

s)d(a1
s − a2

s).

Since dai is carried by the set {t > 0 : zit = 0} (i = 1, 2), we see that

0 6 (z1
t − z2

t )
2 = −2

(∫ t

0

z1
sda

2
s +

∫ t

0

z2
sda

1
s

)
6 0.

Therefore, z1
t = z2

t , and hence a1
t = a2

t . This proves uniqueness.

Now write βt ,
∫ t

0
sgn(Bs)dBs. According to Lévy’s characterization, βt is

a Brownian motion. Moreover, from the first identity of Tanaka’s formula, we
know that

|Bt| = βt + Lt. (5.50)

Lemma 5.5 allows us to prove the following interesting result.
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Proposition 5.23. For each t > 0, we have F |B|t = Fβt . Here we implicitly
assume that the filtrations {F |B|t } and {F

β
t } are augmented by P-null sets.

Proof. According to the proof of Lemma 5.5, we have

Lt = sup
s6t

β−s ∈ F
β
t .

It follows that |Bt| ∈ Fβt . Therefore, F
|B|
t ⊆ Fβt .

On the other hand, from Problem 5.8, we know that

L0
t (|B|) = L0

t (B) + L0−
t (B),

where Lat (|B|) (respectively, Lat (B)) denotes the local time of |B| (respectively,
B). Since Bt is a continuous martingale, we see that L0

t (|B|) = 2Lt. Moreover,
since 〈|B|〉t = t, according to identity (5.48), we see that

Lt =
1

2
L0
t (|B|) =

1

2
lim
ε↓0

∫ t

0

1[0,ε)(|Bs|)ds ∈ F |B|t .

It follows that βt = |Bt| − Lt ∈ F |B|t . Therefore, Fβt ⊆ F
|B|
t .

The same use of Lemma 5.5 enables us to prove the following renowned
Lévy’s theorem for Brownian local time.

Theorem 5.23. Let Lt be the local time at 0 of the Brownian motion. Then
the two-dimensional processes {(|Bt|, Lt) : t > 0} and {(St − Bt, St) : t > 0}
have the same distribution, where St , max06s6tBs is the running maximum
of B.

Proof. On the one hand, from (5.50) and Lemma 5.5, we know that the process
(|B|, L) is determined by the process β explicitly. On the other hand, we can
write St − Bt = −Bt + St. Again from Lemma 5.5, the process (S − B, S) is
determined by the process −B explicitly in the same manner. Since β and
−B are both Brownian motions, we conclude that the processes (|B|, L) and
(S −B, S) have the same distribution.

5.11 Problems

Problem 5.1. Let M ∈ Mloc
0 be a continuous local martingale vanishing at

t = 0.
(1) Recall that H2

0 is the space of L2-bounded continuous martingales van-
ishing at t = 0. Show that M ∈ H2

0 if and only if E[〈M〉∞] < ∞, where
〈M〉∞ , limt→∞〈M〉t.
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(2) (?) Show that 〈M〉t is deterministic (i.e. there exists a function f :
[0,∞) → R1, such that with probability one, 〈M〉t(ω) = f(t) for all t > 0) if
and only if Mt is a Gaussian martingale, in the sense that it is a martingale
and (Mt1 , · · · ,Mtn) is Gaussian distributed in Rn for every 0 6 t1 < · · · < tn.
In this case, Mt has independent increments.

(3) (?) Show that there exists a measurable set Ω̃ ∈ F , such that P(Ω̃) = 1
and

Ω̃
⋂
{〈M〉∞ <∞} = Ω̃

⋂{
lim
t→∞

Mt exists finitely
}
,

Ω̃
⋂
{〈M〉∞ =∞} = Ω̃

⋂{
lim sup
t→∞

Mt =∞, lim inf
t→∞

Mt = −∞
}
.

Problem 5.2. Let Bt be the three dimensional Brownian motion with {FBt }
being its augmented natural filtration. Define Xt , 1/|B1+t|.

(1) Show that Xt is a continuous {FB1+t}-local martingale which is uni-
formly bounded in L2 (and hence uniformly integrable) but it is not an {FB1+t}-
martingale.

(2) Show that if a uniformly integrable continuous submartingale Yt has a
Doob-Meyer decomposition, it has to be of class (D) in the sense that {Yτ :
τ is a finite stopping time} is uniformly integrable. By showing that Xt is not
of class (D), conclude that Xt does not have a Doob-Meyer decomposition.

Problem 5.3. (?) This problem is the stochastic counterpart of Fubini’s the-
orem. [Give up if you don’t like this question–it is hard and boring. I have to
include it because we need to use it in the lecture notes when we study local
times and I don’t want to waste time proving it in class. ]

(1) A set Γ ⊆ [0,∞) × Ω is called progressive if the stochastic process
1Γ(t, ω) is progressively measurable. Show that the family P of progressive
sets forms a sub-σ-algebra of B([0,∞)) ⊗ F , and a stochastic process X is
progressively measurable if and only if it is measurable with respect to P .

(2) Let Φ = {Φa : a ∈ R1} be a family of real valued stochastic processes
parametrized by a ∈ R1. Viewed as a random variable on R1 × [0,∞) × Ω,
suppose that Φ is uniformly bounded and B(R1)⊗P-measurable. Let Xt be a
continuous semimartingale. Show that there exists a B(R1)⊗ P-measurable

Y : R1 × [0,∞)× Ω → R1,

(a, t, ω) 7→ Y a
t (ω),

such that for every a ∈ R1, Y a and IX(Φa) are indistinguishable as stochastic
processes in t, and for every finite measure µ on (R1,B(R1)), with probability
one, we have ∫

R1

Y a
t µ(da) =

∫ t

0

(∫
R1

Φa
sµ(da)

)
dXs, ∀t > 0.
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Problem 5.4. Let Bt be an {Ft}-Brownian motion defined on a filtered proba-
bility space which satisfies the usual conditions. Let µt and σt be two uniformly
bounded, {Ft}-progressively measurable processes.

(1) By using Itô’s formula, find a continuous semimartingale Xt explicitly,
such that

Xt = 1 +

∫ t

0

Xsµsds+

∫ t

0

XsσsdBs, t > 0.

By using Itô’s formula again, show that such Xt is unique.
(2) Assume further that σ > C for some constant C > 0. Given T > 0,

construct a probability measure P̃T , equivalent to P, under which {Xt,Ft :
0 6 t 6 T} is a continuous local martingale.

Problem 5.5. Let Bt be a one dimensional Brownian motion and let {FBt }
be the augmented natural filtration.

(1) Fix T > 0. For ξ = B2
T and B3

T , find the unique progressively measurable
process Φ on [0, T ] with E

[∫ T
0

Φ2
tdt
]
<∞, such that ξ = E[ξ] +

∫ T
0

ΦtdBt.

(2) Construct a process Φ ∈ L2
loc(B) with

∫∞
0

Φ2
tdt < ∞ almost surely (so∫∞

0
ΦtdBt is well defined), such that

∫∞
0

ΦtdBt = 0 but with probability one,
0 <

∫∞
0

Φ2
tdt <∞.

(3) Consider S1 , max06t61Bt. By writing E[S1|FBt ] as a function of
(t, St, Bt), find the unique progressively measurable process Φ on [0, 1] with
E
[∫ 1

0
Φ2
tdt
]
<∞, such that S1 = E[S1] +

∫ 1

0
ΦtdBt.

Problem 5.6. (1) Let Bt be the d-dimensional Brownian motion. Define
τ , inf{t > 0 : |Bt| = 1}. What is the distribution of Bτ? Show that Bτ and
τ are independent.

(2) Let c ∈ Rd and define Xt , Bt + ct to be the d-dimensional Brownian
motion with drift vector c. Define τ in the same way as before but for the
process Xt. By using Girsanov’s theorem under a suitable framework, show
that Xτ and τ are independent.

Problem 5.7. (?) Let B be a one dimensional Brownian motion and let λ, µ >
0 with λ 6= µ. After taking the modification given by Theorem 5.22, show
that the local time Lat of the continuous semimartingale Xt , λB+

t − µB−t is
discontinuous at a = 0. Compute this jump (at any given t > 0).

Problem 5.8. (?) Let Xt be a continuous semimartingale. We use Lat (|X|)
(respectively, Lat (X)) to denote the local time of |X| (respectively, of X). Show
that

Lat (|X|) =

{
Lat (X) + L

(−a)−
t , a > 0;

0, a < 0.
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6 Stochastic differential equations
Consider a second order differential operator A over Rn of the form

A =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
.

There are two fundamental questions one could ask in general:
(1) How can we construct a Markov process (or more precisely, a Markov

family ((Ω,F ,P), {Xx
t ,Ft : x ∈ Rn, t > 0})) withA being its infinitesimal gen-

erator, in the sense that

lim
t→0

1

t
(E[f(Xx

t )]− f(x)) = (Af)(x), ∀x ∈ Rn,

for all f ∈ C2
b (Rn)?

(2) How can we construct the fundamental solution to the parabolic PDE
∂u
∂t
−A∗u = 0 where A∗ is the formal adjoint of A?
The first question is purely probabilistic and the second one is purely ana-

lytic. However, to some extent, these two questions are indeed equivalent. If
a Markov family solves Question (1) with a nice transition probability density
function p(t, x, y) , P(Xx

t ∈ dy)/dy, then p(t, x, y) solves Question (2). Con-
versely, if p(t, x, y) is a solution to Question (2), then a standard Kolmogorov’s
extension argument allows us to construct a Markov family on path space
which solves Question (1).

It was Lévy who suggested a purely probabilistic approach to study these
questions, and Itô carried out this program in a series of far-reaching works.
The philosophy of this approach can be summarized as follows. Let a = σσ∗

for some matrix σ. Suppose that there exists a stochastic process Xt which
solves the following stochastic differential equation (in matrix notation):{

dXx
t = σ(Xx

t )dBt + b(Xx
t )dt, t > 0,

X0 = x,

which is of course understood in Itô’s integral sense. Then the family {Xx
t }

solves Question (1), or equivalently, the probability density function p(t, x, y) ,
P(Xx

t ∈ dy)/dy solves Question (2) provided that it exists and is suitably regu-
lar. The existence and regularity of the density p(t, x, y) is a rich subject under
the framework of Malliavin’s calculus, in which the theory is well developed in
the case when A is a hypoelliptic operator. The reader may consult [10] for a
nice introduction to this elegant theory.
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When p(t, x, y) does not exist in the classical sense, the equivalence between
the two questions still hold as long as we interpret p(t, x, y) in the distributional
sense.

The previous general discussion provides us with a natural motivation to
study the theory of stochastic differential equations in depth. This is the main
focus of the present section.

6.1 Itô’s theory of stochastic differential equations

We start with Itô’s classical approach.
Recall that (W n,B(W n)) is the space of continuous paths in Rn, equipped

with a metric ρ defined by (1.3) which characterizes uniform convergence on
compact intervals. We use {Bt(W n)} to denote the natural filtration of the
coordinate process on W n.

In its full generality, we are interested in a stochastic differential equation
(we simply call it an SDE hereafter) of the form

dXt = α(t,X)dBt + β(t,X)dt. (6.1)

HereBt is a d-dimensional Brownian motion,Xt is an n-dimensional continuous
stochastic process, α, β are maps defined on [0,∞) × W n taking values in
Mat(n, d) (the space of real n × d matrices) and in Rn respectively. Note
that α, β here can depend on the whole trajectory of X, and we write X to
emphasize that it is a random variable taking values in W n.

From now on, when we are concerned with an SDE of the form (6.1), we
always make the following measurability assumption on the coefficients α and
β.

Assumption 6.1. Regarded as stochastic processes defined on (W n,B(W n)),
α and β are {Bt(W n)}-progressively measurable.

Remark 6.1. In Problem 2.6, a crucial ingredient is showing that A ∈ Bt(W n)
if and only if for any two w,w′ ∈ W n, if w ∈ A, w = w′ on [0, t], then w′ ∈ A.

Given t > 0, consider

A , {w ∈ W n : α(t, w) = α(t, wt)} ∈ Bt(W n),

where wt , (wt∧s)s>0 is the path obtained by stopping w at t. For every
w ∈ W n, since w = wt on [0, t] and wt ∈ A, we conclude that w ∈ A.
Therefore, α(t, w) = α(t, wt) for every (t, w) ∈ [0,∞) × W n. Similar result
holds for β.
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Remark 6.2. IfXt is a progressively measurable process defined on some filtered
probability space, then the process α(t,X) is progressively measurable. Similar
result is true for β(t,X).

Now we can talk about the meaning of solutions to (6.1). Unlike ordi-
nary differential equations, the meaning of an SDE is not just about a solution
process itself; it should also involve the underlying filtered probability space to-
gether with a Brownian motion. This leads to two notions of solutions: strong
and weak solutions. Heuristically, being solutions in the strong sense means
that we are solving the SDE on a given filtered probability space with a given
Brownian motion on it, while being solutions in the weak sense means that the
SDE is solvable on some filtered probability space with some Brownian motion
on it. In the strong setting, we are particularly interested in how a solution
can be constructed from the given initial data and the given Brownian motion.
In the weak setting, we are mainly interested in distributional properties of
the solution process and do not care what the underlying space and Brownian
motion are (they can be arbitrary as long as the equation is verified). In the
next subsection, we will discuss the strong and weak notions of solutions in
detail .

As an introduction to the theory, we start with Itô’s classical approach
which falls in the context of strong solutions. Therefore, we assume that
(Ω,F ,P; {Ft}) is a given filtered probability space which satisfies the usual
conditions, and Bt is an {Ft}-Brownian motion. Suppose that the coefficients
α, β satisfy Assumption 6.1.

Itô’s theory, which is essentially an L2-theory, asserts that the SDE (6.1)
is uniquely solvable for any given initial data ξ ∈ L2(Ω,F0,P), provided that
the coefficients satisfy the Lipschitz condition and have linear growth.

Theorem 6.1. Suppose that the coefficients α, β satisfy the following two con-
ditions: there exists a constant K > 0, such that

(1) (Lipschitz condition) for any w,w′ ∈ W n and t > 0,

‖α(t, w)− α(t, w′)‖+ ‖β(t, w)− β(t, w′)‖ 6 K(w − w′)∗t ; (6.2)

(2) (linear growth condition) for any w ∈ W n and t > 0,

‖α(t, w)‖+ ‖β(t, w)‖ 6 K(1 + w∗t ), (6.3)

where w∗t , sups6t |ws| is the running maximum of w. Then for any initial
data ξ ∈ L2(Ω,F0,P), there exists a unique continuous, {Ft}-adapted process
Xt in Rn, such that

X i
t = ξ +

d∑
k=1

∫ t

0

αik(s,X)dBk
s +

∫ t

0

βi(s,X)ds, t > 0, 1 6 i 6 n. (6.4)
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In addition, for each T > 0, there exists some constant CT,K depending only
on T , K and dimensions, such that

E[(X∗T )2] 6 CT,K(1 + E[|ξ|2]), t > 0. (6.5)

In particular, the martingale part of Xt is a square integrable {Ft}-martingale.

The key ingredient in proving the theorem is the following estimate. Al-
though here we only need the case when p = 2, the estimate for arbitrary p is
quite useful for many purposes.

Lemma 6.1. Let Xt = (X1
t , · · · , Xn

t ) be a vector of continuous semimartin-
gales of the form

Xt = ξ +

∫ t

0

αsdBs +

∫ t

0

βsds, (6.6)

provided the integrals are well defined in the appropriate sense, where (6.6) is
written in the matrix form. Then for each T > 0 and p > 2, there exists some
constant CT,p depending only on T , p and dimensions, such that

E[(X∗t )p] 6 CT,p

(
E[|ξ|p] + E

[∫ t

0

(‖αs‖p + ‖βs‖p) ds
])

, 0 6 t 6 T,

where X∗t , sups6t |Xs|.

Proof. Note that

(X∗t )p 6 Cp

(
|ξ|p + sup

06s6t

∣∣∣∣∫ s

0

αudBu

∣∣∣∣p +

(∫ t

0

‖βu‖du
)p)

.

The result then follows easily from the BDG inequalities (c.f. (5.20)) and
Hölder’s inequality.

Coming back to Theorem 6.1, we first prove uniqueness. It then allows us
to patch solutions defined on finite intervals to obtain a global solution defined
on [0,∞).

Similar to ordinary differential equations, uniqueness is usually obtained
by applying the following Gronwall’s inequality.

Lemma 6.2. Let g : [0, T ] → [0,∞) be a non-negative, continuous function
defined on [0, T ]. Suppose that

g(t) 6 c(t) + k

∫ t

0

g(s)ds, 0 6 t 6 T, (6.7)

for some k > 0 and some integrable c : [0, T ]→ R1. Then

g(t) 6 c(t) + k

∫ t

0

c(s)ek(t−s)ds, 0 6 t 6 T.

156



Proof. From (6.7), we have

g(t) 6 c(t) + k

∫ t

0

(
c(s) + k

∫ s

0

g(u)du

)
ds

= c(t) + k

∫ t

0

c(s)ds+ k2

∫
0<u<s<t

g(u)duds

= c(t) + k

∫ t

0

c(s)ds+ k2

∫ t

0

g(u)(t− u)du.

By applying (6.7) inductively, for every m > 1, we have

g(t) 6 c(t) +
m∑
l=1

kl
∫ t

0

c(s)(t− s)l−1

(l − 1)!
ds+ km+1

∫ t

0

(t− s)m

m!
g(s)ds. (6.8)

Since g is continuous on [0, T ], we know that it is bounded on [0, T ]. Therefore,
the last term of (6.8) tends to zero as n → ∞. As c is integrable on [0, T ], it
follows from the dominated convergence theorem that

g(t) 6 c(t) + k

∫ t

0

c(s)ek(t−s)ds.

Now suppose that X, Y are two solutions to the SDE (6.1) (i.e. satisfying
Theorem 6.1), so in matrix form we have

Xt = ξ +

∫ t

0

α(s,X)dBs +

∫ t

0

β(s,X)ds,

Yt = ξ +

∫ t

0

α(s, Y )dBs +

∫ t

0

β(s, Y )ds.

Define τm , inf{t > 0 : |Xt − Yt| > m}. Then we have

(X − Y )τmt =

∫ t

0

(α(s,X)− α(s, Y ))1[0,τm]dBs

+

∫ t

0

(β(s,X)− β(s, Y ))1[0,τm]ds.

By applying Lemma 6.1 in the case when p = 2 and the Lipschitz condition
(6.2), we conclude that for every given T > 0,

E
[(

(X − Y )∗t∧τm
)2
]
6 CT,K

∫ t

0

E
[(

(X − Y )∗s∧τm
)2
]
ds, ∀0 6 t 6 T.

157



Now define
f(t) = E

[(
(X − Y )∗t∧τm

)2
]
, t ∈ [0, T ].

From the dominated convergence theorem, we easily see that f is non-negative
and continuous on [0, T ]. Therefore, according to Gronwall’s inequality (c.f.
Lemma 6.2), f = 0. As τm ↑ ∞, we conclude that X = Y on [0, T ], which
implies that X = Y as T is arbitrary.

Now we consider existence. From the uniqueness part, it suffices to show
existence on every finite interval [0, T ]. Indeed, if X(T ) satisfies (6.4) on [0, T ],
then the uniqueness argument will imply that X(T+1) = X(T ) on [0, T ], which
allows us to define a single process X such that X = X(T ) on [0, T ]. In view
of Remark 6.1, we see that

α(s,X) = α(s,Xs) = α
(
s,
(
X(T )

)s)
= α

(
s,X(T )

)
for every s 6 T, and similar result is true for β. Therefore, X is a global
solution to the SDE (6.1) in the sense of Theorem 6.1.

For fixed T > 0, define L2
T to be the space of all continuous, {Ft}-adapted

processes Xt on [0, T ] such that E[(X∗T )2] <∞ (technically we define Xt , XT

for t > T so that Xt is well defined on [0,∞)). Then L2
T is a Banach space.

Indeed, if X(m) is a Cauchy sequence in L2
T , then along a subsequence mk we

have
E
[

sup
06t6T

∣∣∣X(mk+1)
t −X(mk)

t

∣∣∣2] < 1

2k
, ∀k > 1.

From Chebyshev’s inequality and the first Borel-Cantelli’s lemma, we know
that with probability one, X(mk) is a Cauchy sequence in the space of contin-
uous paths on [0, T ] under uniform topology. Therefore, with probability one,
X

(mk)
t converges to some continuous Xt uniformly on [0, T ]. It is apparent that

Xt is {Ft}-adapted and E[(X∗T )2] < ∞. Moreover, from Fatou’s lemma, we
have

lim
m→∞

E
[

sup
06t6T

∣∣∣X(m)
t −Xt

∣∣∣2] 6 lim
m→∞

lim inf
k→∞

E
[

sup
06t6T

∣∣∣X(m)
t −X(mk)

t

∣∣∣2] = 0.

Therefore, L2
T is a Banach space. For t 6 T, we denote ‖X‖t ,

√
E[(X∗t )2].

The proof of existence on [0, T ] is a standard Picard’s iteration argument.
Therefore we consider the map R : L2

T → L2
T defined by

(RX)t , ξ +

∫ t

0

α(s,X)dBs +

∫ t

0

β(s,X)ds, t ∈ [0, T ].
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Similar to the uniqueness argument, Lemma 6.1 and the Lipschitz condition
show that

‖RX −RY ‖2
t 6 CT,K

∫ t

0

‖X − Y ‖2
sds, ∀0 6 t 6 T. (6.9)

Now define X(0) , ξ, and for each m > 1, define X(m) , RX(m−1). By the
linear growth condition (6.3), It is apparent that

‖X(1) −X(0)‖2
T 6 CT,K(1 + E[|ξ|2]).

In addition, from (6.9), we have

‖X(m+1) −X(m)‖2
T 6 CT,K

∫ T

0

‖X(m) −X(m−1)‖2
sds

· · ·
6 Cm

T,K

∫
0<s1<···<sm<T

‖X(1) −X(0)‖2
s1
ds1 · · · dsm

6
Cm+1
T,K Tm

m!
(1 + E[|ξ|2]). (6.10)

Since the right hand side of (6.10) is summable, we conclude that X(m) is a
Cauchy sequence in L2

T . Suppose that X = limn→∞X
(m) in L2

T . It follows that

‖X −RX‖T 6 ‖X −X(m)‖T + ‖X(m) −RX(m)‖T + ‖RX(m) −RX‖T .

Combining with (6.9), (6.10) and the fact that X(m+1) = RX(m), we conclude
that X = RX, which shows that X is a solution to the SDE (6.1) on [0, T ].

Finally, since X ∈ L2
T , (6.5) follows immediately from Lemma 6.1 and

Gronwall’s inequality.
Now the proof of Theorem 6.1 is complete.
Let us take a second thought on the proof of Theorem 6.1. On the one

hand, to expect (pathwise) uniqueness, we can see that some kind of Lipschitz
condition is necessary. Because of localization, this part does not really rely on
the integrability of solution. On the other hand, in the existence part, it is not
so clear whether the Lipschitz condition is playing a crucial role as the fixed
point argument is certainly not the only way to obtain existence. Moreover,
in the previous argument we can see that the square integrability of ξ does
play an important role for the existence. It is not so clear from the argument
whether existence still holds if ξ is simply an F0-measurable random variable.

Therefore, to some extent, it is more fundamental to separate the study
of existence and uniqueness in different contexts, and to understand how they
are combined to give a single well-posed theory of SDE. This leads us to the
realm of Yamada-Watanabe’s theory.
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6.2 Different notions of solutions and the Yamada-Watanabe
theorem

In this subsection, we study different notions of existence and uniqueness for an
SDE, which are all natural and important on their own. Then we present the
fundamental theorem of Yamada and Watanabe, which outlines the structure
of the theory of SDEs.

We first make the following convention.

Definition 6.1. By a set-up ((Ω,F ,P; {Ft}), ξ, Bt), we mean that
(1) (Ω,F ,P; {Ft}) is a filtered probability space which satisfies the usual

conditions;
(2) ξ is an F0-measurable random variable;
(3) Bt is a d-dimensional {Ft}-Brownian motion.

Now let α : [0,∞) × W n → Mat(n, d) and β : [0,∞) × W n → Rn be
two maps satisfying Assumption 6.1. We are interested in an SDE of the
general form (6.1). For simplicity, we always use matrix notation in writing
our equations.

Motivated from Itô’s classical result, it is natural to introduce the following
definition in the strong sense.

Definition 6.2. We say that the SDE (6.1) is (pathwise) exact if on any
given set-up ((Ω,F ,P; {Ft}), ξ, Bt), there exists exactly one (up to indistin-
guishability) continuous, {Ft}-adapted n-dimensional process Xt, such that
with probability one,∫ t

0

(
‖α(s,X)‖2 + ‖β(s,X)‖

)
ds <∞, ∀t > 0, (6.11)

and

Xt = ξ +

∫ t

0

α(s,X)dBs +

∫ t

0

β(s,X)ds, t > 0. (6.12)

As we mentioned at the end of last subsection, it is even not clear if exact-
ness is true in Itô’s setting (i.e. under the conditions in Theorem 6.1) although
we do have uniqueness. Therefore, it is a fundamental problem to understand
how one can prove exactness in general. Before doing so, we need to intro-
duce different notions of existence and uniqueness, which are all important and
natural on their own.

Definition 6.3. Let µ be a probability measure on Rn. We say that the
SDE (6.1) has a weak solution with initial distribution µ if there exists a
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set-up ((Ω,F ,P; {Ft}), ξ, Bt) together with a continuous, {Ft}-adapted n-
dimensional process Xt, such that

(1) ξ has distribution µ;
(2) Xt satisfies (6.11) and (6.12).
If for every probability measure µ on Rn, the SDE (6.1) has a weak solution

with initial distribution µ, we say that it has a weak solution.

From Definition 6.3, a weak solution is the existence of a set-up on which
the SDE is satisfied in Itô’s integral sense. A particular feature of a weak
solution is that we have large flexibility on choosing a set-up; it could be any
set-up as long as conditions (1) and (2) are verified on it. Therefore, in some
sense a weak solution only reflects its distributional properties.

Corresponding to weak solutions, we have the notion of uniqueness in law.

Definition 6.4. We say that the solution to the SDE (6.1) is unique in law if
whenever Xt and X ′t are two weak solutions (possibly defined on two different
probability set-ups) with the same initial distributions, they have the same
law on W n.

In contrast to the weak formulation, we have another (strong) notion of
uniqueness.

Definition 6.5. We say that pathwise uniqueness holds for the SDE (6.1) if
the following statement is true. Given any set-up ((Ω,F ,P; {Ft}), ξ, Bt), if
Xt and X ′t are two continuous, {Ft}-adapted n-dimensional process satisfying
(6.11) and (6.12), then P(Xt = X ′t ∀t > 0) = 1.

It is part of the Yamada-Watanabe theorem that pathwise uniqueness im-
plies uniqueness in law (c.f. Theorem 6.2 below). However, the converse is not
true and the following is a famous counterexample due to Tanaka.

Example 6.1. Consider the one dimensional SDE

dXt = σ(Xt)dBt (6.13)

where σ(x) = −1 if x 6 0 and σ(x) = 1 if x > 0.
Suppose that Xt is a weak solution with initial distribution µ on some given

set-up ((Ω,F ,P; {Ft}), ξ, Bt), so that we have

Xt = ξ +

∫ t

0

σ(Xs)dBs.

Since
∫ t

0
σ(Xs)dBs is an {Ft}-Brownian motion according to Lévy’s charac-

terization theorem, we see immediately that the distribution of X is uniquely
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determined by µ and the law of Brownian motion. Therefore, uniqueness in
law holds. Moreover, for given initial distribution µ, let ((Ω,F ,P; {Ft}), ξ, Bt)
be an arbitrary set-up in which ξ has distribution µ. Define Xt , ξ + Bt and
let B̃t ,

∫ t
0
σ(Xs)dBs. Lévy’s characterization theorem again tells us that B̃t is

an {Ft}-Brownian motion, and the associativity of stochastic integrals implies
that

Xt = ξ +

∫ t

0

σ(Xs)dB̃s.

Therefore, the SDE (6.13) has a weak solution.
However, pathwise uniqueness does not hold. Indeed, suppose that Xt =∫ t

0
σ(Xs)dBs on some set-up (so X0 = 0 in this case). According to the occupa-

tion time formula (c.f. (5.41)), we know that
∫ t

0
1{Xs=0}ds = 0, which implies

that
∫ t

0
1{Xs=0}dBs = 0. Therefore, (−Xt) =

∫ t
0
σ(−Xs)dBs. This shows that

pathwise uniqueness fails as X 6= −X.

Now we can state the renowned Yamada-Watanabe theorem which has
far-reaching consequences. The proof is beyond the scope of the course and
hence omitted. The interested reader may consult N. Ikeda and S. Watanabe,
Stochastic differential equations and diffusion processes, 1989 for basically the
original proof.

Theorem 6.2. The SDE (6.1) is exact if and only if it has a weak solution and
pathwise uniqueness holds. In addition, pathwise uniqueness implies unique-
ness in law.

If we have an exact SDE, it is natural to expect that there is some universal
way to produce the unique solution (as the output) whenever an initial data
and a Brownian motion are given (as the input), regardless of the set-up we
are working on. In other words, it is natural to look for a single function
F : Rn ×W d → W n, such that on any given set-up ((Ω,F ,P; {Ft}), ξ, Bt),
X , F (ξ, B) produces the unique solution. This is indeed the original spirit
of Yamada and Watanabe.

Definition 6.6. A function F : Rn × W d → W n is called Ê(Rn × W d)-
measurable if for any probability measure µ on Rn, there exists a function
Fµ : Rn ×W d → W n which is B(Rn ×W d)

µ×PW
/B(W n)-measurable, where

PW is the distribution of Brownian motion and B(Rn ×W d)
µ×PW

is the µ×PW -
completion of B(Rn ×W d), such that for µ-almost all x ∈ Rn, we have

F (x,w) = Fµ(x,w) for PW − almost all w ∈ W d.

If ξ is an Rn-valued random variable with distribution µ and Bt is a Brownian
motion, we set F (ξ, B) , Fµ(ξ, B).

162



Definition 6.7. We say that the SDE (6.1) has a unique strong solution if
there exists an Ê(Rn ×W d)-measurable function F : Rn ×W d → W n, such
that:

(1) for every fixed x ∈ Rn, w 7→ F (x,w) is Bt(W d)
PW
/Bt(W n)-measurable

for each t > 0;
(2) given any set-up ((Ω,F ,P; {Ft}), ξ, Bt), X , F (ξ, B) is a continuous,

{Ft}-adapted process which satisfies (6.11) and (6.12);
(3) for any continuous, {Ft}-adapted processXt satisfying (6.11) and (6.12)

on a given set-up ((Ω,F ,P; {Ft}), ξ, Bt), we have X = F (ξ, B) almost surely.

The following elegant result puts the philosophy of “constructing the unique
solution out of initial data and Brownian motion in a universal way” on firm
mathematical basis. This is essentially another form of the Yamada-Watanabe
theorem.

Theorem 6.3. The SDE (6.1) is exact if and only if it has a unique strong
solution.

6.3 Existence of weak solutions

The Yamada-Watanabe theorem tells us that the structure of exactness is
rather simple: we only need to study weak existence and pathwise uniqueness
independently, and they combine to give exactness.

We first study weak existence in this subsection. The main result is that
(surprisingly) continuity of coefficients is sufficient to guarantee weak existence
(up to an intrinsic explosion time), and it has nothing to do with any Lipschitz
property (compare Theorem 6.1 in Itô’s theory).

In general, the weak existence has an elegant martingale characterization,
which is known as Stroock and Varadhan’s martingale problem. Let α, β be
the coefficients of the SDE (6.1) which satisfy Assumption 6.1. We define the
generator A of the SDE in the following way: for f ∈ C2

b (Rn) (the space
of twice continuously differentiable with bounded derivatives of up to second
order), define Af to be the function on [0,∞)×W n given by

(Af)(t, w) ,
1

2

n∑
i,j=1

aij(t, w)
∂2f

∂xi∂xj
(wt)

+
n∑
i=1

βi(t, w)
∂f

∂xi
(wt), (t, w) ∈ [0,∞)×W n, (6.14)

where a is the n× n matrix defined by a , αα∗.
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Suppose thatXt satisfies (6.11) and (6.12) on a given set-up ((Ω,F ,P; {Ft}), ξ, Bt).
For any f ∈ C2

b (Rn), according to Itô’s formula, we have

f(Xt) = f(ξ) +
n∑
i=1

d∑
k=1

∫ t

0

∂f

∂xi
(Xs)α

i
k(s,X)dBk

s +
n∑
i=1

∫ t

0

∂f

∂xi
(Xs)β

i(s,X)ds

+
1

2

n∑
i,j=1

d∑
k=1

∫ t

0

∂2f

∂xi∂xj
(Xs)α

i
k(s,X)αjk(s,X)ds.

Therefore,

f(X·)− f(ξ)−
∫ ·

0

(Af)(s,X)ds ∈Mloc
0 (6.15)

on (Ω,F ,P; {Ft}).
Conversely, suppose that Xt is a continuous, {Ft}-adapted process defined

on a given filtered probability space (Ω,F ,P; {Ft}) satisfying the usual condi-
tions, such that (6.11) and (6.15) hold for every f ∈ C2

b (Rn) (of course with
ξ = X0). Let

Mt , Xt −X0 −
∫ t

0

β(s,X)ds, t > 0.

For each R > 0, define f iR ∈ C2
b (Rn) to be such that f iR(x) = xi if |x| 6 R.

Let

σR , inf

{
t > 0 : |Xt| > R or

∣∣∣∣∫ t

0

βi(s,X)ds

∣∣∣∣ > R

}
.

From (6.15), we know that

(
M i
)σR = f iR(XσR∧·)− f iR(X0)−

∫ σR∧·

0

βi(s,X)ds ∈Mloc
0 .

But (M i)σR is uniformly bounded, so (M i)σR is indeed a martingale. Since
σR ↑ ∞ as R→∞, we conclude that M i ∈Mloc

0 .
Similarly, by considering f ijR ∈ C2

b (Rn) with f ijR (x) = xixj when |x| 6 R,
and by defining σR in a similar way but for f ijR , we know that

N ij
· , X i

·X
j
· −X i

0X
j
0−
∫ ·

0

aij(s,X)ds−
∫ ·

0

(X i
sβ

j(s,X)+Xj
sβ

i(s,X))ds ∈Mloc
0 .

(6.16)
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On the other hand, from the integration by parts formula, we have

X i
tX

j
t = X i

0X
j
0 +

∫ t

0

X i
sdX

j
s +

∫ t

0

Xj
sdX

i
s + 〈X i, Xj〉t

= X i
0X

j
0 +

∫ t

0

X i
sdM

j
s +

∫ t

0

Xj
sdM

i
s

+

∫ t

0

X i
sβ

j(s,X)ds+

∫ t

0

Xj
sβ

i(s,X)ds+ 〈M i,M j〉. (6.17)

By comparing (6.16) and (6.17), we conclude that

〈M i,M j〉t =

∫ t

0

aij(s,X)ds.

According to the martingale representation theorem for general filtrations (c.f.
Theorem 5.14), possibly on an enlargement of (Ω,F ,P; {Ft}), we have

Mt =

∫ t

0

α(s,X)dBs

for some Brownian motion Bt. Therefore,

Xt = X0 +

∫ t

0

α(s,X)dBs +

∫ t

0

β(s,X)ds.

To summarize, we have proved the following result.

Theorem 6.4. Let µ be a probability measure on Rn. Then the SDE (6.1)
has a weak solution with initial distribution µ if and only if there exists a
continuous, {Ft}-adapted process n-dimensional process Xt defined on some
filtered probability space (Ω,F ,P; {Ft}) which satisfies the usual conditions,
such that X0 has distribution µ, and (6.11) and (6.15) hold for every f ∈
C2
b (Rn).

There is yet a more intrinsic way to formulate the martingale characteri-
zation described in Theorem 6.4. Recall that (W n,B(W n)) is the continuous
path space over Rn, and {Bt(W n)} is the natural filtration of the coordinate
process.

Theorem 6.5. Let µ be a probability measure on Rn. Then the SDE (6.1) has
a weak solution with initial distribution µ if and only if there exists a probability
measure Pµ on (W n,B(W n)), such that:

(1) Pµ(w0 ∈ Γ) = µ(Γ) for every Γ ∈ B(Rn);

165



(2) Pµ-almost surely, we have∫ t

0

(
‖α(s, w)‖2 + ‖β(s, w)‖

)
ds <∞, ∀t > 0;

(3) for every f ∈ C2
b (Rn), under Pµ we have

f(w·)− f(w0)−
∫ ·

0

(Af)(s, w)ds ∈Mloc
0 (Ht(W

n)),

where {Ht(W
n)} is the usual augmentation of {Bt(W n)} under Pµ.

Proof. Sufficiency is already proved before.
Now we consider necessity. Suppose that Xt is a continuous, {Ft}-adapted

process on some (Ω,F ,P; {Ft}) satisfying the usual conditions, such that X0

has distribution µ, and (6.11) and (6.15) hold for every f ∈ C2
b (Rn). Consider

the distribution PX ofX on (W n,B(W n)). Apparently, (1) and (2) are satisfied
for PX . To see (3), given f ∈ C2

b (Rn), define

σR , inf

{
t > 0 :

∣∣∣∣∫ t

0

(Af)(s,X)ds

∣∣∣∣ > R

}
on Ω, and consider the stopped process

Yt , f(XσR∧t)− f(X0)−
∫ σR∧t

0

(Af)(s,X)ds.

Yt is indeed an {Ft}-martingale since it is uniformly bounded. Correspond-
ingly, define

τR , inf

{
t > 0 :

∣∣∣∣∫ t

0

(Af)(s, w)ds

∣∣∣∣ > R

}
on W n, and consider the stopped process

zt , f(wτR∧t)− f(w0)−
∫ τR∧t

0

(Af)(s, w)ds

which is also uniformly bounded. Now a crucial observation is that σR and
Y are determined by X pathwisely. Therefore, for Λ ∈ Hs(W

n), since {Ft}
satisfies the usual conditions, we have X−1Λ ∈ Fs, and∫

Λ

ztdPX =

∫
X−1Λ

YtdP =

∫
X−1Λ

YsdP =

∫
Λ

zsdPX .

This shows that zt is an {Ht(W
n)}-martingale under PX . As τR ↑ ∞, we

conclude that (3) holds.
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Remark 6.3. If we assume that the coefficients α, β are bounded, then all the
relevant local martingale properties in the previous discussion become true
martingale properties, and

∫ t
0
(Af)(s, w)ds is finite for every (t, w) ∈ [0,∞)×

W n. In this case, we do not need to pass to the usual augmentation, and (3)
is equivalent to the following statement: for every f ∈ C2

b (Rn), the process

mf
t , f(wt)− f(w0)−

∫ t

0

(Af)(s, w)ds

is a {Bt(W n)}-martingale under Pµ. Indeed, the only missing gap is the fact
that mf

t is a {Bt(W n)}-martingale if and only if it is an {Ht(W
n)}-martingale,

which can be shown easily by using the discrete backward martingale conver-
gence theorem.

In view of Theorem 6.5, there are lots of advantages working on the path
space. For instance, it has a nice metric structure, and we can apply the
powerful tools of weak convergence and regular conditional expectations. The
search of a probability measure Pµ on (W n,B(W n)) satisfying (1), (2), (3) in
Theorem 6.5 is known as the martingale problem.

As a byproduct, we have indeed proved the following nice result.

Corollary 6.1. (1) A continuous, {Ft}-adapted process Xt on (Ω,F ,P; {Ft})
satisfying the usual conditions in an {Ft}-Brownian motion if and only if X0 =
0 almost surely and

f(Xt)− f(X0)− 1

2

∫ t

0

(∆f)(Xs)ds

is an {Ft}-martingale for every f ∈ C2
b (Rn).

(2) A probability measure P on (W n,B(W n)) is the n-dimensional Wiener
measure if and only if P(w0 = 0) = 1 and

f(wt)− f(w0)− 1

2

∫ t

0

(∆f)(ws)ds

is an {Bt(W n)}-martingale under P for every f ∈ C2
b (Rn).

By the same reasoning, uniqueness in law holds if and only if for every
probability measure µ on Rn, there exists at most one probability measure on
(W n,B(W n)) which satisfies (1), (2), (3) in Theorem 6.5. Remark 6.3 also
applies for the uniqueness.

We will appreciate the power of the martingale characterization of weak
existence in the following general result.
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Theorem 6.6. Suppose that α, β satisfy Assumption 6.1, and they are bounded
and continuous. Then for any probability measure µ on Rn with compact sup-
port, the SDE (6.1) has a weak solution with initial distribution µ.

Proof. For m > 1, define αm : [0,∞) × W n → Mat(n, d) by αm(t, w) ,
α(φm(t), w), where φm(t) is the unique dyadic partition point k/2m such that
k/2m 6 t < (k+1)/2m. Define βm similarly. Now we construct a weak solution
to the SDE with coefficients αm, βm with initial distribution µ explicitly.

Let ((Ω,F ,P; {Ft}), ξ, Bt) be a set-up in which ξ has distribution µ. Define
a process X(m)

t inductively in the following way. Set X(m)
0 , ξ. If X(m)

t is
defined for t 6 k/2m, then for t ∈ [k/2m, (k + 1)/2m], define

X
(m)
t , X

(m)
k/2m + α

(
k

2m
, X(m,k)

)
(Bt −Bk/2m) + β

(
k

2m
, X(m,k)

)(
t− k

2m

)
,

where X(m,k) is the stopped process defined by

X
(m,k)
t ,

{
X

(m)
t , t 6 k/2m;

X
(m)
k/2m , t > k/2m.

It follows from Remark 6.1 that

α

(
k

2m
, X(m,k)

)
= αm

(
t,X(m)

)
, β

(
k

2m
, X(m,k)

)
= βm

(
t,X(m)

)
,

provided that t ∈ [k/2m, (k + 1)/2m]. In particular, we conclude that

X
(m)
t = ξ +

∫ t

0

αm
(
s,X(m)

)
dBs +

∫ t

0

βm
(
s,X(m)

)
ds, t > 0.

In other words, X(m)
t is a weak solution to the SDE with coefficients αm, βm

with initial distribution µ. Now define P(m) to be the distribution of X(m) on
(W n,B(W n)). According to Theorem 6.5 and Remark 6.3, we know that for
given f ∈ C2

b (Rn), the process

f(wt)− f(w0)−
∫ t

0

(Amf)(u,w)ds

is a {Bt(W n)}-martingale under P(m), where the differential operator Am is
defined by (6.14) in terms of the coefficients αm, βm.

In addition, given constants γ, p > 1, we have

sup
m>1

E
[∣∣∣X(m)

0

∣∣∣γ] = E[|ξ|γ] 6 Cγ,
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and by the BDG inequalities, we have

sup
m>1

E
[∣∣∣X(m)

t −X(m)
s

∣∣∣2p] 6 CT,p|t− s|p, ∀s, t ∈ [0, T ]. (6.18)

According to Problem 2.3, (3) (we take p = 2 in (6.18)), we conclude that
{P(m)} is tight. Without loss of generality, we may assume that P(m) converges
weakly to some probability measure P.

In view of Theorem 6.5 and Remark 6.3 again, it suffices to show that
P(w0 ∈ Γ) = µ(Γ) for Γ ∈ B(Rn) (which is trivial), and for every f ∈ C2

b (Rn),
the process

f(wt)− f(w0)−
∫ t

0

(Af)(u,w)du

is a {Bt(W n)}-martingale under P.
Indeed, let s < t, and Φ(w) = ϕ(ws1 , · · · , wsk) for some s1 < · · · < sk 6 s

and ϕ ∈ Cb(Rn×k). Then from the P(m)-martingale property, we know that∫
Wn

Φ(w) ·
(
f(wt)− f(ws)−

∫ t

s

(Amf)(u,w)du

)
dP(m) = 0

for every m. To simplify our notation, set

ζms,t(w) , f(wt)− f(ws)−
∫ t

s

(Amf)(u,w)du

and

ζs,t(w) , f(wt)− f(ws)−
∫ t

s

(Af)(u,w)du

respectively. From the tightness of {P(m)}, given ε > 0, there exists a compact
set K ⊆ W n, such that

P(m)(Kc) < ε, ∀m > 1.

By the definition of αm, βm and the uniform continuity of α, β on [s, t] × K,
when m is large, we have

sup
w∈K
|ζms,t(w)− ζs,t(w)| < ε.

Therefore, when m is large,∣∣∣∣∫
Wn

Φ(w)ζms,t(w)dP(m) −
∫
Wn

Φ(w)ζs,t(w)dP(m)

∣∣∣∣ 6 C
(
P(m)(Kc) + ε

)
< 2Cε.
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On the other hand, by weak convergence we know that

lim
m→∞

∫
Wn

Φ(w)ζs,t(w)dP(m) =

∫
Wn

Φ(w)ζs,t(w)dP.

Since ε is arbitrary, we conclude that∫
Wn

Φ(w)ζs,t(w)dP = 0,

which implies the desired P-martingale property.

Remark 6.4. The assumption that µ is compactly supported in Theorem 6.6 is
just for technical convenience. Indeed, we have shown that for every x ∈ Rn,
there exists Px which solves the martingale problem with initial distribution
δx. For a general probability measure µ on Rn, we can simply define

Pµ(Λ) ,
∫
Rn

Px(Λ)µ(dx), Λ ∈ B(W n). (6.19)

This Pµ will then solve the martingale problem with initial distribution µ.
Of course here a rather subtle point is whether x 7→ Px is measurable before
making sense of (6.19). This is not true in general, but we can always select
Px so that the map x 7→ Px is measurable. This selection theorem is rather
deep and technical, and we will not get into the details.

From now on, we will restrict ourselves to a special but very important
type of SDEs:

dXt = σ(Xt)dBt + b(Xt)dt, (6.20)

where σ : Rn → Mat(n, d) and b : Rn → Rn. This type of SDEs is usually
known as time homogeneous Markovian type, and it is closely related to the
study of diffusion processes. In particular, we are going to develop a relatively
complete solution theory along the line of Yamada and Watanabe’s philosophy.

Of course the general weak existence theorem (c.f. Theorem 6.6) that we
just proved covers this special case (with α(t, w) = σ(wt), β(t, w) = b(wt)).
However, in general it is too strong to assume uniform boundedness on the
coefficients. And it is not so clear how a localization argument should yield
weak existence without the boundedness assumption. Indeed, if we do not as-
sume boundedness, the solution can possibly explode in finite amount of time.
Therefore, it is a good idea to start with this general situation independently,
and then to explore under what conditions on the coefficients will a solution
be globally defined in time without explosion. Uniform boundedness will be
too strong to assume and not so satisfactory.
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To include the possibility of explosion, we take ∆ to be some given point
outside Rn which captures the explosion. Define R̂n , Rn∪{∆}. Topologically,
R̂n is the one-point compactification of Rn. In particular, R̂n is homeomorphic
to the n-sphere Sn. In this sphere model, ∆ corresponds to the north pole N,
and Rn is homeomorphic to Sn\{N}.

We consider the following continuous path space over R̂n. Let Ŵ n be the
space of continuous paths w : [0,∞)→ R̂n, such that if wt = ∆, then wt′ = ∆

for all t′ > t. The Borel σ-algebra B(Ŵ n) is the σ-algebra generated by cylinder
sets in the usual way. For each w ∈ Ŵ n, we can define an intrinsic quantity

e(w) , inf{t > 0 : wt = ∆}.

e(w) is called the explosion time of w.
Unless otherwise stated, we assume exclusively that the coefficients σ, b are

continuous. Note that σ, b are defined on Rn instead of on R̂n.

Definition 6.8. Let µ be a probability measure on Rn. We say that the SDE
(6.20) has a weak solution with initial distribution µ if there exists a set-up
((Ω,F ,P; {Ft}), ξ, Bt) together with a continuous, {Ft}-adapted process Xt in
R̂n, such that:

(1) ξ has distribution µ;

(2) if e(ω) , e(X(ω)) is the explosion time of X(ω) ∈ Ŵ n, then we have

Xt = ξ +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds, t ∈ [0, e). (6.21)

Remark 6.5. The stochastic integral in (6.21) is defined in the following way.
Let σm , inf{t > 0 : |Xt| > m}. From the continuity of σ, we know that for
each fixed m > 1, the process σ(Xt)1[0,σm](t) is uniformly bounded, and hence
the stochastic integral

I
(m)
t ,

∫ t

0

σ(Xs)1[0,σm](s)dBs

is well-defined on [0,∞). Moreover, by stopping we see that I(m+1) = I(m) on
[0, σm]. Therefore, since σm ↑ e, we can define a single process It on [0, e), such
that It = I

(m)
t if t < σm 6 e. This It is our stochastic integral in (6.21).

Similarly, the notions of exactness, uniqueness in law, pathwise uniqueness,
and unique strong solution carry through without much difficulty. In partic-
ular, the Yamada-Watanabe theorem remains true in this setting. Moreover,
the martingale characterization is also valid as long as we localize in the same
way as Remark 6.5 when we describe the martingale property.
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To establish a solution theory for the SDE (6.20) in the spirit of Yamada
and Watanabe, we first take up the question about weak existence. We have
the following main result.

Theorem 6.7. Suppose that the coefficients σ, b are continuous. Then for any
probability measure µ on Rn with compact support, the SDE (6.20) has a weak
solution with initial distribution µ.

The most convenient way to prove this result is to use the martingale
characterization in the sense of Theorem 6.4. To this end, we need to show
that, on some filtered probability space (Ω,F ,P; {Ft}) satisfying the usual
conditions, there exists a continuous, {Ft}-adapted process Xt in R̂n, such
that:

(1) P(X0 ∈ Γ) = µ(Γ) for Γ ∈ B(Rn);
(2) for every f ∈ C2

b (Rn) and m > 1, the process

f(Xσm∧t)− f(X0)−
∫ σm∧t

0

(Af)(Xs)ds

is an {Ft}-martingale, where the differential operator A is defined by (6.14)
in terms of the coefficients σ, b, and

σm , inf{t > 0 : |Xt| > m}. (6.22)

The idea of proving Theorem 6.7 is to obtain X as the time-change of some
X̃ which is a weak solution to some SDE with bounded coefficients.

For this purpose, we choose a function ρ(x) on Rn such that 0 < ρ(x) 6 1
for every x ∈ Rn, and ρ(x)a(x), ρ(x)b(x) are both bounded, where a(x) ,
σ(x)σ(x)∗. It is not hard to see that such ρ exists. Consider the differen-
tial operator defined by (Ãf)(x) , ρ(x)(Af)(x) for f ∈ C2

b (Rn). According
to Theorem 6.6 and the martingale characterization, there exists a continu-
ous, {F̃t}-adapted process X̃t in Rn defined on some filtered probability space
(Ω,F ,P; {F̃t}) which satisfies the usual conditions, such that X̃0 has distribu-
tion µ, and for every f ∈ C2

b (Rn),

f(X̃t)− f(X̃0)−
∫ t

0

(Ãf)(X̃s)ds

is an {F̃t}-martingale.
Consider the strictly increasing process

At ,
∫ t

0

ρ(X̃s)ds
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and define
e ,

∫ ∞
0

ρ(X̃s)ds.

Let Ct be the time-change associated with At, so that Ct < ∞ if and only if
t < e. Define Ft , F̃Ct , and

Xt ,

{
X̃Ct , t < e;

∆, t > e.

The key ingredient of the proof is to show that e is the explosion time of X.
We assume this is true for the moment and postpone its proof for a little while.

Now we show that Xt satisfies the desired martingale characterization on
(Ω,F ,P; {Ft}) for the differential operator A. Recall that σm is defined by
(6.22). Set σ̃m , inf{t > 0 : |X̃t| > m}. It follows that Cσm = σ̃m, and thus
Cσm∧t = σ̃m ∧ Ct for all t > 0. Now we know that

f(X̃σ̃m∧t)− f(X̃0)−
∫ σ̃m∧t

0

(ρAf)(X̃s)ds

is a bounded {F̃t}-martingale. According to the optional sampling theorem,

f(X̃σ̃m∧Ct)− f(X̃0)−
∫ σ̃m∧Ct

0

(ρAf)(X̃s)ds

= f(X̃Cσm∧t)− f(X̃0)−
∫ Cσm∧t

0

(ρAf)(X̃s)ds

= f(Xσm∧t)− f(X0)−
∫ Cσm∧t

0

(ρAf)(X̃s)ds

is an {Ft}-martingale. But a change of variables s = Cu (u = As) together
with the definition of As yields immediately that∫ Cσm∧t

0

(ρAf)(X̃s)ds =

∫ σm∧t

0

(Af)(Xu)du.

Therefore, we have the desired martingale characterization property for Xt on
(Ω,F ,P; {Ft}).

Now it remains to prove the following key lemma.

Lemma 6.3. With probability one, if e(ω) <∞, then limt↑eXt = ∆.

Proof. It is equivalent to showing that, with probability one, if
∫∞

0
ρ(X̃s)ds <

∞, then limt→∞ X̃t = ∆ in R̂n. This is not surprising to expect. Indeed,
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since ρ > 0, we know that the minimum of ρ on any compact subset of Rn is
strictly positive. Therefore, if X̃t spends too much time being trapped inside
a compact set, then the integral

∫∞
0
ρ(X̃s)ds will have a high chance of being

infinity.
Now fix r < R such that |X̃0| < r almost surely. The key point is to

demonstrate that, with probability one, if
∫∞

0
ρ(X̃s)ds <∞, then after exiting

the R-ball and coming back into the r-ball for at most finitely many times, X̃t

will stay outside the r-ball forever. As r can be arbitrarily large, this shows
that X̃t has to explode to infinity as t→∞.

To be precise, define

σ̃1 , 0, τ̃1 , inf{t > σ̃1 : |X̃t| > R},
σ̃2 , inf{t > τ̃1 : |X̃t| 6 r}, τ̃2 , inf{t > σ̃2 : |X̃t| > R},
· · · · · · .

We want to show that, with probability one,{∫ ∞
0

ρ(X̃s)ds <∞
}
⊆ {∃m > 1, s.t. τ̃m <∞ and σ̃m+1 =∞} . (6.23)

This is equivalent to showing that, with probability one,

∞⋂
m=1

{τ̃m =∞ or σ̃m+1 <∞} ⊆
{∫ ∞

0

ρ(X̃s)ds =∞
}
. (6.24)

Observe that the left hand side of (6.24) is equal to the event that

{∃m > 1, s.t. σ̃m <∞ and τ̃m =∞}
⋃
{σ̃m <∞ ∀m > 1}.

Therefore, we need to show that with probability one, this event triggers∫∞
0
ρ(X̃s)ds =∞.
Case one. Suppose that there existsm > 1, such that σ̃m <∞ but τ̃m =∞.

Then |X̃t| 6 R for all t > σ̃m. Since min|x|6R ρ(x) > 0, we have∫ ∞
0

ρ(X̃s)ds >
∫ ∞
σ̃m

ρ(X̃s)ds >

(
min
|x|6R

ρ(x)

)
·
∫ ∞
σ̃m

ds =∞.

Case two. Suppose that σ̃m < ∞ for every m > 1. In this case, we only
need to show that

∞∑
m=1

(τ̃m − σ̃m) =∞. (6.25)
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Indeed, if this is true, then∫ ∞
0

ρ(X̃s)ds >
∞∑
m=1

∫ τ̃m

σ̃m

ρ(X̃s)ds >

(
min
|x|6R

ρ(x)

) ∞∑
m=1

(τ̃m − σ̃m) =∞.

Observe that (6.25) is equivalent to showing that with probability one,(
∞∏
m=1

1{σ̃m<∞}

)
e−

∑∞
m=1(τ̃m−σ̃m) =

∞∏
m=1

(
1{σ̃m<∞}e

−(τ̃m−σ̃m)
)

= 0,

which is also equivalent to showing that

E

[
∞∏
m=1

(
1{σ̃m<∞}e

−(τ̃m−σ̃m)
)]

= 0. (6.26)

We write

E

[
m+1∏
k=1

(
1{σ̃k<∞}e

−(τ̃k−σ̃k)
)
|F̃σ̃m+1

]

=
m∏
k=1

(
1{σ̃k<∞}e

−(τ̃k−σ̃k)
)
· 1{σ̃m+1<∞}E

[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
. (6.27)

Now we estimate the quantity 1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
. In par-

ticular, we are going to show that this quantity is bounded by some determin-
istic constant γ < 1, which depends only on R, r and Ã. If this is true, then
by taking expectation on both sides of (6.27), we get (6.26) immediately.

Let
M i
· , X̃ i

· − X̃ i
0 −

∫ ·
0

ρ(X̃s)b
i(X̃s)ds ∈Mloc

0 ({F̃t})

for each i (the reader may recall from the proof of Theorem 6.4). According
to Itô’s formula, we may write

|X̃t|2 = |X̃0|2 +Nt + At

in semimartingale form, where

Nt = 2
n∑
i=1

∫ t

0

X̃ i
sdM

i
s,

At =
n∑
i=1

(
2

∫ t

0

X̃ i
sρ(X̃s)b

i(X̃s)ds+ 〈M i〉t
)
.
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Since ρ · a and ρ · b are both bounded, by the definition of σ̃m+1, it is not hard
to see that there exists a constant C > 0 depending only on Ã, such that on
{σ̃m+1 <∞}, for every 0 6 t 6 τ̃m+1 − σ̃m+1, we have

〈N〉σ̃m+1+t − 〈N〉σ̃m+1 6 CR2t,∣∣Aσ̃m+1+t − Aσ̃m+1

∣∣ 6 C(2R + 1)t.

If τ̃m+1 <∞, then we know that

|X̃τ̃m+1| = R, |X̃σ̃m+1| = r.

Therefore,

|Nτ̃m+1 −Nσ̃m+1| >
R2 − r2

2
or |Aτ̃m+1 − Aσ̃m+1 | >

R2 − r2

2
.

In particular, if we define

θ , inf

{
t > 0 : |Nσ̃m+1+t −Nσ̃m+1| >

R2 − r2

2

}
,

then
τ̃m+1 − σ̃m+1 > θ ∧ R2 − r2

2C(2R + 1)
.

In addition, according to the generalized Dambis-Dubins-Schwarz theorem (c.f.
Theorem 5.9), there exists an {F̂t}-Brownian motion defined possibly on some
enlargement of the underlying filtered probability space, such that Nt = B〈N〉t ,

where F̂t , F̃Dt and Dt is the time-change associated with 〈N〉t. Let

η , inf

{
u > 0 :

∣∣∣B〈N〉σ̃m+1
+u −B〈N〉σ̃m+1

∣∣∣ > R2 − r2

2

}
.

It follows that
η 6 〈N〉σ̃m+1+θ − 〈N〉σ̃m+1 6 CR2θ.

Therefore, we obtain that on {σ̃m+1 <∞},

τ̃m+1 − σ̃m+1 >
η

CR2
∧ R2 − r2

2C(2R + 1)
.

It follows that

1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
6 1{σ̃m+1<∞}E

[
e−

η

CR2∧
R2−r2

2C(2R+1)

∣∣∣F̃σ̃m+1

]
.
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In addition, observe that F̃σ̃m+1 ⊆ F̂〈N〉σ̃m+1
. Indeed, if A ∈ F̃σ̃m+1 , according

to Proposition 2.4, we know that

A ∩ {〈N〉σ̃m+1 6 t} = A ∩ {σ̃m+1 6 Dt} ∈ F̃Dt = F̂t,

therefore A ∈ F̂〈N〉σ̃m+1
. It follows that

1{σ̃m+1<∞}E
[
e−

η

CR2∧
R2−r2

2C(2R+1)

∣∣∣F̃σ̃m+1

]
= 1{σ̃m+1<∞}E

[
E
[
1{〈N〉σ̃m+1

<∞}e
− η

CR2∧
R2−r2

2C(2R+1)

∣∣∣F̂〈N〉σ̃m+1

]∣∣∣∣ F̃σ̃m+1

]
.

Now a crucial observation is that on {〈N〉σ̃m+1 <∞}, B〈N〉σ̃m+1+u
−B〈N〉σ̃m+1

is a Brownian motion independent of F̂〈N〉σ̃m+1
by the strong Markov property.

Therefore,

E
[
e−

η

CR2 ∧
R2−r2

2C(2R+1)

∣∣∣F̂〈N〉σ̃m+1

]
= E[e−

τ
CR2 ∧

R2−r2
2C(2R+1) ] =: γ, on {〈N〉σ̃m+1 <∞},

where τ is the hitting time of the level set (R2 − r2)/2 by a one dimensional
Brownian motion. Apparently γ < 1, otherwise τ = 0 which is absurd. There-
fore, we arrive at

1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
6 γ,

which concludes (6.26).
To summarize, we have show that with probability one, (6.23) holds. Since

r, R are arbitrary, we conclude that with probability one, on
{∫∞

0
ρ(X̃s)ds <∞

}
,

X̃t → ∆ as t→∞.

The next question is about non-explosion criteria. The following result
shows that explosion will not happen if the coefficients have linear growth.
This is compatible with Theorem 6.1 in Itô’s classical theory.

Theorem 6.8. Suppose that the coefficients σ, b are continuous, and satisfy
the following linear growth condition: there exists some K > 0, such that

‖σ(x)‖+ ‖b(x)‖ 6 K(1 + |x|), ∀x ∈ Rn. (6.28)

Then for any weak solution Xt to the SDE (6.20) with E[|X0|2] <∞, we have
E[|Xt|2] <∞ for all t > 0. In particular, e =∞ almost surely.
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Proof. Suppose that Xt is a weak solution on some set-up with E[|X0|2] <∞.
Let σm , inf{t > 0 : |Xt| > m}. Then for any f ∈ C2

b (Rn), the process

f(Xσm∧t)− f(X0)−
∫ σm∧t

0

(Af)(Xs)ds

is a bounded martingale. In particular, if we choose f ∈ C2
b (Rn) to be such

that f(x) = |x|2 when |x| 6 m, then by the martingale property and the
condition (6.28), we have

E
[
|Xσm∧t|2

]
6 E[|X0|2] +

n∑
i=1

E
[∫ σm∧t

0

(
aii(Xs) + 2bi(Xs)X

i
s

)
ds

]
6 E[|X0|2] + CKE

[∫ σm∧t

0

(1 + |Xs|2)ds

]
6 E[|X0|2] + CK

∫ t

0

(
1 + E[|Xσm∧s|2]

)
ds.

Gronwall’s inequality then implies that

E[|Xσm∧t|2] 6
(
1 + E[|X0|2]

)
eCKt − 1.

By letting m → ∞, we conclude that e > t almost surely and E[|Xt|2] < ∞.
Since t is arbitrary, we know that e =∞ almost surely.

Remark 6.6. By the same reason as in Remark 6.4, we can remove the com-
pactness assumption on µ in Theorem 6.7. In addition, by Theorem 6.8, we
know that every weak solution with initial distribution µ = δx does not ex-
plode. By using the martingale formulation on the continuous path space Ŵ n,
we have

Px
(

lim
m→∞

σm =∞
)

= 1, ∀x ∈ Rn,

where Px is a solution to the martingale problem with initial distribution δx,
and σm , inf{w ∈ Ŵ n : |wt| > m}. For an arbitrary probability measure
µ on Rn, we define Pµ by (6.19) as in Remark 6.4 (after suitable measurable
selection on the family {Px}). It follows that

Pµ
(

lim
m→∞

σm =∞
)

= 1.

Therefore, Pµ is a non-exploding solution to the martingale problem with ini-
tial distribution µ. In particular, a non-exploding weak solution with initial
distribution µ exists.
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6.4 Pathwise uniqueness results

Now we study pathwise uniqueness for the SDE (6.20). It is a standard result
that (local) Lipschitz condition implies pathwise uniqueness.

Theorem 6.9. Suppose that the coefficients σ, b are locally Lipschitz, i.e. for
every N > 1, there exists KN > 0, such that

‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ 6 KN |x− y|, ∀x, y ∈ BN , (6.29)

where BN is the Euclidean ball of radius N. Then pathwise uniqueness holds
for the SDE (6.20).

Proof. Suppose that Xt, X
′
t are two solutions to the SDE (6.20) on a given

set-up ((Ω,F ,P; {Ft}), ξ, Bt) with the same initial condition ξ. Define

σN , inf{t > 0 : |Xt| > N}, σ′N , inf{t > 0 : |X ′t| > N},

respectively. Then we have

XσN∧σ′N∧t −X
′
σN∧σ′N∧t

=

∫ σN∧σ′N∧t

0

(σ(Xs)− σ(X ′s)) dBs

+

∫ σN∧σN∧t

0

(b(Xs)− b(X ′s)) ds. (6.30)

Therefore, given T > 0, for every t ∈ [0, T ], we have

E
[∣∣∣XσN∧σ′N∧t −X

′
σN∧σ′N∧t

∣∣∣2]

6 2E

∣∣∣∣∣
∫ σN∧σ′N∧t

0

(σ(Xs)− σ(X ′s)) dBs

∣∣∣∣∣
2

+

∣∣∣∣∫ σN∧σN∧t

0

(b(Xs)− b(X ′s)) ds
∣∣∣∣2


6 2E

[∫ σN∧σ′N∧t

0

‖σ(Xs)− σ(X ′s)‖2ds

]
+ 2TE

[∫ σN∧σ′N∧t

0

‖b(Xs)− b(X ′s)‖2ds

]

6 2E
[∫ t

0

‖σ(XσN∧σ′N∧s)− σ(X ′σN∧σ′N∧s)‖
2ds

]
+2TE

[∫ t

0

‖b(XσN∧σ′N∧s)− b(X
′
σN∧σ′N∧s

)‖2ds

]
6 2KN(1 + T )

∫ t

0

E
[
|XσN∧σ′N∧s −X

′
σN∧σ′N∧s

|2
]
ds.
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Since the function t ∈ [0, T ] 7→ E
[
|XσN∧σ′N∧t −X

′
σN∧σ′N∧t

|2
]
is non-negative

and continuous, according to Gronwall’s inequality, we conclude that

E
[
|XσN∧σ′N∧t −X

′
σN∧σ′N∧t

|2
]

= 0

for every t ∈ [0, T ]. As T is arbitrary, it follows that with probability one,

XσN∧σ′N∧t = XσN∧σ′N∧t, ∀t > 0.

This implies that Xt = X ′t on [0, σN ∧σ′N). By the definition of σN and σ′N , we
must have σN = σ′N . In particular, by letting N →∞, we conclude that with
probability one, e(X) = e(X ′) and Xt = Yt on [0, e(X)), where e(X) and e(Y )
are the explosion times of X and Y respectively.

The local Lipschitz condition can be weakened in the one dimensional case.
In particular, pathwise uniqueness holds if σ is 1/2-Hölder continuous and b is
locally Lipschitz continuous.

Theorem 6.10. Suppose that n = 1 and the coefficients σ, b are continuous.
Assume further that the following two conditions hold:

(1) there exists a strictly increasing function ρ on [0,∞) such that ρ(0) = 0,∫
0+
ρ−2(u)du =∞, and ‖σ(x)− σ(y)‖ 6 ρ(|x− y|) for all x, y ∈ R1;
(2) b is locally Lipschitz in the sense of (6.29).

Then pathwise uniqueness holds for the SDE (6.20).

Proof. According to Condition (1), we can find a sequence 0 < · · · < an <
an−1 < · · · < a2 < a1 < 1 such that∫ 1

a1

ρ−2(u)du = 1,

∫ a1

a2

ρ−2(u)du = 2, · · · ,
∫ an−1

an

ρ−2(u)du = n, · · · .

Apparently an ↓ 0 as n → ∞. For each n, choose a continuous function ψn
supported on [an, an−1], such that

0 6 ψn(u) 6
2ρ−2(u)

n
, ∀u > 0,

and ∫ an−1

an

ψn(u)du = 1.

Define

ϕn(x) ,
∫ |x|

0

dy

∫ y

0

ψn(u)du.

180



It is not hard to see that ϕn ∈ C2(R1), ϕn(x) ↑ |x|, |ϕ′n(x)| 6 1, and ϕ′′n(x) =
ψn(|x|).

Now suppose that Xt, X
′
t are two solutions to the SDE (6.20) on a given

set-up ((Ω,F ,P; {Ft}), ξ, Bt) with the same initial condition ξ. Define σN , σ′N
in the same way as in the proof of Theorem 6.9. For the simplicity of notation,
we set τ , σN ∧ σ′N , Yt , XσN∧σ′N∧t and Y ′t , X ′σN∧σ′N∧t

. By rewriting the
equation (6.30), we obtain that

Yt − Y ′t =

∫ t

0

(σ(Ys)− σ(Y ′s ))1[0,τ ](s)dBs +

∫ t

0

(b(Ys)− b(Y ′s ))1[0,τ ](s)ds.

According to Itô’s formula,

ϕn(Yt − Y ′t ) =

∫ t

0

ϕ′n(Ys − Y ′s ) (σ(Ys)− σ(Y ′s ))1[0,τ ](s)dBs

+

∫ t

0

ϕ′n(Ys − Y ′s ) (b(Ys)− b(Y ′s ))1[0,τ ](s)ds

+
1

2

∫ t

0

ϕ′′n(Ys − Y ′s )‖σ(Ys)− σ(Y ′s )‖21[0,τ ](s)ds.

Since ϕ′n, σ are bounded, we know that the first term is a martingale.
Therefore,

E [ϕn(Yt − Y ′t )] = I1
n + I2

n,

where

I1
n , E

[∫ t

0

ϕ′n(Ys − Y ′s ) (b(Ys)− b(Y ′s ))1[0,τ ](s)ds

]
,

I2
n ,

1

2
E
[∫ t

0

ϕ′′n(Ys − Y ′s ) (σ(Ys)− σ(Y ′s ))
2
1[0,τ ](s)ds

]
.

On the one hand, according to Condition (2), we have

I1
n 6 KN

∫ t

0

E[|Ys − Y ′s |]ds.

On the other hand, since 0 6 ϕ′′n(x) = ψn(|x|) 6 2ρ−2(|x|)/n, according to
Condition (1), we have

I2
n 6

1

2
E
[∫ t

0

2ρ−2(|Ys − Y ′s |)
n

· ρ2(|Ys − Y ′s |)ds
]

=
t

n
.

Since ϕn(x) ↑ |x|, by the monotone convergence theorem, we arrive at

E[|Yt − Y ′t |] 6 KN

∫ t

0

(E[|Ys − Y ′s |]) ds.
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Gronwall’s inequality then implies that Yt = Y ′t for all t > 0. Since N is
arbitrary, the same reason as in the proof of Theorem 6.9 shows that e(X) =
e(X ′) and Xt = X ′t on [0, e(X)).

The integrability condition on σ in Theorem 6.10 is essentially the best we
can have. The following example shows what can go wrong if the integrability
condition is not satisfied. This also gives an example in which uniqueness in
law does not hold.

Example 6.2. Consider the case n = d = 1 with b = 0. Suppose that σ is
a function such that σ(0) = 0,

∫ 1

−1
σ−2(x)dx < ∞ and |σ(x)| > 1 for |x| > 1

(for instance, σ(x) = |x|α with 0 < α < 1/2). Let Wt be a one dimensional
Brownian motion, and let Lxt be its local time process. For each λ > 0, define

Aλt ,
∫
R1

σ−2(x)Lxt dx+ λL0
t =

∫ t

0

σ−2(Ws)ds+ λL0
t .

According to the assumptions on σ, apparently Aλt is well defined and strictly
increasing. Moreover, since L0

t
law
= St (c.f. Theorem 5.23), we know that Aλ∞ =

∞. Let Cλ
t be the time-change associated with Aλt , and define Xλ

t , WCλt
. It

follows from Proposition 5.19 that Xλ
t is a local martingale with respect to the

time-changed filtration, and

〈Xλ〉t = 〈W 〉Cλt = Cλ
t .

On the other hand, we know that

dAλt = σ−2(Wt)dt+ λL0
t .

Now a crucial observation is that σ2(Wt)dL
0
t ≡ 0 because σ(0) = 0 and

dL0({t > 0 : Wt 6= 0}) = 0. Therefore, dt = σ2(Wt)dA
λ
t and

Cλ
t =

∫ Cλt

0

ds =

∫ Cλt

0

σ2(Ws)dA
λ
s =

∫ t

0

σ2(Xλ
u )du.

According to the martingale representation theorem (c.f. Theorem 5.14), we
conclude that

Xλ
t =

∫ t

0

σ(Xλ
u )dBu

for some Brownian motion Bt. Therefore, we have a family of weak solutions
Xλ
t with the same initial distribution Xλ

0 = 0, which are possible defined on
different set-ups because the filtrations, which depend on λ, can be different.
Apparently, the distribution of Xλ varies for different λ (if λ1 < λ2, then
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Cλ2
t < Cλ1

t for all t, so that as λ increases, Xλ is defined by running the
Brownian motion in strictly slower speed which certainly results in a different
distribution). Therefore, uniqueness in law for the corresponding SDE does
not hold, and of course pathwise uniqueness fails as well.

Remark 6.7. The weak existence theorem and uniqueness theorems that we
just proved for the time homogeneous SDE (6.20) extend to the time inhomo-
geneous case

dXt = σ(t,Xt)dBt + b(t,Xt)dt

without any difficulty. Indeed, by adding an additional equation dX0
t = dt,

the time inhomogeneous equation reduces to the time homogeneous case. In
particular, Theorem 6.7 and Theorem 6.9 hold for this case. Moreover, it can
be easily seen that the proof of Theorem 6.10 works in exactly the same way
without any difficulty in the time inhomogeneous case, although we cannot
simply apply this reduction argument as the nature of that theorem is one
dimensional. In the time inhomogeneous case, the corresponding assumptions
on the coefficients in the uniqueness theorems should be made uniform with
respect to the time variable.
Remark 6.8. In the context of Theorem 6.9 or Theorem 6.10, we also know that
weak solution always exists. Therefore, according to the Yamada-Watanabe
theorem, the SDE (6.20) is exact and has a unique strong solution. In addition,
if we assume that the coefficients satisfy the linear growth condition, then for
every probability measure µ on Rn, a non-exploding weak solution with initial
distribution µ exists (c.f. Theorem 6.8 and Remark 6.6). But we also know that
pathwise uniqueness implies uniqueness in law, which is part of the Yamada-
Watanabe theorem (c.f. Theorem 6.2). Therefore, every weak solution must
not explode (note that the explosion time is intrinsically determined by the
process, so if two processes have the same distribution, their explosion times
will also have the same distribution).

6.5 A comparison theorem for one dimensional SDEs

Now let us use the same technique as in the proof of Theorem 6.10 to establish
a useful comparison result in dimension one.

Let σ(t, x), bi(t, x) (i = 1, 2) be real-valued continuous on [0,∞)× R1. We
consider the SDEs

dXt = σ(t,Xt)dBt + bi(t,Xt)dt (6.31)
for i = 1, 2.

We assume the same condition on σ as in Theorem 6.10, i.e. there exists a
strictly increasing function ρ on [0,∞) such that ρ(0) = 0,

∫
0+
ρ−2(u)du =∞,

and ‖σ(t, x)− σ(t, y)‖ 6 ρ(|x− y|) for all t > 0 and x, y ∈ R1.
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Theorem 6.11. Suppose that
(1) b1(t, x) 6 b2(t, x) for all t > 0 and x ∈ R1;
(2) at least one of bi(t, x) is locally Lipschitz, i.e. for some i = 1, 2, for

each N > 1, there exists KN > 0, such that

|bi(t, x)− bi(t, y)| 6 KN |x− y|

for all t > 0 and x, y ∈ R1 with |x|, |y| 6 N.
Let X i

t (i = 1, 2) be a solution to the SDE (6.31) on the same given filtered
probability space up to the intrinsic explosion time, i.e. X i

t satisfies

X i
t = X i

0 +

∫ t

0

σ(s,X i
s)dBs +

∫ t

0

bi(s,X
i
s)ds, 0 6 t < e(X i),

for i = 1, 2. Suppose further that X1
0 6 X2

0 < ∞ almost surely. Then with
probability one, we have

X1
t 6 X2

t ∀t < e(X1) ∧ e(X2).

Proof. Suppose that b1(t, x) is locally Lipschitz.
Define ψn in the same way as in the proof of Theorem 6.10, but we set

φn(x) ,

{
0, x 6 0;∫ x

0
dy
∫ y

0
ψn(u)du, x > 0.

Then φn ∈ C2(R1), φn(x) ↑ x+, 0 6 φ′n(x) 6 1, and φ′′n(x) = ψn(x)1{x>0}.
We also localize X1

t , X
2
t in the same way as in the proof of Theorem 6.10,

so we define Y i
t , X i

τ∧t (i = 1, 2) where τ , σ1
N ∧ σ2

N .
By applying Itô’s formula, we have

φn(Y 1
t − Y 2

t ) = I1
n + I2

n + I3
n, (6.32)

where

I1
n ,

∫ t

0

φ′n(Y 1
s − Y 2

s )(σ(s, Y 1
s )− σ(s, Y 2

s ))1[0,τ ](s)dBs,

I2
n ,

∫ t

0

φ
′

n(Y 1
s − Y 2

s )(b1(s, Y 1
s )− b2(s, Y 2

s ))1[0,τ ](s)ds,

I3
n ,

1

2

∫ t

0

φ′′n(Y 1
s − Y 2

s )
(
σ(s, Y 1

s )− σ(s, Y 2
s )
)2

1[0,τ ](s)ds.

184



From the boundedness assumption, we know that E[I1
n] = 0. Moreover,

E[I3
n] =

1

2
E
[∫ t

0

ψn(Y 1
s − Y 2

s )1{Y 1
s >Y

2
s }
(
σ(s, Y 1

s )− σ(s, Y 2
s )
)2

1[0,τ ](s)ds

]
6

1

2
E
[∫ t

0

2ρ−2(|Y 1
s − Y 2

s |)
n

· ρ2(|Y 1
s − Y 2

s |)ds
]

6
t

n
.

And also we have

I2
n =

∫ t

0

φ
′

n(Y 1
s − Y 2

s )(b1(s, Y 1
s )− b2(s, Y 2

s ))1[0,τ ](s)ds

=

∫ t

0

φ
′

n(Y 1
s − Y 2

s )(b1(s, Y 1
s )− b1(s, Y 2

s ))1[0,τ ](s)ds

+

∫ t

0

φ
′

n(Y 1
s − Y 2

s )(b1(s, Y 2
s )− b2(s, Y 2

s ))1[0,τ ](s)ds

6
∫ t

0

φ
′

n(Y 1
s − Y 2

s )(b1(s, Y 1
s )− b1(s, Y 2

s ))1[0,τ ](s)ds

6 K

∫ t

0

1{Y 1
s >Y

2
s }|Y

1
s − Y 2

s |ds

= K

∫ t

0

(Y 1
s − Y 2

s )+ds.

Therefore, by taking expectation on (6.32) and letting n→∞, we arrive at

E[(Y 1
t − Y 2

t )+] 6 K

∫ t

0

E[(Y 1
s − Y 2

s )+]ds.

According to Gronwall’s inequality, we conclude that

E[(Y 1
t − Y 2

t )+] = 0, ∀t > 0,

which implies that with probability one,

Y 1
t 6 Y 2

t ∀t > 0. (6.33)

Now the result follows from letting N →∞.
In the case when b2(t, x) is locally Lipschitz, the same argument gives the

desired result.
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Remark 6.9. If we make a more restrictive assumption that b1(t, x) < b2(t, x)
for all t > 0 and x ∈ R1, then we do not need to assume that at least one of
bi is locally Lipschitz. Indeed, after suitable localization, we may assume that
bi(t, x) is uniformly bounded on [0, T ]× R1 for each fixed T > 0. In this case,
it is possible to choose some b(t, x) defined on [0, T ] × R1 which is Lipschitz
continuous. If we consider the unique solution to the SDE{

dXt = σ(t,Xt)dBt + b(t,Xt)dt, 0 6 t 6 T ;

X0 = X2
0 ,

then the argument in the proof of Theorem 6.11 shows that with probability
one

Y 1
t 6 Xt 6 Y 2

t , ∀t ∈ [0, T ].

As T is arbitrary, we conclude that (6.33) holds, which implies the desired
result by letting N →∞.

6.6 Two useful techniques: transformation of drift and
time-change

In this subsection, we introduce two important probabilistic techniques of solv-
ing SDEs in the weak sense. These techniques usually apply to SDEs with
discontinuous coefficients, hence they are not covered by the existence and
uniqueness theorems that we have proven so far.

The first technique is transformation of drift, which is an application of the
Cameron-Martin-Girsanov transformation. For this part, we are interested
transforming an SDE

dXt = α(t,X)dBt + β(t,X)dt, 0 6 t 6 T, (6.34)

to another SDE

dXt = α(t,X)dBt + β′(t,X)dt, 0 6 t 6 T, (6.35)

which has the same diffusion coefficient α but a different drift coefficient β′.
In practice, we usually want β′ = 0. In view of the Cameron-Martin-Girsanov
transformation, we will always fix T > 0 and consider SDEs defined on the
finite interval [0, T ].

In this part, we will always make the following assumption.

Assumption 6.2. There exists some γ : [0, T ] ×W n → Rd, such that γ is
bounded, {Bt(W n)}-progressively measurable, and

β′ = β + αγ.
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This is the case when n = d if α is invertible with bounded inverse, and
β, β′ are bounded.

Suppose that Xt is a solution to the SDE (6.34) on some filtered probability
space (Ω,F ,P; {Ft : 0 6 t 6 T}) with an {Ft}-Brownian motion Bt. Define

Eγt , exp

(∫ t

0

γ∗(s,X)dBs −
1

2

∫ t

0

‖γ(s,X)‖2ds

)
.

Since γ is bounded, according to Novikov’s condition (c.f. Theorem 5.18), we
know that {Eγt ,Ft : 0 6 t 6 T} is a martingale. Define a probability measure
P̃ on FT by

P̃(A) , E[1AEγT ], A ∈ FT .

It follows from Girsanov’s theorem (c.f. Theorem 5.17) that

B̃t , Bt −
∫ t

0

γ(s,X)ds, 0 6 t 6 T,

is an {Ft}-Brownian motion under the probability measure P̃. Therefore, under
P̃, Xt satisfies

Xt = X0 +

∫ t

0

α(s,X)dB̃s +

∫ t

0

(β(s,X) + α(s,X)γ(s,X)) ds

= X0 +

∫ t

0

α(s,X)dB̃s +

∫ t

0

β′(s,X)ds.

In other words, Xt solves the SDE (6.35) with the new Brownian motion B̃t

under P̃.
On the other hand, suppose that Xt solves the SDE (6.35) with Brownian

motion Bt. By defining

E−γt , exp

(
−
∫ t

0

γ∗(s,X)dBs −
1

2

∫ t

0

‖γ(s,X)‖2ds

)
,

the same argument shows that Xt solves the SDE (6.34) with Brownian motion

B̃t , Bt +

∫ t

0

γ(s,X)ds, 0 6 t 6 T, (6.36)

under the probability measure

P̃(A) , E[1AE−γT ], A ∈ FT . (6.37)
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Now we consider uniqueness. A crucial point is the following: we can as-
sume without loss of generality that γ = α∗η for some {Bt(W n)}-progressively
measurable η : [0, T ]×W n → Rn. Indeed, for each (t, w) ∈ [0, T ]×W n, write

Rd = (Im(α∗(t, w)))
⊕(

Im(α∗(t, w))⊥
)
,

where we regard α∗(t, w) as a linear map from Rn to Rd. Under this decompo-
sition, we can write

γ(t, w) = γ1(t, w) + γ2(t, w)

for some γ1(t, w) ∈ Im(α∗(t, w)). Since γ1 is defined pointwisely and ‖γ1‖ 6
‖γ‖, we know that γ1 is bounded, {Bt(W n)}-progressively measurable. More-
over, since

〈α(t, w)γ2(t, w), y〉 = 〈γ2(t, w), α∗(t, w)y〉 = 0, ∀y ∈ Rn,

we have α(t, w)γ2(t, w) = 0, and hence α(t, w)γ(t, w) = α(t, w)γ1(t, w). As
γ1(t, w) ∈ Im(α∗(t, w)), there is a canonical way of choosing η such that γ1 =
α∗η and η is {Bt(W n)}-progressively measurable. For instance, we can define
η(t, w) to be the unique element in the affine space {η ∈ Rn : α∗(t, w)η(t, w) =
γ1(t, w)} which minimizes its Euclidean norm. In the following, we will assume
that γ = α∗η.

Suppose that uniqueness in law holds for the SDE (6.34). Let Xt be a
solution to the SDE (6.35) with Brownian motion Bt. It follows from the
previous discussion that Xt solves the SDE (6.34) with a new Brownian motion
B̃t defined by (6.36) under the new probability measure P̃ defined by (6.37).
However, we know that for every A ∈ FT ,

P(A)

= Ẽ
[
1A exp

(∫ T

0

γ∗(s,X)dBs +
1

2

∫ T

0

‖γ(s,X)‖2ds

)]
= Ẽ

[
1A exp

(∫ T

0

η∗αdBs +
1

2

∫ T

0

‖γ‖2ds

)]
= Ẽ

[
1A exp

(∫ T

0

η∗αdB̃s −
1

2

∫ T

0

‖γ‖2ds

)]
= Ẽ

[
1A exp

(∫ T

0

η∗(s,X)dXs −
∫ T

0

(
η∗(s,X)β(s,X) +

1

2
‖γ(s,X)‖2

)
ds

)]
.

In particular, for given k > 1, 0 6 t1 < · · · < tk 6 T and f ∈ Cb(Rn×k), we
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have

E[f(Xt1 , · · · , Xtn)]

= Ẽ [f(Xt1 , · · · , Xtk)

exp

(∫ T

0

η∗(s,X)dXs −
∫ T

0

(
η∗(s,X)β(s,X) +

1

2
‖γ(s,X)‖2

)
ds

)]
.

But the integrand of the expectation on the right hand side is a functional of
{Xt : 0 6 t 6 T}. So its distribution is uniquely determined by the distribution
of X. Since uniqueness in law holds for the SDE (6.34) and Xt solves this SDE
under P̃, we conclude that the distribution ofX under P is uniquely determined
by the distribution of X under P̃. In particular, uniqueness in law holds for
the SDE (6.35). Conversely, similar argument shows that uniqueness in law
for the SDE (6.35) implies uniqueness in law for the SDE (6.34).

To summarize, we have obtained the following result.

Theorem 6.12. Under Assumption 6.2, the existence of weak solutions and
uniqueness in law are equivalent for the two SDEs (6.34) and (6.35).

The following is an important example which is not covered by our existence
and uniqueness theorems so far, but it is within the scope of Theorem 6.12.

Example 6.3. Let β : [0, T ]×W d → Rd be bounded, {Bt(W d)}-progressively
measurable (here n = d). Then weak existence and uniqueness in law hold for
the SDE

dXt = dBt + β(t,X)dt, 0 6 t 6 T. (6.38)

Indeed, we can just take γ , β in the previous discussion to see that weak
existence and uniqueness in law are both equivalent for the SDE

dXt = dBt, 0 6 t 6 T,

and the SDE (6.38). In particular, the law of the weak solution with initial
distribution δx is determined by

E [f(Xt1 , · · · , Xtk)]

= Ex
[
f(wt1 , · · · , wtk)exp

(∫ T

0

β∗(t, w)dwt −
1

2

∫ T

0

‖β(t, w)‖2ds

)]
for k > 1, 0 6 t1 < · · · < tk 6 T , and f ∈ Cb(Rd×k), where Px is the law of
the Brownian motion starting at x, and wt is the coordinate process on path
space.

It should be pointed out that existence and uniqueness only hold in the
weak sense. In general, the SDE (6.38) can fail to be exact.
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Now we study another useful technique: time-change. This technique ap-
plies to the one dimensional SDE of the following form:

dXt = α(t,X)dBt, (6.39)

where we assume that there exists constants C1, C2 > 0, such that

C1 6 α(t, w) 6 C2, ∀(t, w) ∈ [0,∞)×W 1.

We have already seen the notion of a time-change in Section 5.6. Here
we consider a more restrictive class of time-change. Denote I as the space
of continuous functions a : [0,∞) → [0,∞) such that a0 = 0, t 7→ at is
strictly increasing and limt→∞ at =∞. An adapted process At on some filtered
probability space is called a process of time-change if for almost all ω, A(ω) ∈ I.
As in Section 5.6, we use Ct to denote the time-change associated with At. In
this case, Ct is really the inverse of At. Given a process Xt, we use TAX , XCt

to denote the time-changed process of Xt by Ct (c.f. Definition 5.12).
The following result gives a method of solving the SDE (6.39) by using a

time-change technique.

Theorem 6.13. (1) Let bt be a one dimensional Brownian motion defined on
some filtered probability space (Ω,F ,P; {F̃t}) which satisfies the usual condi-
tions. Let X0 be an F0-measurable random variable. Define ξt , X0 + bt.
Suppose that there exists a process At of time-change on Ω, such that with
probability one, we have

At =

∫ t

0

α(As, T
Aξ)−2ds, ∀t > 0. (6.40)

If we set X , TAξ = X0 + bC· and Ft , F̃Ct , then there exists an {Ft}-
Brownian motion Bt, such that Xt solves the SDE (6.39) on (Ω,F ,P; {Ft})
with Brownian motion Bt.

(2) Every solution to the SDE (6.39) arises in the way described by (1).

Proof. (1) Let bt, X0 and At be given as in the assumption. According to
Proposition 5.19, we know that M , TAb ∈ Mloc

0 ({Ft}) and 〈M〉t = Ct. In
view of (6.40), we have

α(At, T
Aξ)2dAt = dt,

so that

t =

∫ t

0

α(As, T
Aξ)2dAs =

∫ t

0

α(As, X)2dAs,

and hence

Ct =

∫ Ct

0

α(As, X)2dAs =

∫ t

0

α(u,X)2du.
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If we define Bt ,
∫ t

0
α(s,X)−1dMs, by Lévy’s characterization theorem we

know that Bt is an {Ft}-Brownian motion, and

Xt −X0 = Mt =

∫ t

0

α(s,X)dBs.

In other words, Xt solves the SDE (6.39) on (Ω,F ,P; {Ft}) with Brownian
motion Bt.

(2) LetXt be a solution to the SDE (6.39) on some filtered probability space
(Ω,F ,P; {Ft}) with Brownian motion Bt. Then M· , X· −X0 ∈ Mloc

0 ({Ft})
and 〈M〉t =

∫ t
0
α(s,X)2ds. Let At be the inverse of 〈M〉t. Define b , T 〈M〉M

and F̃t , FAt . It follows that bt is an {F̃t}-Brownian motion, and M = TAb.
If we define ξt , X0 + bt, then apparently X = TAξ. In addition, since

t =

∫ t

0

α(s,X)−2d〈M〉s,

a simple change of variables shows that

At =

∫ t

0

α(As, X)−2ds =

∫ t

0

α(As, T
Aξ)−2ds.

Therefore, Xt arises in the way described by (1).

An important corollary of the second part of Theorem 6.13 is that if the
ordinary differential equation (6.40) is always uniquely solvable from (X0, b) in
a pathwise sense, then weak existence and uniqueness in law hold for the SDE
(6.39). Indeed, in this case the solution X is some deterministic functional
of X0 and b, so that its distribution is uniquely determined by the initial
distribution and the distribution of Brownian motion.

Example 6.4. Consider the time homogeneous SDE

dXt = a(Xt)dBt,

where a : R1 → R1 is a Borel measurable function such that C1 6 a 6 C2

for some positive constants C1, C2. By setting α(t, w) , a(wt), the differential
equation (6.40) becomes

At =

∫ t

0

a
(
(TAξ)As

)−2
ds =

∫ t

0

a(ξs)
−2ds. (6.41)

Apparently At is uniquely determined byX0 and b, and it is simply given by the
formula (6.41). Therefore, X , TAξ defines a weak solution and uniqueness
in law holds.
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Example 6.5. Consider the time inhomogeneous SDE

dXt = a(t,Xt)dBt,

where a : [0,∞) × R1 → R1 is a Borel measurable function such that C1 6
a 6 C2 for some positive constants C1, C2. By setting α(t, w) , a(t, wt), the
differential equation (6.40) becomes

At =

∫ t

0

a(As, ξs)
−2ds,

or {
dAt
dt

= 1
a(At,ξt)2

,

A0 = 0.

This equation has a unique solution along each fixed sample path of ξ, for
instance if a(t, x) is Lipschitz continuous in t. In this case, X , TAξ defines a
weak solution and uniqueness in law holds.

Example 6.6. Let f(x) be a locally bounded, Borel measurable function on
R1, and let a(x) be a Borel measurable function on R1 such that C1 6 a 6 C2

for some positive constants C1, C2. For a fixed y ∈ R1, define

α(t, w) , a

(
y +

∫ t

0

f(ws)ds

)
, (t, w) ∈ [0,∞)×W 1.

Consider the SDE

dXt = α(t,X)dBt = a

(
y +

∫ t

0

f(Xs)ds

)
dBt.

The differential equation (6.40) now becomes

At =

∫ t

0

a

(
y +

∫ As

0

f(ξCu)du

)−2

ds

=

∫ t

0

a

(
y +

∫ s

0

f(ξu)Ȧudu

)−2

ds.

Define

Zt ,
∫ t

0

f(ξu)Ȧudu.

It follows that
dZt
dt

= f(ξt)Ȧt =
f(ξt)

a (y + Zt)
2 ,
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and hence ∫ t

0

a(y + Zs)
2dZs =

∫ t

0

f(ξs)ds.

If we set
Φ(x) ,

∫ x

0

a(y + z)2dz, x ∈ R1,

then Φ(x) is continuous, strictly increasing and

Φ(Zt) =

∫ t

0

f(ξs)ds.

Therefore,

Zt = Φ−1

(∫ t

0

f(ξs)ds

)
,

and At is uniquely solved as

At =

∫ t

0

a

(
y + Φ−1

(∫ s

0

f(ξu)du

))−2

ds.

In this case, X , TAξ defines a weak solution and uniqueness in law holds.
A particular example is that f(x) = x. In this case, the SDE is equivalent

to the following equation of motion with random acceleration:
dYt = Xtdt,

dXt = a(Yt)dBt,

Y0 = y.

6.7 Examples: linear SDEs and Bessel processes

In this subsection, we discuss several useful examples of SDEs.
The first type of examples that we are going to study are linear SDEs. This

is a nice case where we can obtain explicit formulae.
Consider the SDE

dXt = (A(t)Xt + a(t))dt+ σ(t)dBt, (6.42)

where A(t), a(t) and σ(t) are bounded, deterministic functions taking values
in Mat(n, n), Mat(n, 1) and Mat(n, d) respectively.

This SDE can be solved explicitly in the following way. First of all, from
classical ODE theory, we know that the matrix equation{

dΦ(t)
dt

= A(t)Φ(t), t > 0;

Φ(0) = Idn,
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has a unique solution Φ(t) which is absolutely continuous. Moreover, it is not
hard to see that Φ(t) is non-singular for every t > 0. Indeed, suppose on the
contrary that for some t0 > 0 and some non-zero λ ∈ Rn, we have Φ(t0)λ = 0.
Since the function x(t) , Φ(t)λ solves the ODE

dx(t)

dt
= A(t)x(t) (6.43)

with condition x(t0) = 0, from the uniqueness of (6.43), we know that x(t) = 0
for all t. But this contradicts the fact that x(0) = Φ(0)λ = λ 6= 0. Therefore,
Φ(t) is non-singular for every t > 0. In the case when A(t) = A, Φ(t) is
explicitly given by

Φ(t) = etA ,
∞∑
k=0

Aktk

k!
,

and Φ−1(t) = e−tA.
Φ(t) is called the fundamental solution to the ODE (6.43). The reason of

having this name is simple: the solution to the inhomogeneous ODE

dx(t)

dt
= (A(t)x(t) + a(t)) (6.44)

and even to the SDE (6.42) can be expressed in terms of Φ(t) and the coef-
ficients. Indeed, it is classical that the solution to the ODE (6.44) is given
by

x(t) = Φ(t)

(
x(0) +

∫ t

0

Φ−1(s)a(s)ds

)
.

Moreover, by using Itô’s formula, it is not hard to see that

Xt , Φ(t)

(
X0 +

∫ t

0

Φ−1(s)a(s)ds+

∫ t

0

Φ−1(s)σ(s)dBs

)
(6.45)

is a solution to the SDE (6.42). This is the unique solution because pathwise
uniqueness holds as a consequence of Lipschitz condition.

Since the integrands in the formula (6.45) are deterministic functions, we
know thatXt is a Gaussian process providedX0 is a Gaussian random variable.
In this case, the mean function m(t) , E[Xt] is given by

m(t) = Φ(t)

(
m(0) +

∫ t

0

Φ−1(s)a(s)ds

)
and the covariance function ρ(s, t) , E[(Xs−m(s)) · (Xt−m(t))∗] is given by

ρ(s, t) = Φ(s)

(
ρ(0, 0) +

∫ s∧t

0

Φ−1(u)σ(u)σ∗(u)
(
Φ−1(u)

)∗
du

)
Φ∗(t), s, t > 0.
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A important example is the case when n = d = 1, A(t) = −γ (γ > 0),
a(t) = 0, σ(t) = σ, so the SDE takes the form

dXt = −γXtdt+ σdBt.

This is known as the Langevin equation and the solution is called the Ornstein-
Uhlenbeck process. In this case, the solution is given by

Xt = X0e−γt + σ

∫ t

0

e−γ(t−s)dBs.

If X0 is a Gaussian random variable with mean zero and variance η2, then Xt

is a centered Gaussian process with covariance function

ρ(s, t) = e−γ(s+t)

(
η2 + σ2

∫ s

0

e2γudu

)
=

(
η2 − σ2

2γ

)
e−γ(s+t) +

σ2

2γ
e−γ(t−s)

provided s < t. In particular, if η2 = σ2/(2γ), then Xt is also stationary in the
sense that the distribution of (Xt1+h, · · · , Xtk+h) is independent of h for any
given k > 1 and t1 < · · · < tk.

We can generalize the SDE (6.42) to the case where the diffusion coefficient
depends linearly on Xt. For simplicity, we only consider the one dimensional
case (n = d = 1), in which the SDE takes the form

dXt = (A(t)Xt + a(t))dt+ (C(t)Xt + c(t))dBt. (6.46)

Of course we also have pathwise uniqueness in this case.
To write down the explicit solution for this SDE, it is helpful to first under-

stand heuristically how to obtain the formula (6.45) in the previous discussion.
Indeed, in the SDE (6.42), the linear dependence on Xt appears only in the
term A(t)Xtdt, which can be viewed as contributing to an “exponential form”
of the solution. Since Φ(t) behaves like the exponential of

∫
A(t)dt, it is rea-

sonable to expect that if we apply Itô’s formula to the process Φ−1(t)Xt, all
those terms involving Xt should get killed and we will obtain that

d(Φ−1(t)Xt) = Φ−1(t)a(t)dt+ Φ−1(t)σ(t)dBt.

The reader might do the computation to see that this is indeed the case.
Now to solve the SDE (6.46), note that the linear dependence on Xt ap-

pears in the terms A(t)Xt and C(t)Xt. These two terms should contribute
to the “exponential form” of Xt. Therefore, taking into account the fact that

195



C(t) appears in the diffusion coefficient, we may define the “exponential” of
(A(t), C(t)) by

Zt , exp

(∫ t

0

A(s)ds+

∫ t

0

C(s)dBs −
1

2

∫ t

0

C2(s)ds

)
.

Then it is reasonable to expect that after applying Itô’s formula to the process
Z−1
t Xt, we should arrive at an expression which does not involve Xt. This is

indeed the case, and we can obtain that the solution to the SDE (6.46) is given
by

Xt = Zt

(
X0 +

∫ t

0

Z−1
s (a(s)− C(s)c(s))ds+

∫ t

0

Z−1
s c(s)dBs

)
.

An important example is the case when A(t) = µ, C(t) = σ, and a(t) =
c(t) = 0. In this case, the SDE takes the form

dXt = µXtdt+ σXtdBt

and the solution is given by

Xt = X0eµt+σBt−
1
2
σ2t.

Xt is known as the geometric Brownian motion.
Another type of examples that we are going to study are Bessel processes.

These are one dimensional SDEs. They are important and useful because a lot
of explicit computations are possible and many interesting SDE models can be
reduced to Bessel processes.

We first take a slight detour to discuss a bit more about one dimensional
SDEs.

In the one dimensional case, explosion can be described in a more precise
way as there are exactly two possible ways to explode in finite time: to the
left or to the right. Therefore, we may consider more generally an SDE{

dXt = σ(Xt)dBt + b(Xt)dt, t > 0,

X0 = x ∈ I,
(6.47)

defined on an open interval I = (l, r) with −∞ 6 l < r 6 ∞, and we think
of l and r as two points of explosion. In Section 6.3, we were essentially
identifying l and r in the case of explosion, which we do not want to do here.
The argument here fails in higher dimensions, and indeed very little is known
for the geometry of multidimensional diffusions.

Suppose that σ, b are continuously differentiable on I. According to the
Yamada-Watanabe theory (continuity gives weak existence and local Lipschitz
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condition gives pathwise uniqueness), the SDE (6.47) has a unique solution
Xx
t defined up to an explosion time e. More precisely, e = limn→∞ τn, where

τn , inf{t > 0 : Xx
t /∈ [an, bn]} and an, bn are two sequences of real numbers

such that an ↓ l, bn ↑ r. If we define Ŵ I to be the space of continuous paths
w : [0,∞) → [l, r] such that w0 ∈ I and wt = we(w) for t > e(w), where
e(w) , inf{t > 0 : wt = l or r}, then Xx is a random variable taking values
in Ŵ I , and the explosion time of Xx is e = e(Xx). What is more precise than
Section 6.3 is that limt↑eX

x
t exists and is equal to l or r on the event that

{e <∞}, a fact which can be proved by the same argument as in the proof of
Theorem 6.7 and the continuity of Xx.

From now on, we always assume that σ2 > 0 on I.
The following quantities play a fundamental role in studying the geometry

of one dimensional diffusions.

Definition 6.9. Let c ∈ I be a fixed real number.
(1) The scale function is defined by

s(x) ,
∫ x

c

exp

(
−2

∫ ξ

c

b(ζ)

σ2(ζ)
dζ

)
dξ, x ∈ I.

(2) The speed measure is defined by

m(dx) ,
2dx

s′(x)σ2(x)
, x ∈ I.

(3) The Green function is defined by

Ga,b(x, y) ,
(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
, x, y ∈ [a, b] ⊆ I.

We first show that these quantities can be used to compute expected exit
times.

Let [a, b] ⊆ I. Consider the ODE{
b(x)M ′(x) + 1

2
σ2(x)M ′′(x) = −1, a < x < b;

M(a) = M(b) = 0.
(6.48)

It is not hard to see that a solution is given by

Ma,b(x) ,
∫ b

a

Ga,b(x, y)m(dy), x ∈ [a, b].

In particular, Ma,b is non-negative.
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Define τa,b , inf{t < e : Xx
t /∈ [a, b]}. According to Itô’s formula and the

ODE (6.48), we see that

Ma,b(X
x
τa,b∧t) = Ma,b(x) +

∫ τa,b∧t

0

M ′
a,b(X

x
s )σ(Xx

s )dBs − τa,b ∧ t.

Therefore,

E[τa,b ∧ t] = Ma,b(x)− E[Ma,b(X
x
τa,b∧t)] 6Ma,b(x) <∞. (6.49)

In particular, τa,b is integrable. Indeed, in view of the boundary condition for
the ODE (6.48), by letting t → ∞ in (6.49), we have obtained the following
result.

Proposition 6.1. The expected exit time E[τa,b] equals Ma,b(x). In particular,
τa,b <∞ almost surely.

Note that Proposition 6.1 does not imply that e < ∞ almost surely. In
fact, we are going to study the limiting behavior of Xx

t as t → e and give
a simple non-explosion criterion for Xx

t . This is the content of the following
elegant result.

Theorem 6.14. (1) Suppose that s(l+) = −∞ and s(r−) =∞, then

P(e =∞) = P
(

lim sup
t→∞

Xx
t = r

)
= P

(
lim inf
t→∞

Xx
t = l

)
= 1.

(2) If s(l+) > −∞ and s(r−) =∞, then limt↑eX
x
t exists almost surely and

P
(

lim
t↑e

Xx
t = l

)
= P

(
sup
t<e

Xx
t < r

)
= 1.

A similar assertion holds if the roles of l and r are interchanged.
(3) If s(l+) > −∞ and s(r−) <∞, then

P
(

lim
t↑e

Xx
t = l

)
= 1− P

(
lim
t↑e

Xx
t = r

)
=

s(r−)− s(x)

s(r−)− s(l+)
. (6.50)

Proof. The main feature of the scale function is that (As)(x) = 0 for all x ∈ I,
where

(Af)(x) =
1

2
σ2(x)f ′′(x) + b(x)f ′(x)

is the generator of the SDE. Given l < a < x < b < r, we again consider the
first exit time τa,b. According to the martingale characterization for the weak
solution, we know that s(Xx

τa,b∧t)−s(x) is a martingale. In particular, we have

E
[
s(Xx

τa,b∧t)
]

= s(x).
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By letting t→∞ and noting that τa,b <∞ almost sure (c.f. Proposition 6.1),
we obtain that

s(a)P
(
Xx
τa,b

= a
)

+ s(b)P
(
Xx
τa,b

= b
)

= s(x)

as well as
P
(
Xx
τa,b

= a
)

+ P
(
Xx
τa,b

= b
)

= 1.

Therefore,

P
(
Xx
τa,b

= a
)

=
s(b)− s(x)

s(b)− s(a)
, P

(
Xx
τa,b

= b
)

=
s(x)− s(a)

s(b)− s(a)
.

(1) Suppose that s(l+) = −∞ and s(r−) =∞.
In this case, lima↓l P(Xx

τa,b
= b) = 1. Since {Xx

τa,b
= b} ⊆ {supt<eX

x
t > b}

for all a, we conclude that P(supt<eX
x
t > b) > 1. This is true for all b, which

implies that P(supt<eX
x
t = r) = 1. Similarly, we have P(inft<eX

x
t = l) = 1.

This in particular implies that P(e = ∞) = 1, for otherwise on the event
that {e < ∞}, we know that limt↑eXt exists and equals l or r, which is a
contradiction.

(2) Suppose that s(l+) > −∞ and s(r−) =∞.
In this case, by the discussion in the first case, we see that

P
(

inf
t<e

Xx
t = l

)
= 1. (6.51)

On the other hand, the process

Y a,b
t , s(Xx

τa,b∧t)− s(l+)

is a non-negative martingale. According to Fatou’s lemma, by letting a ↓ l, b ↑
r, we conclude that

Yt , s(Xx
e∧t)− s(l+)

is a non-negative supermartingale. In particular, with probability one limt→∞ Yt
exists finitely. This implies that limt↑e s(X

x
t ) exists finitely. But s is continuous

and strictly increasing, we therefore know that limt↑eX
x
t exists almost surely.

In view of (6.51), we conclude that P(limt↑eX
x
t = l) = 1. This also implies

that P(supt<eX
x
t < r) = 1 since {limt↑eX

x
t = l} ⊆ {supt<eX

x
t < r}.

The case when s(l+) = −∞ and s(r−) <∞ is treated in a similar way.
(3) Suppose that s(l+) > −∞ and s(r−) <∞.
In this case, we have

P
(

sup
t<e

Xx
t > b

)
>
s(x)− s(l+)

s(b)− s(l+)
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for all b. Therefore,

P
(

sup
t<e

Xx
t = r

)
>

s(x)− s(l+)

s(r−)− s(l+)
. (6.52)

Similarly,

P
(

inf
t<e

Xx
t = l

)
>

s(r−)− s(x)

s(r−)− s(l+)
. (6.53)

On the other hand, by the discussion in the second case, we see that limt↑eX
x
t

exists almost surely. Therefore,{
lim
t↑e

Xx
t = r

}
=

{
sup
t<e

Xx
t = r

}
,

{
lim
t↑e

Xx
t = l

}
=
{

inf
t<e

Xx
t = l

}
.

In particular, these two events are disjoint. Since the right hand sides of (6.52)
and (6.53) add up to one, we arrive at (6.50).

Remark 6.10. In the first case in Theorem 6.14, we see that Xx
t is recurrent, in

the sense that P(σy <∞) = 1 for every y ∈ I, where σy , inf{t > 0 : Xt = y}.
This case gives a simple non-explosion criterion for the SDE. In the second
and third cases, there exists an open subset U of (l, r), such that with positive
probability Xx

t never enters U . In these cases, it is not clear whether Xx
t

explodes in finite time with positive probability. The famous Feller’s test
studies explosion and non-explosion criteria in a pretty elegant way, in terms
of a more complicated quantity than just the scale function. We are not going
to discuss Feller’s test here, and we refer the reader to [4] for a more detailed
discussion.

Now we come back to the example of Bessel processes.
Let Bt = (B1

t , · · · , Bn
t ) be an n-dimensional Brownian motion. Rt , |Bt| is

known as the classical n-dimensional Bessel process. By applying Itô’s formula
to the process ρt , R2

t =
∑n

i=1(Bi
t)

2, formally we have

dρt = 2
n∑
i=1

Bi
tdB

i
t + ndt

= 2
√
ρt ·

∑n
i=1B

i
tdB

i
t√

ρt
+ ndt.

But the process

Wt ,
n∑
i=1

∫ t

0

Bi
sdB

i
s√

ρs
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is a one dimensional Brownian motion according to Lévy’s characterization
theorem. Therefore, ρt solves the SDE

dρt = 2
√
ρtdWt + ndt.

In terms of the SDE, we can generalize the previous notion of Bessel pro-
cesses to arbitrary (real) dimensions. To be precise, consider the one dimen-
sional SDE

dρt = 2
√
|ρt|dBt + αdt, (6.54)

where α > 0 is a constant.

Proposition 6.2. The SDE (6.54) is exact without explosion to infinity in
finite time. Moreover, if ρ0 > 0, then ρt > 0 for all t.

Proof. Since the coefficients are continuous, weak existence holds. From the
inequality |

√
x − √y| 6

√
x− y, pathwise uniqueness holds. Moreover, since√

|x| 6 (1 + |x|)/2, the solution cannot explode. Therefore, the SDE is exact
without explosion.

Now observe that the unique solution to the SDE{
dρt = 2

√
|ρt|dBt, t > 0,

ρ0 = 0,

is the trivial solution ρ ≡ 0. According to the comparison theorem (c.f. Theo-
rem 6.11), we conclude that the solution ρt to the SDE (6.54) is non-negative,
provided that ρ0 > 0.

Due to Proposition 6.2, when writing the SDE (6.54), we may drop the
absolute value inside the square root.

Definition 6.10. Given α > 0 and x > 0, the solution to the equation

ρt = x+ 2

∫ t

0

√
ρsdBs + αt

is called a squared Bessel process starting at x with dimension α and it is
simply denoted as BSEQα. The process Rt ,

√
ρt is called a Bessel process

starting at
√
x with dimension α and it is simply denoted as BSEα.

From the comparison theorem again, we easily see that if ρ1
t , ρ

2
t are BESQ

α1 ,BESQα2

starting at x1, x2 respectively such that α1 6 α2, x1 6 x2, then ρ1
t 6 ρ2

t for all
t.

An important property for Bessel processes is the additivity property. For
α > 0, x > 0, we use Qα

x to denote the law of BESQα starting at x on the path
space W 1.
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Proposition 6.3. Let α1, α2 > 0 and x1, x2 > 0. Then Qα
x1
∗ Qα2

x2
= Qα1+α2

x1+x2 ,
where ∗ means convolution of two measures.

Proof. In terms of processes, it is equivalent to prove the following. Suppose
that B1, B2 are two independent Brownian motions. Let ρit (i = 1, 2) be the
unique solution to the following SDE:{

dρit = 2
√
ρitdB

i
t + αidt, t > 0,

ρi0 = xi.

Then ρ3
t , ρ1

t + ρ2
t solves the SDE{

dρ3
t = 2

√
ρ3
tdBt + (α1 + α2)dt, t > 0,

ρ3
0 = x1 + x2,

for some Brownian motion Bt. Indeed, this is true because

ρ3
t = x1 + x2 + 2

∫ t

0

(√
ρ1
sdB

1
s +

√
ρ2
sdB

2
s

)
+ (α1 + α2)t

= x1 + x2 + 2

∫ t

0

√
ρ3
s ·

(√
ρ1
sdB

1
s√

ρ3
s

+

√
ρ2
sdB

2
s√

ρ3
s

)
+ (α1 + α2)t

= x1 + x2 + 2

∫ t

0

√
ρ3
sdBs + (α1 + α2)t,

where

Bt ,
∫ t

0

(√
ρ1
sdB

1
s√

ρ3
s

+

√
ρ2
sdB

2
s√

ρ3
s

)
is a Brownian motion according to Lévy’s characterization theorem.

We can also derive the Laplace transform of a BSEQα explicitly. In fact, if
α ∈ N, let ρit (1 6 i 6 α) be a BESQ1 starting at x/α (driven by independent
Brownian motions). According to Proposition 6.3, we have

E
[
e−λ(ρ1t+···+ραt )

]
=
(
E
[
e−λρ

1
t

])α
=

1

(1 + 2λt)α/2
e−

λx
(1+2λt) , (6.55)

where we have used the formula for the Laplace transform of the square of a
Gaussian random variable. This formula must be true as the additivity holds
even when α is not an integer, as indicated by Proposition 6.3. In other words,
we have the following result.
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Proposition 6.4. The formula (6.55) gives the Laplace transform for a BESQα

starting at x for arbitrary α, x > 0. In particular,

P(Rt ∈ dy) =
e−

(x2+y2)
2t

t(xy)α/2−1
yα−1Iα/2−1

(xy
t

)
, y > 0,

where Rt is a BESα starting at x, and

Iν(x) ,
(x

2

)ν ∞∑
n=0

(x/2)2n

n!Γ(ν + n+ 1)

is the modified Bessel function.

Proof. The function v(t, x) defined by the right hand side of (6.55) is in
C1,2
b ([0,∞)× [0,∞)) and satisfies ∂v/∂t = Av, where

(Af)(x) , 2|x|f ′′(x) + αf ′(x)

is the generator of the SDE (6.54). Given t0 > 0, define

u(t, x) , v(t0 − t, x), (t, x) ∈ [0, t0]× [0,∞).

By applying Itô’s formula to the process u(t, ρt), we can see that u(t, ρt) −
u(0, x) is martingale (one may see the integrability of the quadratic variation
process by comparing ρt with a BESQα′ where α′ > α is an integer). Therefore,

E[u(t0, ρt0)] = E[u(0, x)],

which is exactly the formula (6.55) at t0.
The second part follows from inverting the Laplace transform and the fact

that Rt =
√
ρt.

Another interesting property is the behavior at the boundary point 0.

Proposition 6.5. Let Rt be a BESα starting at
√
x > 0. If α > 2, then with

probability one, Rt never reaches 0.

Proof. It is equivalent to looking at ρt = R2
t . Let e , inf{t > 0 : ρt = 0}.

As we are only concerned with the process before e, we can use the model
(6.47) with I = (0,∞) and think of 0 and ∞ as two explosion times. In this
framework, consider the scale function

s(x) =

∫ x

1

exp

(
−
∫ y

1

2αdz

4z

)
dy =

∫ x

1

y−
α
2 dy.

In particular, s(0+) = −∞ if and only if α > 2, and s(∞) = ∞ if and only
if α 6 2. Therefore, the result follows from Theorem 6.14 (Case (1) for α = 2
and Case (2) for α > 2).
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Remark 6.11. By using Feller’s test of explosion, it is possible to show that if
0 6 α < 2, then with probability one, Rt reaches 0 in finite time. Moreover,
by using pathwise uniqueness and local times (we leave this part as a good
exercise), one can show that the point 0 is absorbing (i.e. the process remains
at 0 once it reaches it) if α = 0 and reflecting (i.e. whenever Rt0 = 0, we have
for any δ > 0, there exists t ∈ (t0, t0 + δ) such that Rt > 0) if 0 < α < 2.

As we mentioned before, Bessel processes are useful because they are related
to many interesting SDE models. Here we present two of them: the Cox-
Ingersoll-Ross processes and the Constant Elasticity of Variance processes.

(1) The Cox-Ingersoll-Ross (CIR) model
Consider the SDE{

drt = k(θ − rt)dt+ σ
√
rtdBt, t > 0,

r0 = x > 0,
(6.56)

where k · θ > 0 and σ 6= 0. Apparently, the SDE (6.56) is exact without
explosion. Moreover, according to the comparison theorem, we know that
rt > 0 for all t. The solution to this SDE is nothing but a time-change and
rescaling of a BESQ.

Proposition 6.6. The solution rt to the SDE (6.56) is given by

rt = e−ktρ

(
σ2

4k
(ekt − 1)

)
,

where ρt is a BESQα starting at x with α , 4kθ/σ2.

Proof. Let Zt , rte
kt. According to the integration by parts formula, we have

Zt = x+ θ(ekt − 1) +

∫ t

0

σe
ks
2

√
ZsdBs.

To relate Zt with a BESQ, let At be a non-negative, increasing function to be
determined and let Ct be the associated time-change. It follows that

ZCt = x+ θ(ekCt − 1) +

∫ Ct

0

σe
ks
2

√
ZsdBs

= x+ θ(ekCt − 1) + 2

∫ t

0

σe
kCs
2

2
·
√
ZCsdBCs .

In view of the SDE (6.54) for a BESQ, we want

Wt ,
∫ t

0

σe
kCs
2

2
dBCs
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to be a Brownian motion. This is equivalent to saying that

d〈W 〉t =
σ2ekCt

4
C ′tdt = dt,

and hence
σ2ekCt

4
C ′t = 1.

Since we also want C0 = 0, we obtain easily that

t =
(ekc − 1)σ2

4k
, c > 0,

and this is the increasing function c 7→ t = Ac that we need. Ct would just be
the inverse of At. If we set ρt , ZCt , then

ρt = x+
4kθ

σ2
t+ 2

∫ t

0

√
ρsdWs,

which shows that ρt is a BESQα starting at x with α , 4kθ/σ2. The result
then follows.

From Proposition 6.6 and Theorem 6.14, we know that rt never reaches 0
if kθ > σ2/2, provided r0 = x > 0.

(2) The Constant Elasticity of Variance (CEV) model
Consider the SDE{

dSt = St(µdt+ σSβt dBt), t > 0,

S0 = x > 0,
(6.57)

where β > 0 and σ 6= 0. Apparently, the SDE (6.57) is exact.
We first look at the case when µ = 0. Let τ0 , inf{t > 0 : St = 0}. Define

ρt ,
1

σ2β2
S−2β
t , t < τ0 ∧ e.

According to Itô’s formula, we have

ρt =
1

σ2β2
x−2β + 2

∫ t

0

√
ρsdWs +

(
2 +

1

β

)
t, t < τ0 ∧ e,

where Wt , −Bt is a Brownian motion. Therefore, ρt is a BESQα starting at
1

σ2β2x
−2β with α , 2+β−1 > 2. In particular, we know that ρt does not explode

in finite time and hence P(τ0 = ∞) = 1. In other words, St never reaches
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0. Moreover, according to Proposition 6.5, we know that ρt never reaches 0.
Therefore, St does not explode in finite time. Since

St =

(
1

σ2β2

) 1
2β

ρ
− 1

2β

t = x+ σ

∫ t

0

S1+β
u dBu,

we see that St is a local martingale with strictly decreasing expectation. In
particular, St is not a martingale (of course it is a non-negative supermartin-
gale). The distribution of St can be easily computed from the distribution of
BESQ.

Now we consider the case when µ 6= 0. Similar to the previous discussion,
let τ0 , inf{t > 0 : St = 0}, and define

rt ,
1

4β2
S−2β
t , t < τ0 ∧ e.

According to Itô’s formula, we obtain that

rt =
1

4β2
x−2β +

∫ t

0

k(θ − rs)ds+ (−σ) ·
∫ t

0

√
rsdBs, t < τ0 ∧ e.

where k , 2µβ, θ , (2β + 1)σ2/(4kβ). In particular, rt satisfies the CIR
model with parameters k, θ,−σ. Therefore, rt does not explode and hence
P(τ0 = ∞) = 1. Moreover, since kθ > σ2/2, we know from the previous
discussion on the CIR model that rt never reaches 0. In other words, St does
not explode. Since

St =

(
1

4β2

) 1
2β

r
− 1

2β

t ,

according to Proposition 6.6, the distribution of St can also be computed from
the distribution of BESQ explicitly.

6.8 Itô’s diffusion processes and partial differential equa-
tions

To conclude this course, we study Itô’s diffusion processes and explore their
relationship with partial differential equations. In particular, we are going
to show that solutions to a class of elliptic and parabolic equations admit
stochastic representations.

Throughout this subsection, we consider the multidimensional SDE{
dXt = σ(Xt)dBt + b(Xt)dt, t > 0,

X0 = x,
(6.58)
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where σ, b are Lipschitz continuous. We know from the Yamada-Watanabe
theory that this SDE is exact without explosion. Let {Xx

t : x ∈ Rn, t > 0}
be the unique solution to the SDE (6.58) on some given filtered probability
space.

Definition 6.11. {Xx
t : x ∈ Rn, t > 0} is called a time homogeneous Itô’s

diffusion process.

A important consequence of exactness is the following strong Markov prop-
erty.

Theorem 6.15. Suppose that τ is a finite {Ft}-stopping time. Then for any
x ∈ Rn, θ > 0 and f ∈ Bb(Rn), we have

E[f(Xx
τ+θ)|Fτ ] = E[f(Xy

θ )]|y=Xx
τ
.

Proof. From the SDE (6.58), for θ > 0, we have

Xx
τ+θ = x+

∫ τ+θ

0

σ(Xx
s )dBs +

∫ τ+θ

0

b(Xx
s )ds

= Xx
τ +

∫ τ+θ

τ

σ(Xx
s )dBs +

∫ τ+θ

τ

b(Xx
s )ds

= Xx
τ +

∫ θ

0

σ(Xx
τ+u)dB

(τ)
u +

∫ θ

0

b(Xx
τ+u)du,

where B(τ)
u , Bτ+u − Bτ is a Brownian motion. Therefore, the process θ 7→

Xx
τ+θ solves the SDE (6.58) with initial data Xx

τ and Brownian motion B(τ).
According to exactness, Xx

τ+θ is a deterministic functional of Xx
τ and B(τ), and

we may write
Xx
τ+θ = F (θ,Xx

τ , B
(τ))

for some deterministic functional F, where θ 7→ F (θ, y, B) gives the unique
solution to the SDE (6.58) starting at y with a given Brownian motion B. Now
since Xx

τ is Fτ -measurable and B(τ) is independent of Fτ , we see immediately
that

E[f(Xx
τ+θ)|Fτ ] = E

[
f
(
F (θ,Xx

τ , B
(τ))
)
|Fτ
]

= E [f (F (θ, y, B))] |y=Xx
τ

= E[f(Xy
θ )]|y=Xx

τ
.
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Now recall that the generator A of the SDE (6.58) is the second order
differential operator

(Af)(x) =
1

2

n∑
i,j=1

aij(x)
∂2f

∂xi∂xj
+

n∑
i=1

bi(x)
∂f

∂xi
,

where a , σ · σ∗.
In the theory of elliptic PDEs, we are usually interested in the boundary

value problem associated with the operator A. More precisely, suppose that
D is a bounded domain in Rn. Let k : D → [0,∞), g : D → R1 and
f : ∂D → R1 be continuous functions. We consider the following (Dirichlet)
boundary value problem: find a function u ∈ C(D) ∩ C2(D), such that{

Au− k · u = −g, x ∈ D,
u = f, x ∈ ∂D.

(6.59)

The existence of such u is well studied in PDE theory under suitable regular-
ity conditions on the coefficients and the geometry of ∂D. Here we are not
concerned with existence, but we are interested in representing the solution in
terms of Itô’s diffusion process under the assumption of existence.

Theorem 6.16. Suppose that there exists u ∈ C(D) ∩ C2(D) which solves
the boundary value problem (6.59). Let Xx

t be the solution to the SDE (6.58).
Assume that the exit time

τD , inf{t > 0 : Xx
t /∈ D}

satisfies
E[τD] <∞ (6.60)

for every x ∈ D. Then u is given by

u(x) = E
[
f(Xx

τD
) exp

(
−
∫ τD

0

k(Xx
s )ds

)
+

∫ τD

0

g(Xx
s ) exp

(
−
∫ s

0

k(Xx
θ )dθ

)
ds

]
. (6.61)

In particular, the solution to the boundary value problem is unique in C(D) ∩
C2(D).
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Proof. Fix x ∈ D. According to Itô’s formula and the elliptic equation for u,
we have

u(Xx
τD∧t) = u(x) +

n∑
i=1

d∑
k=1

∫ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s +

∫ τD∧t

0

(Au)(Xx
s )ds

= u(x) +
n∑
i=1

d∑
k=1

∫ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s

+

∫ τD∧t

0

k(Xx
s )u(Xx

s )ds−
∫ τD∧t

0

g(Xx
s )ds.

By further applying the integration by parts formula to the process

u(Xx
τD∧t) · exp(−

∫ τD∧t

0

k(Xx
s )ds), t > 0,

we conclude that the process

Mt , u(Xx
τD∧t) · exp

(
−
∫ τD∧t

0

k(Xx
s )ds

)
+

∫ τD∧t

0

g(Xx
s ) exp

(
−
∫ s

0

k(Xx
θ )dθ

)
ds

= u(x) +
n∑
i=1

d∑
k=1

∫ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s ) exp

(
−
∫ s

0

k(Xx
θ )dθ

)
dBk

s

is a continuous local martingale. Moreover, from continuity we see that

|Mt| 6 C(1 + τD), ∀t > 0.

According to the assumption (6.60), we conclude that Mt is of class (DL). In
particular, Mt is a martingale. Indeed, the same reason shows that Mt is a
uniformly integrable martingale. Therefore,

E[M0] = E[M∞],

which yields the desired formula (6.61).

One might wonder when the condition (6.60) holds. Here is a simple suffi-
cient condition.

Proposition 6.7. Suppose that for some 1 6 i 6 n, we have

inf
x∈D

aii(x) > 0.

Then (6.60) holds for every x ∈ D.
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Proof. Define
p , inf

x∈D
aii(x), q , sup

x∈D
|b(x)|, r , inf

x∈D
xi.

Let λ > 2q/p, and define

h(x) , −eλx
i

, x ∈ Rn.

Then we have

−(Ah)(x) = eλx
i ·
(

1

2
λ2aii(x) + λbi(x)

)
>

1

2
λpeλr

(
λ− 2q

p

)
=: γ > 0,

for every x ∈ D. On the other hand, for fixed x ∈ D, we know from the mar-
tingale characterization that the process h(Xx

τD∧t)− h(x)−
∫ τD∧t

0
(Ah)(Xx

s )ds
is a martingale. Therefore,

E[h(Xx
τD∧t)] = h(x) + E

[∫ τD∧t

0

(Ah)(Xx
s )ds

]
6 h(x)− γE[τD ∧ t],

which implies that

E[τD ∧ t] 6
h(x)− E[h(Xx

τD∧t)]

γ
6

2 supx∈D |h(x)|
γ

.

Therefore, by letting t→∞, we conclude that (6.60) holds.

Next we turn to the parabolic problem. The idea of the analysis is similar
to the elliptic problem.

We fix an arbitrary T > 0. Let f : Rn → R1, k : [0, T ]×Rn → [0,∞) and
g : [0, T ] × Rn → [0,∞) be continuous functions. We consider the following
backward Cauchy problem: find a function v ∈ C([0, T ]×Rn)∩C1,2([0, T )×Rn)
(continuously differentiable in t and twice continuously differentiable in x),
such that {

−∂v
∂t

+ k · v = Av + g, (t, x) ∈ [0, T )× Rn,

v(T, x) = f(x), x ∈ Rn.
(6.62)

Here A acts on v by differentiating with respect to the spatial variable. Again
we are not concerned with existence which is contained in the standard parabolic
theory, and we are looking for a stochastic representation for the existing so-
lution.

Suppose that f, g satisfy the following polynomial growth condition:

|f(x)| 6 C(1 + |x|µ), sup
06t6T

|g(t, x)| 6 C(1 + |x|µ), ∀x ∈ Rn, (6.63)

for some C, µ > 0. Then we have the following result which is known as the
Feynman-Kac formula.
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Theorem 6.17. Suppose that v ∈ C([0, T ]×Rn)∩C1,2([0, T )×Rn) is a solution
to the backward Cauchy problem (6.62) which satisfies the polynomial growth
condition:

sup
06t6T

|v(t, x)| 6 K(1 + |x|λ), ∀x ∈ Rn,

for some K,λ > 0. Then v has a representation

v(t, x) = E
[
f(Xx

T−t) exp

(
−
∫ T−t

0

k(t+ s,Xx
s )ds

)
+

∫ T−t

0

g(t+ s,Xx
s ) exp

(
−
∫ s

0

k(t+ θ,Xx
θ )dθ

)
ds

]
In particular, the solution is unique in the space of C([0, T ]×Rn)∩C1,2([0, T )×
Rn)-functions which satisfy the polynomial growth condition.

Proof. The proof is essentially the same is the one of Theorem 6.16. Given
0 6 t 6 T, by applying Itô’s formula to the process together with the parabolic
equation for v,

Ys , v(t+ s,Xx
s ) · exp

(
−
∫ s

0

k(t+ θ,Xx
θ )dθ

)
, 0 6 s 6 T − t,

we arrive at

dYs = −g(t+ s,Xx
s ) · exp

(
−
∫ s

0

k(t+ θ,Xx
θ )dθ

)
ds

+
n∑
i=1

d∑
k=1

exp

(
−
∫ s

0

k(t+ θ,Xx
θ )dθ

)
· ∂v
∂xi

(t+ s,Xx
s )σik(X

x
s )dBk

s

for 0 6 s 6 T − t. On the other hand, since σ, b satisfy the linear growth
condition which is a consequence of Lipschitz continuity, we see from the BDG
inequalities and Gronwall’s inequality that

E
[

sup
06s6t

|Xx
s |p
]
<∞, ∀x ∈ Rn, t > 0, p > 2.

In particular, together with the polynomial growth condition for g and v, we
conclude that the local martingale

Ys − v(t, x) +

∫ s

0

g(t+ θ,Xx
θ ) · exp

(
−
∫ θ

0

k(t+ r,Xx
r )dr

)
dθ, 0 6 s 6 T − t,
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is indeed a martingale (one might show that this local martingale is of class
(DL)). Therefore, we arrive at

v(t, x) = E
[
YT−t +

∫ T−t

0

g(t+ s,Xx
s ) exp

(
−
∫ s

0

k(t+ θ,Xx
θ )dθ

)
ds

]
,

which yields the desired formula.

We can see from the proof of Theorem 6.17 that the backward Cauchy
problem is a more natural one to consider from the probabilistic point of view.
Of course one can consider the following classical forward Cauchy problem,
which is indeed a direct consequence of the backward case.

Corollary 6.2. Let f : Rn → R1, k : [0,∞)×Rn → [0,∞) and g : [0,∞)×
Rn → R1 be continuous functions such that f, g have local polynomial growth
in the sense that for each T > 0, there exists C, µ > 0 such that (6.63) holds.
Suppose that u ∈ C([0,∞)×Rn)×C1,2((0,∞)×Rn) is a solution to the Cauchy
problem {

∂u
∂t

+ k · u = Au+ g, (t, x) ∈ (0,∞)× Rn,

u(0, x) = f(x), x ∈ Rn,
(6.64)

which has local polynomial growth in the same sense. Then u is given by

u(t, x) = E
[
f(Xx

t ) exp

(
−
∫ t

0

k(t− s,Xx
s )ds

)
+

∫ t

0

g(t− s,Xx
s ) exp

(
−
∫ s

0

k(t− θ,Xx
θ )dθ

)
ds

]
. (6.65)

In particular, the solution is unique in the space of C([0,∞)×Rn)∩C1,2((0,∞)×
Rn)-functions which have local polynomial growth.

Proof. For fixed T > 0, define

v(t, x) , u(T − t, x), 0 6 t 6 T.

Then v solves the backward Cauchy problem. The result follows from applying
Theorem 6.62 to v.

Remark 6.12. A nice consequence of Theorem 6.16 (the elliptic problem) is a
maximum principle: suppose that g > 0, f > 0, then u > 0. Similar result
holds for the backward and forward parabolic problems.

Remark 6.13. The Markov property and the relationship between SDEs and
PDEs can be extended to the time inhomogeneous situation.
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In the end, we give a brief answer (not entirely rigorous) to the two fun-
damental questions that we raised in the introduction of this section. Recall
that Xx

t is the solution to the SDE (6.58).
(1) According to the martingale characterization for the SDE (6.58) with

some boundedness estimates, we know that the process

f(Xx
t )− f(x)−

∫ t

0

(Af)(Xx
s )ds

is a martingale. Therefore, it is natural to expect that

E[f(Xx
t )]− f(x)

t
=

1

t

∫ t

0

E [(Af)(Xx
s )] ds→ (Af)(x)

as t ↓ 0.
(2) Let p(t, x, y) be the fundamental solution (assuming its existence) to

the parabolic equation ∂u
∂t
−A∗u = 0, where

A∗ : ϕ(·) 7→ 1

2

n∑
i,j=1

∂2

∂xi∂xj
(
aij(·)ϕ(·)

)
−

n∑
i=1

∂

∂xi
(
bi(·)ϕ(·)

)
is the formal adjoint of A. In other words, p(t, x, y) satisfies{

∂p
∂t
− (A∗p) = 0, t > 0,

p(0, x, y) = δx(y),

where A∗ acts on the y variable (the forward variable) of p. Equivalently, p
satisfies the backward equation

∂p

∂t
−Ap = 0

where A now acts on the x variable (the backward variable). It follows that
for every f : Rn → R1, the function

u(t, x) ,
∫
Rn
p(t, x, y)f(y)dy

solves the forward Cauchy problem (6.64) (k = 0, g = 0) with initial condition
given by f. According to Corollary 6.2, we know that

u(t, x) = E[f(Xx
t )].

This implies that the distribution of Xx
t has a density with respect to the

Lebesgue measure which coincides with p(t, x, y).
In general, if p(t, x, y) does not exist, the family of probability measures

P (t, x, dy) , P (Xx
t ∈ dy) gives the fundamental solution to the same equation

in the distributional sense.
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Remark 6.14. There are still technical gaps to fill in order to make the previous
argument work. Even so, a rather subtle point is that it is not at all clear that if
we define u(t, x) by the right hand side of (6.65) (respectively, define p(t, x, y) ,
P(Xx

t ∈ dy)/dy if it exists), then u(t, x) (respectively, p(t, x, y)) solves the
forward Cauchy problem (respectively, defines a fundamental solution). This
philosophy of proving existence was not fully explored because it turns out to
be not as efficient as traditional PDE methods in general. The elegance of the
stochastic representation lies in the fact that once a solution exists, it has to
be in the neat probabilistic form that we have seen here, which gives us solid
intuition about its structure and probabilistic ways to study its properties. On
the practical side, it enables us to simulate the solution to the PDE from a
probabilistic point of view (the so-called Monte Carlo method), which proves
to be rather efficient and successful.

6.9 Problems

Problem 6.1. Show that the following SDEs are all exact. Solve them ex-
plicitly with the given initial data. Here Bt is a one dimensional Brownian
motion.

(1) The stochastic harmonic oscillator model:{
dXt = Ytdt,

mdYt = −kXtdt− cYtdt+ σdBt,

where m, k, c, σ are positive constants. Initial data is arbitrary.
(2) The stochastic RLC circuit model:{

dXt = Ytdt,

LdYt = −RYtdt− 1
C
Xtdt+G(t)dt+ αdBt,

where R,C, L, α are positive constants and G(t) is a given deterministic func-
tion. Initial data is arbitrary.

(3) The stochastic population growth model:

dXt = rXt(K −Xt)dt+ βXtdBt,

where r,K, β are positive constants. Initial data is X0 = x > 0.

Problem 6.2. (1) Let Bt be a one dimensional Brownian motion on a filtered
Probability space (Ω,F ,P; {Ft}) which satisfies the usual conditions.

(i) Define Xt , Bt − tB1 (0 6 t 6 1). Show that Xt is a Gaussian process.
Compute its mean and covariance function ρ(s, t) , E[XsXt] (0 6 s, t 6 1).
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(ii) Find the solution Yt (0 6 t < 1) to the SDE{
dYt = dBt − Yt

1−tdt, 0 6 t < 1,

Y0 = 0.

Show that Yt has the same law as Xt (0 6 t < 1). In particular, limt↑1 Yt = 0
almost surely and we can define Y1 , 0. This defines a process Yt (0 6 t 6 1)
which has the same law as Xt (0 6 t 6 1).

(iii) Show that

P
(

sup
06t61

Yt > x

)
= e−2x2 , x > 0.

(2) For x, y ∈ R1, define the process

Xx,y
t , Bx

t + t(y −Bx
1 ), t ∈ [0, 1],

where {Bx
t : 0 6 t 6 1} is a one dimensional Brownian motion starting at x.

Xx,y
t is known as the Brownian bridge from x to y. Let µx (respectively, µx,y) be

the law of the process Bx
t (respectively, Xx,y

t ) on the path space C([0, 1];R1).
Show that µx,y coincides with the conditional distribution of {Bx

t : 0 6 t 6 1}
given Bx

1 = y, in the sense that

Eµx [Φ|Bx
1 ] = Eµx,Bx1 [Φ] µx − a.s.,

for all bounded measurable Φ : C([0, 1];R1)→ R1.

Problem 6.3. Consider the one dimensional SDE

dYt = 3Y 2
t dt− 2|Yt|

3
2dBt.

(1) Show that this SDE is exact (in the context with possible explosion).
(2) Show that if Y0 > 0, then Yt > 0 for all t up to its explosion time e.
(3) Suppose that Y0 = 1. Compute P(e > t) for t > 0. Conclude that

P(e <∞) = 1 but E[e] =∞.

Problem 6.4. (1) Let H,G be continuous semimartingales with 〈H,G〉 = 0
and H0 = 0. Show that if

Zt , EGt
∫ t

0

(EGs )−1dHs,

where EGt is the stochastic exponential of G defined by

EGt , eGt−
1
2
〈G〉t ,
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then Zt satisfies

Zt = Ht +

∫ t

0

ZsdGs.

(2) Consider the following two SDEs on R1:

dX i
t = σ(t,Xt)dBt + bi(Xt)dt, i = 1, 2,

where σ : [0,∞) × R1 → R1, bi : R1 → R1 are bounded continuous, σ is
Lipschitz continuous and one of b1, b2 is Lipschitz continuous. Suppose further
that b1 < b2 everywhere. Let X i

t be a solution to the above SDE with i =
1, 2 respectively, defined on the same filtered probability space with the same
Brownian motion, such thatX1

0 6 X2
0 almost surely. By putting Zt = X2

t −X1
t ,

and choosing a suitable positive bounded variation processHt and a continuous
semimartingale Gt in the first part of the problem, show that

P(X1
t < X2

t ∀t > 0) = 1.

Give an example to show that if σ is not Lipschitz continuous, then the con-
clusion can be false even b1, b2 are Lipschitz continuous.

Problem 6.5. (1) Let (a, b) be a finite open interval on R1, and let K :
[a, b] → [0,∞) be a non-negative continuous function. Suppose that u(t, x) ∈
C ([0,∞)× [a, b])∩C1,2 ((0,∞)× (a, b)) is a bounded solution to the following
initial-boundary value problem for the heat equation with cooling coefficient
K : 

∂u
∂t

= 1
2
∂2u
∂x2
−K(x)u, (t, x) ∈ (0,∞)× (a, b),

u(t, a) = 0, u(t, b) = 0, t > 0,

u(0, x) = f(x), a 6 x 6 b,

where f is a continuous function with compact support inside (a, b). Establish
a stochastic representation for u(t, x).

(2) Let Bx
t be a one dimensional Brownian motion starting at x, where

a < x < b. Define τx , inf{t > 0 : Bx
t /∈ (a, b)}. By using the result of Part

(1) in the case when K ≡ 0, and solving the corresponding initial-boundary
value problem explicitly, show that

P (Bx
t ∈ dy, t < τx) =

∞∑
n=0

e−
n2π2t
2(b−a) sin

(
nπ(x− a)

b− a

)
sin

(
nπ(y − a)

b− a

)
, t > 0, y ∈ (a, b).
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