
Solutions for Problem Set Five

Problem 1. (1) Necessity. Suppose that M ∈ H2
0 . Then Mt → M∞ in L2.

Therefore, we may take limit on the identity

E[M2
t ] = E[〈M〉t]

to conclude that
E[〈M〉∞] = E[M2

∞] <∞.
Sufficiency. Suppose that E[〈M〉∞] <∞. According to the BDG inequalities,

we know that
E
[
sup
t>0
|Mt|2

]
<∞. (1)

Let τn be a sequence of stopping times converging to infinity such that M τn is
a martingale for each n. Then for s < t and A ∈ Fs, we have E[Mτn∧t1A] =
E[Mτn∧s1A]. Moreover, (1) implies that {Mτn∧t : n > 1} and {Mτn∧s : n > 1}
are both bounded in L2 and hence uniformly integrable. Therefore, we conclude
that Mt is a martingale. The L2-boundedness follows again from (1).

(2) Necessity. Suppose that 〈M〉t = f(t) for some deterministic continuous
increasing function f vanishing at t = 0. According to (1) (more precisely, a local
version of (1), that {Mt,Ft : 0 6 t 6 T} is a square integrable martingale if
and only of E[〈M〉T ] <∞). Exactly the same argument as in the proof of Lévy’s
characterization theorem shows that

E
[
eiθ(Mt−Ms)|Fs

]
= e−

1
2
θ2(f(t)−f(s)).

Therefore,Mt is a Gaussian martingale with independent increments (indeedMt−
Ms and Fs are independent).

Sufficiency. Suppose that Mt is a Gaussian martingale. Let {FMt } be the
augmented natural filtration of Mt. It follows that FMt ⊆ Ft and Mt is an {FMt }-
martingale. Moreover, since

E[Ms(Mt −Ms)] = E [MsE[Mt −Ms|Fs]] = 0,
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we conclude that Mt has independent increments. Define f(t) , E[M2
t ]. It is not

hard to see that f(t) is continuous, increasing and vanishes at t = 0. Moreover,

E
[
M2

t − f(t)|FMs
]

= E
[
(Mt −Ms +Ms)

2|FMs
]
− f(t)

= f(t)− f(s) +M2
s − f(t)

= M2
s − f(s).

Therefore, the quadratic variation process of Mt with respect to the filtration
{FMt } is f(t). According to Proposition 5.7 in the lecture notes, we conclude that

lim
‖Pn‖→0

∑
ti∈Pn

(Mti −Mti−1
)2 = f(t)

in probability. But since M ∈ Mloc
0 with respect to the filtration {Ft}, the

quadratic variation process of Mt with respect to {Ft} also satisfies Proposition
5.7. Therefore, 〈M〉t = f(t). As in the necessity part, we can also conclude that
Mt −Ms and Fs are independent.

(3) Given n > 1, let τn , inf{t > 0 : 〈M〉t > n}. Then 〈M τn〉t = 〈M〉τnt 6 n
for all t, which implies from (1) that M τn ∈ H2

0 . In particular, M τn
t converges

almost surely to a finite random variable as t → ∞. One could of course take a
single null set outside which this statement is true for all n > 1. Since

{〈M〉∞ <∞} ⊆
∞⋃
n

{τn =∞}.

It follows that with probability one, for every ω ∈ {〈M〉∞ < ∞}, Mt(ω) =

M
τn(ω)
t (ω) (take n to be such that τn(ω) =∞) converges to a finite limit. There-

fore, with probability one, we have

{〈M〉∞ <∞} ⊆
{

lim
t→∞

Mt exists finitely
}
.

On the other hand, by the generalized Dambis-Dubins-Schwarz theorem (c.f.
Theorem 5.9), we know that Mt = B〈M〉t for some Brownian motion possibly
defined on an enlarged space. According to Proposition 4.2 in the lecture notes,
we know that with probability one,

lim sup
t→∞

Bt =∞, lim inf
t→∞

Bt = −∞.

But if 〈M〉∞ =∞, we have limt→∞Ct =∞ where Ct is the time-change associated
with 〈M〉t. Therefore, with probability one,

{〈M〉∞ =∞} ⊆
{

lim sup
t→∞

Mt =∞, lim inf
t→∞

Mt = −∞
}
.
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Problem 2. (1) Since f(x) , |x|−1 is harmonic on R3\{0} and from Problem
Sheet 4, Problem 7, (2), (iv) that Bt never hits x = 0 on (0,∞), we conclude
from Itô’s formula that Xt = 1/|B1+t| is a continuous {FB1+t}-local martingale.
Moreover, we have

E[|Xt|2] = E[|B1+t|−2] =
C2

1 + t
,

where C2 , E[|Z|−2] with Z ∼ N (0, 1). Therefore, {Xt} is uniformly bounded in
L2. However, it is not a martingale because

E[Xt] = E[|B1+t|−1] =
C1√
1 + t

is not a constant in t, where C1 , E[|Z|−1] with Z ∼ N (0, 1).
(2) Let Yt be a uniformly integrable continuous submartingale with a Doob-

Meyer decomposition Yt = Mt + At. Since Yt → Y∞ in L1, we see that A∞ ∈ L1

which shows that A∞ is of class (D). Moreover, {Mt} is easily seen to by uniformly
integrable, which implies from the optional sampling theorem that

Mτ = E[M∞|Fτ ], ∀τ finite stopping time,

where M∞ , limt→∞Mt. Therefore, Yt is of class (D).
Now we show that Xt is not of class (D). Note that Xt is a non-negative

supermartingale with a last element X∞ = 0. Define τn , inf{t > 0 : |Xt| > n}.
It follows that

Xτn =

(
1

|B1|
∨ n
)
1{τn<∞}.

In general, τn is not finite almost surely. Indeed, from Problem Sheet 4, Problem
7, (2), (ii), we know that

P(τn <∞|B1) =
1

n|B1|
∧ 1,

and hence
P(τn <∞) = E [P(τn <∞|B1)] = E

[
1

n|B1|
∧ 1

]
,

which is easily seen to be strictly less than 1 by direct computation. Therefore, we
are going to show that the family {Xτn∧m : n,m > 1} is not uniformly integrable.

We first show that there exists c > 0, such that for every λ > 0, there exists
some n > 1 with

E[Xτn1{Xτn>λ}] > c. (2)
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Indeed, observe that

Xτn1{Xτn>λ} =

(
1

|B1|
∨ n
)
1{

1
|B1|
∨n>λ, τn<∞

}.
If n > λ, then

Xτn1{Xτn>λ} > n1{τn<∞},

and hence
E
[
Xτn1{Xτn>λ}

]
> nP(τn <∞) = E

[
1

|B1|
∧ n
]
.

Apparently, there exists n0 > 1, such that for any n > n0, we have

E
[

1

|B1|
∧ n
]
>

1

2
E
[

1

|B1|

]
=: c > 0.

Taking n = n0 ∨ λ will verify (2).
On the other hand, for every n > 0, we have

Xτn1{Xτn>λ} = lim
m→∞

Xτn∧m1{Xτn∧m>λ},

and Fatou’s lemma shows that

E
[
Xτn1{Xτn>λ}

]
6 lim inf

m→∞
E
[
Xτn∧m1{Xτn∧m>λ}

]
.

Therefore, for the previous particular choice of n, we can further find m, such that

E
[
Xτn∧m1{Xτn∧m>λ}

]
>
c

2
.

This proves that {Xτn∧m : n,m > 1} cannot be uniformly integrable, and
hence Xt is not of class (D). In particular, it does not have a Doob-Meyer decom-
position.

Problem 3. (1) Since 1Γ1∩Γ2 = 1Γ1 · 1Γ2 , and 1Γ2\Γ1 = 1Γ2 − 1Γ1 if Γ1 ⊆ Γ2, it
is seen that P is closed under complement and finite union. Moreover, if Γn ↑ Γ,
then 1Γn ↑ 1Γ. From this we also see that P is closed under increasing limit.
Therefore, P is a σ-algebra. To see that P is a sub-σ-algebra of B([0,∞)) ⊗ F ,
we only need to observe that

Γ
⋂

([0, t]× Ω) = {(s, ω) ∈ [0, t]× Ω : 1Γ(s, ω) = 1} ∈ B([0, t])⊗Ft.
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(2) First of all, it suffices to prove the claim on t ∈ [0, T ]. Indeed, if for each
T > 0, there exists a process

Y T : R1 × [0, T ]× Ω→ R1

which verifies the claim for t ∈ [0, T ], then the process

Y ,

(
lim sup
T→∞

Y T

)
· 1{lim supT→∞ Y T is finite}

will have the desired properties on [0,∞).
Now consider a fixed time interval [0, T ]. It is apparent that the claim is true

for Φ of the form
Φa
t (ω) = f(a)Ht(ω), (3)

where f is a bounded B(R1)-measurable function andH is a bounded progressively
measurable process. Let S be the vector space spanned by such Φ. Then the claim
is true for all Φ ∈ S.

If Φ is a general bounded B(R1) ⊗ P-measurable process, a standard mea-
sure theoretic argument shows that there exists a sequence Φn ∈ S, such that
|(Φn)at (ω)| 6 |Φa

t (ω)| and (Φn)at (ω) → Φa
t (ω) for every (a, t, ω) ∈ R1 × [0, T ]× Ω.

For each n, let Yn be the process with the desired properties associated with Φn. It
follows from the stochastic dominated convergence theorem that for every a ∈ R1,

Y a
n → IX(Φa) (4)

in probability uniformly on [0, T ], and

Y µ
n ,

∫
R1

Y a
n µ(da) = IX(Φµ

n)→ IX(Φµ) (5)

in probability uniformly on [0, T ], where Φµ
n ,

∫
R1 Φa

nµ(da) (similarly for Φµ).
Of course we want to define Y as the limit of Yn. More precisely, we want to

take a subsequence nk (depending on a), such that along this subsequence we can
define Y as the pointwise limit of Yn. Here the main difficulty lies in choosing a
subsequence nk(a) in a way which is measurable in a.

To do so, we first define

Ua
n,m(ω) , sup

06t6T
|(Yn)at (ω)− (Ym)at (ω)| .
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It is apparent that (a, ω) 7→ Ua
n,m(ω) is B(R1) ⊗ F -measurable. Moreover, we

know that for each a ∈ R1, Ua
n,m converges to zero in probability as n,m → ∞.

We define n0(a) , 1, and for each k > 1, define

nk(a) , inf

{
n > k ∨ nk−1(a) : sup

m,m′>n
P(Ua

m,m′ > 2−k) 6 2−k
}
.

Then it is easy to see that nk is B(R1)-measurable, and for every a ∈ R1, nk(a) ↑
∞.

Now we define Ψk , Φnk and Zk , Ynk , and let

V a
n,m(ω) , sup

06t6T
|(Zn)at (ω)− (Zm)at (ω)| .

By the definition of nk, we know that

P(V a
k,k+p > 2−k) 6 2−k

for all a ∈ R1 and k, p > 1. According to the Borel-Cantelli lemma, for every
a ∈ R1, with probability one, (Zn)a is a Cauchy sequence in C([0, T ];R1). More
precisely, let

A ,

{
(a, ω) : lim

n,m→∞
V a
n,m(ω) = 0

}
∈ B(R1)⊗F .

Then for every a ∈ R1, ∫
Ω

1Ac(a, ω)P(dω) = 0.

According to Fubini’s theorem, we conclude that µ⊗P(A) = 0 and with probability
one, ∫

R1

1Ac(a, ω)µ(da) = 0.

Finally, we define

Y ,

(
lim sup
k→∞

Zk

)
· 1{lim supk→∞ Zk is finite}.

Apparently Y is B(R1) ⊗ P-measurable. According to (4) and (5), and the fact
that Y is the uniform limit of Zk on A where µ ⊗ P(A) = 0, we conclude that
with probability one, for each a ∈ R1, Y a = IX(Φa), and

Y µ ,
∫
R1

Y aµ(da) = IX(Φµ).

6



Here a technical point is to see that with probability one,
∫
R1 Z

a
kµ(da)→

∫
R1 Y

aµ(da)
in probability uniformly on [0, T ]. One could see this by first considering the case
where X is bounded (in which case one has convergence in L2) and then using
the standard localization argument to remove the localization (c.f. the proof of
Proposition 5.14).

Problem 4. (1) Define

Xt , exp

(∫ t

0

σsdBs +

∫ t

0

(
µs −

1

2
σ2
s

)
ds

)
, t > 0.

From Itô’s formula, we see immediately that Xt satisfies the desired integral equa-
tion.

Now suppose that Yt is another process that also satisfies the integral equation.
Let

Zt , YtX
−1
t = Yt exp

(
−
∫ t

0

σsdBs −
∫ t

0

(
µs −

1

2
σ2
s

)
ds

)
Itô’s formula again, or more precisely, the integration by parts formula, will im-
ply that the martingale part and the bounded variation part of the continuous
semimartingale Zt are identically zero. Therefore,

Zt = Z0 = 1,

which shows that Yt = Xt. In other words, there exists a unique continuous,
{Ft}-adapted process which satisfies the integral equation.

(2) First of all, we know that

Xt − 1−
∫ t

0

Xsµsds =

∫ t

0

XsσsdBs, 0 6 t 6 T,

is a continuous local martingale under P. Suppose we want to find a process qt
which is used to define the change of measure in the way that

P̃T (A) , E
[
exp

(∫ T

0

qsdBs −
1

2

∫ T

0

q2
sds

)
1A

]
, A ∈ FT .

Then we know from Theorem 5.16 in the lecture notes that the process∫ t

0

XsσsdBs −
∫ t

0

qsXsσsds = Xt − 1−
∫ t

0

Xsµsds−
∫ t

0

qsXsσsds
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is a continuous local martingale under P̃T (provided that the exponential martin-
gale is a true martingale so that P̃T is a probability measure). Now we want this
process to be Xt − 1, therefore we just need to choose

qt , −µtσ−1
t .

Since µt is uniformly bounded and σ > C, in this way we can see easily that
Novikov’s condition holds for the continuous local martingale

∫ t
0
qsdBs, which

verifies that the exponential martingale is a true martingale.

Problem 5. (1) From Itô’s formula, we have

B2
T = T + 2

∫ T

0

BtdBt,

so Φt = 2Bt.
Similarly,

B3
T = 3

∫ T

0

B2
t dBt + 3

∫ T

0

Btdt

= 3

∫ T

0

B2
t dBt + 3TBT − 3

∫ T

0

tdBt

=

∫ T

0

(
3B2

t + 3T − 3t
)
dBt,

so Φt = 3B2
t + 3T − 3t.

(2) Fix T > 0, define σT , inf{t > T : Bt = 0}. Consider Φt(ω) , 1[0,σT (ω)](t).
Apparently 0 < σT < ∞ almost surely (note that BT 6= 0, and B is unbounded
from above and from below almost surely), so we know that

0 <

∫ ∞
0

Φ2
tdt = σT <∞

almost surely. However, ∫ ∞
0

ΦtdBt = BσT −B0 = 0.

Therefore, uniqueness for Theorem 5.11 does not hold in the space L2
loc(B).

(3) For 0 6 t 6 1, let Mt , E[S1|FBt ]. Since

S1 = max

{
St, sup

t6u61
Bu

}
= max

{
St, Bt + sup

t6u61
(Bu −Bt)

}
,
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and the Brownian motion has independent increments, we know that

Mt = F (St, Bt, t), (6)

where

F (x, y, t) , E
[
max

{
x, y + sup

t6u61

(
Bu −Bt)}

]
= E [max {x, y + S1−t}] .

By using the distribution formula for S1−t, we see that

F (x, y, t) =

∫ ∞
−∞

max{x, y +
√

1− t|u|}ϕ(u)du,

where ϕ is the density for a standard Gaussian distribution.
Since F is continuous, we see that Mt is a continuous martingale (more gen-

erally, the reader should think about why every càdlàg {FBt }-martingale is con-
tinuous). Moreover, F ∈ C2 on t < 1. Therefore, according to Itô’s formula, we
have

Mt = M0 +

∫ t

0

∂F

∂y
(Su, Bu, u)dBu, t < 1.

Now
∂F

∂y
(x, y, t) =

∫ ∞
−∞

1{y+
√

1−t|u|>x}ϕ(u)du =: f(x, y, t), t < 1,

Therefore,

Mt = M0 +

∫ t

0

f(Su, Bu, u)dBu

= E[S1] +

∫ t

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu, t < 1,

where Φ(x) ,
∫ x
−∞ ϕ(u)du is the standard Gaussian distribution function. Note

that f(x, y, t) is well defined even for t = 1. Letting t ↑ 1, we conclude that

S1 = E[S1] +

∫ 1

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu

=

√
2

π
+

∫ 1

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu.
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Problem 6. (1) Since the Brownian motion is rotationally invariant, we know
that the distribution of Bτ is rotationally invariant on the unit sphere Sd−1. Let µ
be the unique rotationally invariant probability measure (the normalized volume
measure) on Sd−1. Then the distribution of Bτ is ν.

Now we show that Bτ and τ are independent. For a given orthogonal matrix
O, define BO

t , O · Bt, and τO , inf{t > 0 : |BO
t | = 1}. A crucial observation is

that τO = τ. Therefore, for any bounded measurable function f on Sd−1 and g on
[0,∞), we have

E[f(BO
τ )g(τ)] = E[f(Bτ )g(τ)].

In particular, this shows that the conditional distribution of Bτ given τ is again
rotationally invariant, which implies that it has to be ν. Therefore,

E[f(Bτ )g(τ)] = E [g(τ)E[f(Bτ )|τ ]]

= E
[
g(τ) ·

∫
Sd−1

f(x)ν(dx)

]
=

(∫
Sd−1

f(x)ν(dx)

)
· E[g(τ)]

= E[f(Bτ )] · E[g(τ)].

This shows that Bτ and τ are independent.
(2) Consider the continuous path space (W d,B(W d)). Let µ be the Wiener

measure on W d. Let Bt(w) , wt be the coordinate process, which is a Brownian
motion under µ, and let {Bt(W d)} be the natural filtration of Bt. Define P̃ to be
the unique extension of the family

P̃T (A) ,
∫
A

e〈c,BT (w)〉− 1
2
|c|2Tµ(dw), A ∈ BT (W d), T > 0,

of probability measures to B(W d). It follows that under P̃, Bt is a Brownian
motion with drift vector c. The reader might refer to the discussion after the
proof of Theorem 5.17 for this part.

Now let f, g be two bounded measurable functions. Since e〈c,Bt〉−
1
2
|c|2t is a

martingale, it follows from the optional sampling theorem that

Ẽ [f(Bτ∧t)g(τ ∧ t)] = E
[
f(Bτ∧t)g(τ ∧ t)e〈c,Bt〉−

1
2
|c|2t
]

= E
[
f(Bτ∧t)g(τ ∧ t)e〈c,Bτ∧t〉−

1
2
|c|2τ∧t

]
.
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Since |Bτ∧t| 6 1, by the dominated convergence theorem, we have

Ẽ [f(Bτ )g(τ)] = E
[
f(Bτ )g(τ)e〈c,Bτ 〉−

1
2
|c|2τ
]
.

The same reason shows that

E
[
e〈c,Bτ 〉−

1
2
|c|2τ
]

= 1.

Moreover, from the first part, Bτ and τ are independent under µ. It follows that

E
[
f(Bτ )g(τ)e〈c,Bτ 〉−

1
2
|c|2τ
]

= E
[
f(Bτ )e

〈c,Bτ 〉
]
· E
[
g(τ)e−

1
2
|c|2τ
]

= E
[
f(Bτ )e

〈c,Bτ 〉
]
· E
[
e−

1
2
|c|2τ+〈c,Bτ 〉

]
· E
[
g(τ)e−

1
2
|c|2τ
]

= E
[
f(Bτ )e

〈c,Bτ 〉− 1
2
|c|2τ
]
· E
[
g(τ)e〈c,Bτ 〉−

1
2
|c|2τ
]

= Ẽ[f(Bτ )] · Ẽ[g(τ)].

Therefore,
Ẽ [f(Bτ )g(τ)] = Ẽ[f(Bτ )] · Ẽ[g(τ)],

which shows that Bτ and τ are independent under P̃.
Problem 7. From Tanaka’s formula, we know that |Xt| is a continuous semi-
martingale given by

|Xt| = |X0|+
∫ t

0

sgn(Xs)dXs + L0
t (X).

It follows that 〈|X|〉t = 〈M〉t = 〈X〉t, where Xt = X0 +Mt+At is the semimartin-
gale decomposition of Xt. Therefore, according to Corollary 5.5, we have

Lat (|X|) = lim
ε↓0

1

ε

∫ t

0

1[a,a+ε)(|Xs|)d〈|X|〉s

= lim
ε↓0

1

ε

∫ t

0

1[a,a+ε)(|Xs|)d〈X〉s.

From the above identity, we can already see that Lat (|X|) = 0 if a < 0. If a > 0,
again from Corollary 5.5, we further have

Lat (|X|) = lim
ε↓0

1

ε

∫ t

0

1[a,a+ε)(Xs)d〈X〉s + lim
ε↓0

1

ε

∫ t

0

1(−a−ε,−a](Xs)d〈X〉s

= Lat (X) + L
(−a)−
t (X).
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Problem 8. Let Xt , λB+
t − µB−t , where λ 6= µ > 0. Let Lat be the local time

process of Xt which is continuous in t and càdlàg in a. Then

L0
t − L0−

t = 2

∫ t

0

1{Xs=0}dAs.

On the one hand, according to the Tanaka’s formula for Brownian motion, we
have

At =
λ− µ

2
lt,

where lt is the local time at 0 of Brownian motion. On the other hand,

{s : Xs = 0} = {s : λB+
s = µB−s } = {s : Bs = 0}.

But we know that the random measure dlt is supported on {t > 0 : Bt = 0}.
Therefore,

L0
t − L0−

t = (λ− µ)

∫ t

0

1{s: Bs=0}dls = (λ− µ)lt,

which is strictly non-zero almost surely.
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