Solutions for Problem Set Four

Problem 1. (1) The only thing which is not entirely trivial is that O - (B, —
Bg) ~ N(0, (t — s)Id) and (u, By — Bs) ~ N(0,1). But this can be seen by using
characteristic functions. Of course the problem can also be solved simply by
applying Lévy’s characterization theorem once we notice that O - B, = fot O - dB;

and (1, B) = [y {1, dB).
(2) We first show that E[Bs|B;] = sB;/t for s < t. Indeed, consider the time

reversal B, £ rB, /r- From Problem 2, (1), we know that B, is a Brownian motion.
Let u =1/s, v = 1/t so that u > v. It follows that

E|B,|B,| = B, + E[B, — B,|B,] = B, = By/t.

But Eu = Bs/s and conditioning on Ev is the same as conditioning on B;. There-
fore,

s
E[Bs‘Bt] — ZBt
Now for the general case, we have

E[B.|B,,B] = B,+E|[B, — B,|B,, B|]
— B,+E[B, — B|B,, B, — Bi]
= B,+E[B, — B,|B, — By,

where in the last equality, we used the fact that (B, — B, B, — B;) and By are
independent (c.f. Problem Sheet 1, Problem (1), (iii)). Therefore, from what we
just proved, we have

E[B,|Bs, Bi] = Bs +

B, — B,) = B,
s( ! ) t—s +t—s

uUu— S8 t—u uU— S
: B;.

Problem 2. (1) It is easy to see that (X;);~o has the right distribution as a
Brownian motion, and ¢ — X} is continuous for ¢ > 0. The only fact which is not
so clear is the continuity at ¢ = 0. By the defintion of X;, this is equivalent to
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showing that with probability one, B;/t — 0 as t — co. Indeed, from the strong
law of large numbers, we know that

lim & = lim 2i=1(Br — Br1)

n—oo N n—00 n

=0 a.s.

Moreover, since

B, — B, _ 1
]P’( sup ‘t—1|>€> < E[ sup |By — B,_1|?

n—1<t<n n (n€)2 n—1<t<n
< E Bn - Bn— 2
(TLE)2 H 1‘ ]
< 4
~ (TLE)Q’

from the first Borel-Cantelli’s lemma, we know that with probability one,

) |B; — B,,_1]
lim sup —m— =
n—00 p_1<t<n n

0.

Therefore, B;/t — 0 almost surely as ¢ — oo.
(2) Since {X; : t > 0} is a Brownian motion, this part follows from Proposition

4.2 in the lecture notes.
(3) Since

X
Tt :Bl/t7 t>07

the non-differentiability of X; at t = 0 also follows directly from Proposition 4.2.
Now we show the almost everywhere non-differentiability of B. For each t > 0, let
A; be the event that B is differentiable at ¢. Then P(A;) = 0 by applying what we
just proved to the Brownian motion {B,; — B; : u > 0}. According to Fubini’s

theorem, we have
EU 1Atdt} :/ P(A,)dt — 0.
0 0

Therefore, with probability one,

/ 1, (w)dt = 0,
0

which implies that w ¢ A; for almost every ¢ > 0. This means that ¢t — B(w) is
almost everywhere non-differentiable.



Problem 3. We only need to consider the case when f is bounded and continuous.
The case when f is bounded Borel measurable follows from a monotone class
argument. Let

=k
On £ Z 2—nl{(k—1)/2n<a<k/2n}-
k=1
Define 7, similarly. Apparently, 0,7, are stopping times, and o, | 0,7, | 7.

Moreover, 7, € F, since 7 € F,. From the Strong Markov property of Brownian
motion, we know that

Therefore,

E[f(Bo,+r/2n )| Fo] = E[Pyjon f (B, )| Fo]. (1)
But we know that 1, _s, +x/2n} € Fo. By multiplying this function on both sides
of (1) and summing over k, we arrive at
By continuity and the dominated convergence theorem, we conclude that

]E[f(BT)LFO] = E[PT—Uf(Ba”FU] = Pr—af(Ba)'

It is not true that B, — B, and F, are independent. Consider the one dimen-
sional case. Let o = inf{t > 0: B, = a} for given a > 0, and let 7 = 20. Suppose
that B, — B, and F, are independent. Then Bsy, and F, must be independent
since B, = a is a deterministic constant. Therefore, the conditional expectation

E[f(B2a)|Fa] - E[f(B2a)]
is a deterministic constant. However, according to what we just proved,

B (Bar)Fo) = Pof(Be) = Paf(a) = [ e )y

This cannot be a deterministic constant for a large class of f as ¢ is random.
Therefore, we have a contradiction, which shows that By, — B, and F, are not
independent.




Problem 4. From direct computation, we have

1 X =0,1,2;
D1:{7 5 Ly 4y

~1, X=-2-1,
and
X, = E[Xi|Dy =1]-1p—1y + E[X4|Dy = —1] - 1{p,——1
= 1-1p—1} — g "Ly =—1}
Now

(Di=1,D,=1} ={X=1,2}, {Dy=1D,=—1}={X =0},
(Dy=—1,Dy=1} ={X =—1}, {Dy=-1,Dy=—1}={X =—2}.

It follows that

3
X2 - 51{D1:17D2:1} +0- 1{D1:17D2:_1} + (_1) ’ ]‘{D1:—1,D2:1}
+(_2) ’ 1{D1:—17D2:—1}
3
= Slua=up=1 +0- Tpxmip=—ny + (=1) - Lixi=—s/2.00=1

+(=2) - 1yx,=—3/2,Dy=—1}-

Similarly, we can obtain that

X3 = 2:-1p—1,p=1,05=13 + 1 - Lyp,—1,py=1,p3=—1} + 0 Lyp,—1,py——1}
+(=1) - Lip,=—1,p,=1} + (=2) - L{py=—1,0,=—1}
2 1yx,=1,x%,=3/2,05=1} + 1 - Lix,=1x,=3/2,05=—1} + 0+ 1{x,=1,x,=0}

+(=1)  Lpxv=—3/2.x0=-1) + (—2) - Lx,=—3/2 x,=—2},

and X,, = X3 for n > 3.

The stopping time 7 is defined in the following way. Let 7 be the first exit
time of the interval (—3/2,1). Define 7y as follows: if B, = 1, then 75 is the exit
time of the interval (0,3/2) after 71, and if B,, = —3/2, then 7 is the exist time
of the interval (=2, —1). Define 73 as follows: if (B, B;,) = (1,3/2), then 73 is
the exist time of the interval (1,2) after 7, and in all other cases, 73 £ 7. The
desired stopping time 7 will be 7 = 73 (in the proof of the Skorokhod embedding
theorem, in this case we have X,, = X3 and 7, = 73 for n > 3, so 7 = 73).
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Problem 5. (1) Write B, = BY + iB} where B is a standard Brownian motion
and B} is a Brownian motion starting at position 1. Note that B* and BY are
independent. Therefore,

E [e)\i-Bt‘Jr_-sB} ) [e)\i-(Bths)} . N Bs
- E [eiA(Bffo)f)\(BffBg)] L N Bs

e/\i~B5

Y

which shows that X; £ et is an {FF}-martingale.
(2) A crucial observation is that 7 = inf{¢t > 0 : B} = 0}, which is independent

of B* and has density

1 1
f-(t) = e 2, t>0.

V2mt3
Now let ¢ € By(R'). Then we have

Elo(B,)] = / T Elp(B,)|r = 4, (t)de
~ [ Bl = At 0
- /OOOE[SO(B?)]fT(t)dt
o0 1 W2 1 1
= /0 (/ngo(u)\/Q_me 2tdu) —27Tt3€ 2t dt.

By using Fubini’s theorem and integrating out ¢ by a change of variables s = 1/t,
we arrive at

Ble(5.)) = [ o) s

Therefore, B, is Cauchy distributed.

Problem 6. (1) Note that under P>, the coordinate process is a Brownian motion
starting at x with drift c. Therefore, for any n > 1, t; < --- < t, = t, and



f € Cp(R™), we have
f(wtm e >wtn>d]P)x7c
w1l

= flwy, +cty, -+ ,wy, + ct,)dP™
w1l

= flug +cty, - uy + ctp)py (ug — x)
Rn
‘pt2—t1(u2 - Ul) o Pty—tn_1 (Un - Un—1)du
= [ f(ur, - vn)pe, (V1 — T — ct1) - Py, (V2 — V1 — c(t2 — t1))
RTL

o 'ptn—tn,1 (Un — Up—1 — C(tn - tn—l))dv

_x)—1¢
— f(vla e 7/Un)GC(Un ) 2 2t/y(dv>
R

= f(wtla te 7wtn)ec(Wt_x)_%c2td]vaO7
Wl
where
( ) A 1 %f
= e
b \ 21t

and y(dv) is the distribution of (wy,, -+ ,wy,) under P*°. Therefore, the result
follows.

(2) Since (S, X;) is Fi-measurable, for any f € Cy(R?), from (1) we have
]EO,C[f(St’Xt)] _ EO,O [f(St,Xt)eCXt_%CQt )

According to Proposition 4.9 in the lecture notes, this equals

22 —y) _e—w?

1.2
fla,y)e¥ 2" 2 —"Le™ 2 dady.
/{x>0,z>y} 2mt3

Therefore,

2(2$ - y) ecy—%czt—%7
V2rt3

Problem 7. (1) The first part follows from It6’s formula and the boundedness
of eg. The second part follows from integrating the martingale property of ey(B;)
against ¢(6)df. Note that we can integrate because ||eg]| < 1 and ¢(#) is rapidly
decreasing.

P¢(S, € dx, X, € dy) = x>0,z >y



(2) (i) Trivial.
(ii) Choose f € C>(R?) such that on the annulus A, = {z € R?: a < |7]
z) = log |z| for d = 2 and f(z) = |x|*>~? for d > 3. Since

N

b}?

1

1(B) = 10) =5 [ Arz)as

is a bounded martingale and Af(Bs) = 0 on [0, 7, A 73], according to the optional
sampling theorem, we have

f(O) = E[f(B’Ta/\’Tb)]
= J(Br)Py(1a <) + f(Br) (1 = Pi(1a <m)).

By the definition of f on the annulus A,;, we obtain that

log b—log |z| d=2
Pi(1a < m) = &‘]%f’;ﬁ%‘id’ ’ (2)
aQ—dbe—d 9 d > 3
Since
{Ta < 00} = U {m > 1.},
b>|x|
we also obtain that
1, d=2;
Pz = lim P¥ = d—
(7o < 00) = Jim Pi(r <m) () L dss

(iii) We first consider the case when d = 2. Let B(zg,¢) be an open ball
contained in U, and take N > 1 such that U (J{0} C B(xq, N). Define

0, = inf{t>0: |X;| =N}, n2inf{t=>0,: |X)| =¢},
6, = nf{t>n, [X)|=N+1}, n=inf{t >6: |X]=¢c},

> -

0, inf{t > 7,1, | X¢s| =N+n-1}, minf{t >0,: | Xi| =¢}.

Apparently, 8,, T oo and hence 7, T co. Therefore, it is clear that
m{Tn < oo} C{o =00}
n=1

7



Moreover, for each n,
P5 (7 < 00) = Ex[Py(7 < 00)|F5, ],

and conditioned on F, , B, . is a Brownian motion starting at B,, . According
to the strong Markov property and (2), (ii), we have

P(7, < 00) = 1.

Therefore,
Pi(oc = ) = 1.

Now we consider the case when d > 3. Let B(xg,r) be an open ball such that
U C B(xo,r). For each R > r with 0 € B(xo, R), define inductively

en = lnf{t 2 Tn—1, ’Xt| = R}7 Tn = 1nf{t 2 en : |Xt‘ = T’},

where 75 = 0. It follows that
{0 =0} C ﬂ{Tn < 00}
n=1

But in dimension greater than 2, we have
r

PY(7, < o0) = <E>d_2.

Therefore,

PY(o0 = 00) < <%>d2 )

As this is true for all R, we conclude that PY(o = oo) = 0.
(iv) We first consider the case when y # 0. For each r < R, define

T2inf{t>0: | X;—y|=r}, 2 inf{t>0: |X;—y| =R}
It follows that
{o, <o} = |J{oy<mtc U | N {m <}
R>Jyl R>0 \r<ly|

Moreover, for each fixed R, in view of the formula (2), we have

P9 ﬂ {r. <tr} | = IE%PS(TT <TR) =0,

r<|yl|



for all d > 2. Therefore,
PY(o, < ) =0

for all d > 2.
Now we consider the case when y = 0. For each r > 0, define

n=inf{t>0: |X,|=r}, 0. =inf{t>7: X, =0}

Then we have
{0 <o, < o0} C | J{6: < o0}

r>0

But according to the result in the case when y # 0, we have
PY%(0, < o00) = EJ[PY(0, < oo|F;,.)] = 0.

Therefore,
PY0 < 0, < 00) = 0.

It remains to show that PY(oc, = 0) = 0. To this end, first observe that the
probability PY(c, = 0) is determined by the distribution of Brownian motion.
Therefore, we may use the Brownian motion ¢.X;/, to compute this probability (so
define 5, = inf{t > 0: tX;, = y}). In this case, we have

(5, =0} = {3t, T 00, X,, =0} C {6, < oo},

for any fixed » > 0, where 7,0, are defined in the same way as before for the
process X;. Therefore,

PY(o, = 0) = PY(5, = 0) < PY(f, < 00) = 0.



