Solutions for Problem Set Four

Problem 1. (1) The only thing which is not entirely trivial is that $O \cdot (B_t - B_s) \sim \mathcal{N}(0, (t-s)\mathrm{Id})$ and $\langle \mu, B_t - B_s \rangle \sim \mathcal{N}(0, 1)$. But this can be seen by using characteristic functions. Of course the problem can also be solved simply by applying Lévy's characterization theorem once we notice that $O \cdot B_t = \int_0^t O \cdot dB_s$ and $\langle \mu, B_t \rangle = \int_0^t \langle \mu, dB_s \rangle$.

(2) We first show that $\mathbb{E}[B_s|B_t] = sB_t/t$ for s < t. Indeed, consider the time reversal $\widetilde{B}_r \triangleq rB_{1/r}$. From Problem 2, (1), we know that \widetilde{B}_r is a Brownian motion. Let u = 1/s, v = 1/t so that u > v. It follows that

$$\mathbb{E}[\widetilde{B}_u | \widetilde{B}_v] = \widetilde{B}_v + \mathbb{E}[\widetilde{B}_u - \widetilde{B}_v | \widetilde{B}_v] = \widetilde{B}_v = B_t/t.$$

But $\widetilde{B}_u = B_s/s$ and conditioning on \widetilde{B}_v is the same as conditioning on B_t . Therefore,

$$\mathbb{E}[B_s|B_t] = \frac{s}{t}B_t.$$

Now for the general case, we have

$$\mathbb{E}[B_u|B_s, B_t] = B_s + \mathbb{E}[B_u - B_s|B_s, B_t]$$

= $B_s + \mathbb{E}[B_u - B_s|B_s, B_t - B_s]$
= $B_s + \mathbb{E}[B_u - B_s|B_t - B_s],$

where in the last equality, we used the fact that $(B_u - B_s, B_t - B_s)$ and B_s are independent (c.f. Problem Sheet 1, Problem (1), (iii)). Therefore, from what we just proved, we have

$$\mathbb{E}[B_u|B_s, B_t] = B_s + \frac{u-s}{t-s}(B_t - B_s) = \frac{t-u}{t-s}B_s + \frac{u-s}{t-s}B_t$$

Problem 2. (1) It is easy to see that $(X_t)_{t>0}$ has the right distribution as a Brownian motion, and $t \mapsto X_t$ is continuous for t > 0. The only fact which is not so clear is the continuity at t = 0. By the definition of X_t , this is equivalent to

showing that with probability one, $B_t/t \to 0$ as $t \to \infty$. Indeed, from the strong law of large numbers, we know that

$$\lim_{n \to \infty} \frac{B_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n (B_k - B_{k-1})}{n} = 0 \text{ a.s.}$$

Moreover, since

$$\mathbb{P}\left(\sup_{n-1\leqslant t\leqslant n} \frac{|B_t - B_{n-1}|}{n} > \varepsilon\right) \leqslant \frac{1}{(n\varepsilon)^2} \mathbb{E}\left[\sup_{n-1\leqslant t\leqslant n} |B_t - B_{n-1}|^2\right] \\
\leqslant \frac{4}{(n\varepsilon)^2} \mathbb{E}[|B_n - B_{n-1}|^2] \\
\leqslant \frac{4}{(n\varepsilon)^2},$$

from the first Borel-Cantelli's lemma, we know that with probability one,

$$\lim_{n \to \infty} \sup_{n-1 \le t \le n} \frac{|B_t - B_{n-1}|}{n} = 0.$$

Therefore, $B_t/t \to 0$ almost surely as $t \to \infty$.

(2) Since $\{X_t : t \ge 0\}$ is a Brownian motion, this part follows from Proposition 4.2 in the lecture notes.

(3) Since

$$\frac{X_t}{t} = B_{1/t}, \quad t > 0,$$

the non-differentiability of X_t at t = 0 also follows directly from Proposition 4.2. Now we show the almost everywhere non-differentiability of B. For each $t \ge 0$, let A_t be the event that B is differentiable at t. Then $\mathbb{P}(A_t) = 0$ by applying what we just proved to the Brownian motion $\{B_{u+t} - B_t : u \ge 0\}$. According to Fubini's theorem, we have

$$\mathbb{E}\left[\int_0^\infty \mathbf{1}_{A_t} dt\right] = \int_0^\infty \mathbb{P}(A_t) dt = 0.$$

Therefore, with probability one,

$$\int_0^\infty \mathbf{1}_{A_t}(\omega)dt = 0,$$

which implies that $\omega \notin A_t$ for almost every $t \ge 0$. This means that $t \mapsto B_t(\omega)$ is almost everywhere non-differentiable.

Problem 3. We only need to consider the case when f is bounded and continuous. The case when f is bounded Borel measurable follows from a monotone class argument. Let

$$\sigma_n \triangleq \sum_{k=1}^{\infty} \frac{k}{2^n} \mathbf{1}_{\{(k-1)/2^n \leqslant \sigma < k/2^n\}}.$$

Define τ_n similarly. Apparently, σ_n, τ_n are stopping times, and $\sigma_n \downarrow \sigma, \tau_n \downarrow \tau$. Moreover, $\tau_n \in \mathcal{F}_{\sigma}$ since $\tau \in \mathcal{F}_{\sigma}$. From the Strong Markov property of Brownian motion, we know that

$$\mathbb{E}[f(B_{\sigma_n+k/2^n})|\mathcal{F}_{\sigma_n}] = P_{k/2^n}f(B_{\sigma_n}).$$

Therefore,

$$\mathbb{E}[f(B_{\sigma_n+k/2^n})|\mathcal{F}_{\sigma}] = \mathbb{E}[P_{k/2^n}f(B_{\sigma_n})|\mathcal{F}_{\sigma}].$$
(1)

But we know that $\mathbf{1}_{\{\tau_n = \sigma_n + k/2^n\}} \in \mathcal{F}_{\sigma}$. By multiplying this function on both sides of (1) and summing over k, we arrive at

$$\mathbb{E}[f(B_{\tau_n})|\mathcal{F}_{\sigma}] = \mathbb{E}[P_{\tau_n - \sigma_n}f(B_{\sigma_n})|\mathcal{F}_{\sigma}].$$

By continuity and the dominated convergence theorem, we conclude that

$$\mathbb{E}[f(B_{\tau})|\mathcal{F}_{\sigma}] = \mathbb{E}[P_{\tau-\sigma}f(B_{\sigma})|\mathcal{F}_{\sigma}] = P_{\tau-\sigma}f(B_{\sigma}).$$

It is not true that $B_{\tau} - B_{\sigma}$ and \mathcal{F}_{σ} are independent. Consider the one dimensional case. Let $\sigma \triangleq \inf\{t \ge 0 : B_t = a\}$ for given a > 0, and let $\tau \triangleq 2\sigma$. Suppose that $B_{2\sigma} - B_{\sigma}$ and \mathcal{F}_{σ} are independent. Then $B_{2\sigma}$ and \mathcal{F}_{σ} must be independent since $B_{\sigma} = a$ is a deterministic constant. Therefore, the conditional expectation

$$\mathbb{E}[f(B_{2\sigma})|\mathcal{F}_{\sigma}] = \mathbb{E}[f(B_{2\sigma})]$$

is a deterministic constant. However, according to what we just proved,

$$\mathbb{E}[f(B_{2\sigma})|\mathcal{F}_{\sigma}] = P_{\sigma}f(B_{\sigma}) = P_{\sigma}f(a) = \int_{\mathbb{R}^1} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(a-y)^2}{2\sigma}} f(y) dy.$$

This cannot be a deterministic constant for a large class of f as σ is random. Therefore, we have a contradiction, which shows that $B_{2\sigma} - B_{\sigma}$ and \mathcal{F}_{σ} are not independent. **Problem 4.** From direct computation, we have

$$D_1 = \begin{cases} 1, & X = 0, 1, 2; \\ -1, & X = -2, -1, \end{cases}$$

and

$$X_{1} = \mathbb{E}[X_{1}|D_{1} = 1] \cdot \mathbf{1}_{\{D_{1}=1\}} + \mathbb{E}[X_{1}|D_{1} = -1] \cdot \mathbf{1}_{\{D_{1}=-1\}}$$
$$= 1 \cdot \mathbf{1}_{\{D_{1}=1\}} - \frac{3}{2} \cdot \mathbf{1}_{\{D_{1}=-1\}}.$$

Now

$$\{D_1 = 1, D_2 = 1\} = \{X = 1, 2\}, \qquad \{D_1 = 1, D_2 = -1\} = \{X = 0\}, \\ \{D_1 = -1, D_2 = 1\} = \{X = -1\}, \quad \{D_1 = -1, D_2 = -1\} = \{X = -2\}.$$

It follows that

$$X_{2} = \frac{3}{2} \mathbf{1}_{\{D_{1}=1,D_{2}=1\}} + 0 \cdot \mathbf{1}_{\{D_{1}=1,D_{2}=-1\}} + (-1) \cdot \mathbf{1}_{\{D_{1}=-1,D_{2}=1\}} + (-2) \cdot \mathbf{1}_{\{D_{1}=-1,D_{2}=-1\}} = \frac{3}{2} \mathbf{1}_{\{X_{1}=1,D_{2}=1\}} + 0 \cdot \mathbf{1}_{\{X_{1}=1,D_{2}=-1\}} + (-1) \cdot \mathbf{1}_{\{X_{1}=-3/2,D_{2}=-1\}} + (-2) \cdot \mathbf{1}_{\{X_{1}=-3/2,D_{2}=-1\}}.$$

Similarly, we can obtain that

$$X_{3} = 2 \cdot \mathbf{1}_{\{D_{1}=1,D_{2}=1,D_{3}=1\}} + 1 \cdot \mathbf{1}_{\{D_{1}=1,D_{2}=1,D_{3}=-1\}} + 0 \cdot \mathbf{1}_{\{D_{1}=1,D_{2}=-1\}} + (-1) \cdot \mathbf{1}_{\{D_{1}=-1,D_{2}=1\}} + (-2) \cdot \mathbf{1}_{\{D_{1}=-1,D_{2}=-1\}} + 2 \cdot \mathbf{1}_{\{X_{1}=1,X_{2}=3/2,D_{3}=1\}} + 1 \cdot \mathbf{1}_{\{X_{1}=1,X_{2}=3/2,D_{3}=-1\}} + 0 \cdot \mathbf{1}_{\{X_{1}=1,X_{2}=0\}} + (-1) \cdot \mathbf{1}_{\{X_{1}=-3/2,X_{2}=-1\}} + (-2) \cdot \mathbf{1}_{\{X_{1}=-3/2,X_{2}=-2\}},$$

and $X_n = X_3$ for $n \ge 3$.

The stopping time τ is defined in the following way. Let τ_1 be the first exit time of the interval (-3/2, 1). Define τ_2 as follows: if $B_{\tau_1} = 1$, then τ_2 is the exit time of the interval (0, 3/2) after τ_1 , and if $B_{\tau_1} = -3/2$, then τ_2 is the exist time of the interval (-2, -1). Define τ_3 as follows: if $(B_{\tau_1}, B_{\tau_2}) = (1, 3/2)$, then τ_3 is the exist time of the interval (1, 2) after τ_2 , and in all other cases, $\tau_3 \triangleq \tau_2$. The desired stopping time τ will be $\tau \triangleq \tau_3$ (in the proof of the Skorokhod embedding theorem, in this case we have $X_n = X_3$ and $\tau_n = \tau_3$ for $n \ge 3$, so $\tau = \tau_3$). **Problem 5.** (1) Write $B_t = B_t^x + iB_t^y$ where B_t^x is a standard Brownian motion and B_t^y is a Brownian motion starting at position 1. Note that B^x and B^y are independent. Therefore,

$$\mathbb{E}\left[e^{\lambda i \cdot B_{t}}|\mathcal{F}_{s}^{B}\right] = \mathbb{E}\left[e^{\lambda i \cdot (B_{t}-B_{s})}\right] \cdot e^{\lambda i \cdot B_{s}}$$
$$= \mathbb{E}\left[e^{i\lambda(B_{t}^{x}-B_{s}^{x})-\lambda(B_{t}^{y}-B_{s}^{y})}\right] \cdot e^{\lambda i \cdot B_{s}}$$
$$= e^{\lambda i \cdot B_{s}},$$

which shows that $X_t \triangleq e^{\lambda i \cdot B_t}$ is an $\{\mathcal{F}_t^B\}$ -martingale. (2) A crucial observation is that $\tau = \inf\{t \ge 0 : B_t^y = 0\}$, which is independent of B^x and has density

$$f_{\tau}(t) = \frac{1}{\sqrt{2\pi t^3}} e^{-\frac{1}{2t}}, \ t > 0.$$

Now let $\varphi \in B_b(\mathbb{R}^1)$. Then we have

$$\mathbb{E}[\varphi(B_{\tau})] = \int_{0}^{\infty} \mathbb{E}[\varphi(B_{\tau})|\tau = t]f_{\tau}(t)dt$$

$$= \int_{0}^{\infty} \mathbb{E}[\varphi(B_{t}^{x})|\tau = t]f_{\tau}(t)dt$$

$$= \int_{0}^{\infty} \mathbb{E}[\varphi(B_{t}^{x})]f_{\tau}(t)dt$$

$$= \int_{0}^{\infty} \left(\int_{\mathbb{R}^{1}} \varphi(u) \frac{1}{\sqrt{2\pi t}} e^{-\frac{u^{2}}{2t}} du\right) \frac{1}{\sqrt{2\pi t^{3}}} e^{-\frac{1}{2t}} dt.$$

By using Fubini's theorem and integrating out t by a change of variables s = 1/t, we arrive at

$$\mathbb{E}[\varphi(B_{\tau})] = \int_{\mathbb{R}^1} \varphi(u) \frac{1}{\pi(u^2 + 1)} du.$$

Therefore, B_{τ} is Cauchy distributed.

Problem 6. (1) Note that under $\mathbb{P}^{x,c}$, the coordinate process is a Brownian motion starting at x with drift c. Therefore, for any $n \ge 1$, $t_1 < \cdots < t_n = t$, and $f \in C_b(\mathbb{R}^n)$, we have

$$\begin{split} &\int_{W^1} f(w_{t_1}, \cdots, w_{t_n}) d\mathbb{P}^{x,c} \\ &= \int_{W^1} f(w_{t_1} + ct_1, \cdots, w_{t_n} + ct_n) d\mathbb{P}^{x,0} \\ &= \int_{\mathbb{R}^n} f(u_1 + ct_1, \cdots, u_n + ct_n) p_{t_1}(u_1 - x) \\ &\cdot p_{t_2 - t_1}(u_2 - u_1) \cdots p_{t_n - t_{n-1}}(u_n - u_{n-1}) du \\ &= \int_{\mathbb{R}^n} f(v_1, \cdots v_n) p_{t_1}(v_1 - x - ct_1) \cdot p_{t_2 - t_1}(v_2 - v_1 - c(t_2 - t_1)) \\ &\cdots p_{t_n - t_{n-1}}(v_n - v_{n-1} - c(t_n - t_{n-1})) dv \\ &= \int_{\mathbb{R}^n} f(v_1, \cdots, v_n) e^{c(v_n - x) - \frac{1}{2}c^2 t} \gamma(dv) \\ &= \int_{W^1} f(w_{t_1}, \cdots, w_{t_n}) e^{c(w_t - x) - \frac{1}{2}c^2 t} d\mathbb{P}^{x,0}, \end{split}$$

where

$$p_t(u) \triangleq \frac{1}{\sqrt{2\pi t}} \mathrm{e}^{-\frac{u^2}{2t}}$$

and $\gamma(dv)$ is the distribution of $(w_{t_1}, \cdots, w_{t_n})$ under $\mathbb{P}^{x,0}$. Therefore, the result follows.

(2) Since (S_t, X_t) is \mathcal{F}_t -measurable, for any $f \in C_b(\mathbb{R}^2)$, from (1) we have

$$\mathbb{E}^{0,c}[f(S_t, X_t)] = \mathbb{E}^{0,0} \left[f(S_t, X_t) e^{cX_t - \frac{1}{2}c^2 t} \right].$$

According to Proposition 4.9 in the lecture notes, this equals

$$\int_{\{x \ge 0, x \ge y\}} f(x, y) \mathrm{e}^{cy - \frac{1}{2}c^2 t} \frac{2(2x - y)}{\sqrt{2\pi t^3}} \mathrm{e}^{-\frac{(2x - y)^2}{2t}} dx dy.$$

Therefore,

$$\mathbb{P}^{0,c}(S_t \in dx, X_t \in dy) = \frac{2(2x-y)}{\sqrt{2\pi t^3}} e^{cy - \frac{1}{2}c^2 t - \frac{(2x-y)^2}{2t}}, \quad x \ge 0, x \ge y.$$

Problem 7. (1) The first part follows from Itô's formula and the boundedness of e_{θ} . The second part follows from integrating the martingale property of $e_{\theta}(B_t)$ against $\phi(\theta)d\theta$. Note that we can integrate because $||e_{\theta}|| \leq 1$ and $\phi(\theta)$ is rapidly decreasing.

(2) (i) Trivial.

(ii) Choose $f \in C_c^{\infty}(\mathbb{R}^d)$ such that on the annulus $A_{a,b} \triangleq \{x \in \mathbb{R}^d : a \leq |x| \leq b\}, f(x) = \log |x|$ for d = 2 and $f(x) = |x|^{2-d}$ for $d \geq 3$. Since

$$f(B_t) - f(0) - \frac{1}{2} \int_0^t \Delta f(B_s) ds$$

is a bounded martingale and $\Delta f(B_s) = 0$ on $[0, \tau_a \wedge \tau_b]$, according to the optional sampling theorem, we have

$$f(0) = \mathbb{E}[f(B_{\tau_a \wedge \tau_b})]$$

= $f(B_{\tau_a})\mathbb{P}_d^x(\tau_a < \tau_b) + f(B_{\tau_b})(1 - \mathbb{P}_d^x(\tau_a < \tau_b))$

By the definition of f on the annulus $A_{a,b}$, we obtain that

$$\mathbb{P}_{d}^{x}(\tau_{a} < \tau_{b}) = \begin{cases} \frac{\log b - \log |x|}{\log b - \log a}, & d = 2;\\ \frac{|x|^{2-d} - b^{2-d}}{a^{2-d} - b^{2-d}}, & d \ge 3. \end{cases}$$
(2)

Since

$$\{\tau_a < \infty\} = \bigcup_{b > |x|} \{\tau_b > \tau_a\},\$$

we also obtain that

$$\mathbb{P}_d^x(\tau_a < \infty) = \lim_{b \to \infty} \mathbb{P}_d^x(\tau_a < \tau_b) = \begin{cases} 1, & d = 2; \\ \left(\frac{a}{|x|}\right)^{d-2}, & d \ge 3. \end{cases}$$

(iii) We first consider the case when d = 2. Let $B(x_0, \varepsilon)$ be an open ball contained in U, and take $N \ge 1$ such that $U \bigcup \{0\} \subseteq B(x_0, N)$. Define

$$\begin{aligned} \theta_1 &\triangleq \inf\{t \ge 0: |X_t| = N\}, \ \tau_1 \triangleq \inf\{t \ge \theta_1: |X_t| = \varepsilon\}, \\ \theta_2 &\triangleq \inf\{t \ge \tau_1, |X_t| = N+1\}, \ \tau_2 \triangleq \inf\{t \ge \theta_2: |X_t| = \varepsilon\}, \\ \cdots \\ \theta_n &\triangleq \inf\{t \ge \tau_{n-1}, |X_t| = N+n-1\}, \ \tau_n \inf\{t \ge \theta_n: |X_t| = \varepsilon\}. \end{aligned}$$

Apparently, $\theta_n \uparrow \infty$ and hence $\tau_n \uparrow \infty$. Therefore, it is clear that

$$\bigcap_{n=1}^{\infty} \{\tau_n < \infty\} \subseteq \{\sigma = \infty\}.$$

Moreover, for each n,

$$\mathbb{P}_2^0(\tau_n < \infty) = \mathbb{E}_2^0[\mathbb{P}_2^0(\tau_n < \infty) | \mathcal{F}_{\sigma_n}],$$

and conditioned on \mathcal{F}_{σ_n} , B_{σ_n+t} is a Brownian motion starting at B_{σ_n} . According to the strong Markov property and (2), (ii), we have

$$\mathbb{P}_2^0(\tau_n < \infty) = 1$$

Therefore,

$$\mathbb{P}_2^0(\sigma = \infty) = 1$$

Now we consider the case when $d \ge 3$. Let $B(x_0, r)$ be an open ball such that $U \subseteq B(x_0, r)$. For each R > r with $0 \in B(x_0, R)$, define inductively

$$\theta_n \triangleq \inf\{t \ge \tau_{n-1}, |X_t| = R\}, \quad \tau_n \triangleq \inf\{t \ge \theta_n : |X_t| = r\},$$

where $\tau_0 \triangleq 0$. It follows that

$$\{\sigma = \infty\} \subseteq \bigcap_{n=1}^{\infty} \{\tau_n < \infty\}.$$

But in dimension greater than 2, we have

$$\mathbb{P}^0_d(\tau_n < \infty) = \left(\frac{r}{R}\right)^{d-2}$$

Therefore,

$$\mathbb{P}^0_d(\sigma = \infty) \leqslant \left(\frac{r}{R}\right)^{d-2}.$$

As this is true for all R, we conclude that $\mathbb{P}^0_d(\sigma = \infty) = 0$.

(iv) We first consider the case when $y \neq 0$. For each r < R, define

$$\tau_r \triangleq \inf\{t \ge 0 : |X_t - y| = r\}, \quad \tau_R \triangleq \inf\{t \ge 0 : |X_t - y| = R\}.$$

It follows that

$$\{\sigma_y < \infty\} = \bigcup_{R > |y|} \{\sigma_y < \tau_R\} \subseteq \bigcup_{R > 0} \left(\bigcap_{r < |y|} \{\tau_r < \tau_R\} \right).$$

Moreover, for each fixed R, in view of the formula (2), we have

$$\mathbb{P}_d^0\left(\bigcap_{r<|y|} \{\tau_r < \tau_R\}\right) = \lim_{r\downarrow 0} \mathbb{P}_d^0(\tau_r < \tau_R) = 0,$$

for all $d \ge 2$. Therefore,

$$\mathbb{P}^0_d(\sigma_y < \infty) = 0$$

for all $d \ge 2$.

Now we consider the case when y = 0. For each r > 0, define

$$\tau_r \triangleq \inf\{t \ge 0 : |X_t| = r\}, \quad \theta_r \triangleq \inf\{t \ge \tau_r : X_t = 0\}.$$

Then we have

$$\{0 < \sigma_y < \infty\} \subseteq \bigcup_{r>0} \{\theta_r < \infty\}.$$

But according to the result in the case when $y \neq 0$, we have

$$\mathbb{P}^0_d(\theta_r < \infty) = \mathbb{E}^0_d[\mathbb{P}^0_d(\theta_r < \infty | \mathcal{F}_{\tau_r})] = 0.$$

Therefore,

$$\mathbb{P}^0_d(0 < \sigma_y < \infty) = 0.$$

It remains to show that $\mathbb{P}_d^0(\sigma_y = 0) = 0$. To this end, first observe that the probability $\mathbb{P}_d^0(\sigma_y = 0)$ is determined by the distribution of Brownian motion. Therefore, we may use the Brownian motion $tX_{1/t}$ to compute this probability (so define $\tilde{\sigma}_y = \inf\{t \ge 0 : tX_{1/t} = y\}$). In this case, we have

$$\{\widetilde{\sigma}_y = 0\} = \{\exists t_n \uparrow \infty, \ X_{t_n} = 0\} \subseteq \{\theta_r < \infty\},\$$

for any fixed r > 0, where τ_r, θ_r are defined in the same way as before for the process X_t . Therefore,

$$\mathbb{P}^0_d(\sigma_y=0) = \mathbb{P}^0_d(\widetilde{\sigma}_y=0) \leqslant \mathbb{P}^0_d(\theta_r < \infty) = 0.$$