Solutions for Problem Set Three

Problem 1. (1) The supermartingale property with respect to the filtration
{F:ant} is a direct consequence of the optional sampling theorem for bounded
stopping times. As for the original filtration, first observe that

XT/\S 2 E[XT/\tl‘/T_:r/\s] = E[XTAtl{T<S}|~FT/\S] + E[XT/\t]'{T>S}|~FT/\S]

for s < t. The first term equals E[X ¢ 1(r<s|Fs] since Xonlir<sy = Xrpslir<sy is
Frnrs-measurable. The second term equals E [1{T>S}E[XTM|]:S]|]:TAS} , where the
integrand

1{T>s}]E[XT/\t|-Fs] € -/—_.7'/\5‘

Therefore,
X’T‘/\S 2 E[XTAtl{T<S}|~Fs] + 1{T>5}E[XT/\S|]:5] = E[XT/\t|-Fs]-

(2) Let s <t and A € F;. Define 0 = s14 +t14c and 7 = ¢. It is obvious that
o, T are bounded {F;}-stopping times. Therefore,

E[X,] = E[X14] + E[X/14] < E[X;] = E[X}],
which implies the desired submartingale property.

Problem 2. (1) Let s <t and A € Fs. Since F, C F;, we have

/A M,dP = Q(A) = /A M,dP.

Therefore, {M,, F;} is a martingale.

(2) Necessity. Suppose that {M,;} is uniformly integrable. Then M, — M,
almost surely and in L' for some M., € F... Let A € F, for some ¢t > 0. Then for
any u > t, we have A € F, and thus

Q(A) = /A M, dP.
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By letting u — oo, we obtain that

Q(A) = /A Mo dP.

This is indeed true for all A € F, by the monotone class theorem, since F,, is
generated by the m-system U;>¢F;. Therefore, Q < [P when restricted on F., with
the Radon-Nikodym derivative given by M.

Sufficiency. Suppose that Q < P when restricted on F., with dQ/dP = Z for
some Z € F,. Then for each t > 0 and A € F;, we have

Q(A) = /A M,dP = /A ZdP.

Therefore, M; = E[Z|F;] which implies that {M,} is uniformly integrable.

Apparently, from the above argument we have already proved that M, £
lim;_, M; is the Radon-Nikodym derivative of QQ against P on F,.. To see the
final part, since in this case M; is an {F;}-martingale with a last element M,
from the optional sampling theorem, we know that

Q(A) = / M. dP = / M,dP, YA€ F..
A A

Therefore, Q < P when restricted on F, and M, = dQ/dP on F,.

Problem 3. Since |X;| is a right continuous submartingale, Doob’s LP-inequality
implies that
B | sup X | < PBIGP] <
0<s<t
where M £ sup,., E[|X;[F] and ¢ = p/(p—1). In particular, Fatou’s lemma implies
that sup,.q|X¢|? € LP. On the other hand, since {X;} is uniformly integrable
(because it is bounded in LP), X; converges to some X, almost surely and in L.

Now
Xy — Xoof? < 2P(I X, P + | XoofP) < 2P sup | X, P € LY
t>0

The dominated convergence theorem then implies that

lim E[|X; — Xo|?] = 0.
t—o00



Problem 4. (1) Let f(t) =logt—t/e (t > 0), then f'(t) =1/t — 1/e. Therefore,
f(t) < f(e) = 0. Now we prove that alogt b < alog” a+b/e for a,b > 0. If b < 1,
this is trivial. If b > 1,a < 1, then

b b
alog®™b=alogh<logh< - =alog"® a+ -

[

If a,b > 1, then the desired inequality follows from the fact that log(b/a) <

(b/a)/e.

(2) Similar to the proof of Doob’s LP-inequality, we have
X7
B < B[[ o]
0

= E{/ 1{X}>A}p<dA>1
0

— [ B> Ve

Doob 1
< / XE[XTl{X =>x3]p(dA)
0

= E {XT /0 . A—lp(dA)]

(3) Let p(t) = (t —1)* (¢ = 0). Then from the second part, we have
E[(X7 —1); X7 > 1]

:?
E | Xr d)\)]

EX:] -1 <

N

E [XT/ AN o(dN); X > 11
1

E[Xrlog X7; X7 > 1]

E[X7logt X7

1
< E[Xrlog"™ X;] + ~E[X7].
e
Rearranging the terms yields the desired inequality.

Problem 5. From the assumption that

sup Xy(w) =00, inf Xy(w)= —o0,

0<t<oo 0<t<oo
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it is apparent that every 7,, is well-defined finitely. Since X, is {F;}-adapted and
has continuous sample paths, according to Proposition 2.7 in the lecture notes,
we know that 7 is an {F; }-stopping time. To see why 7, is also an {F; }-stopping
time, define X, 2 X4t — X, and G, = F,.,,. It follows that X, is {G; }-adapted
and has continuous sample paths. Therefore, the same reason implies that 7 — 7
is a {G;}-stopping time. According to Problem Sheet 2, Problem 4, (2), (ii), we
conclude that 75 is an {F;}-stopping time. Inductively, we know that every 7, is
an {F;}-stopping time.

Now we study the distribution of the random sequence { X, : n > 1}. Define
o, Zinf{t > 0: |X;| > 2n}. Then 7, < 0, (in fact, |X;| < n for all t € [0, 7,])
and X" = X, . is a bounded {F,}-martingale. In particular, X, has a last
element X, = lim;_,, X;. By the optional sampling theorem, we conclude that

E[XT7L - XTnfl |‘F7—n71] = E[Xgnn - X::,l |“F7—n711| = 0

Now let AF 2 {X, — X, ,=1}and 4; 2 {X,, — X

., = —1} respectively. It
follows that

1
P(A; 1 Frs) = P(A, 1T ) = 5 s

Therefore, for any 4, -+ , %, = +1, we have

P(Xn =11, )(7-2 — )(T1 =g, - ,XTn — )(Tni1 = Zn)
]P({XTn - X -1 in}|anf1)dP

n

\/{XTl =i1, 7X‘rn_1 _Xrn_gzin—l}

1 . .
= §P(Xn =i, Xpy = Xoy = na)
Recursively, in the end this will imply that X, , X, — X, ,--- , X, — X, , are

independent and identically distributed with distribution P(X,, = +1) = 1/2.
Therefore, { X, : n > 1} is distributed as the standard simple random walk.

Problem 6. (1) We first prove a claim:
E[|X7 — Xo||F5] < Mx, (1)

for any {F; }-stopping times o < 7. Indeed, since {X; : 0 < ¢ < oo} is a continuous
martingale with a last element, the optional sampling theorem and the assumption
imply that

E[X; - X,||Fs] = E[EX|F]— X,||F]
< E [EHXOO - XGH-FTH]:a]
= EHXOO - XUHJ:O]
< My.
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Now for A, > 0, let

g

(> [l
=
—~

According to (1), we have
/ X, — X,|dP < MyP(o < 00) < MxP(X* > ).
{o<oo}

But since {X* > A+ pu} C {0 < oo} and |X; — X,| = pon {X* > A+ pu}, it
follows that

/ X, — X,|dP > uP(X* > A+ ).
{o<o}

Therefore,

M
P(X* > A+ p) < TXP(X* > \).

(2) Let A > 0. Note that for any k£ > 1, from (1) we have
1
P(X* > keMy) < -P(X* > (k- 1)eMx) < ---<e ™™
e

Now if A > eMyx, let k be the unique positive integer such that keMy < A <
(k+ 1)eMx. Then

A A

P(X* > \) <P(X* > keMy) < e ¥ e oix L #ix

_a
The inequality is trivial for 0 < A < eMx since in this case e x> 1.

To see the exponential integrability, first note that the first part implies that
X* < oo almost surely, and

. A
P(e*X" > eO‘A) < o My Y\ > 0.

Therefore,

E[e*X] = /0 P(e™*" > u)du



which is finite if 0 < @ < (eMx)~!. The LP-integrability follows from then the
exponential integrability.

Problem 7. (1) Let 7 € Sy. By the optional sampling theorem,

E[X:1x,>0n] S E[Xr1x, 50

But
—0

E[X‘r] < E [XT]
AT
uniformly in 7 € Sp as A — oo. Therefore, E[X;1;x ~] — 0 uniformly in 7 € Sy
as A — 0o, which proves the claim that X is of class (DL). Suppose further that
X; is continuous. Let 7, T 7 € Sp. Then X, — X, almost surely as n — oo. But
X; is of class (DL), so {X,,} is uniformly integrable. Therefore, X, — X, in L',

which implies that X; is regular.
(2) If X, is non-negative and uniformly integrable, then X; converges to some
X almost surely and in L!. Moreover, we have

P(X, > \) <

X; < E[X | F]
for every t > 0. The optional sampling theorem then implies that
X < E[Xo|F]

for every finite {F;}-stopping time 7. The uniform integrability of {X,} follows
from the same argument as in the first part of the problem.

Since Xy = M; + A; by the Doob-Meyer decomposition, we know that E[X;] =
E[Moy] + E[A,]. By letting t — oo, we conclude that E[X ]| = E[M,] + E[A]. In
particular, E[A,] < oo.



