
Solutions for Problem Set Three

Problem 1. (1) The supermartingale property with respect to the filtration
{Fτ∧t} is a direct consequence of the optional sampling theorem for bounded
stopping times. As for the original filtration, first observe that

Xτ∧s > E[Xτ∧t|Fτ∧s] = E[Xτ∧t1{τ6s}|Fτ∧s] + E[Xτ∧t1{τ>s}|Fτ∧s]

for s 6 t. The first term equals E[Xτ∧t1{τ6s}|Fs] since Xτ∧t1{τ6s} = Xτ∧s1{τ6s} is
Fτ∧s-measurable. The second term equals E

[
1{τ>s}E[Xτ∧t|Fs]|Fτ∧s

]
, where the

integrand
1{τ>s}E[Xτ∧t|Fs] ∈ Fτ∧s.

Therefore,

Xτ∧s > E[Xτ∧t1{τ6s}|Fs] + 1{τ>s}E[Xτ∧s|Fs] = E[Xτ∧t|Fs].

(2) Let s < t and A ∈ Fs. Define σ = s1A + t1Ac and τ = t. It is obvious that
σ, τ are bounded {Ft}-stopping times. Therefore,

E[Xσ] = E[Xs1A] + E[Xt1Ac ] 6 E[Xτ ] = E[Xt],

which implies the desired submartingale property.

Problem 2. (1) Let s < t and A ∈ Fs. Since Fs ⊆ Ft, we have∫
A

MtdP = Q(A) =

∫
A

MsdP.

Therefore, {Mt,Ft} is a martingale.
(2) Necessity. Suppose that {Mt} is uniformly integrable. Then Mt → M∞

almost surely and in L1 for some M∞ ∈ F∞. Let A ∈ Ft for some t > 0. Then for
any u > t, we have A ∈ Fu and thus

Q(A) =

∫
A

MudP.
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By letting u→∞, we obtain that

Q(A) =

∫
A

M∞dP.

This is indeed true for all A ∈ F∞ by the monotone class theorem, since F∞ is
generated by the π-system ∪t>0Ft. Therefore, Q� P when restricted on F∞ with
the Radon-Nikodym derivative given by M∞.

Sufficiency. Suppose that Q� P when restricted on F∞ with dQ/dP = Z for
some Z ∈ F∞. Then for each t > 0 and A ∈ Ft, we have

Q(A) =

∫
A

MtdP =

∫
A

ZdP.

Therefore, Mt = E[Z|Ft] which implies that {Mt} is uniformly integrable.
Apparently, from the above argument we have already proved that M∞ ,

limt→∞Mt is the Radon-Nikodym derivative of Q against P on F∞. To see the
final part, since in this case Mt is an {Ft}-martingale with a last element M∞,
from the optional sampling theorem, we know that

Q(A) =

∫
A

M∞dP =

∫
A

MτdP, ∀A ∈ Fτ .

Therefore, Q� P when restricted on Fτ and Mτ = dQ/dP on Fτ .

Problem 3. Since |Xt| is a right continuous submartingale, Doob’s Lp-inequality
implies that

E
[
sup
06s6t

|Xs|p
]
6 qpE[|Xt|p] 6 qpM,

whereM , supt>0 E[|Xt|p] and q = p/(p−1). In particular, Fatou’s lemma implies
that supt>0 |Xt|p ∈ Lp. On the other hand, since {Xt} is uniformly integrable
(because it is bounded in Lp), Xt converges to some X∞ almost surely and in L1.
Now

|Xt −X∞|p 6 2p(|Xt|p + |X∞|p) 6 2p+1 sup
t>0
|Xt|p ∈ L1.

The dominated convergence theorem then implies that

lim
t→∞

E[|Xt −X∞|p] = 0.
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Problem 4. (1) Let f(t) = log t− t/e (t > 0), then f ′(t) = 1/t− 1/e. Therefore,
f(t) 6 f(e) = 0. Now we prove that a log+ b 6 a log+ a+ b/e for a, b > 0. If b 6 1,
this is trivial. If b > 1, a 6 1, then

a log+ b = a log b 6 log b 6
b

e
= a log+ a+

b

e
.

If a, b > 1, then the desired inequality follows from the fact that log(b/a) 6
(b/a)/e.

(2) Similar to the proof of Doob’s Lp-inequality, we have

E[ρ(X∗T )] 6 E
[∫ X∗

T

0

ρ(dλ)

]
= E

[∫ ∞
0

1{X∗
T>λ}ρ(dλ)

]
=

∫ ∞
0

P(X∗T > λ)ρ(dλ)

Doob

6
∫ ∞
0

1

λ
E[XT1{X∗

T>λ}]ρ(dλ)

= E
[
XT

∫ X∗
T

0

λ−1ρ(dλ)

]
.

(3) Let ρ(t) = (t− 1)+ (t > 0). Then from the second part, we have

E[X∗T ]− 1 6 E[(X∗T − 1);X∗T > 1]

6 E
[
XT

∫ X∗
T

0

λ−1ρ(dλ)

]
= E

[
XT

∫ X∗
T

1

λ−1ρ(dλ);X∗T > 1

]
= E[XT logX

∗
T ;X

∗
T > 1]

= E[XT log
+X∗T ]

6 E[XT log
+X∗T ] +

1

e
E[X∗T ].

Rearranging the terms yields the desired inequality.

Problem 5. From the assumption that

sup
06t<∞

Xt(ω) =∞, inf
06t<∞

Xt(ω) = −∞,
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it is apparent that every τn is well-defined finitely. Since Xt is {Ft}-adapted and
has continuous sample paths, according to Proposition 2.7 in the lecture notes,
we know that τ1 is an {Ft}-stopping time. To see why τ2 is also an {Ft}-stopping
time, define X̃t , Xτ1+t −Xτ1 and Gt , Ft+τ1 . It follows that X̃t is {Gt}-adapted
and has continuous sample paths. Therefore, the same reason implies that τ2− τ1
is a {Gt}-stopping time. According to Problem Sheet 2, Problem 4, (2), (ii), we
conclude that τ2 is an {Ft}-stopping time. Inductively, we know that every τn is
an {Ft}-stopping time.

Now we study the distribution of the random sequence {Xτn : n > 1}. Define
σn , inf{t > 0 : |Xt| > 2n}. Then τn < σn (in fact, |Xt| 6 n for all t ∈ [0, τn])
and Xσn

t , Xσn∧t is a bounded {Ft}-martingale. In particular, Xt has a last
element X∞ = limt→∞Xt. By the optional sampling theorem, we conclude that

E[Xτn −Xτn−1|Fτn−1 ] = E[Xσn
τn −X

σn
τn−1
|Fτn−1 ] = 0.

Now let A+
n , {Xτn −Xτn−1 = 1} and A−n , {Xτn −Xτn−1 = −1} respectively. It

follows that
P(A+

n |Fτn−1) = P(A−n |Fτn−1) =
1

2
a.s.

Therefore, for any i1, · · · , in = ±1, we have

P(Xτ1 = i1, Xτ2 −Xτ1 = i2, · · · , Xτn −Xτn−1 = in)

=

∫
{Xτ1=i1,··· ,Xτn−1−Xτn−2=in−1}

P({Xτn −Xτn−1 = in}|Fτn−1)dP

=
1

2
P(Xτ1 = i1, · · · , Xτn−1 −Xτn−2 = in−1).

Recursively, in the end this will imply that Xτ1 , Xτ2 − Xτ1 , · · · , Xτn − Xτn−1 are
independent and identically distributed with distribution P(Xτ1 = ±1) = 1/2.
Therefore, {Xτn : n > 1} is distributed as the standard simple random walk.
Problem 6. (1) We first prove a claim:

E[|Xτ −Xσ||Fσ] 6MX , (1)

for any {Ft}-stopping times σ 6 τ. Indeed, since {Xt : 0 6 t 6∞} is a continuous
martingale with a last element, the optional sampling theorem and the assumption
imply that

E [|Xτ −Xσ||Fσ] = E [|E[X∞|Fτ ]−Xσ| |Fσ]
6 E [E[|X∞ −Xσ||Fτ ]|Fσ]
= E[|X∞ −Xσ||Fσ]
6 MX .
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Now for λ, µ > 0, let

σ , inf{t > 0 : |Xt| > λ},
τ , inf{t > 0 : |Xt| > λ+ µ}.

According to (1), we have∫
{σ<∞}

|Xτ −Xσ|dP 6MXP(σ <∞) 6MXP(X∗ > λ).

But since {X∗ > λ + µ} ⊆ {σ < ∞} and |Xτ − Xσ| = µ on {X∗ > λ + µ}, it
follows that ∫

{σ<∞}
|Xτ −Xσ|dP > µP(X∗ > λ+ µ).

Therefore,

P(X∗ > λ+ µ) 6
MX

µ
P(X∗ > λ).

(2) Let λ > 0. Note that for any k > 1, from (1) we have

P(X∗ > keMX) 6
1

e
P(X∗ > (k − 1)eMX) 6 · · · 6 e−k.

Now if λ > eMX , let k be the unique positive integer such that keMX 6 λ <
(k + 1)eMX . Then

P(X∗ > λ) 6 P(X∗ > keMX) 6 e−k 6 e
1− λ

eMX 6 e
2− λ

eMX .

The inequality is trivial for 0 < λ < eMX since in this case e
2− λ

eMX > 1.
To see the exponential integrability, first note that the first part implies that

X∗ <∞ almost surely, and

P(eαX∗
> eαλ) 6 e

2− λ
eMX , ∀λ > 0.

Therefore,

E[eαX∗
] =

∫ ∞
0

P(eαX∗
> µ)dµ

6 1 +

∫ ∞
1

P(eαX∗
> µ)dµ

= 1 + α

∫ ∞
0

P(eαX∗
> eαλ)eαλdλ

6 1 + α

∫ ∞
0

e
2−

(
1

eMX
−α

)
λ
dλ,
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which is finite if 0 < α < (eMX)
−1. The Lp-integrability follows from then the

exponential integrability.

Problem 7. (1) Let τ ∈ ST . By the optional sampling theorem,

E[Xτ1{Xτ>λ}] 6 E[XT1{Xτ>λ}].

But
P(Xτ > λ) 6

E[Xτ ]

λ
6

E[XT ]

λ
→ 0

uniformly in τ ∈ ST as λ→∞. Therefore, E[Xτ1{Xτ>λ}]→ 0 uniformly in τ ∈ ST
as λ→∞, which proves the claim that Xt is of class (DL). Suppose further that
Xt is continuous. Let τn ↑ τ ∈ ST . Then Xτn → Xτ almost surely as n→∞. But
Xt is of class (DL), so {Xτn} is uniformly integrable. Therefore, Xτn → Xτ in L1,
which implies that Xt is regular.

(2) If Xt is non-negative and uniformly integrable, then Xt converges to some
X∞ almost surely and in L1. Moreover, we have

Xt 6 E[X∞|Ft]

for every t > 0. The optional sampling theorem then implies that

Xτ 6 E[X∞|Fτ ]

for every finite {Ft}-stopping time τ. The uniform integrability of {Xτ} follows
from the same argument as in the first part of the problem.

Since Xt =Mt+At by the Doob-Meyer decomposition, we know that E[Xt] =
E[M0] + E[At]. By letting t→∞, we conclude that E[X∞] = E[M0] + E[A∞]. In
particular, E[A∞] <∞.
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