
Solutions for Problem Set Two

Problem 1. Necessity. Suppose that Pn converges weakly to some probability
measure P on (W d,B(Rd)). Then {Pn} is tight by Prokhorov’s theorem. In ad-
dition, given m > 1 and 0 6 t1 < t2 < · · · < tm, let ϕ ∈ Cb(Rd×m) and define
Φ ∈ Cb(W d) by

Φ(w) = ϕ(wt1 , · · · , wtm), w ∈ W d.

Then ∫
Rd×m

ϕdQn =

∫
W d

ΦdPn →
∫
W d

ΦdP =

∫
Rd×m

ϕdQ,

where Q is the finite dimensional distribution of P at (t1, · · · , tm). Therefore, Qn

converges weakly to Q.
Sufficiency. We first show that the sequence Pn has exactly one weak limit

point. Indeed, since {Pn} is tight, Prokhorov’s theorem tells us that Pn has at
least one weak limit point. Suppose that P′ and P′′ are two weak limit points of
Pn. According to Assumption (i), we know that P′ and P′′ have the same finite
dimensional distributions. Therefore, by the monotone class theorem, P′ = P′′. In
other words, Pn has exactly one weak limit point, which is denoted by P. Now let
f ∈ Cb(W d). Then as a bounded sequence in R1,

∫
W d fdPn has exactly one limit

point which is
∫
W d fdP. Therefore, Pn converges weakly to P.

Problem 2. (1) Let

pt(x) =
1

(2πt)
d
2

e−
|x|2
2t , t > 0, x ∈ Rd.

We define a family of {Qt : t ∈ T } of finite dimensional distributions on Rd in
the following way. For t = (t1, · · · , tn) where n > 1 and 0 < t1 < t2 < · · · < tn,
define

Qt(Γ) ,
∫

Γ

pt1(x1)pt2−t1(x2−x1) · · · ptn−tn−1(xn−xn−1)dx1 · · · dxn, Γ ∈ B(Rd×n).

(1)
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The definition of Qt for general disordered (t1, · · · , tn) ∈ T is easily obtained by
permuting (1). The first consistency property is just definition, while the second
consistency property follows from the fact that∫

R1

pti−ti−1
(xi − xi−1)pti+1−ti(xi+1 − xi)dxi = pti+1−ti−1

(xi+1 − xi−1)

if ti−1 < ti < ti+1, which can be shown by direct (but lengthy) computation.
Therefore, according to Kolmogorov’s extension theorem, there exists a unique
probability measure P on the full path space

(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
whose finite

dimensional distributions coincide with {Qt : t ∈ T }. From the construction of
Qt, it is apparent that P satisfies the desired properties.

(2) Since |Xt−Xs|n 6 Cn,d
∑d

i=1 |X i
t−X i

s|n, it is sufficient to consider the case
when d = 1. In the one dimensional case, for s < t, since (Xt −Xs)/

√
t− s is a

standard normal random variable, we have

E[|Xt −Xs|2n] = E

[∣∣∣∣Xt −Xs√
t− s

∣∣∣∣2n · |t− s|n
]

= Kn|t− s|1+(n−1)

for every n > 1, whereKn is the 2n-th moment of the standard normal distribution
(i.e. Kn , E[|Z|2n] where Z ∼ N (0, 1)). As (n − 1)/2n → 1/2 as n → ∞, the
result follows from Kolmogorov’s continuity theorem.

(3) For the first assertion, for simplicity assume that T = 1. Then

sup
s,t∈[0,1]
s 6=t

∣∣∣X̃t − X̃s

∣∣∣
√
t− s

> sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

. (2)

Therefore, it suffices to show that the right hand side of (2) is infinite almost
surely. Indeed, given λ > 0, let

Aλn =

 sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ

 , n > 1.

Then

P(Aλn) = P

 n⋂
k=1


∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ




= (P(|Z| 6 λ)n
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for every n, where Z ∼ N (0, 1). As P(|Z| 6 λ) < 1, we know that

P

sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ

 6 P

(
∞⋂
n=1

Aλn

)
= lim

n→∞
P(Aλn) = 0.

This is true for every λ, which concludes that

sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

=∞, a.s.

The second assertion is proved in a similar way. First note that

sup
s,t∈[0,∞)
s6=t

∣∣∣X̃t − X̃s

∣∣∣
(t− s)γ

> sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ .
In addition, for every λ > 0, we have

P
(

sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ 6 λ

)
= lim

n→∞
P
(∣∣∣X̃k − X̃k−1

∣∣∣ 6 λ, ∀k 6 n
)

= lim
n→∞

P(|Z| 6 λ)n

= 0.

Therefore,
sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ =∞, a.s.,

which implies the desired claim.

Problem 3. (1) Let τ be a finite random time defined on some probability space
(Ω,F ,P) which has a bounded density f(t) with respect the Lebesgue measure
(i.e. P(τ ∈ A) =

∫
A
f(t)dt for A ∈ B([0,∞))). Define a stochastic process Xt by

X(t, ω) =

{
1, if t > τ(ω);

0, otherwise.

Then for every α > 0 and s < t,

E[|Xt −Xs|α] = E[1 · 1{s<τ6t}] = P(s < τ 6 t)

=

∫ t

s

f(u)du 6 ‖f‖∞(t− s).
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However, there is no modification of X whose sample paths are continuous.
(2) Let τ be as in (1) and define a stochastic process Xt by

X(t, ω) =

{
1, if τ(ω) = t;

0, otherwise.

Then for each fixed t, Xt = 0 almost surely because P(τ = t) = 0. Therefore,
the conditions in Kolmogorov’s continuity theorem are verified. But every sample
path of X is discontinuous because τ(ω) <∞ for every ω.

If we further assume that every sample path of X is right continuous with left
limits, then the assertion is true. Indeed, following the notation in the proof of
the theorem, for every ω ∈ Ω∗, we have

d(Xt(ω), Xs(ω)) 6 2γ
(

1 +
2

2γ − 1

)
|t− s|γ (3)

for each s, t ∈ D with 0 < |t − s| < 2−n
∗(ω). Since every sample path of X is

right continuous with left limits, we know that (3) is true for all s, t ∈ [0, 1] with
0 < |t− s| < 2−n

∗(ω). Therefore, t 7→ Xt(ω) is continuous for every ω ∈ Ω∗.
(3) From Theorem 1.10 in Section 1, we need to show that

lim
a→∞

sup
n

P(|X(n)
0 | > a) = 0,

and
lim
δ↓0

sup
n

P(∆(δ, k;X(n)) > ε) = 0

for each ε > 0 and k > 1.
The first assertion follows immediately from Chebyshev’s inequality and the

first assumption in the problem. For the second claim, as in the proof of Kol-
mogorov’s continuity theorem, let 0 < γ < β/α. For notation simplicity, we write
Yt = X

(n)
t (it is important that the estimates below are uniform in n). Then for

fixed k > 1, we have

P
(∣∣∣Y l

2m
− Y l−1

2m

∣∣∣ > 1

2γm

)
6Mk2

αγm2−m(1+β)

for each m > 1 and 1 6 l 6 2mk. Therefore,

P
(

max
16l62mk

∣∣∣Y l
2m
− Y l−1

2m

∣∣∣ > 1

2γm

)
6 kMk2

−m(β−αγ).

4



Given ε, η > 0, let p > 1 be such that

kMk

∞∑
m=p

2−m(β−αγ) =
kMk2

−p(β−αγ)

1− 2−(β−αγ)
< η

and
2γ
(

1 +
2

2γ − 1

)
2−γp < ε.

Define

Ωp =
∞⋃
m=p

{
max

16l62mk

∣∣∣Y l
2m
− Y l−1

2m

∣∣∣ > 1

2γm

}
.

It follows that P(Ωp) < η. Now we show that for every δ < 2−p, we have

{∆(δ, k;Y ) > ε} ⊆ Ωp, (4)

which completes the proof. Indeed, let ω /∈ Ωp, then∣∣∣Y l
2m

(ω)− Y l−1
2m

(ω)
∣∣∣ 6 1

2γm

for each m > p and 1 6 l 6 2mk. Let D , ∪∞m=1Dm, where Dm , {l/2m : 0 6 l 6
2mk}. The same argument as in the proof of Kolmogorov’s continuity theorem
allows us to conclude that for each s, t ∈ D with 0 < |s− t| < 2−p, we have

|Yt(ω)− Ys(ω)| 6 2γ
(

1 +
2

2γ − 1

)
· |t− s|γ < 2γ

(
1 +

2

2γ − 1

)
2−γp < ε.

Since Y has continuous sample paths, the above inequality is true for all s, t ∈
[0, k]. This implies that

∆(δ, k;Y (ω)) 6 ε

provided δ < 2−p. Therefore, (4) holds for δ < 2−p.

Problem 4. (1) The intuition behind this property is the following. If we have
the information up to time t, we know whether {τ 6 t} occurs since τ is an
{Ft}-stopping time. If it occurs, then we have the information up to τ. But σ
is Fτ -measurable, so we are able to determine the value of σ, and of course the
occurrence of {σ 6 t} or not. If {τ 6 t} does not occur, then τ > t. But σ > τ,
so we conclude that σ > t.
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The mathematical proof is the following. For t > 0, we have

{σ > t} = {τ > t}
⋃
{σ > t, τ 6 t}.

By assumption, we know that {τ > t} ∈ Ft and {σ > t}∩{τ 6 t} ∈ Ft. Therefore,
{σ > t} ∈ Ft, which implies that σ is an {Ft}-stopping time.

(2) The following observation is generally useful.
Proposition. Suppose that {Ft} is a right continuous filtration. Then τ is

an {Ft}-stopping time if and only if {τ < t} ∈ Ft for every t > 0. In this case,
A ∈ Fτ if and only if A ∩ {τ < t} ∈ Ft for every t > 0.

Proof. We only proof the sufficiency of the first part. All other parts are
either easy or similar. Suppose that τ satisfies {τ < t} ∈ Ft for every t > 0. Since
{Ft} is right continuous, it suffices to show that {τ 6 t} ∈ Ft+ = ∩u>tFu for each
given t. Indeed, for every u > t, we have {τ 6 t} = ∩n>(u−t)−1{τ < t+ 1/n} ∈ Fu.
Therefore, the desired property holds. Q.E.D.

(i) For the first part, since {τ < t} = ∪∞n=1{τn < t} ∈ Ft, from the above
proposition we know that τ is an {Ft}-stopping time. For the second part, suppose
that A ∈ ∩∞n=1Fτn . Then A∩{τ < t} = ∪∞n=1(A∩{τn < t}) ∈ Ft. Therefore, again
from the above proposition we know that A ∈ Fτ . The other direction is obvious.

(ii) The intuition is the following. Suppose that we have the information up to
time t. If we observe that {σ > t}, then of course we can conclude that {σ+τ > t}
happens. If we observe that {σ 6 t}, then we know the information of “Gt−σ” (this
thing is actually not well defined because t − σ is not a stopping time, but we
can still think in this way naively). Therefore, we can determine the occurrence
of {τ 6 t− σ} = {σ + τ 6 t} because τ is a {Gt}-stopping time.

The rigorous proof is the following. For any given t > 0, we have {σ + τ <
t} = ∪r∈(0,t)∩Q{σ < r, τ < t− r}. Since {τ < t− r} ∈ Fσ+(t−r), we know that

{τ < t− r} ∩ {σ + (t− r) < t} = {τ < t− r, σ < r} ∈ Ft.

Therefore, {σ + τ < t} ∈ Ft. From the above proposition, this implies that σ + τ
is an {Ft}-stopping time.

Problem 5. (1) It will be sufficient if we can prove that

E[F ·ϕ(Xt+u1−Xt, · · · , Xt+un−Xt)] = E[F ]E[ϕ(Xt+u1−Xt, · · · , Xt+un−Xt)], (5)

for any bounded GXt+-measurable F and ϕ ∈ Cb
(
(Rd)n

)
where n > 1, 0 6 u1 <

· · · < un <∞.
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Indeed, for any ε > 0, by assumption we know that GXt+ε and Ut+ε are inde-
pendent. Since F is also GXt+ε-measurable, we have

E[F · ϕ(Xt+u1+ε −Xt+ε, · · · , Xt+un+ε −Xt+ε)]

= E[F ]E[ϕ(Xt+u1+ε −Xt+ε, · · · , Xt+un+ε −Xt+ε)].

Since Xt has right continuous sample paths, the desired identity (5) follows from
letting ε→ 0.

(2) For fixed t > 0, we first show that GXt+ ⊆ FXt . To this end, let ξ be an
arbitrary bounded GXt+-measurable random variable. Define η = ξ − E[ξ|GXt ]. If
we can show that η = 0, then we know that ξ is equivalent to a GXt -measurable
random variable, which implies that ξ is FXt -measurable. Our claim then follows.

Now we show that η = 0. Let C , {A ∩ B : A ∈ Gt, B ∈ Ut}. Then C is
a π-system which generates GX∞ = σ(Xt : t > 0). Since η is GX∞-measurable, it
suffices to show that: for any A ∈ GXt and B ∈ Ut, we have E[η1A∩B] = 0. Indeed,
since η1A is GXt+-measurable, from (1) we know that

E[η1A∩B] = E[η1A]P(B).

But E[η1A] = 0 for A ∈ GXt by the definition of conditional expectation. There-
fore, E[η1A∩B] = 0. This implies that η = 0.

Finally, we show that FXt is right continuous. Let un ↓ t. Then FXt+ =
∩∞n=1σ(Gun ,N ). Since we have shown that σ(GXt+,N ) = σ(GXt ,N ), it suffices to
show that ∩∞n=1σ(GXun ,N ) = σ(GXt+,N ). The argument here is a standard argument
in measure theory when we construct the completion of a measure space.

The key point is the following general fact: let (Ω,F ,P) be a probability space,
let G ⊆ F be a sub-σ-algebra, and letN be the set of P-null sets, then F ∈ σ(G,N )
if and only if there exists some G ∈ G, such that F∆G , (F\G) ∪ (G\F ) ∈ N .
This fact can be easily shown by proving that the set of F satisfying the latter
property is a σ-algebra.

Coming back to our assertion, let F ∈ ∩∞n=1σ(GXun ,N ). Then for every n > 1,
there exists Gn ∈ GXun such that F∆Gn ∈ N . Define G = ∩∞n=1 ∪∞m=n Gm. Then it
is not hard to see that G ∈ GXt+. Moreover,

F\G ⊆
∞⋃
n=1

F\Gn ∈ N , G\F ⊆
∞⋃
n=1

Gn\F ∈ N .

Therefore, F∆G ∈ N , which implies that F ∈ σ(GXt+,N ). Hence ∩∞n=1σ(GXun ,N ) ⊆
σ(GXt+,N ). The other direction is trivial.
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Problem 6. This is a hard problem although the assertion is so natural to expect.
One direction is easy. Since X is {FXt }-adapted and continuous, from Propo-

sition 2.2 we know that it is progressively measurable. It follows from Proposition
2.6 that for every t > 0, Xτ∧t is FXτ∧t-measurable, and is thus Fτ -measurable.
Therefore, σ(Xτ∧t : t > 0) ⊆ FXτ .

The other direction is hard. It requires a good microscopic intuition on filtra-
tions and stopping times. We do it step by step.

We always interpret a particular sample point w ∈ Ω as doing a particular
experiment.

We first take a more careful look at natural filtrations.
Let t > 0. An event A ∈ FXt means that the occurrence of A can be determined

by an observation of the trajectory of X up to time t. Therefore, if we consider
two experiments w,w′ ∈ Ω in which w triggers A (i.e. w ∈ A), and if we assume
that both experiments lead to the same observation of trajectory up to time t (i.e.
the trajectory up to time t corresponding to the experiment w is exactly the same
as the one corresponding to w′), then we should conclude that w′ triggers A as
well (w′ ∈ A). The starting point of this problem is to understand this philosophy
in a mathematical way. Here is the way to write it down precisely. Note that we
are considering the coordinate process Xt(w) = wt.

Proposition 1: Let G be the set of A ∈ F which satisfies the following
property: for any w,w′ ∈ Ω, if w ∈ A and ws = w′s for all s ∈ [0, t], then w′ ∈ A.
Then G = FXt .

Proof. From definition it is apparent that G is a σ-algebra and Xs is G-
measurable for every s ∈ [0, t]. Therefore, FXt ⊆ G.

Conversely, let A ∈ G. Since A ∈ F = B(W d), from general properties of
product σ-algebras over an arbitrary index set, we know that A has the form

A = {w ∈ W d : (wt1 , wt2 , · · · ) ∈ Γ}

for some countable sequence tn ∈ [0,∞) and Γ ∈ Π∞1 B(Rd). Moreover, for every
w ∈ Ω we know that the path wts , wt∧s (s > 0) coincides with w on [0, t].
Therefore, from the definition of G, we conclude that for every w ∈ Ω, w ∈ A if
and only if wt ∈ A. In other words,

A = {w ∈ W d : (wt∧t1 , wt∧t2 , · · · ) ∈ Γ}.

But {w ∈ W d : (wt∧t1 , wt∧t2 , · · · ) ∈ Γ} ∈ FXt since FXt = σ(Xt∧s : s > 0).
Therefore, A ∈ FXt . Q.E.D.

To extend Proposition 1 to the case where t = τ, we need a more careful look
at stopping times.
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If τ is a stopping time, then we know that for every t > 0, the occurrent of the
event {τ = t} can be determined by an observation of the trajectory of X up to
time t. Let w ∈ Ω be an experiment and think of τ(ω) is a deterministic number.
It follows that the occurrence of the event {w′ ∈ Ω : τ(w′) = τ(w)} is determined
by an observation of trajectory up to time τ(w). Now suppose that w′ ∈ Ω is
another experiment such that w′ = w on [0, τ(w)]. This implies that w and w′

give the same observation of trajectory up to time τ(w). Therefore, they should
both trigger {τ = τ(w)} or both not trigger it. But w triggers this event since
τ(w) = τ(w) trivially, therefore w′ should also trigger this event (this is essentially
the philosophy of the previous Proposition 1). In other words, we should have
τ(w′) = τ(w). The way of making this philosophy precise is the following.

Proposition 2. Let τ : Ω→ [0,∞] be an F -measurable map. Then τ is an
{FXt }-stopping time if and only if the following property holds: for any w,w′ ∈ Ω
with w = w′ on [0, τ(w)] ∩ [0,∞), we have τ(w′) = τ(w).

Proof. Necessity. Suppose that τ is an {FXt }-stopping time. Let w,w′ be
such that w = w′ on [0, τ(w)] ∩ [0,∞). If τ(w) = ∞, then w = w′ and thus
τ(w′) = τ(w) = ∞. Therefore, we may assume that τ(w) < ∞. In this case, we
know that A , {τ = τ(w)} ∈ FXτ(w). Since w ∈ A, according to Proposition 1, we
know that w′ ∈ A. Therefore, τ(w′) = τ(w).

Sufficiency. Suppose that τ satisfies the assumed property. We are going to
use Proposition 1 to show that {τ 6 t} ∈ FXt for every given t > 0. Indeed, let
w ∈ {τ 6 t} so that τ(w) 6 t and let w′ ∈ Ω be such that w = w′ on [0, t]. This
particularly implies that w = w′ on [0, τ(w)] ∩ [0,∞). Therefore, by assumption
we have τ(w′) = τ(w) 6 t. From Proposition 1, we know that {τ 6 t} ∈ FXt .
Q.E.D.

Now we are able to generalize Proposition 1 to the stopping time case. The
underlying philosophy is of course the same.

Proposition 3. Let τ be an {FXt }-stopping time. Let H be the set of A ∈ F
which satisfies the following property: for any w,w′ ∈ Ω, if w ∈ A and w = w′ for
all [0, τ(w)] ∩ [0,∞), then w′ ∈ A. Then H = σ(Xτ

t : t > 0).
Proof. Keeping Proposition 2 in mind, the proof is exactly the same as the

proof of Proposition 1. Q.E.D.
The next thing is to characterize FXτ in a similar way. For w ∈ Ω, define

wτt = wτ∧t (t > 0). Then w = wτ on [0, τ(w)] ∩ [0,∞) and τ(w) = τ(wτ ).
Therefore, if w triggers A, then wτ should also trigger A.

Proposition 4. Let A ∈ F . Then A ∈ FXτ if and only if for every w ∈ Ω,
w ∈ A⇐⇒ wτ ∈ A.

Proof. Necessity. Suppose that A ∈ FXτ . For w ∈ Ω, if τ(w) = ∞, then
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w = wτ , in which case the claim is trivial. Therefore, we may assume that
τ(w) < ∞. In this case we have A ∩ {τ 6 τ(w)} ∈ FXτ(w). If w ∈ A, then
w ∈ A ∩ {τ 6 τ(w)}. But w = wτ on [0, τ(w)]. By Proposition 1, we conclude
that wτ ∈ A ∩ {τ 6 τ(w)} ⊆ A. Conversely, if wτ ∈ A, since τ(w) = τ(wτ ) by
Proposition 2, we know that wτ ∈ A ∩ {τ 6 τ(w)}. It follows from Proposition 1
that w ∈ A ∩ {τ 6 τ(w)} ⊆ A.

Sufficiency. Suppose that A ∈ F satisfies the assumed property. For given
t > 0, we want to show that A ∩ {τ 6 t} ∈ FXt . Let w ∈ A ∩ {τ 6 t} and w′ = w
on [0, t]. This implies that τ(w) 6 t and w = w′ on [0, τ(w)]. Since w ∈ A, by
assumption, we conclude that wτ = (w′)τ ∈ A, which implies that w′ ∈ A. Of
course we also have τ(w) = τ(w′) by Proposition 2. Therefore, w′ ∈ A ∩ {τ 6 t}.
It follows from Proposition 1 that A ∩ {τ 6 t} ∈ FXt . Q.E.D.

Now we are able to complete the proof of our main claim.
Proof of “FXτ ⊆ σ(Xτ

t : t > 0)”. Let A ∈ FXτ . Since A ∈ F , by Proposition 3,
it suffices to show that for given w,w′, if w ∈ A and w = w′ on [0, τ(w)]∩ [0,∞),
then w′ ∈ A. Indeed, we only need to consider the case when τ(w) < ∞. In
this case we have wτ = (w′)τ . Since A ∈ FXτ , by Proposition 4 we know that
wτ = (w′)τ ∈ A, which further implies that w′ ∈ A. Q.E.D.
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