
Solutions for Problem Set One

Problem 1. (1) (i) We have

E[XE[Y |G]] = E[E[XE[Y |G]|G]] = E[E[X|G] · E[Y |G]].

Similarly for E[Y E[X|G]].
(ii) We say that a bounded measurable function satisfying property P if

E[f(X, Y )|G] = E[f(x, Y )]|x=X .

Let E = {E ∈ B(R2) : 1E satisfies property P}. Then E is a monotone class
containing the π-system C , {A × B : A,B ∈ B(R1)}. By the monotone class
theorem in measure theory, we conclude that E = B(R2). In other words, 1E
satisfies property P for every E ∈ B(R2).

Note that the property P is linear in f. By writing f = f+− f−, we only need
to consider the case when f is bounded and non-negative. But then there exists a
sequence fn of simple functions on R2 such that 0 6 fn ↑ f.We know that each fn
satisfies property P. By the monotone convergence theorem for both conditional
and unconditional expectations, we conclude that f satisfies property P.

(iii) Since both sides are σ(G,H)-measurable, it suffices to show that∫
E

XdP =

∫
E

E[X|G]dP, ∀E ∈ σ(G,H). (1)

Let E = {E ∈ σ(G,H) : equation (1) holds}, and let C = {A∩B : A ∈ G, B ∈ H}.
Apparently, C is a π-system. For any A ∈ G, B ∈ H, we have

E[X1A1B] = E[X1A]P(B) = E[E[X|G]1A]P(B) = E[E[X|G]1A1B].

Therefore, C ⊆ E . Moreover, it is easy to see that E is a monotone class. By the
monotone class theorem, we conclude that σ(G,H) = E .

(2) By assumption, we know that for every r ∈ R1,

E
[
(X − Y )1{X6r}

]
= E

[
(X − Y )1{Y 6r}

]
= 0.
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Therefore,

E
[
(X − Y )1{X6r,Y >r}

]
+ E

[
(X − Y )1{X6r,Y 6r}

]
= 0,

E
[
(X − Y )1{X>r,Y 6r}

]
+ E

[
(X − Y )1{X6r,Y 6r}

]
= 0.

It follows that

E
[
(X − Y )1{X>r,Y 6r}

]
+ E

[
(Y −X)1{X6r,Y >r}

]
= 0.

But the integrand inside each of the above expectations is non-negative. There-
fore,

(X − Y )1{X>r,Y 6r} = (Y −X)1{X6r,Y >r} = 0 a.s.

This implies that

P(X > r, Y 6 r) = P(X 6 r, Y > r) = 0.

And this is true for all r ∈ R1. The result then follows from the fact that

{X 6= Y } ⊆ {X > Y }
⋃
{X < Y } ⊆

⋃
n∈Z

(
{X > n > Y }

⋃
{Y > n > X}

)
.

Problem 2. (1) For λ > 0, we have

|E[X|Gi]|1{|E[X|Gi]|>λ} 6 E[|X||Gi]1{E[|X||Gi]>λ}.

Therefore, by taking expectations on both sides, we obtain that

E
[
|E[X|Gi]|1{|E[X|Gi]|>λ}

]
6 E[|X|1{E[|X||Gi]>λ}].

But

E[|X|1{E[|X||Gi]>λ}]
= E[|X|1{E[|X||Gi]>λ}; |X| >

√
λ] + E[|X|1{E[|X||Gi]>λ}; |X| 6

√
λ]

6 E[|X|; |X| >
√
λ] +

√
λ · 1

λ
E[E[|X||Gi]]

= E[|X|; |X| >
√
λ] +

1√
λ
E[|X|],

which goes to zero uniformly in i ∈ I as λ→∞ since X is integrable. Therefore,
{E[X|Gi] : i ∈ I} is uniformly integrable.

(2) Let M = supt∈T E[ϕ(|Xt|)]. For ε > 0, let R = M/ε. Then there exists
some Λ > 0, such that for any x > Λ, we have ϕ(x)/x > R. Therefore, for λ > Λ,
we have

E[|Xt|1{|Xt|>λ}] 6
1

R
E[ϕ(|Xt|)] 6

M

R
= ε, ∀t ∈ T.

Consequently, {Xt : t ∈ T} is uniformly integrable.
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Problem 3. (1) P(Xn > α log n) = e−α logn = 1/nα. Therefore, by the Borel-
Cantelli lemma, we have

P(Xn > α log n for infinitely many n) =

{
0, α > 1;

1, 0 < α 6 1.

(2) Let Aα = {Xn > α log n for infinitely many n}. Since P(A1) = 1, we know
that L > 1 almost surely. Moreover,

{L > 1} ⊆
∞⋃
k=1

{
L > 1 +

1

k

}
⊆
∞⋃
k=1

A1+ 1
2k
.

It follows that P(L > 1) = 0. Therefore, L = 1 almost surely.
(3) For each x ∈ R1, we have

P(Mn 6 x) = P
(

max
16i6n

Xi 6 x+ log n

)
= (1− e−x−logn)n,

provided that x+ log n > 0. Therefore,

lim
n→∞

P(Mn 6 x) = e−e
−x
, ∀x ∈ R1.

Apparently, the function F (x) , e−e
−x defines a continuous distribution function

on R1. Therefore, Mn converges weakly to F .

Problem 4. (1) =⇒ (2). Suppose that Pn converges weakly to P. According
to Theorem 1.7, we know that Pn(A) → P(A) for every A ∈ B(R1) satisfying
P(∂A) = 0. In particular, let x be a continuity point of F and let A = (−∞, x].
Then P(∂A) = dF ({x}) = 0. Therefore,

Fn(x) = Pn(A)→ P(A) = F (x).

(2) =⇒ (1). Suppose that Fn converges in distribution to F. Let CF be the
set of continuity points of F. Since Cc

F is at most countable, we conclude that CF
is dense in R1.

Let ϕ ∈ Cb(R1). Given ε > 0, let a, b ∈ CF be such that a < 0 < b and

F (a) < ε, 1− F (b) < ε.

Then there exists N > 1, such that for any n > N,

|Fn(a)− F (a)| < ε,|Fn(b)− F (b)| < ε.
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It follows that
Fn(a) < 2ε, 1− Fn(b) < 2ε, ∀n > N.

Therefore, ∣∣∣∣∫
R1

ϕdFn −
∫
R1

ϕdF

∣∣∣∣
6

∣∣∣∣∫
(a,b]

ϕ(dFn − dF )

∣∣∣∣+ ‖ϕ‖∞(dFn((a, b]c) + dF ((a, b]c))

6

∣∣∣∣∫
(a,b]

ϕ(dFn − dF )

∣∣∣∣+ 6‖ϕ‖∞ε (2)

for every n > N.
Since ϕ is uniformly continuous on [a, b], there exists δ > 0, such that whenever

x, y ∈ [a, b] with |x− y| < δ, we have |ϕ(x)− ϕ(y)| < ε. Choose a finite partition
P : a = x0 < x1 < · · · < xk = b of [a, b], such that x0, x1, · · · , xk ∈ CF and
|xi − xi−1| < δ for each i. Define a step function ψ by taking ψ(x) = ϕ(xi−1) for
x ∈ [xi−1, xi]. It follows that

sup
x∈[a,b]

|ϕ(x)− ψ(x)| 6 ε.

Therefore,∣∣∣∣∫
(a,b]

ϕ(dFn − dF )

∣∣∣∣
6 2 sup

x∈[a,b]
|ϕ(x)− ψ(x)|+

∣∣∣∣∫
(a,b]

ψ(dFn − dF )

∣∣∣∣
6 2ε+

∑
i

|ϕ(xi−1)| · ((Fn(xi)− F (xi))− (Fn(xi−1)− F (xi−1))) . (3)

Note that the partition P we chose before does not depend on n.
By substituting (3) into (2) and letting n→∞, we arrive at

lim sup
n→∞

∣∣∣∣∫
R1

ϕdFn −
∫
R1

ϕdF

∣∣∣∣ 6 (2 + 6‖ϕ‖∞)ε.

Since ε is arbitrary, we conclude that
∫
R1 ϕdFn →

∫
R1 ϕdF as n→∞. Therefore,

Pn converges weakly to P.
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Problem 5. (1) Necessity. Suppose that {Pn} is tight. Then there exists M > 0,
such that

Pn([−M,M ]) >
3

4
, ∀n > 1.

It follows that |µn| 6 M for all n. Indeed, if this is not the case, suppose for
instance that µn > M for some n. Then

1

2
6 Pn([µn,∞)) 6 Pn((M,∞)) <

1

4
,

which is a contradiction. In addition, we have

3

4
6 Pn([−M,M ]) =

1√
2πσn

∫ M

−M
e
− (x−µn)2

2σ2n dx

=
1√
2π

∫ M−µn
σn

−M−µn
σn

e−
x2

2 dx 6
1√
2π

∫ 2M
σn

−2M
σn

e−
x2

2 dx. (4)

This implies that σn is bounded. Indeed, if σn ↑ ∞ along a subsequence, then the
right hand side of (4) goes to zero along this subsequence, which is a contradiction.

Sufficiency. Suppose that |µn| 6M1, σn 6M1 for some M1 > 0. Then for any
M > M1, we have

Pn([−M,M ]) =
1√
2π

∫ M−µn
σn

−M−µn
σn

e−
x2

2 dx

>
1√
2π

∫ M−M1
σn

−M−M1
σn

e−
x2

2 dx

>
1√
2π

∫ M−M1
M1

−M−M1
M1

e−
x2

2 dx. (5)

Since the right hand side of (5) converges to 1 as M →∞, we conclude that

lim
M→∞

inf
n>1

Pn([−M,M ]) = 1.

In other words, {Pn} is tight.
(2) Sufficiency. Suppose that µn → µ and σ2

n → σ2. Then

eiµnt−
1
2
σ2
nt → eiµt−

1
2
σ2t
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for every t ∈ R1 as n→∞. Therefore, Pn converges weakly to N (µ, σ2).
Necessity. Suppose that {Pn} is weakly convergent. From the first part we

already know that {µn} and {σ2
n} are both bounded. Assume that µ and µ′

are two limit points of µn. We may further assume without loss of generality
that µnk → µ, σ2

nk
→ σ2, and µn′l → µ′, σ2

n′l
→ σ′2 along two subsequences nk

and n′l. By the sufficiency part and the uniqueness of weak limits, we know that
N (µ, σ2) = N (µ′, σ′2), and hence µ = µ′ and σ2 = σ′2. Therefore, µn converges to
some µ ∈ R1. Similarly, we conclude that σ2

n has exactly one limit point, which
means that it converges to some σ2 > 0.
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