
Course Plan for 21880 Stochastic Calculus

Instructor: Xi Geng
Fall 2017

1 Course description
Roughly speaking, in a classical sense, stochastic calculus means the calculus for
Brownian motion, or more generally, the calculus for semimartingales. A central
motivation of stochastic calculus is the following. In classical analysis, the ordinary
differential equation

dxt = b(xt)dt (1)

describes the time evolution of an n-dimensional deterministic nonlinear system,
where b is a vector field on Rn. However, it is generally interesting and important
to consider the situation where an additional random perturbation is presented
in the description of system (1). Formally the resulting system can be written in
matrix form as

dXt = b(Xt)dt+ σ(Xt)dBt, (2)

where σ = (σ1, · · · , σd) is a family of d vector fields on Rn, and dBt represents
some kind of d-dimensional random perturbation along every direction σi.

From an analytic point of view, the probability distribution of the random system
(2) gives the fundamental solution (in the generalized sense) to the parabolic PDE
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where A∗ is the formal adjoint of the second order differential operator
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Equivalently, solutions to Cauchy problems for the parabolic PDE
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admit stochastic representations in terms of the solution to the random system
(2). Such way of studying PDEs from a probabilistic point of view proves to be
rather useful both on the theoretical and computational sides.

The ultimate goal of this course is to develop a mathematical theory for the
study of the random system (2) in the original spirit of K. Itô which was further
developed by H. Kunita and S. Watanabe, and to explore many nice consequences
of this elegant theory.

We start our journey by a short review on discrete probability theory in a measure-
theoretic flavor, followed by the basic notions of continuous time stochastic pro-
cesses. Here a core concept which is new to us is a mathematical way of describing
information up to certain amount of time which can possibly be random. Keeping
track of information plays a fundamental role in the theory. After that, we intro-
duce the powerful tool of martingale methods, which leads to an elegant intrinsic
construction of stochastic integrals. As a fundamental example in the theory, we
then spend some time studying the Brownian motion in a very much martingale
flavor. The rest of the course will be devoted to the study of stochastic integration
and differential equations. If it has to be one, a core result of the theory will be
Itô’s formula, and a core technique of our study will be martingale methods.

2 Prerequisites
The main prerequisite for the course is measure-theoretic discrete probability the-
ory. In particular, it is rather important to be comfortable with the conditional
expectation and its basic properties. No knowledge on discrete martingales is
assumed. The first section of the lecture notes contains essentially all preliminary
notions needed for the course. Therefore, it will be very helpful if you could go
through the materials carefully and understand the statements without proofs in
that section.

3 Course syllabus

3.1 Review of probability theory

• Conditional expectations

• Uniform integrability
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• The Borel-Cantelli lemma

• The law of large numbers and the central limit theorem

• Weak convergence of probability measures

3.2 Generalities on continuous time stochastic processes

• Construction of stochastic processes: Kolmogorov’s extension theorem

• Kolmogorov’s continuity theorem

• Filtrations and stopping times

3.3 Continuous time martingales

• The martingale transform–discrete stochastic integration

• The martingale convergence theorems

• Doob’s optional sampling theorems

• Doob’s martingale inequalities

• Doob’s regularization theorems

• The Doob-Meyer decomposition theorem

3.4 Brownian motion

• Invariance properties of Brownian motion

• The strong Markov property

• The reflection principle

• The Skorokhod embedding theorem

• The Donsker invariance principle

• Passage time distributions: Laplace transforms and densities

• Sample path properties: oscillations, irregularity and the p-variation of
Brownian motion
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3.5 Stochastic Integration

• Square-integrable martingales

• Construction of stochastic integrals

• Itô’s formula

• The Burkholder-Davis-Gundy inequality

• Lévy’s characterization of Brownian motion

• Continuous local martingales as time-changed Brownian motions

• Martingale representation theorems

• The Cameron-Martin-Girsanov transformation

• Local times for continuous semimartingales

• Lévy’s theorem for Brownian local time

3.6 Stochastic differential equations and diffusion processes

• Itô’s theory of stochastic differential equations

• Different notions of solutions and the Yamada-Watanabe theorem

• Existence of weak solutions

• Pathwise uniqueness results

• A comparison theorem for one dimensional SDEs

• Two useful techniques: transformation of drift and time-change

• Examples: linear SDEs and Bessel processes

• Itô’s diffusion processes and partial differential equations
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4 Homework and grading

4.1 Homework

The lecture notes contain 6 sections, and there is a problem set at the end of each
section. These problem sets form an essential complementary component of the
subject. Many of the problems, thought challenging, are very useful, enlightening
and enjoyable. In particular, the problems that are marked with a “?” will be used
in the lectures. Therefore, it is important to have at least a good understanding
on these problems if not all.

You are encouraged to work in small groups for solving homework problems.
You can always ask myself for hints at any time. Submission of solutions are not
required but very welcomed. Standard solutions will be uploaded on the course
website in consistence with the pace of the course. In lectures, I will always assume
that you have understood the problems marked with a “?”.

4.2 Grading

At the beginning of October, a take home exam which contains 2 main problems
will be distributed. Solutions are due December 15th 2017. You are encouraged to
work in small groups for finding reasonable approaches to the problems. However,
solutions must be written down by yourself and should reflect your own under-
standing to some extent. If you are not able to find a complete solution, credits
will still be granted for partial attempts and reasonable thoughts.

Final Grade = Attendance (30%) + Take home exam (70%).
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