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1 Review of probability theory

In this section, we review several aspects of probability theory that are important for our
study. Most proofs are contained in standard textbooks and hence will be omitted.

Recall that a probability space is a triple (Ω,F ,P) which consists of a non-empty
set Ω, a σ-algebra F over Ω and a probability measure on F . A random variable over
(Ω,F ,P) is a real-valued F -measurable function. For 1 6 p <∞, Lp(Ω,F ,P) denotes
the Banach space of (equivalence classes of) random variables X satisfying E[|X|p] <∞.

The following are a few conventions that we will be using in the course.

• A P-null set is a subset of some F-measurable set with zero probability.

• A property is said to hold almost surely (a.s.) or with probability one if it holds
outside an F-measurable set with zero probability, or equivalently, the set on which
it does not hold is a P-null set.

1.1 Conditional expectations

A fundamental concept in the study of martingale theory and stochastic calculus is the
conditional expectation.

Definition 1.1. Let (Ω,F ,P) be a probability space, and let G be a sub-σ-algebra of F .
Given an integrable random variable X ∈ L1(Ω,F ,P), the conditional expectation of X
given G is the unique G-measurable and integrable random variable Y such that

ˆ
A
Y dP =

ˆ
A
XdP, ∀A ∈ G. (1.1)

It is denoted by E[X|G].

The existence of the conditional expectation is a standard application of the Radon-
Nikodym theorem, and the uniqueness follows from an easy measure theoretic argument.

Here we recall a geometric construction of the conditional expectation. We start
with the Hilbert space L2(Ω,F ,P). Since G ⊆ F , the Hilbert space L2(Ω,G,P) can
be regarded as a closed subspace of L2(Ω,F ,P). Given X ∈ L2(Ω,F ,P), let Y be the
orthogonal projection of X onto L2(Ω,G,P). Then Y satisfies the characterizing property
(1.1) of the conditional expectation. If X is a non-negative integrable random variable,
we consider Xn = X ∧ n ∈ L2(Ω,F ,P) and let Yn be the orthogonal projection of Xn

onto L2(Ω,G,P). It follows that Yn is non-negative and increasing. Its pointwise limit,
denoted by Y, is a non-negative, G-measurable and integrable random variable which
satisfies (1.1). The general case is treated by writing X = X+−X− and using linearity.
We left it as an exercise to provide the details of the construction.

The conditional expectation satisfies the following basic properties.
(1) X 7→ E[X|G] is linear.
(2) If X 6 Y, then E[X|G] 6 E[Y |G]. In particular, |E[X|G]| 6 E[|X||G].
(3) If X and ZX are both integrable, and Z ∈ G, then E[ZX|G] = ZE[X|G].
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(4) If G1 ⊂ G2 are sub-σ-algebras of F , then E[E[X|G2]|G1] = E[X|G1].
(5) If X and G are independent, then E[X|G] = E[X].
In addition, we have the following Jensen’s inequality: if ϕ is a convex function on

R, and both X and ϕ(X) are integrable, then

ϕ(E[X|G]) 6 E[ϕ(X)|G]. (1.2)

Applying this to the function ϕ(x) = |x|p for p > 1, we see immediately that the
conditional expectation is a contraction operator on Lp(Ω,F ,P).

The convergence theorems (the monotone convergence theorem, Fatou’s lemma, and
the dominated convergence theorem) also hold for the conditional expectation, stated in
an obvious way.

For every measurable subset A ∈ F , P(A|G) is the conditional probability of A given
G. However, P(A|G) is defined up to a null set which depends on A, and in general there
does not exist a universal null set outside which the conditional probability A 7→ P(A|G)
can be regarded as a probability measure. The resolution of this issue leads to the notion
of regular conditional expectations, which plays an important role in the study of Markov
processes and stochastic differential equations.

Definition 1.2. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of
F . A system {p(ω,A)}ω∈Ω,A∈F is called a regular conditional probability given G if it
satisfies the following conditions:

(1) for every ω ∈ Ω, A 7→ p(ω,A) is a probability measure on (Ω,F);
(2) for every A ∈ F , ω 7→ p(ω,A) is G-measurable;
(3) for every A ∈ F and B ∈ G,

P(A
⋂
B) =

ˆ
B
p(ω,A)P(dω).

The third condition tells us that for every A ∈ F , p(·, A) is a version of P(A|G). It
follows that for every integrable random variable X, ω 7→

´
X(ω′)p(ω, dω′) is an almost

surely well-defined and it is a version of E[X|G].
In many situations, we are interested in the conditional distribution of a random

variable taking values in another measurable space. Suppose that {p(ω,A)}ω∈Ω,A∈F is
a regular conditional probability on (Ω,F ,P) given G. Let X be a measurable map from
(Ω,F) to some measurable space (E, E). We can define

Q(ω,Γ) = p(ω,X−1Γ), ω ∈ Ω,Γ ∈ E .

Then the system {Q(ω,Γ)}ω∈Ω,Γ∈E satisfies:
(1)’ for every ω ∈ Ω, Γ 7→ Q(ω,Γ) is a probability measure on (E, E);
(2)’ for every Γ ∈ E , ω 7→ Q(ω,Γ) is G-measurable;
(3)’ for every Γ ∈ E and B ∈ G,

P({X ∈ Γ}
⋂
B) =

ˆ
B
Q(ω,Γ)P(dω).
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In particular, we can see that Q(·,Γ) is a version of P(X ∈ Γ|G) for every Γ ∈ E . The
system {Q(ω,Γ)}ω∈Ω,Γ∈E is called a regular conditional distribution of X given G.

It is a deep result in measure theory that if E is a complete and separable metric space,
and E is the σ-algebra generated by open sets in E, then a regular conditional distribution
of X given G exists. In particular, if (Ω,F) is a complete and separable metric space, by
considering the identity map we know that a regular conditional probability given G exists.
In this course we will mainly be interested in complete and separable metric spaces.

Sometimes we also consider conditional expectations given some random variable X.
Let X be as before, and let PX be the law of X on (E, E). Similar to Definition 1.2, a
system {p(x,A)}x∈E,A∈F is called a regular conditional probability given X if it satisfies:

(1)” for every x ∈ E, A 7→ p(x,A) is a probability measure on (Ω,F);
(2)” for every A ∈ F , x 7→ p(x,A) is E-measurable;
(3)” for every A ∈ F and Γ ∈ E ,

P(A
⋂
{X ∈ Γ}) =

ˆ
Γ
p(x,A)PX(dx).

In particular, p(·, A) gives a version of P(A|X = ·). If (Ω,F) is a complete and separable
metric space, then a regular conditional probability given X exists.

1.2 Uniform integrability

Now we review an important concept which is closely related to the study of L1-
convergence.

Definition 1.3. A family {Xt : t ∈ T} of integrable random variables over a probability
space (Ω,F ,P) is called uniformly integrable if

lim
λ→∞

sup
t∈T

ˆ
{|Xt|>λ}

|Xt|dP = 0.

Uniform integrability can be characterized by the following two properties.

Theorem 1.1. Let {Xt : t ∈ T} be a family of integrable random variables. Then
{Xt : t ∈ T} is uniformly integrable if and only if

(1) (uniform boundedness in L1) there exists M > 0, such that
ˆ

Ω
|Xt|dP 6M, ∀t ∈ T ;

(2) (uniform equicontinuity) for every ε > 0, there exists δ > 0, such that for all
A ∈ F with P(A) < δ and t ∈ T,

ˆ
A
|Xt|dP < ε.
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The two characterizing properties in Theorem 1.1 might remind us the Arzelà–Ascoli
theorem (in functional analysis) for continuous functions (c.f. Theorem 1.9). Therefore,
it is not unreasonable to expect that uniform integrability is equivalent to some kind
of relative compactness in L1(Ω,F ,P). This is an important result due to Dunford and
Pettis.

Definition 1.4. A sequence {Xn} of integrable random variables is said to converge
weakly in L1 to an integrable random variable X if for every bounded random variable
Y, we have

lim
n→∞

E[XnY ] = E[XY ].

Theorem 1.2. A family {Xt : t ∈ T} of integrable random variables is uniformly
integrable if and only if every sequence in {Xt : t ∈ T} contains subsequence which
converges weakly in L1.

Perhaps the most important property of uniform integrability for our study lies in its
connection with L1-convergence.

Theorem 1.3. Let {Xn} be a sequence of integrable random variables and let X be
another random variable. Then the following two statements are equivalent:

(1) Xn converges to X in L1, in the sense that

lim
n→∞

ˆ
|Xn −X|dP = 0;

(2) Xn converges to X in probability, in the sense that

lim
n→∞

P(|Xn −X| > ε) = 0

for every ε > 0, and {Xn} is uniformly integrable.

1.3 The Borel-Cantelli lemma

Now we review a simple technique which has huge applications in probability theory and
stochastic processes.

Theorem 1.4. Let {An} be a sequence of events over some probability space (Ω,F ,P).
(1) If

∑
n P(An) <∞, then

P
(

lim sup
n→∞

An

)
= 0.

(2) Suppose further that {An} are independent. If
∑∞

n=1 P(An) =∞, then

P
(

lim sup
n→∞

An

)
= 1.
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1.4 The law of large numbers and the central limit theorem

The study of limiting behaviors for random sequences is an important topic in proba-
bility theory. Here we review two classical limit theorems for sequences of independent
random variables: the law of large numbers and the central limit theorem. Heuristically,
given a sequence of independent random variables satisfying certain moment conditions,
the (strong) law of large numbers describes the property that the sample average will
eventually stabilize at the expected value, while the central limit theorem quantifies the
asymptotic distribution of the stochastic fluctuation of the sample average around the
expected value. Here we do not pursue the most general cases and we only state the
results in a special setting which are already important on its own and relevant for our
study.

Definition 1.5. Let Xn, X be random variables with distribution function Fn(x), F (x)
respectively. Xn is said to converge in distribution to X if

lim
n→∞

Fn(x) = F (x)

for every x at which F (x) is continuous.

Note that convergence in distribution is a property that only refers to distribution
functions rather than underlying random variables.

Theorem 1.5. Let {Xn} be a sequence of independent and identically distributed ran-
dom variables with µ = E[X1] and σ2 = Var[X1] <∞. Let sn = (X1 + · · ·+Xn)/n be
the sample average. Then with probability one,

lim
n→∞

sn = µ.

Moreover, the normalized sequence
√
n(sn− µ)/σ converges in distribution to the stan-

dard normal distribution N (0, 1).

1.5 Weak convergence of probability measures

Finally, we discuss an important notion of convergence for probability measures: weak
convergence. This is particularly useful in the infinite dimensional setting, for instance in
studying the distributions of stochastic processes, which are probability measures on the
space of paths.

Let (S, ρ) be a metric space. The Borel σ-algebra B(S) over S is the σ-algebra
generated by open sets in S. We use Cb(S) to denote the space of bounded continuous
functions on S.

Definition 1.6. Let Pn,P be probability measures on (S,B(S)). Pn is said to converge
weakly to P if

lim
n→∞

ˆ
S
f(x)Pn(dx) =

ˆ
S
f(x)P(dx), ∀f ∈ Cb(S).
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Before the general discussion of weak convergence, let us say a bit more in the case
when S = R1.

Definition 1.7. Let P be a probability measure on (R1,B(R1)). The characteristic
function of P is the complex-valued function given by

f(t) =

ˆ
R1

eitxP(dx), t ∈ R1.

There are nice regularity properties for characteristic functions. For instance, it is
uniformly continuous on R1 and uniformly bounded by 1. The uniqueness theorem for
characteristic functions asserts that two probability measures on (R1,B(R1)) are identical
if and only if they have the same characteristic functions. Moreover, there is a one-to-one
correspondence between probability measures on (R1,B(R1)) and distribution functions
(i.e. right continuous and increasing functions F (x) with F (−∞) = 0 and F (∞) = 1)
through the Lebesgue-Stieltjes construction.

The characteristic function is also a useful concept in studying weak convergence
properties. The following result characterizes weak convergence for probability measures
on (R1,B(R1)).

Theorem 1.6. Let Pn,P be probability measures on (R1,B(R1)) with distribution func-
tions Fn(x), F (x) and characteristic functions fn(t), f(t) respectively. Then the following
statements are equivalent:

(1) Pn converges weakly to P;
(2) Fn converges in distribution to F ;
(3) fn converges to f pointwisely on R1;

Remark 1.1. When we study the distribution of a non-negative random variable T (for
instance a random time), for technical convenience we usually consider the Laplace trans-
form λ > 0 7→ E

[
e−λT

]
instead of the characteristic function, which also characterizes

the distribution of T.

Remark 1.2. The notion of characteristic functions extends to the multidimensional case.
The previous results about the connections between characteristic functions and proba-
bility measures still hold, except for the fact that the notion of distribution functions is
no longer natural–they are not in one-to-one correspondence with probability measures.

Now we come back to the general situation. The notion of characteristic functions
is not well-defined on general metric spaces. However, we still have following general
characterization of weak convergence. Although the proof is standard, we provide it here
to help the reader get comfortable with the notions.

Theorem 1.7. Let (S, ρ) be a metric space and let Pn,P be probability measures on
(S,B(S)). Then the following results are equivalent:

(1) Pn converges weakly to P;
(2) for every f ∈ Cb(S) which is uniformly continuous,

lim
n→∞

ˆ
S
f(x)Pn(dx) =

ˆ
S
f(x)P(dx);

8



(3) for every closed subset F ⊆ S,

lim sup
n→∞

Pn(F ) 6 P(F );

(4) for every open subset G ⊆ S,

lim inf
n→∞

Pn(G) > P(G);

(5) for every A ∈ B(S) satisfying P(∂A) = 0 where ∂A , A\Å is the boundary of
A,

lim
n→∞

Pn(A) = P(A).

Proof. (1) =⇒ (2) is obvious.
(2) =⇒ (3). Let F be a closed subset of S. For k > 1, define

fk(x) =

(
1

1 + ρ(x, F )

)k
, x ∈ S,

where ρ(x, F ) is the distance between x and F . It is easy to see that fk is bounded and
uniformly continuous. In particular,

1F (x) 6 fk(x) 6 1,

and fk ↓ 1F as k →∞, where 1F denotes the indicator function of F. Therefore, from
(2) we have

lim sup
n→∞

Pn(F ) 6 lim
n→∞

ˆ
S
fk(x)Pn(dx)

=

ˆ
S
fk(x)P(dx)

for every k > 1. From the dominated convergence theorem, by letting k → ∞ we
conclude that

lim sup
n→∞

Pn(F ) 6 P(F ).

(3)⇐⇒(4) is obvious.
(3)+(4) =⇒ (5). Let A ∈ B(S) be such that P(∂A) = 0. It follows that

P(Å) = P(A) = P(A).

From (3) and (4), we see that

lim sup
n→∞

Pn(A) 6 lim sup
n→∞

Pn(A)

6 P(A) = P(A) = P(Å)

6 lim inf
n→∞

Pn(Å)

6 lim inf
n→∞

Pn(A).
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Therefore, limn→∞ Pn(A) = P(A).
(5) =⇒ (1). Let f be a bounded continuous function on S. By translation and

rescaling we may assume that 0 < f < 1. Since P is a probability measure, we know that
for each n > 1, the set {a ∈ R1 : P(f = a) > 1/n} is finite. Therefore, the set

{a ∈ R1 : P(f = a) > 0}

is at most countable. Given k > 1, for each 1 6 i 6 k, we choose some ai ∈ ((i −
1)/k, i/k) such that P(f = ai) = 0. Set a0 = 0, ak+1 = 1, and define Bi = {ai−1 6
f < ai} for 1 6 i 6 k+ 1. Note that |ai− ai−1| < 2/k, and Bi are disjoint whose union
is S. Moreover, from the continuity of f it is easy to see that

Bi ⊆ {ai−1 6 f 6 ai}, {ai−1 < f < ai} ⊆ B̊i.

Therefore, ∂Bi ⊆ {f = ai−1} ∪ {f = ai} and P(∂Bi) = 0. It follows that∣∣∣∣ˆ
S
f(x)Pn(dx)−

ˆ
S
f(x)P(dx)

∣∣∣∣ 6
k+1∑
i=1

∣∣∣∣ˆ
Bi

f(x)Pn(dx)−
ˆ
Bi

f(x)P(dx)

∣∣∣∣
6

4

k
+
k+1∑
i=1

ai−1 |Pn(Bi)− P(Bi)| .

By letting n→∞, from (5) we conclude that

lim sup
n→∞

∣∣∣∣ˆ
S
f(x)Pn(dx)−

ˆ
S
f(x)P(dx)

∣∣∣∣ 6 4

k
.

Now the result follows as k is arbitrary.

Now we introduce an important characterization of relative compactness for a fam-
ily of probability measures with respect to the topology of weak convergence. This is
known as Prokhorov’s theorem. The usefulness of relative compactness in proving weak
convergence is demonstrated in Problem Sheet 2, Problem 1.

Definition 1.8. A family P of probability measures on a metric space (S,B(S), ρ) is
said to be tight if for every ε > 0, there exists a compact subset K ⊆ S, such that

P(K) > 1− ε, ∀P ∈ P.

Prokhorov’s theorem relates tightness and relative compactness with respect to the
topology of weak convergence.

Theorem 1.8. Let P be a family of probability measures on a separable metric space
(S,B(S), ρ).

(1) If P is tight, then it is relatively compact, in the sense that every subsequence of
P further contains a weakly convergent subsequence.

(2) Suppose in addition that (S, ρ) is complete. If P is relatively compact, then it is
also tight.
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Remark 1.3. In the language of general topology, we do not distinguish the meanings
between relative compactness and sequential compactness because it is known that the
topology of weak convergence is metrizable (i.e. there exists a metric d on the space
of probability measures on (S,B(S)), such that Pn converges weakly to P if and only if
d(Pn,P)→ 0).

Now we study an example which plays a fundamental role in our study.
Let W d be the space of continuous paths w : [0,∞) → Rd. We define a metric ρ

on W d by

ρ(w,w′) =
∞∑
n=1

1 ∧maxt∈[0,n] |wt − w′t|
2n

, w, w′ ∈W d. (1.3)

Therefore, ρ characterizes uniform convergence on compact intervals. It is a good exercise
to show that (W d, ρ) is a complete and separable metric space, and the Borel σ-algebra
over W d coincides with the σ-algebra generated by cylinder sets of the form

{w ∈W d : (wt1 , · · · , wtn) ∈ Γ}

for n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ B(Rd×n).
W d is usually known as the (continuous) path space over Rd. It is important as

every continuous stochastic process can be realized on W d. Moreover, when equipped
with the canonical Wiener measure (the distribution of Brownian motion), W d carries
nice analytic structure on which the Malliavin calculus (a theory of stochastic calculus of
variations in infinite dimensions which constitutes a substantial part of modern stochastic
analysis) is built.

We finish by proving an important criteria for tightness of probability measures onW d.
This is a simple probabilistic analogue of the Arzelà–Ascoli theorem, which is recaptured
in the following. We use ∆(δ, n;w) to denote the modulus of continuity of w ∈W d over
[0, n], i.e.

∆(δ, n;w) = sup
s,t∈[0,n]
|s−t|<δ

|ws − wt|, δ > 0, n ∈ N, w ∈W d.

Theorem 1.9. A subset Λ ⊆ (W d, ρ) is relatively compact (i.e. Λ is compact) if and
only if the following two conditions hold:

(1) uniform boundedness:

sup{|w0| : w ∈ Λ} <∞;

(2) uniform equicontinuity: for every n ∈ N,

lim
δ↓0

sup
w∈Λ

∆(δ, n;w) = 0.

Now we have the following result.
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Theorem 1.10. Let P be a family of probability measures on (W d,B(W d)). Suppose
that the following two conditions hold:

(1)
lim
a→∞

sup
P∈P

P(|w0| > a) = 0;

(2) for every ε > 0 and n ∈ N,

lim
δ↓0

sup
P∈P

P(∆(δ, n;w) > ε) = 0.

Then P is tight.

Proof. Fix ε > 0. Condition (1) implies that there exists aε > 0 such that

P(|w0| > aε) <
ε

2
, ∀P ∈ P.

In addition, Condition (2) implies that there exists a sequence δε,n ↓ 0 (as n→∞) such
that

P
(

∆(δε,n, n;w) >
1

n

)
< ε · 2−(n+1), ∀P ∈ P and n ∈ N.

Let

Λε = {|w0| 6 aε}
⋂ ∞⋂

n=1

{
∆(δε,n, n;w) 6

1

n

}
⊆W d.

Then

P(Λcε) <
ε

2
+
∞∑
n=1

ε · 2−(n+1) = ε, ∀P ∈ P.

Moreover, it is straight forward that Λε satisfies the two conditions in Arzelà–Ascoli’s
theorem. Therefore, Λε is a relatively compact subset of W d, and

P
(
Λε
)
> P(Λε) > 1− ε, ∀P ∈ P.

In other words, we conclude that P is tight.
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2 Generalities on continuous time stochastic processes

In this section, we study the basic notions of stochastic processes. The core concepts
are filtrations and stopping times. These notions enable us to keep track of information
evolving in time in a mathematical way. This is an important feature of stochastic calculus
which is quite different from ordinary calculus.

2.1 Basic definitions

A stochastic process models the evolution of a random system. In this course, we will be
studying the differential calculus with respect to certain important (continuous) stochastic
processes.

Definition 2.1. A (d-dimensional) stochastic process on some probability space (Ω,F ,P)
is a collection {Xt} of Rd-valued random variables indexed by [0,∞).

Because of the index set being [0,∞), t is usually interpreted as the time parameter.
From the definition, we know that a stochastic process is a map

X : [0,∞)× Ω → Rd,
(t, ω) 7→ Xt(ω),

such that for every fixed t, as a function in ω ∈ Ω it is F-measurable. There is yet another
way of looking at a stochastic process which is more important and fundamental: for
every ω ∈ Ω, it gives a path in Rd. More precisely, let (Rd)[0,∞) be the space of functions
w : [0,∞)→ Rd, with Borel σ-algebra B

(
(Rd)[0,∞)

)
defined by the σ-algebra generated

by cylinder sets of the form{
w ∈ (Rd)[0,∞) : (wt1 , · · · , wtn) ∈ Γ

}
for n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ B(Rd×n). Then the definition of a stochastic
process is equivalent to a measurable map

X : (Ω,F)→
(

(Rd)[0,∞),B
(

(Rd)[0,∞)
))

.

For every ω ∈ Ω, the path X(ω) is called a sample path of the stochastic process.

Remark 2.1. The path space (Rd)[0,∞) is different from the space W d we introduced in
the last section as we do not impose any regularity conditions on sample paths here. In
fact it can be shown thatW d is not even a B

(
(Rd)[0,∞)

)
-measurable subset of (Rd)[0,∞).

However, if we assume that every sample path of X is continuous, then X descends to
a measurable map from (Ω,F) to (W d,B(W d)).

For technical reasons, in particular for the purpose of integration, we often require
joint measurability properties on a stochastic process.
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Definition 2.2. A stochastic process X is called measurable if it is jointly measurable
in (t, ω), i.e. if the map

X : [0,∞)× Ω → Rd,
(t, ω) 7→ Xt(ω),

is B([0,∞))⊗F -measurable.

Nice consequences of measurability are: every sample path is B([0,∞))-measurable
and Fubini’s theorem is applicable to X when ([0,∞),B([0,∞))) is equipped with a
measure.

Another very important reason of introducing measurability is, when evaluated at
a random time we always obtain a random variable. To be more precise, if X is a
measurable process and τ is a finite random time (i.e. τ : Ω→ [0,∞) is F-measurable),
then ω 7→ Xτ(ω)(ω) is an F-measurable random variable. This can be seen easily from
the following composition of maps:

Xτ : (Ω,F) → ([0,∞)× Ω,B([0,∞))⊗F) → (Rd,B(Rd)),
ω 7→ (τ(ω), ω) 7→ Xτ(ω)(ω).

Stopping a process at a random time is a very useful notion in our study.
Sometimes we need to compare different stochastic processes in certain probabilistic

sense.

Definition 2.3. Let Xt, Yt be two stochastic processes defined on some probability space
(Ω,F ,P). We say:

(1) Xt and Yt are indistinguishable if X(ω) = Y (ω) a.s.;
(2) Yt is a modification of Xt if for every t > 0, P(Xt = Yt) = 1;
(3) Xt and Yt have the same finite dimensional distributions if

P((Xt1 , · · · , Xtn) ∈ Γ) = P((Yt1 , · · · , Ytn) ∈ Γ)

for any n ∈ N, 0 6 t1 < · · · < tn and Γ ∈ Rd×n.

Apparently (1) =⇒ (2) =⇒ (3), but none of the reverse directions is true. If Xt and
Yt have right continuous sample paths, then (1) ⇐⇒ (2). Moreover, to make sense of
(3), Xt and Yt do not have to be defined on the same probability space.

In many situations, we are interested in infinite dimensional probabilistic properties
rather than finite dimensional distributions.

Definition 2.4. The distribution of a stochastic process Xt is the probability measure
PX = P ◦X−1 on

(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
induced by X.

As in Remark 2.1, if X has continuous sample paths, X also induces a probability
measure µX on (W d,B(W d)). When concerning finite dimensional distribution proper-
ties, we do not have to distinguish between PX and µX . However, it is much more
convenient to use µX than PX for studying infinite dimensional distribution properties,
as B((Rd)[0,∞)) is too small to contain adequate interesting events, for instance an event
like {w : sup06t61 |wt| 6 1}. The view of realizing a continuous stochastic process on
(W d,B(W d), µX) is rather important in stochastic analysis.
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2.2 Construction of stochastic processes: Kolmogorov’s extension the-
orem

The first question in the study of stochastic processes is their existence. In particular, is
it possible to construct a stochastic process in a canonical way from the knowledge of its
finite dimensional distributions? The answer is the content of Kolmogorov’s extension
theorem.

We first recapture the notion of finite dimensional distributions in a more general
context.

Let Xt be a stochastic process taking values in some metric space S. We use T to
denote the set of finite sequences t = (t1, · · · , tn) of distinct times on [0,∞) (they need
not be ordered in an increasing manner). For each t = (t1, · · · , tn) ∈ T , we can define
a probability measure Qt on (Sn,B(Sn)) by

Qt(Γ) = P ((Xt1 , · · · , Xtn) ∈ Γ) , Γ ∈ B(Sn).

The family {Qt : t ∈ T } of probability measures defines the finite dimensional distribu-
tions of {Xt}. It is straight forward to see that it satisfies the following two consistency
properties:

(1) let t = (t1, · · · , tn) and A1, · · · , An ∈ B(S), then for every permutation σ of
order n,

Qt(A1 × · · · ×An) = Qσ(t)

(
Aσ(1) × · · · ×Aσ(n)

)
,

where σ(t) =
(
tσ(1), · · · , tσ(n)

)
;

(2) let t = (t1, · · · , tn) and t′ = (t1, · · · , tn, tn+1), then for every A ∈ B(Sn),

Qt′(A× S) = Qt(A).

Definition 2.5. A family {Qt : t ∈ T } of finite dimensional distributions is said to be
consistent if it satisfies the previous two properties.

We are mainly interested in the reverse direction: is it possible to construct a stochas-
tic process in a canonical way whose finite dimensional distributions coincide with a given
consistent family of probability measures? The answer is yes, and the construction is
made through a classical measure theoretic argument.

Recall that S[0,∞) is the space of functions w : [0,∞) → S and B
(
S[0,∞)

)
is the

σ-algebra generated by cylinder sets. Then we have the following result.

Theorem 2.1. Let S be a complete and separable metric space. Suppose that {Qt : t ∈
T } is a consistent family of finite dimensional distributions. Then there exists a unique
probability measure P on

(
S[0,∞),B

(
S[0,∞)

))
, such that

P((wt1 , · · · , wtn) ∈ Γ) = Qt(Γ)

for every t = (t1, · · · , tn) ∈ T and Γ ∈ B(Sn).
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We prove Theorem 2.1 by using Carathéodory’s extension theorem in measure theory,
and we proceed in several steps.

(1) Let C be the family of subsets of S[0,∞) of the form {(wt1 , · · · , wtn) ∈ Γ},
where t = (t1, · · · , tn) ∈ T and Γ ∈ B(Sn). It is straight forward to see that C
is an algebra (i.e. ∅, S[0,∞) ∈ C and it is closed under taking complement or finite
intersection) and B

(
S[0,∞)

)
= σ(C). It suffices to construct the probability measure on

C, as Carathéodory’s extension theorem will then allow us to extend it to B
(
S[0,∞)

)
.

(2) For Λ ∈ C of the form {(wt1 , · · · , wtn) ∈ Γ}, we define

P(Λ) = Qt(Γ),

where t = (t1, · · · , tn). From the consistency properties of {Qt}, it is not hard to see
that P is well-defined on C and it is finitely additive.

(3) Here comes the key step: P is countably additive on C. It is a general result in
measure theory that this is equivalent to showing that

C 3 Λn ↓ ∅ =⇒ P(Λn) ↓ 0

as n→∞.
Now let Λn ∈ C be such a sequence and suppose on the contrary that

lim
n→∞

P(Λn) = ε > 0.

We are going to modify the sequence {Λn} to another decreasing sequence {Dn} which
has a more convenient form

Dn = {(wt1 , · · · , wtn) ∈ Γn}

where (t1, · · · , tn, tn+1) is an extension of (t1, · · · , tn), while it still satisfies Dn ↓ ∅ and
limn→∞ P(Dn) = ε. This is done by the following procedure.

First of all, by inserting marginals of the form {wt ∈ S} (of course that means doing
nothing) and reordering, we may assume that Λn has the form

Λn = {(wt1 , · · · , wtmn ) ∈ Γmn},

where Γmn ∈ B(Smn) and mn < mn+1 for every n. Since Λn+1 ⊆ Λn, we know that
Γmn+1 ⊆ Γmn × Smn+1−mn .

Now we set

D1 = {wt1 ∈ S},
· · ·

Dm1−1 = {(wt1 , · · · , wtm1−1) ∈ Sm1−1},
Dm1 = Λ1,

Dm1+1 = {(wt1 , · · · , wtm1
, wtm1+1) ∈ Γm1 × S},

· · ·
Dm2−1 = {(wt1 , · · · , wtm1

, wtm1+1 , · · · , wtm2−1) ∈ Γm1 × Sm2−m1−1},
Dm2 = Λ2,

· · · .
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Apparently, {Dn} is just constructed by copying each Λn several times consecutively in
the original sequence. Therefore, it satisfies the properties Dn ↓ ∅ and limn→∞ P(Dn) =
ε.

Now we are going to construct an element (x1, x2, · · · ) ∈ S × S × · · · such that
(x1, · · · , xn) ∈ Γn for every n. It follows that the set

Λ = {w ∈ S[0,∞) : w(ti) = xi for all i}

is a non-empty subset of Dn for every n, which leads to a contradiction. The construction
of this element is made through a compactness argument, which relies crucially on the
following general fact from measure theory (c.f. [7]).

Proposition 2.1. Let X be a complete and separable metric space. Then every finite
measure µ on (X,B(X)) is (strongly) inner regular, in the sense that

µ(A) = sup{µ(K) : K ⊆ A, K is compact}

for every A ∈ B(X).

According to Proposition 2.1, for every n > 1, there exists a compact subset Kn of
Γn, such that

Qt(n)(Γn\Kn) <
ε

2n
,

where t(n) = (t1, · · · , tn). If we set

En = {(wt1 , · · · , wtn) ∈ Kn},

then we have En ⊆ Dn and

P(Dn\En) = Qt(n)(Γn\Kn) <
ε

2n
.

Now define

Ẽn =
n⋂
k=1

Ek

and
K̃n = (K1 × Sn−1)

⋂
(K2 × Sn−1)

⋂
· · ·
⋂

(Kn−1 × S)
⋂
Kn.

Then we have
Ẽn =

{
(wt1 , · · · , wtn) ∈ K̃n

}
.

On the other hand,

Qt(n)(K̃n) = P(Ẽn) = P(Dn)− P(Dn\Ẽn)

> P(Dn)− P

(
n⋃
k=1

(Dn\Ek)

)

> P(Dn)−
n∑
k=1

P(Dk\Ek)

> ε−
n∑
k=1

ε

2k
> 0.
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Therefore, K̃n 6= ∅ and we may choose
(
x

(n)
1 , · · · , x(n)

n

)
∈ K̃n for every n > 1.

From the construction of K̃n, we know that
{
x

(n)
1

}
n>1
⊆ K1. By compactness, it

contains a subsequence x(m1(n))
1 → x1 ∈ K1.Moreover, as

{(
x

(m1(n))
1 , x

(m1(n))
2

)}
n>2
⊆

K2, it further contains a subsequence
(
x

(m2(n))
1 , x

(m2(n))
2

)
→ (x1, x2) ∈ K2. Continuing

the procedure, the desired element (x1, x2, · · · ) is then constructed by induction.
(4) Finally, the uniqueness of P is a straight forward consequence of the uniqueness

of Carathéodory’s extension since C is a π-system and P is determined on C by the finite
dimensional distributions.

Now the proof of Theorem 2.1 is complete.

Remark 2.2. Kolmogorov’s extension theorem holds in a more general setting where the
state space (S,B(S)) can be an arbitrary measurable space without any topological or
analytic structure. However, the given consistent family of finite dimensional distributions
should satisfy some kind of generalized inner regularity property which roughly means that
they can be well approximated by some sort of abstract “compact” sets. In any case the
nature of Proposition 2.1 plays a crucial role.

2.3 Kolmogorov’s continuity theorem

In the last subsection, a stochastic process is constructed on path space from its finite
dimensional distributions. From this construction we have not yet seen any regularity
properties of sample paths. It is natural to ask whether we could “detect” any sample path
properties from the finite dimensional distributions. Kolmogorov’s continuity theorem
provides an answer to this question.

Theorem 2.2. Let {Xt : t ∈ [0, T ]} be a stochastic process taking values in a complete
metric space (S, d). Suppose that there exist constants α, β, C > 0, such that

E[d(Xs, Xt)
α] 6 C|t− s|1+β, ∀s, t ∈ [0, T ]. (2.1)

Then there exists a continuous modification
{
X̃t : t ∈ [0, T ]

}
of X, such that for every

γ ∈ (0, β/α), X̃ has γ-Hölder continuous sample paths almost surely, i.e.

P

 sup
s,t∈[0,T ]
s 6=t

d
(
X̃s, X̃t

)
|t− s|γ

<∞

 = 1.

To prove Theorem 2.2, without loss of generality we may assume that T = 1. The
main idea of obtaining a continuous modification of X is to show that when restricted
to some dense subset of [0, 1], with probability one X is uniformly continuous. This is
based on the following simple fact.
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Lemma 2.1. Let D be a dense subset of [0, 1]. Suppose that f : D → S is a uniformly
continuous function taking values in a complete metric space (S, d). Then f extends to
a continuous function on [0, 1] uniquely.

Proof. Given t ∈ [0, 1], let tn ∈ D be such that tn → t. The uniform continuity of f
implies that the sequence {f(tn)}n>1 is a Cauchy sequence in S. Since S is complete,
the limit limn→∞ f(tn) exists. We define f(t) to be this limit. Apparently f(t) is
independent of the choice of tn, and the resulting function f : [0, 1] → S is indeed
uniformly continuous. Uniqueness is obvious.

For technical convenience, we are going to work with the dense subset D of dyadic
points in [0, 1]. To be precise, let D = ∪∞n=0Dn, where Dn = {k/2n : k = 0, 1, · · · , 2n}.
The following lemma is elementary.

Lemma 2.2. Let t ∈ D. Then t has a unique expression t =
∑∞

i=0 ai(t)2
−i, where

ai(t) is 0 or 1, and ai(t) = 1 for at most finitely many i . Moreover, for n > 0, let
tn =

∑n
i=0 ai(t)2

−i. Then tn is the largest point in Dn which does not exceed t.

Now we prove Theorem 2.2.

Proof of Theorem 2.2. Let γ ∈ (0, β/α). For n > 0 and 1 6 k 6 2n, Kolmogorov’s
criteria (2.1) implies that

P
(
d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
6 2αγnE

[
d
(
X k−1

2n
, X k

2n

)α]
6 2−n(1+β−αγ).

Therefore,

P
(

max
16k62n

d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
= P

(
2n⋃
k=1

{
d
(
X k−1

2n
, X k

2n

)
> 2−γn

})

6
2n∑
k=1

P
(
d
(
X k−1

2n
, X k

2n

)
> 2−γn

)
6 2−n(β−αγ).

Since β −αγ > 0, it follows from the Borel-Cantelli lemma (c.f. Theorem 1.4, (1)) that

P
(

max
16k62−n

d
(
X k−1

2n
, X k

2n

)
> 2−γn infinitely often

)
= 0.

In other words, there exists some measurable set Ω∗ such that P(Ω∗) = 1 and for every
ω ∈ Ω∗,

d
(
X k−1

2n
(ω), X k

2n
(ω)
)
6 2−γn, ∀k = 1, · · · , 2n and n > n∗(ω),

where n∗(ω) is some positive integer depending on ω.
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Now fix ω ∈ Ω∗. Suppose that s, t ∈ D satisfy 0 < |t − s| < 2−n
∗(ω). Then there

exists a uniquem > n∗(ω), such that 2−(m+1) 6 |t−s| < 2−m.Write t =
∑∞

i=0 ai(t)2
−i

according to Lemma 2.2, and let tn =
∑n

i=0 ai(t)2
−i for n > 0. Define sn in a similar

way from s. Apparently sm = tm or |tm − sm| = 2−m. It follows that when evaluated at
ω,

d(Xs, Xt) 6
∞∑
i=m

d(Xsi+1 , Xsi) + d(Xsm , Xtm) +

∞∑
i=m

d(Xti , Xti+1)

6 2

∞∑
i=m

2−γ(i+1) + 2−γm

=

(
1 +

2

2γ − 1

)
2−γm

6 2γ
(

1 +
2

2γ − 1

)
|t− s|γ . (2.2)

In particular, this shows that for every ω ∈ Ω∗, X(ω) is uniformly continuous when
restricted on D.

We define X̃ in the following way: if ω /∈ Ω∗, define X̃(ω) ≡ c for some fxied c ∈ S,
and if ω ∈ Ω∗, define X̃(ω) to be the unique extension of X(ω) to [0, 1] according to
Lemma 2.1. Then X̃ has continuous sample paths and (2.2) still holds for X̃(ω) when
ω ∈ Ω∗ and |t − s| < 2−n

∗(ω). Moreover, since Xtn → X̃t a.s. and Xtn → Xt in
probability as tn → t, we conclude that X̃t = Xt a.s. The process X̃ is the desired one.

Remark 2.3. If the process Xt is defined on [0,∞) and Kolmogorov’s criteria (2.1) holds
on every finite interval [0, T ] with constant C possibly depending on T, then from the
previous proof it is not hard to see that there is a continuous modification X̃ of X on
[0,∞), such that for every γ ∈ (0, β/α), with probability one, X̃ is γ-Hölder continuous
on every finite interval [0, T ].

2.4 Filtrations and stopping times

In the study of stochastic processes, it is rather important to keep track of information
growth in the evolution of time. This leads to the very useful concept of a filtration.

Definition 2.6. A filtration over a probability space (Ω,F ,P) is a increasing sequence
{Ft : t > 0} of sub-σ-algebras of F , i.e. Fs ⊆ Ft ⊆ F for 0 6 s < t. We call
(Ω,F ,P; {Ft}) a filtered probability space.

We can talk about additional measurability properties of a stochastic process when
a filtration is presented.
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Definition 2.7. Let (Ω,F ,P; {Ft}) be a filtered probability space. A stochastic process
X is called {Ft}-adapted if Xt is Ft-measurable for every t > 0. It is called {Ft}-
progressively measurable if for every t > 0, the map

X(t) : [0, t]× Ω → Rd,
(s, ω) 7→ Xs(ω),

is B([0, t])⊗Ft-measurable.

Intuitively, for an adapted process X, when the information of Ft is presented to an
observer, the path s ∈ [0, t] 7→ Xs ∈ Rd is then known to her.

It is apparent that ifX is progressively measurable, then it is measurable and adapted.
However, the converse is in general not true. It is true if the sample paths of X are right
(or left) continuous.

Proposition 2.2. Let X be an {Ft}-adapted stochastic process. Suppose that every
sample path of X is right continuous. Then X is {Ft}-progressively measurable.

Proof. We approximate X by step processes. Let t > 0. For n > 1, define

X(n)
s (ω) =

2n∑
k=1

X k
2n
t(ω)1{s∈[ k−1

2n
, k
2n

)} +Xt(ω)1{s=t}, (s, ω) ∈ [0, t]× Ω.

Since X is adapted, it is obvious that X(n) is B([0, t]) ⊗ Ft-measurable. Moreover, by
right continuity of X, we know that X(n)

s (ω) → Xs(ω) for every (s, ω) ∈ [0, t] ⊗ Ω.
Therefore, X is progressively measurable.

Example 2.1. Let Xt be a stochastic process on some probability space (Ω,F ,P). We
can define the natural filtration of Xt to be

FXt = σ(Xs : 0 6 s 6 t), t > 0.

Apparently, Xt is {FXt }-adapted. According to Proposition 2.2, if Xt has right continu-
ous sample paths, then it is {FXt }-progressively measurable.

Another very important concept for our study is a stopping time. Intuitively, a
stopping time usually models the first time that some phenomenon occurs, for instance
the first time that the temperature of the classroom reaches 25 degree. A characterizing
property for such time τ is: if we keep observing up to time t, we could decide whether
τ is observed or not (i.e. whether the event {τ 6 t} happens), and if τ is not observed
before time t, we have no idea when exactly in the future the temperature will reach 25
degree. This motivates the following definition.

Definition 2.8. Let (Ω,F ,P; {Ft}) be a filtered probability space. A random time
τ : Ω→ [0,∞] is called an {Ft}-stopping time if {τ 6 t} ∈ Ft for every t > 0.
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Apparently, every constant time is an {Ft}-stopping time. Moreover, we can easily
construct new stopping times from given ones.

Proposition 2.3. Suppose that σ, τ, τn are {Ft}-stopping times. Then

σ + τ, σ ∧ τ, σ ∨ τ, sup
n
τn

are all {Ft}-stopping times, where “∧” (“∨”, respectively) means taking minimum (taking
maximum, respectively).

Proof. Consider the following decomposition:

{σ + τ > t} = {σ = 0, τ > t}
⋃
{0 < σ < t, σ + τ > t}⋃

{σ > t, τ > 0}
⋃
{σ > t, τ = 0}.

The first and fourth events are obviously in Ft. The third event is in Ft because

{σ < t} =
⋃
n

{
σ 6 t− 1

n

}
∈ Ft.

For the second event, if ω ∈ {0 < σ < t, σ + τ > t}, then

τ(ω) > t− σ(ω) > 0.

Keeping in mind that σ(ω) > 0, we can certainly choose r ∈ (0, t) ∩Q, such that

τ(ω) > r > t− σ(ω).

Therefore, we see that

{0 < σ < t, σ + τ > t} =
⋃

r∈(0,t)∩Q

{τ > r, t− r < σ < t} ∈ Ft.

For the other cases, we simply observe that

{σ ∧ τ > t} = {σ > t, τ > t} ∈ Ft,
{σ ∨ τ 6 t} = {σ 6 t, τ 6 t} ∈ Ft,{
sup
n
τn 6 t

}
=

⋂
n

{τn 6 t} ∈ Ft.

Remark 2.4. In general, infn τn, and therefore lim supn→∞ τn, lim infn→∞ τn may fail
to be {Ft}-stopping time even though each τn is. However, it is a good exercise to show
that they are {Ft+}-stopping times, where {Ft+} is the filtration defined by

Ft+ =
⋂
u>t

Fu ⊇ Ft, t > 0. (2.3)
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We could also talk about the accumulated information up to a stopping time τ .
Intuitively, the occurrence of an event A can be determined by such information if the
following condition holds. Suppose that the accumulated information up to time t is
presented. If we observe that τ 6 t, we should be able to decide whether A happens or
not because the information up to time τ is then known. However, if we observe that
τ > t, since in this case we cannot decide the exact value of τ, part of the information
up to τ is missing and the occurrence of A should be undecidable. This motivates the
following definition.

Definition 2.9. Let τ be an {Ft}-stopping time. The pre-τ σ-algebra Fτ is defined by

Fτ =
{
A ∈ F∞ : A

⋂
{τ 6 t} ∈ Ft, ∀t > 0

}
,

where F∞ , σ (∪t>0Ft) .

It follows from the definition that Fτ is a sub-σ-algebra of F , and τ is Fτ -measurable.
Moreover, if τ ≡ t, then Fτ = Ft. And we have the following basic properties.

Proposition 2.4. Suppose that σ, τ are two {Ft}-stopping times.
(1) Let A ∈ Fσ, then A ∩ {σ 6 τ} ∈ Fτ . In particular, if σ 6 τ, then Fσ ⊆ Fτ .
(2) Fσ∧τ = Fσ ∩ Fτ , and the events

{σ < τ}, {σ > τ}, {σ 6 τ}, {σ > τ}, {σ = τ}

are all Fσ ∩ Fτ -measurable.

Proof. (1) We have

A
⋂
{σ 6 τ}

⋂
{τ 6 t} = A

⋂
{σ 6 τ}

⋂
{τ 6 t}

⋂
{σ 6 t}

=
(
A
⋂
{σ 6 t}

)⋂
{τ 6 t}

⋂
{σ ∧ t 6 τ ∧ t}.

From definition it is obvious that σ ∧ t and τ ∧ t are Ft-measurable. Therefore, by
assumption we know that the above event is Ft-measurable.

(2) Since σ ∧ τ is an {Ft}-stopping time, from the first part we know that Fσ∧τ ⊆
Fσ ∩ Fτ . Now suppose A ∈ Fσ ∩ Fτ , then

A
⋂
{σ ∧ τ 6 t} = A

⋂(
{σ 6 t}

⋃
{τ 6 t}

)
=

(
A
⋂
{σ 6 t}

)⋃(
A
⋂
{τ 6 t}

)
∈ Ft.

Therefore, A ∈ Fσ∧τ .
Finally, by taking A = Ω in the first part, we know that {σ > τ} = {σ 6 τ}c ∈ Fτ .

It follows that
{σ < τ} = {σ ∧ τ < τ} ∈ Fσ∧τ = Fσ

⋂
Fτ .

The other cases follow by symmetry and complementation.
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In the study of martingales and strong Markov processes, it is important to consider
conditional expectations given Fτ . We give two basic properties here.

Proposition 2.5. Suppose that σ, τ are two {Ft}-stopping times and X is an integrable
random variable. Then we have:

(1) E
[
1{σ6τ}X|Fσ

]
= E

[
1{σ6τ}X|Fσ∧τ

]
.

(2) E [E[X|Fσ]|Fτ ] = E[X|Fσ∧τ ].

Proof. (1) According to the second part of Proposition 2.4, {σ 6 τ} ∈ Fσ∧τ ⊆ Fσ.
Therefore, it suffices to show that 1{σ6τ}E[X|Fσ] is Fσ∧τ -measurable. Apparently it
is Fσ-measurable. But the Fτ -measurability is a direct consequence of the first part
of Proposition 2.4 (standard approximation allows us to replace A by a general Fσ-
measurable function in that proposition).

(2) First observe that the same argument allows us to conclude that

A ∈ Fσ =⇒ A
⋂
{σ < τ} ∈ Fτ , (2.4)

and
E
[
1{σ<τ}X|Fσ

]
= E

[
1{σ<τ}X|Fσ∧τ

]
.

Therefore,

E [E[X|Fσ]|Fτ ] = E
[
1{σ<τ}E[X|Fσ]|Fτ

]
+ E

[
1{σ>τ}E[X|Fσ]|Fτ

]
= E

[
1{σ<τ}E[X|Fσ∧τ ]|Fτ

]
+ E

[
1{σ>τ}E[X|Fσ]|Fσ∧τ

]
= E

[
1{σ<τ}X|Fσ∧τ

]
+ E

[
1{σ>τ}X|Fσ∧τ

]
= E[X|Fσ∧τ ].

Now we consider measurability properties for a stochastic process stopped at some
stopping time.

Proposition 2.6. Let (Ω,F ,P; {Ft}) be a filtered probability space. Suppose that Xt

is an {Ft}-progressively measurable stochastic process and τ is an {Ft}-stopping time.
Then the stopped process t 7→ Xτ∧t is also {Ft}-progressively measurable. In particular,
the stopped random variable Xτ1{τ<∞} is Fτ -measurable.

Proof. Restricted on [0, t]×Ω, the stopped process is given by the following composition
of maps:

[0, t]× Ω → [0, t]× Ω → Rd,
(s, ω) 7→ (τ(ω) ∧ s, ω) 7→ Xτ(ω)∧s(ω).

By assumption, we know that the second map is B([0, t])⊗Ft-measurable. The B([0, t])⊗
Ft-measurability of the first map can be easily seen from the following fact:

{(s, ω) : (τ(ω) ∧ s, ω) ∈ [0, c]×A} = ([0, c]×A)
⋃(

(c, t]×
(
{τ 6 c}

⋂
A
))
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for every c ∈ [0, t] and A ∈ Ft.
The Fτ -measurability ofXτ1{τ<∞} follows from the {Ft}-adaptedness of the stopped

process Xτ∧t (because it is {Ft}-progressively measurable) and the simple fact that
Xτ1{τ6t} = Xτ∧t1{τ6t}.

To conclude this section, we discuss a fundamental class of stopping times: hitting
times for stochastic processes.

Definition 2.10. The hitting time of Γ ⊆ Rd by a stochastic process X is defined to be

HΓ(ω) = inf{t > 0 : Xt(ω) ∈ Γ},

where inf ∅ ,∞.

The following result tells us that under some conditions, a hitting time is a stopping
time.

Proposition 2.7. Let (Ω,F ,P; {Ft}) be a filtered probability space. Suppose that Xt

is an {Ft}-adapted stochastic process such that every sample path of Xt is continuous.
Then for every closed set F, HF is an {Ft}-stopping time.

Proof. For given t > 0 and ω ∈ Ω, by continuity we know that the function

ϕ(s) = dist(Xs(ω), F ), s ∈ [0, t],

is continuous. The result then follows from the following observation:

{HF > t} =
∞⋃
n=1

⋂
r∈[0,t]∩Q

{
dist(Xr, F ) >

1

n

}
∈ Ft.

On the other hand, the hitting time of an open set is in general not a stopping
time even the process have continuous sample paths. The reason is intuitively simple.
Suppose that a sample path of the process first hits the boundary of an open set G from
the outside at time t. It is not possible to determine whether HG 6 t or not without
looking slightly ahead into the future.

However, we do have the following result. The proof is left as an exercise.

Proposition 2.8. Let (Ω,F ,P; {Ft}) be a filtered probability space, and let X be an
{Ft}-adapted stochastic process such that every sample path of X is right continuous.
Then for every open set G, HG is an {Ft+}-stopping time, where {Ft+} is the filtration
defined by (2.3) in Remark 2.4.

Until now, to some extend we have already seen the inconvenience caused by the
difference between the filtrations {Ft} and {Ft+} (c.f. Remark 2.4 and Proposition 2.8).
In particular, in order to include a richer class of stopping times, it is usually convenient
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to assumption that Ft = Ft+ for every t > 0, i.e. the filtration {Ft}-is right continuous.
This seemingly unnatural assumption is indeed very mild: the natural filtration of a strong
Markov process, when augmented by null sets, is always right continuous (c.f. [5]).

Another mild and reasonable assumption on the filtered probability space is to make
sure that most probabilistic properties, in particular for those related to adaptedness and
stopping times, are preserved by another stochastic process which is indistinguishable
from the original one. Mathematically speaking, this is the assumption that F0 contains
all P-null sets (recall from our convention that N is a P-null set if there exists E ∈ F ,
such that N ⊆ E and P(E) = 0). In particular, this implies that F and every Ft are
P-complete.

Definition 2.11. A filtration is said to satisfy the usual conditions if it is right continuous
and F0 contains all P-null sets.

Given an arbitrary filtered probability space (Ω,G,P; {Gt}), it can always be aug-
mented to satisfy the usual conditions. Indeed, let F be the P-completion of G and let
N be the collection of P-null sets. For every t > 0, we define

Ft =
⋂
s>t

σ(Gs,N ) = σ(Gt+,N ).

Then (Ω,F ,P; {Ft}) is the smallest filtered probability space containing (Ω,G,P; {Gt})
which satisfies the usual conditions. We call it the usual augmentation of (Ω,G,P; {Gt}).
It is a good exercise to provide the details of the proof.

In Proposition 2.7, if we drop the assumption that Xt has continuous sample paths,
the situation becomes very subtle. It can still be proved in a tricky set theoretic way
that, under the usual conditions on {Ft}, HF is an {Ft}-stopping time provided F is a
compact set and every sample path of Xt is right continuous with left limits (c.f. [9]).
However, the case when F is a general Borel set is even much more difficult. The result
is stated as follows. The proof relies on the machinery of Choquet’s capacitability theory
(c.f. [2]). The usual conditions again play a crucial role in the theorem.

Theorem 2.3. Let (Ω,G,P; {Gt}) be a filtered probability space. Suppose that Xt is a
{Gt}-progressively measurable stochastic process. Then for every Γ ∈ B(Rd), HΓ is an
{Ft}-stopping time, where {Ft} is the usual augmentation of {Gt}.

It is true that many interesting and important probabilistic properties will be pre-
served if we work with the usual augmentation of the original filtered probability space.
Moreover, the usual conditions have more implications than just enriching the class of
stopping times, for example in questions related to sample path regularity properties (c.f.
Theorem 3.10, 3.11).

However, to remain fairly careful, we will not always assume that we are working
under the usual conditions. We will state clearly whenever they are assumed.
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3 Continuous time martingales

This section is devoted to the study of continuous time martingales. The theory of
martingales and martingale methods lies in the heart of stochastic analysis. As we will
see, we are adopting a very martingale flavored approach to develop the whole theory of
stochastic calculus. The main results in this section are mainly due to Doob.

3.1 Basic properties and the martingale transform: discrete stochastic
integration

We start with the discrete time situation. As we will see, under certain reasonable
regularity conditions on sample paths, parallel results in the continuous time situation
can be derived easily from the discrete case. Therefore, in most of the topics we consider
in this section, we do not really see a substantial difference between the two situations.
However, in Section 5, we will appreciate many deep and elegant properties of continuous
time martingales which do not have their discrete time counterparts.

Let T = {0, 1, 2, · · · } or [0,∞).

Definition 3.1. Let (Ω,F ,P; {Ft : t ∈ T}) be a filtered probability space. A real-valued
stochastic process {Xt,Ft : t ∈ T} is called a martingale (respectively, submartingale,
supermartingale) if:

(1) Xt is {Ft}-adapted;
(2) Xt is integrable for every t ∈ T ;
(3) for every s < t ∈ T,

E[Xt|Fs] = Xs, (respectively, ” > ”, ” 6 ”).

Example 3.1. Let T = [0,∞). Consider the stochastic process
{
X̃t : t ∈ T

}
con-

structed in Problem Sheet 2, Problem 2 in dimension d = 1 (the 1-dimensional pre-
Brownian motion). Let

{
F X̃t
}

be the natural filtration of X̃t. Then for 0 6 s < t,

X̃t − X̃s is independent of F X̃s with zero mean. Therefore,
{
X̃t,F X̃t

}
is a martingale.

A very useful way of constructing a new submartingale from the old is the following.

Proposition 3.1. Let {Xt,Ft : t ∈ T} be a martingale (respectively, a submartingale).
Suppose that ϕ : R1 → R1 is a convex function (respectively, a convex and increas-
ing function). If ϕ(Xt) is integrable for every t ∈ T, then {ϕ(Xt),Ft : t ∈ T} is
submartingale.

Proof. The adaptedness and integrability conditions are satisfied. To see the submartin-
gale property, we apply Jensen’s inequality (c.f. inequality (1.2)) to obtain that

E[ϕ(Xt)|Fs] > ϕ(E[Xt|Fs]) > ϕ(Xs)

for s < t ∈ T.
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Example 3.2. If {Xt,Ft} is a martingale, then X+
t , max(Xt, 0) and |Xt|p (p > 1)

are {Ft}-submartingales, provided Xt is in Lp for every t.

Now we consider the situation when T = {0, 1, 2, · · · }.
In the discrete time setting, stopping times and pre-stopping time σ-algebras are

defined analogously to the continuous time case in an obvious way.
We are going to construct a class of martingales which plays a central role in this

section, in particular in the study of martingale convergence and the optional sampling
theorem.

Definition 3.2. Let {Fn : n > 0} be a filtration. A real-valued random sequence
{Cn : n > 1} is said to be {Fn}-predictable if Cn is Fn−1-measurable for every n > 1.

Let {Xn : n > 0} and {Cn : n > 1} be two sequences. We define another sequence
{Yn : n > 0} by Y0 = 0 and

Yn =
n∑
k=1

Ck(Xk −Xk−1).

Definition 3.3. The sequence {Yn : n > 0} is called the martingale transform of Xn

by Cn. It is denoted by (C •X)n.

Comparing with Section 5, the martingale transform can be regarded as a discrete
version of stochastic integration.

The following result verifies the name. Its proof is straight forward.

Theorem 3.1. Let {Xn,Fn : n > 0} be a martingale (respectively, submartingale,
supermartingale) and let {Cn : n > 1} be an {Fn}-predictable random sequence which
is bounded (respectively, bounded and non-negative). Then the martingale transform
{(C • X)n,Fn : n > 0} of Xn by Cn is a martingale (respectively, submartingale,
supermartingale).

Remark 3.1. The boundedness of Cn is not important–we only need to guarantee the
integrability of Yn.

It is very helpful to have the following intuition of the martingale transform in mind.
Suppose that you are playing games over the time horizon {1, 2, · · · }. Cn is interpreted
as your stake on game n. Predictability means that you are making your decision on the
stake amount Cn based on the history Fn−1. Xn − Xn−1 represents your winning at
game n per unit stake. Therefore, Yn is your total winning up to time n.

3.2 The martingale convergence theorems

The (sub or super)martingale property exhibits a trend on average in the long run. It
is therefore not unreasonable to expect that a (sub or super)martingale can converge
(almost surely) if its mean sequence is well controlled.
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We first explain a general way of proving the almost sure convergence of a random
sequence.

Let {Xn : n > 0} be a random sequence. Then Xn(ω) is convergent if and only if
lim infn→∞Xn(ω) = lim supn→∞Xn(ω). Therefore,

{Xn does not converge} ⊆
{

lim inf
n→∞

Xn < lim sup
n→∞

Xn

}
⊆

⋃
a<b
a,b∈Q

{
lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

}
.

Therefore, in order to prove that Xn converges a.s., it suffices to show that

P
(

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

)
= 0 (3.1)

for every given a < b. But the event in the bracket implies that a subsequence of Xn lies
below a while another subsequence of Xn lies above b. This further implies that the total
number of upcrossings by the sequence Xn from below a to above b must be infinite.

Therefore, the convergence of Xn is closely related to controlling the upcrossing
number of an interval [a, b].

Now we define this number mathematically.
Consider the following two sequences of random times:

σ0 = 0,
σ1 = inf{n > 0 : Xn < a}, τ1 = inf{n > σ1 : Xn > b},
σ2 = inf{n > τ1 : Xn < a}, τ2 = inf{n > σ2 : Xn > b},

· · ·
σk = inf{n > τk−1 : Xn < a}, τk = inf{n > σk : Xn > b},

· · · .

Definition 3.4. For N > 0, the upcrossing number UN (X; [a, b]) of the interval [a, b]
by the sequence Xn up to time N is define to be random number

UN (X; [a, b]) =
∞∑
k=1

1{τk6N}.

Note that UN (X; [a, b]) 6 N/2. Moreover, if {Fn : n > 0} is a filtration and
Xn is {Fn}-adapted, then σk, τk are {Fn}-stopping times. In particular, in this case
UN (X; [a, b]) is FN -measurable.

The main result of controlling UN (X; [a, b]) in our context is the following. Here
we are in particular working with supermartingales. The technique of dealing with the
submartingale case is actually quite different. However, as they both lead to the same
general convergence theorems, we will omit the discussion of the submartingale case and
focus on supermartingales.
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Proposition 3.2 (Doob’s upcrossing inequality). Let {Xn,Fn : n > 0} be a super-
martingale. Then the upcrossing number UN (X; [a, b]) of [a, b] by Xn up to time N
satisfies the following inequality:

E[UN (X; [a, b])] 6
E[(XN − a)−]

b− a
, (3.2)

where x− , max(−x, 0).

The proof of this inequality can be fairly easy as long as we can find a good way of
looking at this upcrossing number.

Suppose in the aforementioned gambling model that Xn−Xn−1 represents the win-
ning at game n per unit stake. Now consider the following gambling strategy: repeat
the following two steps until forever:

(1) Wait until Xn gets below a;
(2) Play unit stakes onwards until Xn gets above b and stop playing.
Mathematically, this is to say that we define

C1 = 1{X0<a},

Cn = 1{Cn−1=0}1{Xn−1<a} + 1{Cn−1=1}1{Xn−16b}, n > 2.

Let {Yn} be the martingale transform of Xn by Cn. Then YN represents the total winning
up to time N. Note that YN comes from two parts: the playing intervals corresponding to
complete upcrossings, and the last playing interval corresponding to the last incomplete
upcrossing (possibly non-existing). The total winning YN from the first part is obviously
bounded below by (b−a)UN (X; [a, b]), and the total winning in the last playing interval
(possibly non-existing) is bounded below −(XN − a)−. Therefore, we have

YN > (b− a)UN (X; [a, b])− (XN − a)−.

On the other hand, by definition it is apparent that {Cn} is a bounded and non-
negative {Fn}-predictable sequence. According to Theorem 3.1, {Yn,Fn} is a super-
martingale. Therefore, E[YN ] 6 E[Y0] = 0, which implies (3.2).

Now since UN (X; [a, b]) is increasing in N, we may define

U∞(X; [a, b]) = lim
N→∞

UN (X; [a, b]),

which is the upcrossing number for the whole time horizon.
From Doob’s upcrossing inequality, we can immediately see that if the supermartingale

{Xn,Fn} is bounded in L1, i.e. supn>0 E[|Xn|] <∞, then

E[U∞(X; [a, b])] = lim
N→∞

E[UN (X; [a, b])] 6
supn>0 E[|Xn|] + |a|

b− a
<∞.

In particular, U∞(X; [a, b]) <∞ a.s.
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But from the discussion at the beginning of this subsection, we know that{
lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

}
⊆ {U∞(X; [a, b]) =∞} .

Therefore, (3.1) holds and we conclude that Xn converges to some X∞ a.s. Moreover,
Fatou’s lemma shows that

E[|X∞|] 6 lim inf
n→∞

E[|Xn|] 6 sup
n>0

E[|Xn|] <∞.

In other words, we have proved the following convergence result.

Theorem 3.2 (Doob’s supermartingale convergence theorem). Let {Xn,Fn : n > 0}
be a supermartingale which is bounded in L1. Then Xn converges almost surely to an
integrable random variable X∞.

Remark 3.2. In the theorem, we can define X∞ = lim supn→∞Xn, so that X∞ is
F∞-measurable, where F∞ , σ (∪∞n=0Fn).

Now we consider the question about when the convergence holds in L1. This is closely
related to uniform integrability.

Theorem 3.3. Let {Xn,Fn : n > 0} be a supermartingale which is bounded in L1, so
that Xn converges almost surely to some X∞ ∈ L1. Then the following statements are
equivalent:

(1) {Xn} is uniformly integrable;
(2) Xn converges to X∞ in L1.

In this case, we have
(3) E[X∞|Fn] 6 Xn a.s.
In addition, if {Xn,Fn} is a martingale, then (1) or (2) is also equivalent to (3) with

“6” replaced by “=”.

Proof. Since almost sure convergence implies convergence in probability, the equivalence
of (1) and (2) is a direct consequence of Theorem 1.3. To see (3), it suffices to show
that ˆ

A
X∞dP 6

ˆ
A
XndP, ∀A ∈ Fn. (3.3)

But from the supermartingale property, we know thatˆ
A
XmdP 6

ˆ
A
XndP, ∀m > n, A ∈ Fn.

Therefore, (3.3) follows from letting m→∞.
The last part of the theorem in the martingale case is seen from Problem Sheet 1,

Problem 2, (1).

Corollary 3.1 (Lévy’s forward theorem). Let Y be an integrable random variable and let
{Fn : n > 0} be a filtration. Then Xn = E[Y |Fn] is a uniformly integrable martingale
such that Xn converges to E[Y |F∞] almost surely and in L1.
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Proof. The martingale property follows from

E[Xm|Fn] = E[E[Y |Fm]|Fn] = E[Y |Fn] = Xn, ∀m > n.

Uniform integrability follows from Problem Sheet 1, Problem 2, (1). In particular, from
Theorem 1.1 we know that {Xn} is bounded in L1. According to Theorem 3.3, Xn

converges to some X∞ almost surely and in L1.
Now it suffices to show that X∞ = E[Y |F∞] a.s. Since ∪∞n=0Fn is a π-system, we

only need to verify
ˆ
A
X∞dP =

ˆ
A
Y dP, ∀A ∈ Fn, n > 0.

This follows from letting m→∞ in the identity:
ˆ
A
XmdP =

ˆ
A
Y dP, ∀m > n, A ∈ Fn.

It is sometimes very useful to consider martingales running backward in time, or equiv-
alently, to work with negative time parameter, in particular in the study of continuous
time martingales. As we shall see, due to the natural ordering of negative integers, con-
vergence properties for backward martingales are simpler and stronger than the forward
case.

Let T = {−1,−2, · · · }. By using the natural ordering on T, we define the notions
of (sub or super)martingales in the same way as the non-negative time parameter case.
Now observe that we have a decreasing filtration

G−∞ ,
∞⋂
n=1

G−n ⊆ · · · ⊆ G−(m+1) ⊆ G−m · · · ⊆ G−1

as n→ −∞.
The following convergence theorem plays a crucial role in the passage from discrete

to continuous time.

Theorem 3.4 (The Lévy-Doob backward theorem). Let {Xn,Gn : n 6 −1} be a
supermartingale. Suppose that supn6−1 E[Xn] < ∞. Then Xn is uniformly integrable,
and the limit

X−∞ , lim
n→−∞

Xn

exists almost surely and in L1. Moreover, for n 6 −1, we have

E[Xn|G−∞] 6 X−∞, a.s.,

with equality if {Xn,Gn} is a martingale.
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Proof. To see that Xn converges almost surely, we use the same technique as in the
proof of Doob’s supermartingale convergence theorem. The main difference here is that
the right hand side of Doob’s upcrossing inequality is now in terms of X−1 since we are
working with negative times. Therefore, the limit X−∞ , limn→−∞Xn exists almost
surely (possibly infinite) without any additional assumptions. It is apparent that X−∞
can be defined to be G−∞-measurable (c.f. Remark 3.2).

Now we show uniform integrability.
Let λ > 0 and n 6 k 6 −1. According to the supermartingale property, we have

E
[
|Xn|1{|Xn|>λ}

]
= E

[
Xn1{Xn>λ}

]
− E

[
Xn1{Xn<−λ}

]
= E[Xn]− E

[
Xn1{Xn6λ}

]
− E

[
Xn1{Xn<−λ}

]
6 E[Xn]− E

[
Xk1{Xn6λ}

]
− E

[
Xk1{Xn<−λ}

]
= E[Xn]− E[Xk] + E

[
Xk1{Xn>λ}

]
− E

[
Xk1{Xn<−λ}

]
6 E[Xn]− E[Xk] + E

[
|Xk|1{|Xn|>λ}

]
.

Given ε > 0, by the assumption supn6−1 E[Xn] <∞, there exists k 6 −1, such that

0 6 E[Xn]− E[Xk] 6
ε

2
, ∀n 6 k.

Moreover, for this particular k, by integrability there exists δ > 0, such that

A ∈ F ,P(A) < δ =⇒ E[|Xk|1A] <
ε

2
.

On the other hand, since {Xn,Gn} is a supermartingale, we know that {X−n ,Gn} is
a submartingale. Therefore,

E[|Xn|] = E[Xn] + 2E[X−n ] 6 E[Xn] + 2E[X−−1], ∀n 6 −1.

This implies that M , supn6−1 E[|Xn|] < ∞ (which by Fatou’s lemma already implies
that X∞ is a.s. finite), and

P(|Xn| > λ) 6
E[|Xn|]
λ

6
M

λ
, ∀n 6 −1, λ > 0.

Now we choose Λ > 0 such that if λ > Λ, then

P(|Xn| > λ) < δ, ∀n 6 k,

and
E
[
|Xn|1{|Xn|>λ}

]
< ε, ∀k < n 6 −1.

The uniform integrability then follows.
With uniform integrability, it follows immediately from Theorem 1.3 that Xn → X∞

almost surely and in L1 as n→ −∞.
Finally, the last part of the theorem follows fromˆ

A
XndP 6

ˆ
A
XmdP, ∀A ∈ G−∞, m 6 n 6 −1,

and letting m→ −∞.

33



Remark 3.3. We have seen that the fundamental condition that guarantees convergence
is the boundedness in L1. In particular, all the convergence results we discussed before
hold for submartingales as well, since −Xn is a supermartingale if Xn is a submartingale,
and applying a minus sign does not affect the L1-boundedness.

3.3 Doob’s optional sampling theorems

Given a martingale, under certain conditions it is reasonable to expect that the martingale
property is preserved when sampling along stopping times. The study of this problem
leads to the so-called Doob’s optional sampling theorems.

Again we will mainly work with (super)martingales, and all the results apply to sub-
martingales by applying a minus sign.

Let {Xn,Fn : n > 0} be a (super)martingale, and let τ be an {Fn}-stopping time.
We first consider the stopped process Xτ

n , Xτ∧n.
As in the proof of Doob’s upcrossing inequality, we can interpret Xτ

n by a gambling
model. The model in this case is very easy: we keep playing unit stakes from the beginning
and quit immediately after τ. Mathematically, set

Cτn = 1{n6τ}, n > 1.

Then (Cτ •X)n = Xτ∧n−X0 (recall that (Cτ •X)n represents the total winning up to
time n). Apparently, the sequence Cτn is bounded, non-negative and {Fn}-predictable.
According to Theorem 3.1, we have proved the following result.

Theorem 3.5. The stopped process Xτ
n is an {Fn}-(super)martingale.

Now we consider the situation when we also stop our filtration at some stopping time.
We first consider the case in which the stopping times are bounded.

Theorem 3.6. Let {Xn,Fn : n > 0} be a (super)martingale. Suppose that σ, τ are two
bounded {Fn}-stopping times such that σ 6 τ . Then {Xσ,Fσ;Xτ ,Fτ} is a two-step
(super)martingale.

In particular, if τ is an {Fn}-stopping time, then {Xτ∧n,Fτ∧n : n > 0} is a
(super)martingale.

Proof. We only consider the supermartingale case. Assume that σ 6 τ 6 N for some
constant N > 0. Adaptedness and integrability of {Xσ,Fσ;Xτ ,Fτ} are obvious. To see
the supermartingale property, let F ∈ Fσ. Consider the sequence

Cn = 1F1{σ<n6τ}, n > 1.

Then (C •X)N = (Xτ −Xσ)1F . On the other hand, Cn is {Fn}-predictable because

F
⋂
{σ < n 6 τ} = F

⋂
{σ 6 n− 1}

⋂
(τ 6 n− 1)c ∈ Fn−1, ∀n > 1.

It is also bounded and non-negative. Therefore, according to Theorem 3.1, {(C •
X)n,Fn : n > 0} is a supermartingale. In particular,

E[(C •X)N ] = E[(Xτ −Xσ)1F ] 6 0,

which is the desired supermartingale property.
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The case when σ, τ are unbounded is more involved.
In general, since a stopping time τ can be infinite, the definition of Xτ involves its

value at ∞. Therefore, a natural assumption on our (super)martingale is to included a
“last” element X∞.

Definition 3.5. A (super)martingale with a last element is a (super)martingale {Xt,Ft :
t ∈ T} over the index set T = {0, 1, 2, · · · } ∪ {∞}.

According to Lévy’s forward theorem (c.f. Theorem 3.1), a martingale {Xn,Fn :
0 6 n 6 ∞} with a last element is uniformly integrable and Xn → X∞ almost surely
and in L1 as n→∞.

The general optional sample theorem for martingales is easy.

Theorem 3.7. Let {Xn,Fn : 0 6 n 6∞} be a martingale with a last element. Suppose
that σ, τ are two {Fn}-stopping times such that σ 6 τ. Then {Xσ,Fσ;Xτ ,Fτ} is a two-
step martingale.

Proof. Adaptedness is easy. Integrability follows from

E[|Xτ |] =
∞∑
n=0

E
[
|Xn|1{τ=n}

]
+ E

[
|X∞|1{τ=∞}

]
6

∞∑
n=0

E
[
|X∞|1{τ=n}

]
+ E

[
|X∞|1{τ=∞}

]
= E[|X∞|],

where we have used the fact that {|Xn|,Fn : 0 6 n 6 ∞} is a submartingale with a
last element.

Now we show that
E[X∞|Fτ ] = Xτ a.s.

The martingale property will follow from further conditioning on Fσ. Let A ∈ Fτ . For
every n > 0, we have

E
[
Xτ1A∩{τ6n}

]
=

n∑
k=0

E
[
Xk1A∩{τ=k}

]
= E

[
X∞1A∩{τ6n}

]
.

Since Xτ and X∞ are both integrable, by the dominated convergence theorem, we have

E
[
Xτ1A∩{τ<∞}

]
= E

[
X∞1A∩{τ<∞}

]
.

But the identity over {τ =∞} is obvious. Therefore, we have

E[Xτ1A] = E[X∞1A].
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To study the case for supermartingales, we need the following lemma.

Lemma 3.1. Every supermartingale with a last element can be written as the sum of a
martingale with a last element and a non-negative supermartingale with zero last element.

Proof. Let {Xn,Fn : 0 6 n 6∞} be a supermartingale with a last element. Define

Yn = E[X∞|Fn], Zn = Xn − Yn, 0 6 n 6∞.

Then Xn = Yn + Zn is the desired decomposition.

Now we are able to prove the general optional sampling theorem for supermartingales.

Theorem 3.8. Let {Xn,Fn : 0 6 n 6 ∞} be a supermartingale with a last element.
Suppose that σ, τ are two {Fn}-stopping times such that σ 6 τ. Then {Xσ,Fσ;Xτ ,Fτ}
is a two-step supermartingale.

Proof. According to Theorem 3.7 and Lemma 3.1, it suffices to consider the case when
{Xn,Fn : 0 6 n 6∞} is a non-negative supermartingale with a last element X∞ = 0.

Adaptedness is easy. To see integrability, since

Xσ = Xσ1{σ<∞} +X∞1{σ=∞}

and X∞ is integrable, we only need to show that Xσ1{σ<∞} is integrable. But

Xσ1{σ<∞} = lim
n→∞

Xσ∧n1{σ<∞},

and according to Theorem 3.6, we know that

E
[
Xσ∧n1{σ<∞}

]
6 E[Xσ∧n] 6 E[X0].

The integrability of Xσ1{σ<∞} then follows from Fatou’s lemma.
Now we show the supermartingale property. Let A ∈ Fσ. According to Proposition

2.4, for every n > 0, A ∩ {σ 6 n} ∈ Fσ ∩ Fn = Fσ∧n. From Theorem 3.6, we know
that {Xσ∧n,Fσ∧n;Xτ∧n,Fτ∧n} is a two-step supermartingale. Therefore,ˆ

A∩{σ6n}
Xτ∧ndP 6

ˆ
A∩{σ6n}

Xσ∧ndP =

ˆ
A∩{σ6n}

XσdP.

Moreover, we know thatˆ
A∩{σ6n}

Xτ∧ndP >
ˆ
A∩{σ6n}∩{τ<∞}

Xτ∧ndP

as Xn is non-negative, and we also have

Xτ1A∩{τ<∞} = lim
n→∞

Xτ∧n1A∩{σ6n}∩{τ<∞}.

Fatou’s lemma then implies thatˆ
A∩{τ<∞}

XτdP 6 lim
n→∞

ˆ
A∩{σ6n}

XσdP 6
ˆ
A
XσdP.

But the left hand side of the above inequality is equal to
´
AXτdP since X∞ = 0. This

yields the desired supermartingale property.
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Corollary 3.2. Let {Xn,Fn : 0 6 n 6∞} be a (super)martingale with a last element.
Suppose that {τm : m > 1} is a increasing sequence of {Fn}-stopping times. Define
X̃m = Xτm and F̃m = Fτm . Then {X̃m, F̃m : m > 1} is a (super)martingale.

3.4 Doob’s martingale inequalities

By using Doob’s optional sampling theorem for bounded stopping times, we are going to
derive several fundamental inequalities in martingale theory which are important in the
analytic aspect of stochastic calculus.

Here we will work with submartingales instead.
The central inequality is known as Doob’s maximal inequality, which is the first part

of the following result. As a submartingale exhibits an increasing trend on average, it is
not surprising that its running maximum can be controlled by the terminal value in some
sense.

Theorem 3.9. Let {Xn,Fn : n > 0} be a submartingale. Then for every N > 0 and
λ > 0, we have the following inequalities:

(1) λP
(
sup06n6N Xn > λ

)
6 E[X+

N ];
(2) λP (inf06n6N Xn 6 −λ) 6 E[X+

N ]− E[X0].

Proof. (1) Let σ = inf{n 6 N : Xn > λ} and we define σ = N if no such n 6 N
exists. Clearly σ is an {Fn}-stopping time bounded by N . According to Theorem 3.6,
we have

E[XN ] > E[Xσ] = E
[
Xσ1{sup06n6N Xn>λ}

]
+ E

[
XN1{sup06n6N Xn<λ}

]
> λP

({
sup

06n6N
Xn > λ

})
+ E

[
XN1{sup06n6N Xn<λ}

]
.

Therefore,

λP
({

sup
06n6N

Xn > λ

})
6 E

[
XN1{sup06n6N Xn>λ}

]
6 E[X+

N ].

The desired inequality then follows.
(2) Let τ = inf{n 6 N : Xn 6 −λ} and we define τ = N if no such n 6 N exists.

Then τ is an {Fn}-stopping time bounded by N . The desired inequality follows in a
similar manner by considering E[X0] 6 E[Xτ ].

An important corollary of Doob’s maximal inequality is Doob’s Lp-inequality for the
maximal functional. We first need the following lemma.

Lemma 3.2. Suppose that X,Y are two non-negative random variables such that

P(X > λ) 6
E[Y 1{X>λ}]

λ
, ∀λ > 0. (3.4)

Then for any p > 1, we have
‖X‖p 6 q‖Y ‖p, (3.5)

where q , p/(p− 1) (so that 1/p+ 1/q = 1).
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Proof. Suppose ‖Y ‖p <∞ (otherwise the result is trivial). Write

E[Xp] = E
[ˆ X

0
pλp−1dλ

]
= E

[ˆ ∞
0

pλp−11{X>λ}dλ

]
.

By Fubini’s theorem, we have

E
[ˆ ∞

0
pλp−11{X>λ}dλ

]
=

ˆ ∞
0

pλp−1P(X > λ)dλ

6
ˆ ∞

0
pλp−2E

[
Y 1{X>λ}

]
dλ

= E
[
Y

ˆ X

0
pλp−2dλ

]
=

p

p− 1
E[Y Xp−1].

First we assume that ‖X‖p <∞. It follows from Hölder’s inequality that

E[Y Xp−1] 6 ‖Y ‖p‖Xp−1‖q = ‖Y ‖p‖X‖p−1
p .

Therefore, (3.5) follows.
For the general case, let XN = X ∧N (N > 1). By considering λ > N and λ 6 N,

it is easy to see that the condition (3.4) also holds for XN and Y. The desired inequal-
ity (3.5) follows by first considering XN and then applying the monotone convergence
theorem.

Corollary 3.3 (Doob’s Lp-inequality). Let {Xn,Fn : n > 0} be a non-negative sub-
martingale. Suppose that p > 1 and Xn ∈ Lp for all n. Then for every N > 0,
X∗N , sup06n6N Xn ∈ Lp, and we have the following inequality:

‖X∗N‖p 6 q‖XN‖p,

where q , p/(p− 1).

Proof. The result follows from the first part of Theorem 3.9 and Lemma 3.2.

3.5 The continuous time analogue

The key to the passage from discrete to continuous time is an additional assumption
on the right continuity for sample paths. With this right continuity assumption, the
generalizations of all the results in Section 3.1, 3.2 and 3.3 to the continuous time
setting are almost straight forward. It will be seen in Theorem 3.10 that this is not at all
a luxurious assumption.

Suppose that (Ω,F ,P; {Ft : t > 0}) is a filtered probability space, and all stochastic
processes are defined on [0,∞) (except in the backward case in which the parameter set
is (−∞,−1]). In the following discussion, we always assume that the underlying (sub or
super)martingales have right continuous sample paths.
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1. The martingale convergences theorems: Theorem 3.2, Theorem 3.3, Corollary
3.1 and Theorem 3.4 (just for backward martingales) also hold in the continuous time
setting.

Proof. Indeed, the only place which needs care is the definition of upcrossing numbers.
Suppose that Xt is an {Ft}-adapted stochastic process. Let a < b be two real numbers.
For a finite subset F ⊆ [0,∞), we define UF (X; [a, b]) to be the upcrossing number of
[a, b] by the process {Xt : t ∈ F}, defined in the same way as in the discrete time case.
For a general subset I ⊆ [0,∞), set

UI(X; [a, b]) = sup{UF (X; [a, b]) : F ⊆ I, F is finite}.

If Xt has right continuous sample paths, we may approximate U[0,n](X; [a, b]) by rational
time indices to conclude that U[0,n](X; [a, b]) and U[0,∞)(X; [a, b]) are measurable. The
remaining details in proving the continuous time analogue of these convergence results
are then obvious.

2. Doob’s optional sampling theorems: Theorem 3.6 and Theorem 3.8 also hold
in the continuous time setting.

Proof. We only prove the analogue of Theorem 3.8. The case for bounded stopping
times is treated in a similar way.

Suppose that {Xt,Ft : 0 6 t 6 ∞} is a supermartingale with a last element. Let
σ 6 τ be two {Ft}-stopping times. For n > 1, define

σn =
∞∑
k=1

k

2n
1{ k−1

2n
6σ< k

2n } + σ · 1{σ=∞}

and define τn in the same way. It is apparent that σn 6 τn, and σn ↓ σ, τn ↓ τ.
Moreover, given t > 0, let k be the unique integer such that t ∈ [(k − 1)/2n, k/2n).
From {σn 6 t} = {σ < (k − 1)/2n}, we can see that σn is an {Ft}-stopping time and
the same is true for τn.

Since σn, τn take discrete values {k/2n : k > 1} ∪ {∞}, we can apply Theorem 3.8
to conclude that

E[Xτn |Fσn ] 6 Xσn , ∀n > 1.

In other words, ˆ
A
XτndP 6

ˆ
A
XσndP, ∀A ∈ Fσn , n > 1. (3.6)

By Proposition 2.4, we know that Fσ ⊆ Fσn and hence (3.6) is true for every A ∈ Fσ.
Now a key observation is that {Xσn ,Fσn : n > 1} is a backward supermartingale with

supn>1 E[Xσn ] < ∞. This follows from the fact that σn+1 6 σn and E[Xσn ] 6 E[X0]
for all n. The same is true for {Xτn ,Fτn : n > 1}. Under the assumption that Xt has
right continuous sample paths (so that Xσn → Xσ, Xτn → Xτ as n → ∞), Theorem
3.4 enables us to conclude that Xσ, Xτ ∈ L1 and to take limit on both sides of (3.6) for
every A ∈ Fσ. Therefore, {Xσ,Fσ;Xτ ,Fτ} is a two-step supermartingale.
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Remark 3.4. Although here the backward supermartingale is indexed by positive integers,
the reader should easily find it equivalent with having negative time parameter as in
Theorem 3.4 by setting m = −n for n > 1.

3. Doob’s martingale inequalities: Theorem 3.9 and Corollary 3.3 also hold in the
continuous time setting.

Proof. The right continuity of sample paths implies that

sup
t∈[0,N ]

Xt = sup
t∈[0,N ]∩Q

Xt,

and the same is true for the infimum. Now the results follow easily.

Finally, we demonstrate that we can basically only work with right continuous (sub
or super)martingales without much loss of generality. We can also see how the usual
conditions for filtration (c.f. Definition 2.11) come in naturally.

Definition 3.6. A function x : [0,∞)→ R is called càdlàg if it is right continuous with
left limits everywhere.

Definition 3.7. A function x : Q+ → R is called regularizable if

lim
q↓t

xq exists finitely for every t > 0

and
lim
q↑t

xq exists finitely for every t > 0.

The following classical fact about real functions is important.

Lemma 3.3. Let x : Q+ → R be a real function. Suppose that for every N ∈ N,
a, b ∈ Q with a < b, we have

sup
q∈Q+∩[0,N ]

|xq| <∞ and UQ+∩[0,N ](x; [a, b]) <∞,

where U[0,N ](x; [a, b]) is the upcrossing number of [a, b] by x|Q+∩[0,N ]. Then the function
x is regularizable. Moreover, the regularization x̃ of x, defined by

x̃t = lim
q↓t

xq, t > 0,

is a càdlàg function on [0,∞).

Proof. Suppose on the contrary that at some t > 0 we have

lim inf
q↓t

xq < lim sup
q↓t

xq.

Then there exist a < b ∈ Q, such that U[0,N ](x; [a, b]) = ∞ for every N > t, which is
a contradiction. Therefore, limq↓t xq exists in [−∞,∞]. The boundedness assumption
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guarantees the finiteness of this limit. The case of q ↑ t is treated in the same way.
Therefore, x is regularizable.

Now suppose tn ↓ t > 0.We choose qn ∈ (tn+1, tn) be such that |xqn−x̃tn+1 | 6 1/n.
It follows that qn ↓ t and hence x̃tn → x̃t. Similarly, we can show that lims↑t x̃s =
limq↑t xq for every t > 0. Therefore, x̃ is a càdlàg function.

Recall that the usual augmentation of a filtered probability space (Ω,G,P; {Gt}) is
given by Ft = σ(Gt+,N ), where N is the collection of P-null sets. Now we have the
following regularization theorem due to Doob.

Theorem 3.10. Let {Xt,Gt} be a supermartingale defined over a filtered probability
space (Ω,G,P; {Gt}). Then:

(1) almost every sample path of Xt, when restricted to Q+, is regularizable;
(2) the regularization X̃t of Xt, defined as in Lemma 3.3, is a supermartingale with

respect to the usual augmentation {Ft} of (Ω,G,P; {Gt});
(3) X̃t is a modification of Xt if and only if Xt is right continuous in L1, i.e.

lim
t↓s

E[|Xt −Xs|] = 0, ∀s > 0.

Proof. (1) According to Lemma 3.3, it suffices to show that, for any given N ∈ N,
a, b ∈ Q with a < b, with probability one we have

sup
q∈Q+∩[0,N ]

|Xq| <∞, UQ+∩[0,N ](X; [a, b]) <∞.

Indeed, let Qn be an increasing sequence of finite subsets of Q+ ∩ [0, N ] containing
{0, N}, such that ∪∞n=1Qn = Q+ ∩ [0, N ]. According to Theorem 3.9, we have

P

(
sup

q∈Q+∩[0,N ]

|Xq| > λ

)
= lim

n→∞
P

(
sup
q∈Qn

|Xq| > λ

)
6

2

λ
E[X+

N ] +
1

λ
E[X−0 ],

and according to Doob’s upcrossing inequality (3.2), we have

E[UQ+∩[0,N ](X; [a, b])] = lim
n→∞

E[UQn(X; [a, b])] 6
E[|XN |] + |a|

b− a
.

The result then follows.
(2) Define X̃t as in Lemma 3.3 on the set where Xt is regularizable and set X̃ ≡ 0

otherwise. From the construction it is apparent that X̃t is {Ft}-adapted. Now suppose
s < t, and let pn < qn ∈ Q+ be such that pn ↓ s, qn ↓ t. It follows that {Xpn ,Gpn} is a
backward supermartingale with supn E[Xpn ] <∞, and the same is true for {Xqn ,Gqn}.
Therefore,

Xpn → X̃s, Xqn → X̃t,

almost surely and in L1 as n → ∞. In particular, X̃s and X̃t are integrable. The
supermartingale property follows by taking limit in the following inequality:ˆ

A
XqndP 6

ˆ
A
XpndP, ∀A ∈ Gs+.
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(3) Necessity. We only need a weaker assumption that X has a right continuous
modification X̂. In this case, given t0 > 0, let tn (n > 1) be an arbitrary sequence
such that tn ↓ t0. Then with probability one, X̂tn = Xtn for all n > 0. Since X̂t has
right continuous sample paths, we obtain that Xtn → Xt0 almost surely. On the other
hand, the same backward supermartingale argument as in the second part implies that
Xtn → Xt0 in L1. Therefore, Xt is right continuous in L1.

Sufficiency. Given t > 0, let qn ∈ Q+ be such that qn ↓ t. Then Xqn → X̃t in L1.

Since Xqn also converges to Xt in L1 by assumption, we conclude that X̃t = Xt.

Remark 3.5. By adjusting the proof slightly, one can show that if {Xt,Gt} is a super-
martingale with right continuous sample paths, then almost every sample path of Xt also
has left limits everywhere.

If we start with a filtration satisfying the usual conditions, we have the following very
nice and stronger result.

Theorem 3.11. Let {Xt,Ft} be a supermartingale defined over a filtered probability
space (Ω,F ,P; {Ft}) which satisfies the usual conditions. Then X has a càdlàg modi-
fication X̃ if and only if the function t 7→ E[Xt] is right continuous. Moreover, in this
case

{
X̃t,Ft

}
is also a supermartingale.

Proof. Necessity follows from the same argument as in the proof of Theorem 3.10, (3).
For the sufficiency, let X̃ be the regularization of X given by Theorem 3.10. Then for
t > 0, qn ∈ Q+ with qn > t, we have

ˆ
A
XqndP 6

ˆ
A
XtdP, ∀A ∈ Ft.

By letting qn ↓ t, we conclude that E
[
X̃t|Ft

]
6 Xt a.s. But X̃t is {Ft}-adapted

since {Ft} satisfies the usual conditions. Therefore, X̃t 6 Xt a.s. But from the right
continuity of t 7→ E[Xt], we see that E

[
X̃t

]
= E[Xt]. Therefore, X̃t = Xt a.s. Finally,

it is trivial that every modification of X is also an {Ft}-supermartingale.

It follows from Theorem 3.11 that every martingale has a càdlàg modification, pro-
vided that the underlying filtration satisfies the usual conditions.

3.6 The Doob-Meyer decomposition

Now we discuss a result which is fundamental in the study of stochastic integration and
lies in the heart of continuous time martingale theory. This will also be the first time
that the continuous time situation becomes substantially harder than the discrete time
setting.

Roughly speaking, the intuition behind the whole discussion can be summarized as:
the tendency of increase for a submartingale can be extracted in a pathwise way, and
what remains is a martingale part.
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As before, we first consider the easy bit: the discrete time situation. This is known
as Doob’s decomposition.

Definition 3.8. An increasing sequence {An : n > 0} over a filtered probability space
(Ω,F ,P; {Fn}) is an {Fn}-adapated sequence such that with probability one we have
0 = A0(ω) 6 A1(ω) 6 A2(ω) 6 · · · , and E[An] <∞ for all n.

Theorem 3.12 (Doob’s decomposition). Let {Xn,Fn : n > 0} be a submartingale
defined over a filtered probability space (Ω,F ,P; {Fn}). Then X has a decomposition

Xn = Mn +An, n > 0,

where {Mn,Fn} is a martingale, {An,Fn} is an increasing sequence which is {Fn}-
predictable. Moreover, such a decomposition is unique with probability one.

Proof. We first show uniqueness. Suppose that Xn has such a decomposition. Then

Xn −Xn−1 = Mn −Mn−1 +An −An−1.

Since Mn is an {Fn}-martingale and An is {Fn}-predictable, we have

E[Xn −Xn−1|Fn−1] = An −An−1.

Therefore,

An =
n∑
k=1

E[Xk −Xk−1|Fk−1]. (3.7)

Existence follows from defining An by (3.7) and Mn , Xn −An.

Remark 3.6. Predictability is an important condition for the uniqueness of Doob’s de-
composition. Indeed, if {Mn,Fn} is a square integrable martingale with M0 = 0, then

M2
n = Vn +Bn

where Bn =
∑n

k=1(Mk −Mk−1)2 is another decomposition of the submartingale M2
n

into a martingale part Vn and an increasing sequence Bn. However, Bn here is not
{Fn}-predictable.

To understand the continuous time analogue of Theorem 3.12, we first need to
recapture the predictability property in a way which extends to the continuous time case
naturally.

Definition 3.9. An increasing sequence An defined over some filtered probability space
(Ω,F ,P; {Fn}) is called natural if

n∑
k=1

E[mk(Ak −Ak−1)] =

n∑
k=1

E[mk−1(Ak −Ak−1)], ∀n > 1, (3.8)

for every bounded martingale {mn,Fn}.
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Note that from the martingale property, the left hand side of (3.8) is equal to
E[mnAn]. Moreover, simple calculation yields

n∑
k=1

mk−1(Ak −Ak−1) = mnAn −
n∑
k=1

Ak(mk −mk−1) = mnAn − (A •m)n,

where (A •m)n is the martingale transform of mn by An. Therefore, An is natural if
and only if

E[(A •m)n] = 0, ∀n > 1,

for every bounded martingale {mn,Fn}.
Now we have the following simple fact.

Proposition 3.3. Suppose that F0 contains all P-null sets. Then an increasing sequence
An is {Fn}-predictable if and only if it is natural.

Proof. Suppose that An is {Fn}-predictable. Given bounded martingale {mn,Fn}, ac-
cording to Theorem 3.1, we know that {(A•m)n,Fn} is a martingale null at 0. Therefore,
An is natural.

Conversely, suppose that An is natural and hence we know that

E[An(mn −mn−1)] = 0, ∀n > 1,

for every bounded martingale {mn,Fn}. It follows that for every n > 1,

E[mn(An − E[An|Fn−1])]

= E[mnAn]− E[mnE[An|Fn−1]]

= E[mnAn]− E[Anmn−1] (by Problem Sheet 1, Problem 1, (1))

= 0. (3.9)

Now for fixed n > 1, define Z = sgn(An−E[An|Fn−1]), and set mk = E[Z|Fk] if k 6 n
and mk = Z if k > n. It follows from {mn,Fn} is a bounded martingale, and from (3.9)
we know that E[|An − E[An|Fn−1]|] = 0. Therefore, An = E[An|Fn−1] almost surely,
which implies that An is {Fn}-predictable.

Now we discuss the continuous time situation. In the rest of this subsection, we will
always work over a filtered probability space (Ω,F ,P; {Ft : t > 0}) which satisfies the
usual conditions.

To study the corresponding decomposition, we first need the analogue of increasing
sequences.

Definition 3.10. A increasing process {At : t > 0} is an {Ft}-adapted process At
such that with probability one we have A0(ω) = 0 and t 7→ At(ω) is increasing and right
continuous, and E[At] <∞ for all t > 0.
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Definition 3.11. An increasing process At is called natural if for every bounded and
càdlàg martingale {mt,Ft}, we have

E
[ˆ t

0
msdAs

]
= E

[ˆ t

0
ms−dAs

]
, ∀t > 0, (3.10)

where the integrals inside the expectations are understood in the Lebesgue-Stieltjes sense.

Note that every continuous, increasing process is natural, since a càdlàg function can
have at most countably many jumps. Moreover, the left hand side of (3.10) is equal to
E[mtAt]. Indeed, let P : 0 = t0 < t1 < · · · < tn = t be an arbitrary finite partition of
[0, t]. Then as in the discrete time case, we see that

n∑
k=1

E[mtk(Atk −Atk−1
)] = E[mtAt]. (3.11)

Since mt is right continuous, by the dominated convergence theorem, the left hand side
of (3.11) converges to E

[´ t
0 msdAs

]
as mesh(P)→ 0.

Remark 3.7. In the continuous time setting, there is also a notion of predictability which
is crucial for the study of stochastic calculus for processes with jumps. This is technically
much more complicated than the discrete time case. Under this notion of predictability,
it can be shown that an increasing process is natural if and only if it is predictable (c.f.
[1]).

Unlike discrete time submartingales, not every càdlàg submartingale has a Doob-type
decomposition (see Problem Sheet 5, Problem 2 for a counterexample). We first examine
what condition should the submartingale satisfy if such a decomposition exists.

Suppose that {Xt,Ft} is a càdlàg submartingale with a decomposition

Xt = Mt +At,

where {Mt,Ft} is a càdlàg martinagle and At is an increasing process. Given T > 0, let
ST be the set of {Ft}-stopping times τ satisfying τ 6 T a.s. According to the optional
sampling theorem, we have Mτ = E[MT |Fτ ] for every τ ∈ ST . It follows from Problem
Sheet 1, Problem 2, (1) that {Mτ : τ ∈ ST } is uniformly integrable. Moreover, since
AT is integrable and Aτ 6 AT a.s. for every τ ∈ ST , we conclude that {Xτ : τ ∈ ST }
is uniformly integrable.

Definition 3.12. A càdlàg submartingale {Xt,Ft} is said to be of class (DL) if for every
T > 0, the family {Xτ : τ ∈ ST } is uniformly integrable.

Now we prove the converse. This is the famous Doob-Meyer decomposition theorem.

Theorem 3.13. Let {Xt,Ft} be a càdlàg submartingale of class (DL). Then Xt can be
written as the sum of a càdlàg martingale and an increasing process which is natural.
Moreover, such decomposition is unique with probability one.
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Proof. The main idea is to apply discrete approximation by using Doob’s decomposition
for discrete time submartingales.

(1) We first prove uniqueness.
Suppose that Xt has two such decompositions:

Xt = Mt +At = M ′t +A′t.

Then ∆t , A′t − At = Mt −M ′t is an {Ft}-martingale. Therefore, fix t > 0, for any
bounded and càdlàg martingale {ms,Fs}, we have

E
[ˆ t

0
ms−d∆s

]
= lim

mesh(P)→0

n∑
k=1

E
[
mtk−1

(
∆tk −∆tk−1

)]
= 0,

where P : 0 = t0 < t1 < · · · < tn = t is a finite partition of [0, t]. Since A and A′

are both natural, it follows that E[mt∆t] = 0. For an arbitrary bounded Ft-measurable
random variable ξ, let ms be a càdlàg version of E[ξ|Fs]. It follows that E[ξ∆t] = 0.
By taking ξ = 1{At<A′t}, we conclude that almost surely ξ∆t = 0 and hence At > A′t.
Similarly, At 6 A′t almost surely. Therefore, At = A′t almost surely. The uniqueness
follows from right continuity of sample paths.

(2) To prove existence, it suffices to prove it on every finite interval [0, T ], as the
uniqueness will then enable us to extend the construction to the whole interval [0,∞).

For n > 1, let Dn : tnk = kT/2n (0 6 k 6 2n) be the n-th dyadic partition of [0, T ].
Let

Xt = M
(n)
t +A

(n)
t , t ∈ Dn,

be the Doob decomposition for the discrete time submartingale X|Dn given by Theorem
3.12. Since

{
M

(n)
t ,Ft : t ∈ Dn

}
is a martingale, we have

A
(n)
t = Xt − E[XT |Ft] + E

[
A

(n)
T |Ft

]
, t ∈ Dn. (3.12)

(3) The key step is to prove that
{
A

(n)
T : n > 1

}
is uniformly integrable, which then

enables us to get a weak limit AT along a subsequence according to the Dunford-Pettis
theorem (c.f. Theorem 1.2). In view of (3.12), the desired increasing process At can
then be constructed in terms of AT and Xt easily.

Given λ > 0, define

τ
(n)
λ , inf

{
tnk ∈ Dn : A

(n)
tnk+1

> λ
}
,

where inf ∅ , T . Since
{
A

(n)
t : t ∈ Dn

}
is {Ft : t ∈ Dn}-predictable, we see that

τ
(n)
λ ∈ ST . Moreover,

{
A

(n)
T > λ

}
=
{
τ

(n)
λ < T

}
∈ F

τ
(n)
λ

. By applying the optional

46



sampling theorem to the identity (3.12), we obtain that

E
[
A

(n)
T 1{

A
(n)
T >λ

}]
= E

[
XT1{τ (n)λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]+ E
[
A

(n)

τ
(n)
λ

1{
τ
(n)
λ <T

}]
6 E

[
XT1{τ (n)λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]+ λP
(
τ

(n)
λ < T

)
. (3.13)

On the other hand, since
{
τ

(n)
λ < T

}
⊆
{
τ

(n)
λ/2 < T

}
, we have

E
[(
A

(n)
T −A

(n)

τ
(n)
λ/2

)
1{

τ
(n)
λ/2

<T
}] > E

[(
A

(n)
T −A

(n)

τ
(n)
λ/2

)
1{

τ
(n)
λ <T

}] > λ

2
P
(
τ

(n)
λ < T

)
.

(3.14)
Again from the optional sampling theorem, we know that the left hand side of (3.14) is

equal to E
[(
XT −Xτ

(n)
λ/2

)
1{

τ
(n)
λ/2

<T
}]. Therefore, from (3.13) we arrive at

E
[
A

(n)
T 1{

A
(n)
T >λ

}] 6 E
[
XT1{τ (n)λ <T

}]− E
[
X
τ
(n)
λ

1{
τ
(n)
λ <T

}]
+2E

[
XT1{τ (n)

λ/2
<T

}]− 2E
[
X
τ
(n)
λ/2

1{
τ
(n)
λ/2

<T
}] . (3.15)

Now observe that

P
(
τ

(n)
λ < T

)
= P

(
A

(n)
T > λ

)
6

1

λ
E
[
A

(n)
T

]
=

1

λ
E[XT −X0]→ 0

uniformly in n as λ → ∞. Since Xt is of class (DL), we conclude that the right hand
side of (3.15) converges to 0 uniformly in n as λ → ∞. In particular, this implies that{
A

(n)
T : n > 1

}
is uniformly integrable.

(4) According to the Dunford-Pettis Theorem (c.f. Theorem 1.2), there exist a
subsequence A(nj)

T and some AT ∈ L1(Ω,FT ,P), such that A(nj)
T converges to AT

weakly in L1(Ω,FT ,P). In view of (3.12), now we define (taking a right continuous
version)

At = Xt − E[XT |Ft] + E[AT |Ft], t ∈ [0, T ]. (3.16)

It remains to show that At is a natural increasing process.
First of all, given any bounded FT -measurable random variable ξ, from Problem

Sheet 1, Problem 1, (1), (i), we know that

E[ξE[AT |Ft]] = E[ATE[ξ|Ft]],

and the same is true when AT is replaced by A(n)
T . In view of (3.12) and (3.16), we see

that A(nj)
t converges to At weakly in L1(Ω,FT ,P) for any given t ∈ D , ∪∞n=1Dn.
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To see the increasingness of A, let s < t ∈ D and ξ = 1{As>At}. It follows that
ξ(As −At) > 0. But

E[ξ(As −At)] = lim
j→∞

E
[
ξ
(
A

(nj)
s −A(nj)

t

)]
6 0.

Therefore, As 6 At almost surely. The increasingness of At then follows from right
continuity.

To see the naturality of A, first note that
{
A

(n)
t : t ∈ Dn

}
is {Ft : t ∈ Dn}-

predictable, and A(n)
t , At differ from Xt by martingales. Therefore, for any given bounded

and càdlàg martingale {mt,Ft : t ∈ [0, T ]}, we have

E
[
mTA

(n)
T

]
=

2n∑
k=1

E
[
mT

(
A

(n)
tnk
−A(n)

tnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
A

(n)
tnk
−A(n)

tnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
Xtnk
−Xtnk−1

)]
=

2n∑
k=1

E
[
mtnk−1

(
Atnk −Atnk−1

)]
.

By taking limit along the subsequence nj , we conclude that

E[mTAT ] = E
[ˆ T

0
ms−dAs

]
. (3.17)

Now given t ∈ [0, T ], by applying (3.17) to the bounded and càdlàg martingale mt
s ,

mt∧s (s ∈ [0, T ]), we obtain that

E[mtAt] = E
[ˆ t

0
ms−dAs

]
.

Therefore, the naturality of A follows.
Now the proof of Theorem 3.13 is complete.

It is usually important to understand the relationship between regularity properties of
a submartingale and of its Doob-Meyer decomposition.

Definition 3.13. A càdlàg submartingale {Xt,Ft} is called regular if for every T > 0
and τn, τ ∈ ST with τn ↑ τ, we have

lim
n→∞

E[Xτn ] = E[Xτ ].

Note that from the optional sampling theorem, every càdlàg martingale is regular.

Lemma 3.4. Let {Xt,Ft} be a regular càdlàg submartingale which is of class (DL), and
let At be the natural increasing process in the Doob-Meyer decomposition of Xt. Then
for any τn, τ ∈ ST with τn ↑ τ, Aτn ↑ Aτ almost surely.
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Proof. 0 6 Aτn 6 Aτ 6 AT implies that {Aτn : n > 1} is uniformly integrable. Let
B = limn→∞Aτn . Then E[B] = limn→∞ E[Aτn ]. On the other hand, it is apparent that
At is also regular and B 6 Aτ . Therefore, E[B] = E[Aτ ], which implies that B = Aτ
almost surely.

Now we have the following general result.

Theorem 3.14. Let {Xt,Ft} be a càdlàg submartingale which is of class (DL), and let
Xt = Mt +At be its Doob-Meyer decomposition. Then Xt is regular if and only if At is
continuous.

Proof. Sufficiency is obvious. Now we show necessity.
Since At is increasing and right continuous, we use the following global way to

establish the continuity of At over an arbitrary finite interval [0, T ]: it suffices to show
that, for every λ > 0,

E
[ˆ T

0
At ∧ λdAt

]
= E

[ˆ T

0
At− ∧ λdAt

]
. (3.18)

Indeed, since At ∧ λ is also increasing and right continuous, it has at most countably
many discontinuities. Therefore,
ˆ T

0
At∧λdAt−

ˆ T

0
At−∧λdAt =

∑
t6T

(At∧λ−At−∧λ)(At−At−) >
∑
t6T

(At∧λ−At−∧λ)2,

where the summation is over all discontinuities of At ∧ λ on [0, T ]. Therefore, (3.18)
implies that with probability one, At ∧ λ does not have jumps on [0, T ]. Since λ is
arbitrary, we conclude that At is continuous almost surely.

Now we establish (3.18). This looks very similar to the naturality property of At,
except for the fact that the integrand At ∧ λ is not a martingale. To get around this
issue, we use piecewise martingales to approximate At ∧ λ in a reasonable sense.

As in the proof of Theorem 3.13, let Dn be the n-th dyadic partition of [0, T ]. Define
(taking a right continuous version)

A
(n)
t = E

[
Atnk ∧ λ|Ft

]
, t ∈ (tnk−1, t

n
k ], 1 6 k 6 2n.

By applying the naturality property of At on each (tnk−1, t
n
k ], we obtain that

E
[ˆ T

0
A

(n)
t dAt

]
= E

[ˆ T

0
A

(n)
t− dAt

]
.

Now we prove that A(n)
t converges uniformly in t ∈ [0, T ] to At ∧ λ in probability.

This will imply that along a subsequence A(nj)
t converges uniformly in t ∈ [0, T ] to At∧λ

almost surely, which concludes (3.18) by the dominated convergence theorem.
Note that with probability one, A(n)

t > At∧λ and A(n)
t is decreasing in n for every t ∈

[0, T ]. Given ε > 0, let σ(n)
ε = inf

{
t ∈ [0, T ] : A

(n)
t −At ∧ λ > ε

}
(inf ∅ , T ). Then
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σ
(n)
ε is an increasing sequence of {Ft}-stopping times in ST . Let σε = limn→∞ σ

(n)
ε .

Now define another τ (n)
ε ∈ ST by τ (n)

ε = tnk if σ(n)
ε ∈ (tnk−1, t

n
k ]. It is apparent that

σ
(n)
ε 6 τ

(n)
ε and τ (n)

ε ↑ σε as well.
For fixed 1 6 k 6 2n, by applying the optional sampling theorem to the martingale

Ã
(n)
t = E

[
Atnk ∧ λ|Ft

]
(t ∈ [0, T ]), we obtain that

E
[
A

(n)

σ
(n)
ε

1{
tnk−1<σ

(n)
ε 6tnk

}] = E
[
Ã

(n)

σ
(n)
ε

1{
tnk−1<σ

(n)
ε 6tnk

}]
= E

[
Atnk ∧ λ1

{
tnk−1<σ

(n)
ε 6tnk

}]
= E

[
A
τ
(n)
ε
∧ λ1{

tnk−1<σ
(n)
ε 6tnk

}] .
By summing over k, we arrive at E

[
A

(n)

σ
(n)
ε

]
= E

[
A
τ
(n)
ε
∧ λ
]
. Therefore,

E
[
A
τ
(n)
ε
∧ λ−A

σ
(n)
ε
∧ λ
]

= E
[
A

(n)

σ
(n)
ε

−A
σ
(n)
ε
∧ λ
]
> εP

(
σ(n)
ε < T

)
.

On the other hand, according to Lemma 3.4, we know that

lim
n→∞

A
σ
(n)
ε
∧ λ = lim

n→∞
A
τ
(n)
ε
∧ λ = Aσε ∧ λ, a.s.

Therefore, by the monotone convergence theorem, we conclude that

lim
n→∞

P
(
σ(n)
ε < T

)
= 0.

But
{
σ

(n)
ε < T

}
=
{

supt∈[0,T ](A
(n)
t −At ∧ λ) > ε

}
. In other words, A(n)

t converges
uniformly in t ∈ [0, T ] to At ∧ λ in probability.

Now the proof of Theorem 3.14 is complete.
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4 Brownian motion

In this section, we study a fundamental example of stochastic processes: the Brownian
motion.

In 1905, based on principles of statistical physics, Albert Einstein discovered the
mechanism governing the random movement of particles suspended in a fluid, a phe-
nomenon first observed by the botanist Robert Brown. In physics, such random motion
is known as the Brownian motion. However, it was Louis Bachelier in 1900 who first
used the distribution of Brownian motion to model Paris stock market and evaluate stock
options. The precise mathematical model of Brownian motion was established by Nobert
Wiener in 1923.

Brownian motion is the most important object in stochastic analysis, since it lies
in the intersection of all fundamental stochastic processes: it is a Gaussian process,
a martingale, a (strong) Markov process and a diffusion. Moreover, being an elegant
mathematical object on its own, it also connects stochastic analysis with other parts of
mathematics, e.g. partial differential equations, harmonic analysis, differential geometry
etc. as well as applied areas such as physics and mathematical finance.

From this section we will start appreciating the great power of martingale methods
developed in the last section.

4.1 Basic properties

Definition 4.1. A (d-dimensional) stochastic process {Bt : t > 0} is called a (d-
dimensional) Brownian motion if:

(1) B0 = 0 almost surely;
(2) for every 0 6 s < t, Bt−Bs is normally distributed with mean zero and covariance

matrix (t− s)Id, where Id is the d× d identity matrix;
(3) for every 0 < t1 < · · · < tn, the random variables Bt1 , Bt2−Bt1 , · · · , Btn−Btn−1

are independent;
(4) with probability one, t 7→ Bt(ω) is contiuous.

Direct computation shows that a Brownian motion is a d-dimensional Gaussian pro-
cess with i.i.d. components, each having covariance function ρ(s, t) = s ∧ t (s, t > 0).

As usual, it is also important to keep track of information when a filtration is pre-
sented.

Definition 4.2. Let {Ft : t > 0} be a filtration. A stochastic process {Bt : t > 0} is
called an {Ft}-Brownian motion if it is a Brownian motion such that it is {Ft}-adapted
and Bt −Bs is independent of Fs for every s < t.

Apparently, every Brownian motion is a Brownian motion with respect to its natural
filtration. Moreover, every {Ft}-Brownian motion is an {Ft}-martingale.

The existence of a Brownian motion on some probability space is proved in Problem
Sheet 2, Problem 2 by using Kolmogorov’s extension and continuity theorems. From a
mathematical point of view, it is also important and convenient to realize a Brownian
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motion on the continuous path space (W d,B(W d), ρ) (c.f. Section 1.5). Suppose that
Bt is a Brownian motion on (Ω,F ,P) and every sample path of Bt is continuous. It is
straight forward to see that the map B : ω 7→ (Bt(ω))t>0 is F/B(W d) measurable. Let
µd , P ◦B−1.

Definition 4.3. µd is called the (d-dimensional) Wiener measure (or the law of Brownian
motion).

From the definition of Brownian motion and the uniqueness of Carathéodory’s exten-
sion, we can see that µd is the unique probability measure on (W d,B(W d)) under which
the coordinate process Xt(w) , wt is a Brownian motion.

The following invariance properties of Brownian motion are obvious.

Proposition 4.1. Let Bt be a Brownian motion. Then we have:
(1) translation invariance: for every s > 0, {Bt+s − Bs : t > 0} is a Brownian

motion;
(2) reflection symmetry: −Bt is a Brownian motion;
(3) scaling invariance: for every λ > 0, {λ−1Bλ2t : t > 0} is a Brownian motion.

4.2 The strong Markov property and the reflection principle

Now we demonstrate a very important property of Brownian motion: the strong Markov
property.

Heuristically, the Markov property means that knowing the present state, history on
the past does not provide any new information on predicting the distribution of future
states. “Strong” means that the meaning of “present” can be randomized by a stopping
time.

Let
pt(x, y) =

1

(2πt)
d
2

e−
|x−y|2

2 , t > 0, x, y ∈ Rd. (4.1)

It is easy to see that
∂

∂t
pt(x, y) =

1

2
∆xpt(x, y), t > 0.

Let Bb(Rd) be the space of bounded measurable functions on Rd, equipped with the
supremum norm. Define a family {Pt : t > 0} of continuous linear operators on Bb(Rd)
by

Ptf(x) =

{´
Rd pt(x, y)f(y)dy, t > 0;

f(x), t = 0.

Routine calculation shows the following semigroup property:

Pt+s = Pt ◦ Ps = Ps ◦ Pt, ∀s, t > 0.

This is known as the Chapman-Kolmogorov equation, which is a basic feature of Markov
processes.

Now let Bt be an {Ft}-Brownian motion with respect to some filtration {Ft}. The
Markov property of Bt can be stated as follows.
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Theorem 4.1. For every 0 6 s < t and f ∈ Bb(Rd), we have

E[f(Bt+s)|Fs] = E[f(Bt+s)|Bs] a.s.

Proof. Note that
E[f(Bt+s −Bs + x)] = Ptf(x), ∀x ∈ Rd.

Since Bt+s −Bs is independent of Fs and Bs is Fs-measurable, from Problem Sheet 1,
Problem 1, (1), (ii), we conclude that

E[f(Bt+s)|Fs] = E[f(Bt+s −Bs +Bs)|Fs] = Ptf(Bs) a.s.

The result then follows by conditioning on Bs.

The kernel pt(x, y) is called the Brownian transition density (or the heat kernel).
Heuristically, it gives the probability density of finding a Brownian particle at position y
after time t whose initial position is x. Respectively, the semigroup {Pt} is called the
Brownian transition semigroup (or the heat semigroup). The relationship between the
Brownian motion Bt and the Laplace operator ∆ lies in the fact that ∆ is the infinitesimal
generator of Bt, in the sense that

1

2
∆f = lim

t→0
(Ptf − f)/t in Bb(Rd),

at least for f ∈ C2
c (Rd), the space of twice continuously differentiable functions with

compact support. We will come back to this point when we study stochastic differential
equations and diffusion processes.

The strong Markov property of Brownian motion takes essentially the same form as
Theorem 4.1, but with s replaced by a stopping time. Indeed, we will establish a finer
result. The proof exploits the optional sampling theorem of martingales.

Theorem 4.2. Suppose that F0 contains all P-null sets. Let Bt be an {Ft}-Brownian
motion and let τ be an {Ft}-stopping time which is finite almost surely. Then the
process B(τ) = {Bτ+t −Bτ : t > 0} is a Brownian motion which is independent of Fτ .
In particular, for every t > 0 and f ∈ Bb(Rd), we have

E[f(Bτ+t)|Fτ ] = E[f(Bτ+t)|Bτ ] a.s. (4.2)

Proof. From classical probability theory, it is sufficient to show that:

E
[
ξe
i
∑n
k=1

〈
θk,B

(τ)
tk
−B(τ)

tk−1

〉]
= E[ξ] · e−

1
2

∑n
k=1 |θk|2(tk−tk−1) (4.3)

for every ξ bounded Fτ -measurable, 0 = t0 < t1 < · · · < tn and θ1, · · · , θn ∈ Rd.
In general, given θ ∈ Rd, define

M
(θ)
t = ei〈θ,Bt〉+

1
2
|θ|2t, t > 0.
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It is easily seen that
{
M

(θ)
t ,Ft

}
is a continuous martingale. Therefore, given an almost

surely finite {Ft}-stopping time σ and t > 0, according to the optional sampling theorem,
we have

E
[
ei〈θ,Bσ∧N+t〉+ 1

2
|θ|2(σ∧N+t)|Fσ∧N

]
= ei〈θ,Bσ∧N 〉+

1
2
|θ|2σ∧N , ∀N ∈ N.

Equivalently,
E
[
ei〈θ,Bσ∧N+t−Bσ∧N 〉|Fσ∧N

]
= e−

1
2
|θ|2t, ∀N ∈ N. (4.4)

Note that Fσ = ∪N∈NFσ∧N (A ∈ Fσ =⇒ A ∩ {σ 6 N} ∈ Fσ∧N for all N , so
A ∩ {σ < ∞} ∈ ∪N∈NFσ∧N . But A ∩ {σ = ∞} ∈ F0 by assumption.) By using the
definition of conditional expectation and the dominated convergence theorem, we may
take limit N →∞ in (4.4) to conclude that

E
[
ei〈θ,Bσ+t−Bσ〉|Fσ

]
= e−

1
2
|θ|2t. (4.5)

Now (4.3) follows from taking conditional expectations and applying (4.5) recursively,
starting from σ = τ + tn−1, t = tn − tn−1 and θ = θn.

In the same way as before, the strong Markov property (4.2) follows from the fact
that

E[f(Bτ+t)|Fτ ] = Ptf(Bτ ) a.s.

In the one dimensional case, a very nice application of the strong Markov property
is the so-called reflection principle, which yields immediately the explicit distributions of
passage times and maximal functionals.

Let Bt be a one dimensional Brownian motion, and let {FBt } be the augmented
natural filtration of Bt (i.e. FBt = σ(GBt ,N ) where {GBt } is the natural filtration of Bt
and N is the collection of P-null sets).

For x > 0, set
τx = inf{t > 0 : Bt = x}.

Then τx is an {FBt }-stopping time. To see it is finite almost surely, we need the following
simple fact.

Proposition 4.2. We have:

P
(

sup
t>0

Bt =∞
)

= P
(

inf
t>0

Bt = −∞
)

= 1.

In particular, τx <∞ almost surely.

Proof. Let M = supt>0Bt. According to the scaling invariance of Brownian motion (c.f.
Proposition 4.1, (2)), for every λ > 0, we have

{λ−1Bλ2t : t > 0} law
= {Bt : t > 0}.
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This certainly implies that λ−1M
law
= M . Now we have:

P(M > λ) = P(M > 1)
λ→∞
=⇒ P(M =∞) = P(M > 1),

P(M 6 λ) = P(M 6 1)
λ→0
=⇒ P(M 6 0) = P(M 6 1).

Since M > 0 almost surely, we conclude that M is supported on {0,∞}.
On the other hand, observe that

P(M = 0) 6 P(B1 6 0, Bu 6 0 ∀u > 1)

6 P
(
B1 6 0, sup

t>0
(B1+t −B1) = 0

)
= P(B1 6 0) · P(M = 0)

=
1

2
P(M = 0),

where the second inequality follows from the fact that supt>0(B1+t −B1) is either 0 or
∞ since {B1+t − B1 : t > 0} is again a Brownian motion. Therefore, P(M = 0) = 0
and M =∞ almost surely.

The infimum case follows from the reflection symmetry of Brownian motion.

The reflection principle asserts that the law of Brownian motion is invariant under
reflection with respect to the position x after time τx. Here is the mathematical state-
ment.

Proposition 4.3. Define

B̃t =

{
Bt, t < τx;

2x−Bt, t > τx.
(4.6)

Then B̃t is also a Brownian motion.

Proof. According to Theorem 4.2, the process B(τx)
t , Bτx+t − Bτx = Bτx+t − x is

a Brownian motion which is independent of Fτx . Therefore, −B
(τx)
t is also a Brownian

motion being independent of Fτx . Let Yt , Bτx∧t be the Brownian motion stopped at
τx. Note that the map ω 7→ Y·(ω) is Fτx/B(W 1

0 )-measurable, where W 1
0 is the space

of continuous path w ∈ W 1 with w0 = 0. It follows that as random variables taking
values in the space W 1

0 × [0,∞) × W 1
0 ,
(
Y, τx, B

(τx)
)
has the same distribution as(

Y, τx,−B(τx)
)
.

Now define a map ϕ : W 1
0 × [0,∞)×W 1

0 →W 1
0 by ϕ(x, t, y)(s) = xs + ys−t1{s>t}

(s > 0). Then ϕ
(
Y, τx, B

(τx)
)

= B and ϕ
(
Y, τx,−B(τx)

)
= B̃. Therefore, B̃ is also a

Brownian motion.

4.3 The Skorokhod embedding theorem and the Donsker invariance
principle

In this subsection, we apply the strong Markov property to study the fundamental con-
nections between Brownian motion and random walk in dimension one. On the one hand,
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it is not hard to imagine that the Brownian motion can be regarded as the continuum
limit of scaled random walks. The precise form of this result is known as the Donsker
invariance principle. On the other hand, it is highly non-trivial that every random walk
can be embedded into a Brownian motion evaluated along a sequence of stopping times.
This embedding result is an easy consequece of the well known Skorokhod embedding
theorem.

We first establish the Skorokhod embedding theorem. As we will see, based on this
theorem, the Donsker invariance principle is a consequence of the continuity of Brownian
motion.

Suppose that Bt is a one dimensional Brownian motion with {FBt } being its aug-
mented natural filtration.

The Skorokhod embedding theorem can be stated as follows.

Theorem 4.3. Let X be a real-valued random variable such that E[X] = 0 and E[X2] <

∞. Then there exists an integrable {FBt }-stopping time τ, such that Bτ
law
= X and

E[τ ] = E[X2].

The proof of this theorem is highly non-trivial but the starting point is simple.
Consider the simplest case where X takes two values a < 0 < b. The condition

E[X] = 0 implies that

P(X = a) =
b

b− a
, P(X = b) =

−a
b− a

, E[X2] = −ab.

On the other hand, define

τa,b = inf{t > 0 : Bt /∈ (a, b)}.

From Proposition 4.2, we know that τa,b is an almost surely finte {FBt }-stopping time.

Proposition 4.4. We have:

P(Bτa,b = a) =
b

b− a
, P(Bτa,b = b) =

−a
b− a

, E[τa,b] = −ab.

In particular, τa,b gives a solution to the Skorokhod embedding problem for the distribution
of X.

Proof. By applying the optional sampling theorem to the {FBt }-martingales Bt and
B2
t − t, we have

E[Bτa,b∧n] = 0, E[B2
τa,b∧n] = E[τa,b ∧ n].

Since |Bτa,b∧n| 6 max(|a|, |b|) for every n, by the dominated convergence theorem, we
conclude that

E[Bτa,b ] = 0, E[B2
τa,b

] = E[τa,b]. (4.7)

As Bτa,b takes the two values a and b, the first identity of (4.7) shows that Bτa,b
law
= X.

The second identity of (4.7) then shows that τa,b is integrable and E[τa,b] = E[X2] =
−ab.
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Remark 4.1. In general, it is a good exercise to show that: for every integrable {FBt }-
stopping time τ, Bτ is square integrable, and

E[Bτ ] = 0, E[B2
τ ] = E[τ ].

This is called Wald’s identities. Therefore, E[X] = 0 and E[X2] = 0 are necessary
conditions for the existence of Skorokhod’s embedding.

The general solution of the Skorokhod embedding is motivated from the simple two-
value case. The idea is the following. We approximate the general random variable X
by a binary splitting martingale sequence Xn, so that the desired stopping time τ can be
constructed as the limit of a sequence τn of stopping times each of which corresponding
to a two-value case but starting from the previous one. The strong Markov property will
play an important role in the construction.

Definition 4.4. A sequence {Xn : n > 1} of random variables is called binary splitting
if for each n > 1, there exists some Borel measurable function fn : Rn−1 × {±1} → R
and a {±1}-valued random variable Dn, such that

Xn = fn(X1, · · · , Xn−1, Dn) a.s.

It is called a binary splitting martingale if it is also martingale with respect to its natural
filtration.

Intuitively, if {Xn} is binary splitting sequence, the conditional distribution of Xn

given (X1, · · · , Xn−1) is supported on at most two values.
We first establish the approximation result.

Proposition 4.5. Let X be a square integrable random variable. Then there exists a
binary splitting martingale {Xn : n > 1} which is square integrable, such that Xn → X
almost surely and in L2 as n→∞.

Proof. Define

D1 =

{
1, X > E[X];

−1, otherwise,

F1 = σ(D1), and X1 = E[X|F1]. Inductively, for n > 2, define

Dn =

{
1, X > Xn−1;

−1, otherwise,

Fn = σ(D1, · · · , Dn), and Xn = E[X|Fn]. It follows that Xn = gn(D1, · · · , Dn) almost
surely for some measurable function gn on {±1}n.

Now the key observation is that for each n > 1, Dn is a function of X1, · · · , Xn.
When n = 1, this is apparent since X1 = a1{D1=1} + b1{D1=−1} for some constants
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a, b, so that we can obtain 1{D1=1} (and hence D1) from X1. Suppose that this fact is
true for k 6 n− 1. By the definition of Xn, we can write

Xn =
∑

i1,··· ,in=±1

ci1,··· ,in1{D1=i1,··· ,Dn=in} = ξ11{Dn=1} + ξ21{Dn=−1} a.s.,

where ξ1, ξ2 are functions of 1{D1=1}, · · · ,1{Dn−1=1}. By the induction hypothesis, ξ1, ξ2

are functions of X1, · · · , Xn−1.Therefore, 1{Dn=1} (and hence Dn) can be obtained from
X1, · · · , Xn. Therefore, Xn has the form Xn = fn(X1, · · · , Xn−1, Dn) almost surely,
which shows that Xn is a binary splitting sequence. The fact that it is a martingale with
respect to its natural filtration follows from Fn = σ(X1, · · · , Xn) (up to P-null sets).

Since X ∈ L2, from Jensen’s inequality we know that Xn is bounded in L2. By
Problem Sheet 3, Problem 3, we conclude that Xn → X∞ almost surely and in L2 for
some X∞. It remains to show that X = X∞ almost surely.

First of all, we have

lim
n→∞

Dn(X −Xn) = |X −X∞| a.s. (4.8)

Indeed, if ω ∈ {X = X∞}, (4.8) is trivial. If ω ∈ {X > X∞}, then X(ω) > Xn(ω)
when n is large. By the definition of Dn, it follows that Dn(ω) = 1 when n is large.
Therefore, (4.8) holds at ω. The case when ω ∈ {X < X∞} is similar. Now observe
that

E[Dn(X −Xn)] = E[DnE[(X −Xn)|Fn]] = 0, ∀n > 1.

Since Dn(X −Xn) is bounded in L2 (and hence uniformly integrable), we conclude that

E[|X −X∞|] = lim
n→∞

E[Dn(X −Xn)] = 0,

which implies that X = X∞ almost surely.

Now we are able to prove the Skorokhod embedding theorem.

Proof of Theorem 4.3. Let Xn be the binary splitting martingale given by Proposition
4.5, so that Xn has the form Xn = fn(X1, · · · , Xn, Dn) for every n. By the martingale
property, we know that

Xn−1 = E[Xn|X1, · · · , Xn−1].

Moreover, Xn takes values in {fn(X1, · · · , Xn−1, 1), fn(X1, · · · , Xn−1,−1)} when con-
ditioned on (X1, · · · , Xn−1). This implies that the conditional distribution of Xn given
(X1, · · · , Xn−1) is a two-point distribution with mean Xn−1.

Now define τ0 = 0, and for n > 1, define

τn = inf
{
t > τn−1 : Bt /∈

(
fn(Bτ1 , · · · , Bτn−1 ,−1), fn(Bτ1 , · · · , Bτn−1 ,+1)

)}
.

By the strong Markov property, for each n > 1, {Bτn−1+t−Bτn−1 : t > 0} is a Brownian
motion independent of FBτn−1

. According to Proposition 4.4, the conditional distribution
of Bτn given (Bτ1 , · · · , Bτn−1) is a two-point distribution with mean Bτn−1 .
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Therefore, (X1, · · · , Xn)
law
= (Bτ1 , · · · , Bτn) for every n. Moreover,

E[τn − τn−1] = E[E[τn − τn−1|FBτn−1
]] = E[E[(Bτn −Bτn−1)2|Fτn−1 ]]

= E[(Bτn −Bτn−1)2] = E[(Xn −Xn−1)2].

Since Xn ∈ L2, the martingale property gives

E[τn] =
n∑
k=1

E[(Xk −Xk−1)2] = E[X2
n].

Finally, as τn is increasing, we set τ = limn→∞ τn. Since Xn → X almost surely
and in L2, we conclude that E[τ ] = E[X2] < ∞. This particularly implies that τ < ∞
almost surely, and thus Bτn → Bτ almost surely which yields that Bτ

law
= X.

By applying the strong Markov property, we easily obtain the following important fact:
in the distributional sense, a random walk can be embedding into a Brownian motion
evaluated along a sequence of stopping times.

Proposition 4.6. Let F be a distribution function on R1 with mean zero and finite
variance σ2. Suppose that {Sn : n > 1} is a random walk with step distribution F
(i.e. Sn = X1 + · · · + Xn where {Xn} is an i.i.d. sequence with distribution F ).Then
there exists a sequence {τn : n > 1} of integrable {FBt }-stopping times, such that
{τn − τn−1} are i.i.d. with mean σ2, and Bτn

law
= Sn for every n.

Proof. By the Skorokhod embedding theorem, there exists an integrable {FBt }-stopping
time τ1, such that Bτ1

law
= F and E[τ1] = σ2. Applying the Skorokhod embedding theorem

again to the Brownian motion B(τ1)
t = Bτ1+t−Bτ1 with its augmented natural filtration{

FB(τ1)

t

}
, we get an integrable

{
FB(τ1)

t

}
-stopping time τ ′2, such that B(τ1)

τ ′2

law
= F and

E[τ ′2] = σ2. Define τ2 = τ1 + τ ′2. According to Theorem 4.2, we know that Bτ2
law
= S2.

Moreover, according to Problem Sheet 2, Problem 4, (2), we know that {FBt } is right
continuous. Therefore, the fact that τ2 is an {FBt }-stopping time follows from Problem
Sheet 2, Problem 3, (2), (ii).

Now the result follows by induction.

Finally, we establish the Donsker invariance principle, which asserts that the Brownian
motion is the weak scaling limit of a random walk.

Let Sn be a random walk with step distribution F , where F has mean zero and finite
variance σ2. From the identity E[(Bt − Bs)2] = t − s, it is not hard to write down the
right scaling of Sn: define

S
(n)
t =

n
1
2

σ

((
k

n
− t
)
Sk−1 +

(
t− k − 1

n

)
Sk

)
, t ∈

[
k − 1

n
,
k

n

]
, k > 1, (4.9)
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with S0 = 0. In other words, S(n)
t is a piecewise linear continuous process taking value

Sk/(σ
√
n) at each vertex point k/n (k > 0). Let P(n) be the distribution of the process

S
(n)
t on W 1. The Donsker invariance principle can be stated as follows.

Theorem 4.4. Let µ1 be the one dimensional Wiener measure. Then P(n) converges
weakly to µ1 as n→∞.

Proof. Without loss of generality, we may assume that σ = 1. Since we are only concerned
with distributions, we may futher assume that the random walk Sn = Bτn , where {τn} is
the sequence of {FBt }-stopping times given in Proposition 4.6. Construct S(n) by (4.9)
based on this random walk and define B(n)

t = n−1/2Bnt, which is again a Brownian
motion. Note that Sn and Bt are defined on some given probability space (Ω,F ,P).

It is sufficient to show that: for every fixed T > 0,

sup
06t6T

∣∣∣S(n)
t −B(n)

t

∣∣∣→ 0 in prob. (4.10)

as n → ∞. Indeed, suppose that (4.10) holds. From the definition of the metric ρ on
W 1 (c.f. (1.3)), it is then easy to see that ρ

(
S(n), B(n)

)
→ 0 in probability. Now let F

be an arbitrary closed subset of W 1. Then for every ε > 0,

P(n)(F ) = P(S(n) ∈ F )

6 P(ρ(S(n), B(n)) > ε) + P(ρ(B(n), F ) 6 ε)

= P(ρ(S(n), B(n)) > ε) + µ1(ρ(w,F ) 6 ε).

By letting n→∞, we conclude that

lim sup
n→∞

P(n)(F ) 6 µ1(ρ(w,F ) 6 ε).

Since ε is arbitrary, the result of the theorem follows from Theorem 1.7, (3).
Now we prove (4.10). Without loss of generality, we assume T = 1.

If ω ∈
{

sup06t61

∣∣∣S(n)
t −B(n)

t

∣∣∣ > ε
}
, then

∣∣∣S(n)
t (ω)−B(n)

t (ω)
∣∣∣ > ε for some t

and k with t ∈ [(k − 1)/n, k/n]. Since Sk(ω) = Bτk(ω)(ω), from the definition of

S
(n)
t and the intermediate value theorem, there exists some v ∈ [τk−1(ω), τk(ω)], such

that S(n)
t (ω) = Bv(ω)/

√
n. Write v = nu, we then have u ∈ [τk−1(ω)/n, τk(ω)/n]

and S(n)
t (ω) = B

(n)
u (ω). Therefore,

∣∣∣B(n)
u (ω)−B(n)

t (ω)
∣∣∣ > ε. From the continuity of

Brownian motion, it is now clear that the key step is to demonstrate τk/n and k/n are
very close to each other (so are u and t) in a suitable sense.

Given ε > 0, by the continuity of Brownian motion, there exists 0 < δ < 1, such that

P

 ⋃
s,t∈[0,2]
|t−s|6δ

{|Bt −Bs| > ε}

 < ε/2.
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On the other hand, from Proposition 4.6 we know that {τn − τn−1} are i.i.d. with unit
mean and τn =

∑n
k=1(τk−τk−1). By the strong law of large numbers, τn/n→ 1 almost

surely. In general, it is an elementary fact that

an > 0,
an
n
→ 0 =⇒ 1

n
sup

16k6n
ak → 0.

Taking an = |τn − n| in our case, we conclude that sup16k6n |τk − k|/n → 0 almost
surely. In particular, the convergence holds in probability. Therefore, there exists N > 1,
such that for any n > N, we have

P
(

1

n
sup

16k6n
|τk − k| >

δ

5

)
<
ε

2
.

In addition, if n > 5/δ, by the previous discussion, we see that

{
sup

06t61

∣∣∣S(n)
t −B(n)

t

∣∣∣ > ε,
1

n
sup

16k6n
|τk − k| 6

δ

5

}
⊆


⋃

s,t∈[0,2]
|t−s|6δ

{|B(n)
t −B(n)

s | > ε

 .

Therefore, we conclude that for any n > max(N, 3/δ),

P
(

sup
06t61

∣∣∣S(n)
t −B(n)

t

∣∣∣ > ε

)
< ε,

which gives the desired convergence in probability.

By the Donsker invariance principle, we can easily obtain the central limit theorem in
the i.i.d. case without using any characteristic function method!

Corollary 4.1. Let {Xn} be a sequence of i.i.d. random variables with σ2 , E[X2
1 ] <∞,

and define Sn = X1 + · · ·+Xn. Then for every x ∈ R1,

lim
n→∞

P
(
Sn − E[Sn]

σ
√
n

6 x

)
= Φ(x),

where Φ(x) , (2π)−1/2
´ x
−∞ e−u

2/2du is the standard normal distribution function.

Proof. Without loss of generality, we may assume that E[X1] = 0. Let π1 : W 1 → R1

be the projection defined by π1(w) = w1. It follows that π1

(
S(n)

)
= Sn/(σ

√
n). By the

Donsker invariance principle, for every bounded continuous function f on R1, we have:

lim
n→∞

E
[
f

(
Sn
σ
√
n

)]
= lim

n→∞
E
[
f ◦ π1

(
S(n)

)]
= E[f ◦ π1(B)] = E[f(B1)].

But B1 is a standard normal random variable. Now the result follows from Theorem
1.6.

61



4.4 Passage time distributions

In this subsection, we apply martingale methods, the strong Markov property and the
reflection principle to perform a series of explicit computations related to passage times.

Given c ∈ R1, define a process Xt = Bt+ct, where Bt is a one dimensional Brownian
motion. Xt is called the Brownian motion with drift c.

Consider Mt , exp(θXt − λt), where θ ∈ R1 and λ > 0 are two parameters. It is
straight forward to see that Mt is a martingale (with respect to the aumented natural
filtration of Bt) if and only if

1

2
θ2 − (λ− cθ) = 0,

i.e. θ = α , −c −
√
c2 + 2λ < 0 or θ = β , −c +

√
c2 + 2λ > 0. Now we use Mt to

compute the Laplace transform of passage times for Xt.
We first consider the passage time of a single barrier.
For x > 0, define

τx = inf{t > 0 : Xt = x}.

Proposition 4.7. The Laplace transform of τx is given by:

E[e−λτx ] = e−x(
√
c2+2λ−c), λ > 0. (4.11)

In particular, we have

P(τx <∞) =

{
1, c > 0;

e2cx, c < 0.
(4.12)

Proof. By applying the optional sampling theorem to the martingale Mt with θ = β, we
know that

E
[
eβXτx∧n−λτx∧n

]
= 1, ∀n > 1.

But
eβx−λτx1{τx<∞}

n→∞←− eβXτx∧n−λτx∧n 6 eβx.

Therefore,
E
[
eβx−λτx1{τx<∞}

]
= 1,

which yields (4.11). (4.12) follows from letting λ ↓ 0 in (4.11).

Now we consider the passage time of a double barrier.
For a < 0 < b, define τa, τb as before and τa,b , τa ∧ τb.

Proposition 4.8. The Laplace transform of τa,b is given by:

E
[
e−λτa,b

]
=

eβb − eαb + eαa − eβa

eβb+αa − eβa+αb
, λ > 0. (4.13)
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Proof. Similarly with the proof of Proposition 4.7, by applying the optional sampling
theorem to the martingale Mt with θ = α and θ = β respectively, we conclude that

E
[
eαXτa,b−λτa,b

]
= 1, E

[
eβXτa,b−λτa,b

]
= 1. (4.14)

The first identity of (4.14) gives

E
[
eαa−λτa,b1{τa<τb}

]
+ E

[
eαb−λτa,b1{τa>τb}

]
= 1,

and the second identity (4.14) gives

E
[
eβa−λτa,b1{τa<τb}

]
+ E

[
eβb−λτa,b1{τa>τb}

]
= 1.

By solving these two equations for E
[
e−λτa,b1{τa<τb}

]
and E

[
e−λτa,b1{τa>τb}

]
, we obtain

(4.13) which is the sum of these two terms.

By using the martingale Mt, we have seen how convenient it is in computing the
Laplace transform of passage times. The Laplace transform can be used to compute mo-
ments very easily via differentiation. However, in many situations we are more interested
in the entire distribution than just in the Laplace transform, and inverting the Laplace
transform is often rather difficult.

In what follows, we are going to use the strong Markov property and the reflection
principle to directly compute distributions related to passage times. The results are more
general and powerful. For simplicity, we only consider the Brownian motion case without
drift. The case with drift is treated in Problem Sheet 4, Problem 6 by a very inspiring
and far-reaching method: change of measure.

Again we first consider the single barrier case.
For t > 0, let St = max06s6tBs be the running maximum of Brownian motion up to

time t. We start by establishing a general formula for the joint distribution of (St, Bt).
The distribution of passage times then follows easily.

Proposition 4.9. For any x, y > 0, we have

P(St > x, Bt 6 x− y) = P(Bt > x+ y) =
1√
2π

ˆ ∞
x+y√
t

e−
u2

2 du. (4.15)

In particular, the joint density of (St, Bt) is given by

P(St ∈ dx, Bt ∈ dy) =
2(2x− y)√

2πt3
e−

(2x−y)2
2t dxdy, x > 0, x > y, (4.16)

and the density of τx (x > 0) is given by

P(τx ∈ dt) =
x√
2πt3

e−
x2

2t dt, t > 0. (4.17)
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Proof. Let B̃t be the reflection of Bt at x defined by (4.6), and define S̃t accordingly.
From the reflection principle (c.f. Proposition 4.3), we know that B̃t is also a Brownian
motion. Together with the simple observation that {St > x} =

{
S̃t > x

}
, we arrive at

P(St > x, Bt 6 x− y) = P
(
S̃t > x, B̃t 6 x− y

)
= P

(
St > x, B̃t 6 x− y

)
= P(St > x, Bt > x+ y) = P(Bt > x+ y).

Therefore, (4.15) follows. Now (4.16) follows by differentiation, and (4.17) follows from
the fact that

P(τx 6 t) = P(St > x) = P(St > x, Bt 6 x) + P(St > x, Bt > x)

= P(Bt > x) + P(Bt > x) = 2P(Bt > x). (4.18)

Remark 4.2. From the formula (4.15), it is not hard to show that for each t > 0,

St − Bt
law
= |Bt|, and 2St − Bt

law
= |B(3)

t |, where B
(3)
t is the standard 3-dimensional

Brownian motion. What is much more remarkable is the fact that S − B law
= |B| and

2S−B law
= |B̃| as stochastic processes. This result is closely related to the study of local

times and excursion theory (c.f. Theorem 5.23 which we will not prove in this course).

The formula (4.15) also gives the marginal distribution of the absorbed Brownian
motion. Given x > 0, let Bx

t be a one dimensional Brownian motion starting at position
x. Define τ0 to be the passage time of position 0 for Bx

t .

Corollary 4.2. For t > 0, we have:

P(Bx
t ∈ dy, τ0 > t) = pt(x, y)− pt(x,−y), y > 0,

where pt(x, y) is the Brownian transition density defined by (4.1) for d = 1.

Proof. According to the formula (4.15), we have

P(Bx
t > y, τ0 6 t) = P(Bx

t 6 −y).

Therefore,
P(Bx

t > y, τ0 > t) = P(Bx
t > y)− P(Bx

t 6 −y).

Now the result follows from differentiation.

Finally, we consider the double barrier case. This is much more involved than the
single barrier case.

Again let Bx
t be a one dimensional Brownian motion starting at x, where 0 < x < a.

Define τ0,a = τ0 ∧ τa to be the first exit time of the interval (0, a) by Bx
t .
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Proposition 4.10. For t > 0, we have:

P(Bx
t ∈ dy, τ0,a > t) =

∞∑
n=−∞

(pt(x, y + 2na)− pt(x,−y − 2na)) dy, 0 < y < a.

(4.19)
In particular,

P(τ0,a ∈ dt) =
1√

2πt3

∞∑
n=−∞

(
(2na+ x)e−

(2na+x)2

2t

+(2na+ a− x)e−
(2na+a−x)2

2t

)
dt, t > 0. (4.20)

Proof. Define σ0 = 0, θ0 = τ0, and for n > 1, define σn = inf{t > θn−1 : Bt = a},
θn = inf{t > σn : Bt = 0}. By using the reflection principle (indeed a slightly more
general version for the stopping time θn, but the proof is the same), we can see that for
every y > 0,

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y, θn 6 t).

But by the definition of σn and θn, we know that {Bx
t 6 −y, θn 6 t} = {Bx

t 6
−y, σn 6 t}. Therefore, we have

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y, σn 6 t). (4.21)

Similarly, for every y < a, we have

P(Bx
t 6 y, σn 6 t) = P(Bx

t > 2a− y, σn 6 t) = P(Bx
t > 2a− y, θn−1 6 t). (4.22)

Now (4.21) and (4.22) can be used recursively in pair to obtain that for every 0 < y < a,

P(Bx
t > y, θn 6 t) = P(Bx

t 6 −y − 2na),

P(Bx
t 6 y, σn 6 t) = P(Bx

t 6 y − 2na).

By differentiation, we arrive at

P(Bx
t ∈ dy, θn 6 t) = pt(x,−y − 2na)dy,

P(Bx
t ∈ dy, σn 6 t) = pt(x, y − 2na)dy, (4.23)

for 0 < y < a.
Symmetrically, we define π0 = 0, ρ0 = τa and for n > 1, define πn = inf{t > ρn−1 :

Bt = 0}, ρn = inf{t > πn : Bt = a}. By the same argument, we conclude that for
every 0 < y < a,

P(Bx
t ∈ dy, ρn 6 t) = pt(x,−y + 2(n+ 1)a)dy,

P(Bx
t ∈ dy, πn 6 t) = pt(x, y + 2na)dy. (4.24)
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Now the key observation is that θn−1 ∨ ρn−1 = σn ∧ πn and σn ∨ πn = θn ∧ ρn for
every n > 1, which can be seen easily by considering the cases τ0 < τa and τ0 > τa.
Therefore, we have

P(Bx
t ∈ dy, θ0 ∧ ρ0 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, θ0 ∨ ρ0 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, σ1 ∧ π1 6 t)

= P(Bx
t ∈ dy, θ0 6 t) + P(Bx

t ∈ dy, ρ0 6 t)− P(Bx
t ∈ dy, σ1 6 t)

−P(Bx
t ∈ dy, π1 6 t) + P(Bx

t ∈ dy, θ1 ∧ ρ1 6 t).

By induction, we arrive at

P(Bx
t ∈ dy, θ0 ∧ ρ0 6 t) =

n∑
k=1

(P(Bx
t ∈ dy, θk−1 6 t) + P(Bx

t ∈ dy, ρk−1 6 t)

−P(Bx
t ∈ dy, σk 6 t)− P(Bx

t ∈ dy, πk 6 t))

+P(Bx
t ∈ dy, θn ∧ ρn 6 t). (4.25)

Finally, to see that the last term vanishes as n→∞, first note that according to the
strong Markov property, both θn − σn and σn − θn−1 have the same distribution as the
passage time of a for a Brownian motion starting at the origin. In particular, according
to (4.11), the Laplace transforms of θn − σn and σn − θn−1 are both given by e−a

√
2λ.

Moreover,

θn = θ0 + (σ1 − θ0) + (θ1 − σ1) + · · ·+ (σn − θn−1) + (θn − σn)

is a sum of indepentent random variables. Therefore, the Laplace transform of θn is given

by e−x
√

2λ ·
(

e−a
√

2λ
)2n

= e−(x+2na)
√

2λ. In particular, θn has the same distribution as
the passage time of x+ 2na for a Brownian motion starting at the origin. From (4.18)
we conclude that

P(θn 6 t) = 2P(Bt > x+ 2na)→ 0

as n→∞. Similarly, limn→∞ P(ρn 6 t) = 0. Therefore,

lim
n→∞

P(Bx
t ∈ dy, θn ∧ ρn 6 t) = 0.

Now (4.19) follows from substituting (4.23), (4.24) in (4.25), letting n → ∞ and rear-
ranging terms.

(4.20) follows from integrating over 0 < y < a in (4.19) and differentiating with
respect to t.

The careful reader might use (4.11) and (4.17) to conclude that

L

[
1√

2πt3

∞∑
n=−∞

(2na+ x)e−
(2na+x)2

2t dt (t > 0)

]
= E

[
e−τ01{τ0<τa}

]
,

L

[
1√

2πt3

∞∑
n=−∞

(2na+ a− x)e−
(2na+a−x)2

2t dt (t > 0)

]
= E

[
e−τa1{τa<τ0}

]
,
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where L denotes the Laplace transform operator, and the expectations on the right hand
side are indeed computed in the proof of Proposition 4.8 by using martingale methods.
Therefore, we obtain the following corollary.

Corollary 4.3. We have:

P(τ0 ∈ dt, τ0 < τa) =
1√

2πt3

∞∑
n=−∞

(2na+ x)e−
(2na+x)2

2t dt,

P(τa ∈ dt, τa < τ0) =
1√

2πt3

∞∑
n=−∞

(2na+ a− x)e−
(2na+a−x)2

2t dt, t > 0.

Remark 4.3. From the results obtained so far, we are indeed able to derive the distribu-
tions of Bx

t∧τ0 (the single barrier case) and Bx
t∧τ0,a (the double barrier case) respectively

for given t > 0.

4.5 Sample path properties: an overview

So far we have been dealing with distributional properties of Brownian motion. However,
the study of sample path properties of Brownian motion is also a huge and important
topic, in which we may find a variety of interesting and striking results. As we are mainly
interested in the probabilistic side in this course, we will only give an overview on the
basic results along this direction. We do give a detailed proof of the fact that almost
every Brownian sample path has infinite p-variation (1 6 p < 2) on every finite interval.
This reveals the fundamental obstacle to expecting a classical deterministic theory of
differential calculus for Brownian motion.

We assume that Bt is a one dimensional Brownian motion.
1. Oscillations
We know from Problem Sheet 2, Problem 2, (2) that with probability one, the

Brownian motion is γ-Hölder continuous on every finite interval for 0 < γ < 1/2, and it
fails to be so if γ = 1/2. It is very natural to ask what is the precise rate of oscillation
for Brownian motion.

At every given point t > 0, the exact rate of oscillation is given by Khinchin in his
celebrated law of the iterated logarithm.

Theorem 4.5. Let ϕ(h) =
√

2h log log 1/h (h > 0). Then for every given t > 0, we
have:

P

(
lim sup
h↓0

Bt+h −Bt
ϕ(h)

= 1

)
= 1.

It is far from being true that Khinchin’s law of the iterated logarithm holds uniformly
in t with probability one. Indeed, it is Lévy who discovered the exact modulus of continuity
for Brownian motion.
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Theorem 4.6. Let ψ(h) =
√

2h log 1/h (h > 0). Then for every T > 0, we have:

P

lim sup
h↓0

sup
06s<t6T
t−s6h

|Bt −Bs|
ψ(h)

= 1

 = 1.

The curious reader might wonder how big the gap is between Khinchin’s law of the
iterated logarithm and Lévy’s modulus of continuity theorem. Indeed, the set of times at
which Khinchin’s law of the iterated logarithm fails is much larger than we can imagine:
with probability one, the random set{

t ∈ [0, 1] : lim sup
h↓0

Bt+h −Bt
ψ(h)

= 1

}

is uncountable and dense in [0, 1], and random the set{
t ∈ [0, 1] : lim sup

h↓0

Bt+h −Bt
ϕ(h)

=∞

}

has Hausdorff dimension one (c.f. [6]).
2. Irregularity
If this is the first time that we encounter Brownian motion, it is really hard to believe

how irregular a Brownian sample path can be.

Theorem 4.7. With probability one, the following properties hold:
(1) t 7→ Bt(ω) is nowhere differentiable;
(2) the set of local maximum points for t 7→ Bt(ω) is countable and dense in [0,∞),

and every local maximum is a strict local maximum;
(3) t 7→ Bt(ω) has no points of increase (t is a point of increase of a path x if there

exists δ > 0, such that xs 6 xt 6 xu for all s ∈ ((t− δ)+, t) and u ∈ (t, t+ δ));
(4) for given x ∈ R1, the level set {t > 0 : Bt(ω) = x} is closed,unbounded, with

zero Lebesgue measure, and does not contain isolated points.

3. The p-variation of Brownian motion
Let x : [0,∞) → (E, ρ) be a continuous path in some metric space (E, ρ). Recall

that for p > 1, the p-variation of x over [s, t] is define to be

‖x‖p−var;[s,t] = sup
P

(∑
k

ρ(xtk−1
, xtk)p

) 1
p

,

where the supremum runs over all finite partitions P of [s, t].
We first show that Bt has finite 2-variation (or finite quadratic variation) on any

finite interval in certain probabilistic sense.
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Proposition 4.11. Given t > 0, let Pn : 0 = tn0 < tn1 < · · · < tnmn = t be a sequence
of finite partitions of [0, t] such that mesh(Pn)→ 0 as n→∞. Then

lim
n→∞

mn∑
k=1

(Btnk −Btnk−1
)2 = t in L2.

If we further assume that
∑∞

n=1 mesh(Pn) < ∞, then the convergence holds almost
surely.

Proof. Since B has independent increments, we have

E

(mn∑
k=1

(
Btnk −Btnk−1

)2
− t

)2
 = E

(mn∑
k=1

((
Btnk −Btnk−1

)2
− (tnk − tnk−1)

))2


=

mn∑
k=1

E

[((
Btnk −Btnk−1

)2
− (tnk − tnk−1)

)2
]

= 2

mn∑
k=1

(tnk − tnk−1)2

6 2t ·mesh(Pn), (4.26)

where we have also used the fact that Bv − Bu ∼ N (0, v − u) for u < v and E[Y 4] =

3
(
E[Y 2]

)2 for a centered Gaussian random variable Y. The L2-convergence then follows
immediately from (4.26). If we further assume that

∑∞
n=1 mesh(Pn) <∞, then by the

Chebyshev inequality and (4.26), we conclude that

∞∑
n=1

P

(∣∣∣∣∣
mn∑
k=1

(
Btnk −Btnk−1

)2
− t

∣∣∣∣∣ > ε

)
<∞

for every ε > 0. The almost sure convergence then follows from the Borel-Cantelli lemma.

Proposition 4.11 enables us to prove the following sample path property, which puts
a serious negative effect to the theory.

Corollary 4.4. For every 1 6 p < 2, with probability one, Bt has infinite p-variation on
every finite interval [s, t].

Proof. Given any finite partition P : s = t0 < t1 < · · · < tn = t of [s, t], we know that∑
k

∣∣Btk −Btk−1

∣∣2 6

(
max
k

∣∣Btk −Btk−1

∣∣2−p) ·∑
k

∣∣Btk −Btk−1

∣∣p
6

(
max
k

∣∣Btk −Btk−1

∣∣2−p) ‖B‖pp−var;[s,t] . (4.27)
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If we take a sequence of finite partitions Pn of [s, t] such that
∑∞

n=1 mesh(Pn) <∞, by
Proposition 4.11 and the continuity of Brownian motion, we know that with probability
one, the left hand side of (4.27) converges to t − s > 0 and the first term on the right
hand side of (4.27) converges to zero. Therefore, ‖B‖p−var;[s,t] = ∞ almost surely. To
see that the statement is uniform with respect to all [s, t], we only need to run over all
possible s, t ∈ Q.

Remark 4.4. From the local Hölder continuity of Brownian sample paths, it is easy to
see that for every p > 2, with probability one, Bt has finite p-variation on every finite
interval. However, on the borderline p = 2, the fact that ‖B‖2−var;[s,t] = ∞ almost
surely is much harder to establish (c.f. [3]).

The result of Corollary 4.4 destroys any hope of establishing a pathwise theory of inte-
gration and differential equations for Brownian motion in the classical sense of Lebesgue-
Stieltjes (p = 1) or Young (1 < p < 2). It is indeed the fact that Bt and B2

t − t are both
martingales leads us to the realm of Itô’s calculus, an elegant L2-theory of stochastic
integration and differential equations, which has profound impacts on pure and applied
mathematics.
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5 Stochastic integration

In this section, we develop Itô’s theory of stochastic integration. As we have seen in the
last section, the sample path properties of Brownina motion force us to deviate from the
classical approach, and we should look for a more probabilistic counterpart of calculus
in the context of Brownian motion, or more generally, of continuous semimartingales. A
price to pay is that differentiation is no longer meaningful, and everything is understood
in an integral sense. The core result in the theory is the renowed Itô’s formula–a gen-
eral change of variable formula for continuous semimartingales which is fumdamentally
differential from the classical one. We will see a long series of exciting and important
applications of Itô’s formula in the rest of our study.

Through out the rest of this section, unless otherwise stated, we always assume that
(Ω,F ,P; {Ft}) is a filtered probability space which satisfies the usual conditions. All
stochastic processes are defined on this setting.

5.1 L2-bounded martingales and the bracket process

Taking a functional analytic viewpoint, the key ingredient to establishing Itô’s integration
is the use of a Hilbert structure and isometry. Hence we start with the study of L2-
bounded martingales.

Definition 5.1. A càdlàg martingale {Mt,Ft} is called an L2-bounded martingale if

sup
t>0

E[M2
t ] <∞.

The space of L2-bounded martingales is denoted by H2. We use H2 (H2
0 , respectively)

to denote the subspace of L2-bounded continuous martingales (vanishing at t = 0,
respectively).

It is immediate that an L2-bounded martingale {Mt,Ft} is uniformly integrable.
Therefore, Mt converges to some M∞ ∈ F∞ almost surely and in L1, and we have

Mt = E[M∞|Ft]. (5.1)

Moreover, from Problem Sheet 3, Problem 3, we know that the convergence holds in L2

as well. Therefore, the relation (5.1) sets up a one-to-one correspondence between H2

(modulo indistinguishability) and L2(Ω,F∞,P).

Proposition 5.1. The space H2 (modulo indistinguishability) is a Hilbert space when
equipped with the inner product

〈M,N〉H2 , E[M∞N∞], M,N ∈ H2.

The space H2
0 is a closed subspace of H2.
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Proof. The first claim follows simply because L2(Ω,F∞,P) is a Hilbert space. To prove
the second claim, let M (n) be a sequence of L2-bounded continuous martingales con-
verging to some M ∈ H2 under the H2-metric. An application of Doob’s Lp-inequality
with p = 2 (c.f Corollary 3.3 and Section 3.5) shows that

E

[(
sup
t>0

∣∣∣M (n)
t −Mt

∣∣∣)2
]
6 4

∥∥∥M (n)
∞ −M∞

∥∥∥2

L2
.

In particular, along a subsequence M (nk), we know that with probability one, M (nk)
t

converges to Mt uniformly in t as k →∞. This shows that Mt is continuous.

In this course, we will only focus on the continuous situation.

Lemma 5.1. Let {Mt,Ft} be a continuous martingale such that with probability one,
the sample paths of Mt has bounded variation on every finite interval. Then Mt ≡ M0

for all t.

Proof. By consideringMt−M0 we may assume thatM0 = 0. Let Vt = ‖M‖1−var;[0,t] be
the one variation process ofMt. We first consider the case when Vt is uniformly bounded
by some constant C > 0. In this case, for a given finite partition P of [0, t], we have

E[M2
t ] =

∑
i∈P

E[M2
ti −M

2
ti−1

] =
∑
i∈P

E[(Mti −Mti−1)2]

6 E
[
Vt ·max

i∈P
|Mti −Mti−1 |

]
6 CE

[
max
i∈P
|Mti −Mti−1 |

]
. (5.2)

SinceM is continuous, from the dominated convergence theorem we know that the right
hand side of (5.2) converges to zero as mesh(P)→ 0. Therefore, Mt = 0.

In the general case, let τn = inf{t > 0 : Vt > n}. Then τn is an {Ft}-stopping
time with τn ↑ ∞ almost surely. From Problem Sheet 3, Problem 1, (1), we know that
the stopped process M τn

t ,Mτn∧t is an {Ft}-martingale whose one variation process is
bounded by n. Therefore, M τn

t = 0. By letting n→∞, we conclude that Mt = 0.

The following result plays a fundamental role in establishing an L2-theory of stochastic
integration.

Theorem 5.1. Let M ∈ H2
0 . Then there exists a unique (up to indistinguishability) con-

tinuous, {Ft}-adapted process 〈M〉t which vanishes at t = 0 and has bounded variation
on every finite interval, such that M2

t − 〈M〉t is an {Ft}-martingale.

Proof. We first prove uniqueness. Suppose At and A′t are two such processes. Then
{A′t−At,Ft} is a continuous martingale with bounded variation on every finite interval.
According to Lemma 5.1, we conclude that A = A′.

Since {M2
t ,Ft} is a non-negative and continuous submartingale, from Problem Sheet

3, Problem 7, (1), we know thatM2
t is of class (DL) and regular (c.f. Definition 3.12 and

Definition 3.13). The existence of 〈M〉t then follows immediately from the Doob-Meyer
decomposition theorem (c.f Theorem 3.13) and Theorem 3.14.
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It is immediate to see that 〈M〉t is an increasing process in the sense of Definition
3.10 and ‖M‖H2 =

√
E[〈M〉∞] <∞ for M ∈ H2

0 .

Definition 5.2. The process 〈M〉t defined in Theorem 5.1 is called the quadratic variation
process of Mt.

In general, the class H2
0 is too restrictive to serve our study in many interesting

situations. It is unnatural to impose a priori integrability conditions on the process we
are considering. To extend our study, it is important to have some kind of localization
method. We have already seen this in the proof of Lemma 5.1.

Definition 5.3. A continuous, {Ft}-adapted process Mt is called a continuous local
martingale if there exists a sequence τn of {Ft}-stopping times such that τn ↑ ∞ almost
surely, and the stopped process (M − M0)τnt , Mτn∧t − M0 is an {Ft}-martingale
for every n. We useMloc (Mloc

0 , respectively) to denote the space of continuous local
martingales (vanishing at t = 0, respectively).

Remark 5.1. If Mt is a continuous, {Ft}-adapted process vanishing at t = 0, we can
define a sequence of finite {Ft}-stopping times by σn = inf{t > 0 : |Mt| > n}∧n. It is
obvious that σn ↑ ∞ almost surely. If M ∈ Mloc

0 with a localization sequence τn, then
Mσn∧τn
t is a bounded {Ft}-martingale for each n. Therefore, for M ∈ Mloc

0 , whenever
convenient, it is not harmful to assume that the stopped martingale M τn

t in Definition
5.3 is bounded for each n.

From the definition, it is easy to see that Mloc is a vector space. Moreover, if
{Mt,Ft} is a continuous local martingale and τ is an {Ft}-stopping time, then the
stopped process M τ

t is also a continuous local martingale.
Every continuous martingale is a continuous local martingale (simply take τn = n).

However, we must point out that a continuous local martingale can fail to be a martingale,
even if we impose strong integrability conditions (for instance, exponential integrability
or uniform integrability). We will encounter important examples of continuous local
martingales which are not martingales in the study of stochastic differential equations.

The following result gives us a simple idea about the relationships between local
martingales and martingales. The proof is easy and hence omitted.

Proposition 5.2. A non-negative, integrable, continuous local martingale is a super-
martingale. A continuous local martingale is a martingale if and only if it is of class
(DL).

By certain localization argument, we can also define the quadratic variation of a local
martinagle M ∈Mloc

0 .

Theorem 5.2. Let M ∈ Mloc
0 . Then there exists a unique (up to indistinguishability)

continuous, {Ft}-adapted process 〈M〉t which vanishes at t = 0 and has bounded vari-
ation on every finite interval, such that M2 − 〈M〉 ∈ Mloc

0 . The sample paths of the
process 〈M〉t are indeed increasing.
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Proof. We first prove existence.
According to Remark 5.1, we may assume that there exists a sequence τn of finite

{Ft}-stopping times such that τn ↑ ∞ almost surely and M τn
t is a bounded {Ft}-

martingale vanishing at t = 0 for each n. According to Theorem 5.1, we can define the
quadratic variation process 〈M τn〉t for M τn

t such that (M τn
t )2 − 〈M τn〉t is an {Ft}-

martingale.
Now we know that M2

τn+1∧τn∧t−〈M
τn+1〉τn∧t = M2

τn∧t−〈M
τn+1〉τn∧t and M2

τn∧t−
〈M τn〉t are both {Ft}-martingales. By Lemma 5.1, with probability one, we have

〈M τn+1〉τn∧t = 〈M τn〉t, ∀t > 0.

In other words, 〈M τn+1〉t = 〈M τn〉t on [0, τn]. This enables us to define a continuous,
{Ft}-adapted process 〈M〉t , limn→∞〈M τn〉t which vanishes at t = 0 and obviously
has increasing sample paths. Moreover, since 〈M〉τn∧t = 〈M τn〉t, we conclude that
M2
τn∧t − 〈M〉τn∧t is an {Ft}-martingale. Therefore, M2 − 〈M〉 ∈ Mloc

0 .
The uniqueness of 〈M〉t follows from the fact that Lemma 5.1 holds for continuous

local martingales as well, which can be easily shown by a similar localization argument.

For M ∈ Mloc
0 , the process 〈M〉t is also called the quadratic variation process of

Mt.
In the intrinsic characterization of stochastic integrals as we will see later on, it is

important to consider more generally the “bracket” of two local martingales.
Let M,N ∈Mloc

0 . Define

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t) .

Since Mloc
0 is a vector space, we can see that 〈M,N〉t is the unique (up to indistin-

guishability) continuous, {Ft}-adapted process which vanishes at t = 0 and has bounded
variation on every finite interval, such that M ·N − 〈M,N〉 ∈ Mloc

0 .

Definition 5.4. For M,N ∈Mloc
0 , the process 〈M,N〉t is called the bracket process of

M and N .

The bracket process is compatible with localization.

Proposition 5.3. Let M,N ∈Mloc
0 and let τ be an {Ft}-stopping time. Then

〈M τ , N τ 〉 = 〈M τ , N〉 = 〈M,N〉τ .

Proof. The fact that 〈M τ , N τ 〉 = 〈M,N〉τ follows from the stability of Mloc
0 under

stopping and the uniqueness property of the bracket process. To see the other identity,
it suffices to show that M τ (N −N τ ) ∈Mloc

0 . By localization along a suitable sequence
of {Ft}-stopping times, we may assume that M,N are both bounded {Ft}-martingales.
In this case, for s < t, we have

E[Mτ∧t(Nt −Nτ∧t)|Fs] = E[Mτ∧t1{τ6s}(Nt −Nτ∧t)|Fs]
+E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fs].
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The first term equals

E[Mτ∧s1{τ6s}(Nt −Nτ∧t)|Fs] = Mτ∧s1{τ6s}E[Nt −Nτ∧t|Fs]
= Mτ∧s1{τ6s}(Ns −Nτ∧s)

= Mτ∧s(Ns −Nτ∧s).

The second term equals

E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fτ∧s] = E
[
E[Mτ∧t1{τ>s}(Nt −Nτ∧t)|Fτ∧t]|Fτ∧s

]
= E

[
Mτ∧t1{τ>s}E[Nt −Nτ∧t|Fτ∧t]|Fτ∧s

]
= 0.

Therefore, M τ
t (Nt −N τ

t ) is an {Ft}-martingale.

The bracket process behaves pretty much like an inner product. Indeed, we have the
following simple but useful properties.

Proposition 5.4. Let M,M1,M2 ∈ Mloc
0 , and let α, β ∈ R1. Then with probability

one, we have:
(1) 〈αM1 + βM2,M〉 = α〈M1,M〉+ β〈M2,M〉;
(2) 〈M1,M2〉 = 〈M2,M1〉;
(3) 〈M,M〉 = 〈M〉 > 0, and 〈M〉 = 0 if and only if M = 0.

Proof. We only prove the last part of (3). All the rest assertions are straight forward
applications of the uniqueness property of the bracket process. Suppose that 〈M〉 = 0. It
follows that M2 ∈Mloc

0 . Let τn be a sequence of {Ft}-stopping times such that τn ↑ ∞
almost surely and (M2)τnt is a bounded {Ft}-martingale. Then we have E[M2

τn∧t] =
E[M2

0 ] = 0 for any given t > 0, which implies that Mτn∧t = 0. By letting n → ∞, we
conclude that Mt = 0.

In exactly the same way as for inner products, Proposition 5.4 enables us to prove
the following Cauchy-Schwarz inequality.

Proposition 5.5. Let M,N ∈ Mloc
0 . Then |〈M,N〉| 6 〈M〉1/2 · 〈N〉1/2 almost surely.

More generally, with probability one, we have:

|〈M,N〉t − 〈M,N〉s| 6 (〈M〉t − 〈M〉s)
1
2 · (〈N〉t − 〈N〉s)

1
2 , ∀0 6 s < t. (5.3)

What is really useful for us is the following extension of inequality (5.3).

Proposition 5.6 (The Kunita-Watanabe inequality). Let M,N ∈ Mloc
0 , and let Xt, Yt

be two stochastic processes which have measurable sample paths almost surely. Then
with probability one, we have:

ˆ t

0
|Xs| · |Ys|d‖〈M,N〉‖s 6

(ˆ t

0
X2
sd〈M〉s

) 1
2

·
(ˆ t

0
Y 2
s d〈N〉s

) 1
2

, ∀t > 0, (5.4)

where ‖〈M,N〉‖t denotes the total variation process of 〈M,N〉t.
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Proof. We may assume that the right hand side of (5.4) is always finite, otherwise there
is nothing to prove.

Define
ϕt =

1

2
(〈M〉t + 〈N〉t), t > 0.

From (5.3), we know that with probability one, the measures d‖〈M,N〉‖t, d〈M〉t and
d〈N〉t are all absolutely continuous with respect to dϕt. Therefore, we may write

〈M,N〉t(ω) =

ˆ t

0
f1(u, ω)dϕu(ω),

〈M〉t(ω) =

ˆ t

0
f2(u, ω)dϕu(ω),

〈N〉t(ω) =

ˆ t

0
f3(u, ω)dϕu(ω),

for some measurable functions fi(t, ω) (i = 1, 2, 3).
Therefore, according to Proposition 5.4, for each pair (α, β) of rational numbers,

there exists Ωα,β ∈ F with P(Ωα,β) = 1, such that for every ω ∈ Ωα,β, we have:

0 6 〈αM + βN〉t − 〈αM + βN〉s

=

ˆ t

s

(
α2f2(u, ω) + 2αβf1(u, ω) + β2f3(u, ω)

)
dϕu(ω), ∀0 6 s < t.

This implies that there exists some Tα,β(ω) ∈ B([0,∞)) depending on ω and (α, β),
such that

´
Tα,β(ω) dϕu(ω) = 0 and

α2f2(t, ω) + 2αβf1(t, ω) + β2f3(t, ω) > 0 (5.5)

is true for all t /∈ Tα,β(ω).

Now take Ω̃ = ∩(α,β)∈Q2Ωα,β and T̃ (ω) = ∪(α,β)∈Q2Tα,β(ω) for every ω ∈ Ω̃. It
follows that (5.5) is true for ω ∈ Ω̃, t /∈ T̃ (ω) and (α, β) ∈ Q2 (thus for all (α, β) ∈ R2).
Fix such ω and t, replace α by α|Xt(ω)| and β by |Yt(ω)| · sgn(f1(t, ω)) respectively, we
obtain that

α2|Xt(ω)|2f2(t, ω) + 2α|Xt(ω)| · |Yt(ω)| · |f1(t, ω)|+ |Yt(ω)|2f3(t, ω) > 0

for every ω ∈ Ω̃, t ∈ T̃ and α ∈ R1.
Inequality (5.4) then follows from integrating against dϕt(ω) and optimizing α.

Now we illustrate the reason why 〈M〉t is called the quadratic variation process of
Mt.

Proposition 5.7. Let M ∈Mloc
0 . Given t > 0, let Pn be a sequence of finite partitions

over [0, t] such that mesh(Pn)→ 0. Then∑
ti∈Pn

(Mti −Mti−1)2 → 〈M〉t in probability

as n→∞.
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Proof. To simplify the notation, for ti ∈ Pn, we write ∆iM ,Mti−Mti−1 and ∆i〈M〉 ,
〈M〉ti − 〈M〉ti−1.

We first assume that M and 〈M〉 are both uniformly bounded by some constant K.
In this case, Mt and M2

t − 〈M〉t are both martinagles. Now we show that∑
i

(∆iM)2 → 〈M〉t

in L2 as mesh(Pn)→ 0. Indeed, we have:

E

∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣
2
 = E

∣∣∣∣∣∑
i

(
(∆iM)2 −∆i〈M〉

)∣∣∣∣∣
2


=
∑
i

E
[(

(∆iM)2 −∆i〈M〉
)2]

6 2

(∑
i

E
[
(∆iM)4

]
+
∑
i

E
[
(∆i〈M〉)2

])
,

where the second equality follows from the fact that

E[((∆iM)2 −∆i〈M〉)((∆jM)2 −∆j〈M〉)] = 0

for i 6= j, which can be easily shown by conditioning.
On the one hand, since 〈M〉 is continuous, we have∑

i

(∆i〈M〉)2 6 〈M〉t ·max
i

∆i〈M〉 6 K ·max
i

∆i〈M〉 → 0

as mesh(Pn)→ 0. According to the dominated convergence theorem, we see that∑
i

E[(∆i〈M〉)2 → 0

as mesh(Pn)→ 0.
On the other hand,

∑
i

(∆iM)4 6

(∑
i

(∆iM)2

)
·max

i
(∆iM)2, (5.6)

and thus

∑
i

E[(∆iM)4] 6

E

(∑
i

(∆iM)2

)2
 1

2

·
(
E
[
max
i

(∆iM)4

]) 1
2

. (5.7)
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We first show that E[(
∑

i(∆
iM)2)2] is uniformly bounded. Indeed,

E

(∑
i

(∆iM)2

)2
 =

∑
i

E[(∆iM)4] + 2
∑
i

∑
j>i

E[(∆iM)2(∆jM)2]. (5.8)

Since E[
∑

i(∆
iM)2] = E[M2

t ] 6 K2, from (5.6) we can easily see that
∑

i E[(∆iM)4] 6
4K4. Moreover, by conditioning we can also see that the second term of (5.8) equals

2
∑
i

E
[
(∆iM)2(M2

t −M2
ti)
]
6 2K2

∑
i

E[(∆iM)2] 6 2K4.

Therefore, E[(
∑

i(∆
iM)2)2] 6 6K4. Applying the dominated convergence theorem to

(5.7), we obtain that ∑
i

E[(∆iM)4]→ 0

as mesh(Pn)→ 0.
Therefore, we conclude that ∑

i

(∆iM)2 → 〈M〉t

in L2 as mesh(Pn)→ 0.
Coming back to the local martingale situation, we again apply a localization argument.

Let τm be a sequence of {Ft}-stopping times increasing to∞ such thatM τm
t is a bounded

{Ft}-martingale and 〈M τm〉t is bounded. Given δ > 0, there exists m > 1 such that
P(τm 6 t) < δ. For this particular m, we have

P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε

)

6 P(τm 6 t) + P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε, τm > t

)

6 δ + P

(∣∣∣∣∣∑
i

(∆iM τm)2 − 〈M τm〉t

∣∣∣∣∣ > ε

)
.

Since L2 convergence implies convergence in probability, by applying what we just proved
in the bounded case, we obtain that

lim sup
n→∞

P

(∣∣∣∣∣∑
i

(∆iM)2 − 〈M〉t

∣∣∣∣∣ > ε

)
6 δ.

As δ is arbitrary, we get the desired convergence in probability.
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Combining the existence of quadratic variation in the sense of Prosposition 5.7 and the
global positive definiteness of the quadradic variation process in the sense of Proposition
5.4, (3), we can further show the following local positive definiteness property.

Proposition 5.8. Let M ∈Mloc
0 . Then there exists a P-null set N, such that for every

ω ∈ N c, we have
Mt = Ma ∀t ∈ [a, b] ⇐⇒ 〈M〉a = 〈M〉b,

for each a < b.

Proof. First of all, since convergence in probability implies almost sure convergence along
a subsequence, according to Proposition 5.7, we can see that for each given pair of rational
numbers p < q, there exists a P-null set Np,q, such that for every ω /∈ Np,q, we have

Mt(ω) = Mp(ω) ∀t ∈ [p, q] =⇒ 〈M〉p(ω) = 〈M〉q(ω).

Take N1 , ∪p,q∈Q,p<qNp,q. Given any ω /∈ N1 and a < b, if Mt(ω) = Ma(ω) on
[a, b], then the same holds on any subinterval [p, q] ⊆ [a, b] with p, q ∈ Q. Therefore,
〈M〉p(ω) = 〈M〉q(ω). By the continuity of t 7→ 〈M〉t(ω), we conclude that 〈M〉a(ω) =
〈M〉b(ω). This is true for arbitrary a < b.

To see the other direction, first assume that Mt is a bounded {Ft}-martinagale. For
each q ∈ Q, define M̃t = Mt+q−Mq and Gt = Ft+q. Then

{
M̃t,Gt

}
is a martingale with

quaratic variation process
〈
M̃
〉
t

= 〈M〉t+q−〈M〉q. Let τq , inf
{
t > 0 :

〈
M̃
〉
t
> 0
}
.

It follows that
〈
M̃ τq

〉
=
〈
M̃
〉τq

= 0, and thus M̃ τq = 0 by Proposition 5.4, (3).
In particular, for every ω outside some P-null set N ′q, we have Mt(ω) = Mq(ω) for
every t ∈ [q, q + τq(ω)]. Let N2 , ∪p∈Q+N ′q. Given ω /∈ N2 and a < b, suppose that
〈M〉a(ω) = 〈M〉b(ω). Then for any q ∈ (a, b), 〈M〉q(ω) = 〈M〉b(ω). This implies that
τq(ω) > b − q. In particular, Mt(ω) = Mq(ω) for every t ∈ [q, b]. This is true for every
q ∈ (a, b). By the continuity of t 7→Mt(ω), we conclude that Mt(ω) = Ma(ω) on [a, b].

Therefore, the result of the proposition is proved for the case of bounded martingales.
For a general M ∈Mloc

0 , let τn be a sequence of {Ft}-stopping times such that τn ↑ ∞
almost surely, and M τn

t is a bounded {Ft}-martingale for every n. Then there exists a
P-null set Nn for each n, such that outside Nn the result holds for the martingale M τn

t .
By taking N , ∪∞n=1Nn, we know that outside N the result holds for Mt.

5.2 Stochastic integrals

The most natural way of defining the integral
´

ΦtdBt for a stochastic process Φt and a
Brownian motion Bt is to consider the Riemann sum approximation

∑
i Φui(Bti−Bti−1)

for a given partition P, where ui ∈ [ti−1, ti]. However, as mesh(P) → 0, we can not
expect that the Riemnann sum would converge in a pathwise sense due to the fact that
sample paths of Bt have infinite 1-variation on every finite interval. If instead we look
for convergence in some probabilistic sense, we have to be careful about the choice of ui.
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Suppose that Φt is uniformly bounded and {Ft}-adapted. If we choose ui = ti−1

(the left endpoint), nice things will occur: for m > n,

E

[
m∑
i=1

Φti−1(Bti −Bti−1)|Ftn

]

=
n∑
i=1

Φti−1(Bti −Bti−1) +
m∑

i=n+1

E
[
E[Φti−1(Bti −Bti−1)|Fti−1 ]|Ftn

]
=

n∑
i=1

Φti−1(Bti −Bti−1).

This suggests that we might look for a construction under which
´

ΦtdBt is a martingale.
Another observation is that

E

( n∑
i=1

Φti−1(Bti −Bti−1)

)2
 = E

[
n∑
i=1

Φ2
ti−1

(ti − ti−1)

]
.

This suggests that if we define a norm on Φ by ‖Φ‖B =
(
E
[´

Φ2
tdt
])1/2

, then the
integration map Φ 7→

´
ΦtdBt should be an isometry into L2. Therefore, it sheds light on

constructing stochastic integrals through a functional analytic approach (more precisely,
a Hilbert space approach).

A technical point is to identify suitable functional spaces on which the integration map
is to be built. To make sure

´
ΦtdBt will again be {Ft}-adapted, a natural measurability

condition on Φt is progressive measurability (c.f. Definition 2.7).
It is remarkable that Itô already had this deep insight in his original construction of

stochastic integrals before Doob’s martingale theory was available. The more intrinsic
approach within the martingale framework that we are going to present here is due to
Kunita-Watanabe.

Suppose that M ∈ H2
0 is an L2-bounded continuous martingale vanishing at t = 0

(c.f. Definition 5.1).
Define L2(M) to be the space of progressively measurable processes Φt such that

‖Φ‖M ,

(
E
[ˆ ∞

0
Φ2
td〈M〉t

]) 1
2

<∞. (5.9)

If we define a measure PM on ([0,∞)× Ω,B([0,∞))⊗F) by

PM (Λ) , E
[ˆ ∞

0
1Λ(t, ω)d〈M〉t(ω)

]
, Λ ∈ B([0,∞))⊗F ,

then L2(M) is just the space of PM -square integrable, progressively measurable processes.
Note that PM is a finite measure since M ∈ H2

0 . Define L
2(M) to be the space of PM -

equivalence classes of elements in L2(M).
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Remark 5.2. We will adopt the convention of not being very careful in distinguishing
between a process and its equivalence class. It will be clear that if Φ,Ψ are equivalent,
then

´
ΦtdMt,

´
ΨtdMt are indistinguishable.

Lemma 5.2. (L2(M), ‖ · ‖M ) is a Hilbert space.

Proof. The only thing which is not immediately clear is the progressive measurability
for a limit process. Let Φ(n) be a sequence in L2(M) converging to some measurable
process Φ under ‖ · ‖M . Along a subsequence Φ(nk) we know that the set {(t, ω) :

limk→∞Φ
(nk)
t (ω) 6= Φt(ω)} is a PM -null set. In general, Φt might not be progressively

measurable. But the process 1A, where

A , {(t, ω) : lim
k→∞

Φ
(nk)
t (ω) exists finitely},

is easily seen to be progressively measurale. Moreover, the process Ψ , lim supk→∞Φ(nk)·
1A is PM -equivalent to Φ. Since Φ(nk) is progressively measurable for each k, we conclude
that Ψ is progressively measurable.

The construction of stochastic integrals with respect to M is contained in the fol-
lowing result.

Theorem 5.3. For each Φ ∈ L2(M), there exists a unique IM (Φ) ∈ H2
0 (up to indis-

tinguishability), such that for any N ∈ H2
0 ,

〈IM (Φ), N〉 = Φ • 〈M,N〉, (5.10)

where Φ•〈M,N〉 denotes the integral process
´ t

0 Φsd〈M,N〉s, defined pathwisely. More-
over, the map IM : Φ 7→ IM (Φ) defines a linear isometry from L2(M) into H2

0 .

Proof. We first prove uniqueness. Suppose that X,Y ∈ H2
0 both satisfy (5.10). It

follows that
〈Y −X,N〉 = 0, ∀N ∈ H2

0 .

In particular, by taking N = Y −X, we know that 〈Y −X〉 = 0. Therefore, X = Y.
Now we show existence. Given Φ ∈ L2(M), define a linear functional FΦ on H2

0 by

FΦ(N) , E
[ˆ ∞

0
Φtd〈M,N〉t

]
, N ∈ H2

0 .

According to the Kunita-Watanabe inequality (c.f. (5.4)), we have∣∣∣∣ˆ ∞
0

Φtd〈M,N〉t
∣∣∣∣ 6 (ˆ ∞

0
Φ2
td〈M〉t

) 1
2

· 〈N〉
1
2∞.

Therefore, by the Cauchy-Schwarz inequality, we have

∣∣FΦ(N)
∣∣ 6 (E [ˆ ∞

0
Φ2
td〈M〉t

]) 1
2

· E[〈N〉∞]
1
2 = ‖Φ‖M · ‖N‖H2 .
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In particular, FΦ defines a bounded linear functional on H2
0 . It follows from the Riesz

representation theorem that there exists X ∈ H2
0 , such that

FΦ(N) = 〈X,N〉H2 = E[X∞N∞], ∀N ∈ H2
0 . (5.11)

To establish (5.10) for X, suppose that τ is an arbitrary {Ft}-stopping time. Then
for any N ∈ H2

0 , we have

E[XτNτ ] = E[E[X∞|Fτ ]Nτ ] = E[X∞Nτ ].

Note that N τ ∈ H2
0 and Nτ = N τ

∞. Therefore, according to (5.11) and Proposition 5.3,
we arrive at

E[XτNτ ] = E[X∞N
τ
∞] = FΦ(N τ ) = E

[ˆ ∞
0

Φtd〈M,N τ 〉t
]

= E
[ˆ ∞

0
Φtd〈M,N〉τt

]
= E

[ˆ τ

0
Φtd〈M,N〉t

]
.

By Problem Sheet 3, Problem 1, (2), we conclude that XN−Φ•〈M,N〉 is a martingale,
which implies (5.10).

It is apparent that the map IM : Φ 7→ X = IM (Φ) is linear. Moreover, from (5.11)
and (5.10), we have:

‖X‖2H2 = E[X2
∞] = E

[ˆ ∞
0

Φtd〈M,X〉t
]

= E
[ˆ ∞

0
Φ2
td〈M〉t

]
= ‖Φ‖M ,

Therefore, IM is a linear isometry from L2(M) into H2
0 .

Definition 5.5. For Φ ∈ L2(M), IM (Φ) is called the stochastic integral of Φ with
respect to M. As a stochastic process, IM (Φ)t is also denoted as

´ t
0 ΦsdMs. The map

IM : L2(M)→ H2
0 is called the stochastic integration map.

The reason why IM is called the stochastic integration map is the following. Let Φt

be a stochastic process of the form

Φ = Φ01{0} +
∞∑
i=1

Φti−11(ti−1,ti],

where 0 = t0 < t1 < · · · < tn < · · · is a partition of [0,∞), Φtn is {Ftn}-measurable
for each n, and they are uniformly bounded by some constant C > 0. Then Φ ∈ L2(M)
and
ˆ t

0
ΦsdMs =

n−1∑
i=1

Φti−1(Mti −Mti−1) + Φtn−1(Mt −Mti−1), t ∈ [tn−1, tn]. (5.12)

The proof follows easily by computing the bracket with N ∈ H2
0 of the right hand side

of (5.12), which is left as an exercise.
Now we present some basic properties of stochastic integrals.
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Proposition 5.9. Let M,N ∈ H2
0 and let Φ ∈ L2(M),Ψ ∈ L2(N) respectively. Sup-

pose that σ 6 τ are two {Ft}-stopping times. Then we have:
(1)

E
[
IM (Φ)t∧τ − IM (Ψ)t∧σ|Fσ

]
= 0.

(2)

E
[
(IM (Φ)t∧τ − IM (Φ)t∧σ)(IN (Ψ)t∧τ − IN (Ψ)t∧σ)|Fσ

]
= E

[ˆ t∧τ

t∧σ
ΦsΨsd〈M,N〉s|Fσ

]
.

Proof. The result follows easily from applying the optional sampling theorem to the
underlying martinagles stopped at t. Note that〈

IM (Φ), IN (Ψ)
〉

= Φ •
〈
M, IN (Ψ)

〉
= (ΦΨ) • 〈M,N〉.

Remark 5.3. σ = s < τ = t or M = N are important special cases of Proposition 5.9.
In particular, 〈IM (Φ)〉 = Φ2 • 〈M〉.

The next property is associativity.

Proposition 5.10. Let M ∈ H2
0 . Suppose that Φ ∈ L2(M) and Ψ ∈ L2(IM (Φ)). Then

Ψ · Φ ∈ L2(M) and IM (ΨΦ) = II
M (Φ)(Ψ).

Proof. Since
〈
IM (Φ)

〉
t

=
´ t

0 Φ2
sd〈M〉s and Ψ ∈ L2(IM (Φ)), we see that Ψ·Φ ∈ L2(M).

Moreover, for every N ∈ H2
0 , we have〈

IM (ΨΦ), N
〉

= (ΨΦ) • 〈M,N〉 = Ψ • (Φ • 〈M,N〉)

= Ψ •
(
〈IM (Φ), N〉

)
=
〈
II

M (Φ)(Ψ), N
〉
.

Therefore, IM (ΨΦ) = II
M (Φ)(Ψ).

The associativity enables us to show compatibility with stopping easily.

Proposition 5.11. Let τ be an {Ft}-stopping time. Then forM ∈ H2
0 and Φ ∈ L2(M),

we have
IM

τ
(Φ) = IM (Φ1[0,τ ]) = IM

τ
(Φτ ) = IM (Φ)τ .

Proof. Firstly, observe that 1[0,τ ] ∈ L2(M) and IM (1[0,τ ]) = M τ (note that the pro-
cess (t, ω) 7→ 1[0,τ(ω)](t) is progressively measurable). Moreover, it is apparent that
Φ,Φτ ∈ L2(M τ ). Therefore, the first equality follows from Proposition 5.10, and the
other inequalities follow from taking bracket with N ∈ H2

0 .

So far our stochastic integration does not even cover the case of Brownian motion, as
the Brownian motion is not bounded in L2. The way to enlarging our scope of stochastic
integration is localization.
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Definition 5.6. LetM ∈Mloc
0 be a continuous local martingale vanishing at t = 0. We

use L2
loc(M) to denote the space of progressively measurable processes Xt, such that

with probability one, ˆ t

0
Φ2
sd〈M〉s <∞, ∀t > 0.

We aim at defining the stochastic integral IM (Φ) ∈Mloc
0 for Φ ∈ L2

loc(M). This is
contained in the following theorem.

Theorem 5.4. LetM ∈Mloc
0 and let Φ ∈ L2

loc(M). Then there exists a unique IM (Φ) ∈
Mloc

0 , such that for any N ∈Mloc
0 , we have

〈IM (Φ), N〉 = Φ • 〈M,N〉, (5.13)

where the integral process Φ • 〈M,N〉 is finitely almost surely according to the Kunita-
Watanabe inequality (c.f. (5.4)).

Proof. Uniqueness is obvious.
Now we show existence. For n > 1, define

τn = inf

{
t > 0 : |Mt| > n or

ˆ t

0
Φ2
sd〈M〉s > n

}
.

Then τn is a sequence of {Ft}-stopping times such that τn ↑ ∞ almost surely. Moreover,
for each n, we have M τn ∈ H2

0 and Φτn ∈ L2(M τn). Therefore, X(n) , IM
τn

(Φτn) ∈
H2

0 is well-defined. According to Proposition 5.11, we know that(
X(n+1)

)τn
= IM

τn
(Φτn) = X(n). (5.14)

This implies that we can define a process Xt on [0,∞) such that Xt = X
(n)
t on [0, τn].

It is apparent that Xt is continuous and {Ft}-adapted. From (5.14) we also know that
X

(n)
t = const. for t > τn. Therefore, Xτn = X(n). This implies that X ∈Mloc

0 . Finally,
to see (5.13), let N ∈ H2

0 (the general case where N ∈ Mloc
0 follows easily by further

localizing N to be bounded). Then

〈X,N〉τnt = 〈X(n), N〉t =

ˆ t

0
Φτn
s d〈M τn , N〉s =

ˆ τn∧t

0
Φsd〈M,N〉s

for every n. (5.13) follows from letting n→∞.

Remark 5.4. For M ∈ Mloc
0 , we can define the space L2(M) ⊆ L2

loc(M) in the same
way as (5.9). Exactly the same proof of Theorem 5.3 allows us to conclude that for each
Φ ∈ L2(M), there exists a unique X ∈ H2

0 satisfying the characterizing property (5.10).
The map Φ 7→ X is a linear isometry from L2(M) into H2

0 . This part has nothing to do
with the martingale property of M . Of course X coincides with IM (Φ) which is defined
in Theorem 5.4 in the sense of local martingales.
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Although the stochastic integral IM (Φ) is constructed from a global point of view,
we also have the following local property.

Proposition 5.12. Let M ∈Mloc
0 and let Φ ∈ L2

loc(M). Then there exists a P-null set
N, such that for every ω ∈ N c,

Φt ≡ 0 or Mt ≡Ma on [a, b] =⇒ IM (Φ)t ≡ IM (Φ)a on [a, b]

for each a < b.

Proof. The result is a direct consequence of Proposition 5.8 and the fact that 〈IM (Φ)〉 =
Φ2 • 〈M〉.

As we will see in the next subsection, ifM is a local martingale and f is a nice function,
f(M) is in general not a local martingale, but it is a local martingale (a stochastic
integral) plus a process with bounded variation. Moreover, in the study of stochastic
differential equations, we also consider systems having such a general decomposition,
namely dXt = µ(Xt)dt + σ(Xt)dBt. Therefore, it is necessary to further extend our
scope of integration.

Definition 5.7. A continuous, {Ft}-adapted process Xt is called a continuous semi-
martingale if it has the decomposition

Xt = X0 +Mt +At, (5.15)

where M ∈ Mloc
0 is a continuous local martingale vanishing at t = 0, and At is a

continuous, {Ft}-adapted process such that with probability one, A0(ω) = 0 and t 7→
At(ω) has bounded variation on every finite interval.

Given two continuous semimartingales Xt = X0+Mt+At and Yt = Y0+Nt+Bt, the
bracket process of X and Y is 〈X,Y 〉t , 〈M,N〉t, and the qradratic variation process
of X is 〈X〉t , 〈M〉t.

It is apparent that the decomposition (5.15) for a continuous semimartingale is unique.
Moreover, the quadratic variation process also satisfies Proposition 5.7.

When we talk about stochastic integrals with respect to continuous semimartingales,
it is convenient to have a universal class of integrands which is independent of the
underlying semimartingales.

Definition 5.8. A progressively measurable process Φt is called locally bounded if there
exists a sequence τn of {Ft}-stopping times increasing to infinity and positive constants
Cn, such that

|Φτn
t | 6 Cn, ∀t > 0,

for every n > 1.

It is apparent that every continuous, {Ft}-adapted process Φt with bounded Φ0 is
locally bounded. Indeed, we can simply define τn = inf{t > 0 : |Φt| > n}. Moreover, if
Φt is locally bounded, then for every M ∈Mloc

0 , we have Φ ∈ L2
loc(M).
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Definition 5.9. Let Xt = X0 +Mt +At be a continuous semimartingale and let Φt be
a locally bounded process. The stochastic integral of Φt with respect to Xt is defined
to be the continuous semimartingale

IX(Φ)t = IM (Φ)t + IA(Φ)t, t > 0,

where the second term IA(Φ)t ,
´ t

0 ΦsdAs is understood in the Lebesgue sense. The
stochastic integral IX(Φ)t is also denoted as

´ t
0 ΦsdXs.

When Xt is a Brownian motion, the stochastic integral is usually known as Itô’s
integral.

It is important to point out that IM (Φ) can fail to be a martingale if M ∈ Mloc
0 ,

so the integrability properties in Proposition 5.9 may not hold in general. However, we
still have the following properties. The proof is similar to the non-local case and is hence
omitted.

Proposition 5.13. (1) IX(Φ) is linear in X and in Φ.

(2) IX(ΨΦ) = II
X(Φ)(Ψ) for any locally bounded Φ,Ψ.

(3) IX
τ
(Φ) = IX(Φ1[0,τ ]) = IX

τ
(Φτ ) = IX(Φ)τ for any {Ft}-stopping time τ.

Remark 5.5. In the definition of stochastic integrals and in Proposition 5.13, assuming
local boundedness is just for technical convenience. Everything works well as long as
we assume that all the Itô integals and Lebesgue integrals are well defined in their right
sense respectively.

To conclude this subsetion, we prove a very useful tool which acts as the stochastic
counterpart of the dominated convergence theorem.

Proposition 5.14. Let Xt be a continuous semimartingale. Suppose that Φn
t is a se-

quence of locally bounded processes converges to zero pointwisely, and there exists a
locally bounded process Φ such that |Φn| 6 Φ. Then IX(Φn)t converges to zero in
probability uniformly on every finite interval, i.e. for every T > 0,

sup
t∈[0,T ]

∣∣∣∣ˆ t

0
Φn
s dXs

∣∣∣∣→ 0 in probability

as n→∞.

Proof. We only consider the situation where X ∈ Mloc
0 as the other case is easier. Let

τm be a sequence of {Ft}-stopping times increasing to infinity, such that for each m,
Xτm ∈ H2

0 and Φτm , Xτm , 〈X〉τm are all bounded. Given ε, δ > 0, choose m such that
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P(τm 6 T ) < δ. It follows that

P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
Φn
s dXs

∣∣∣∣ > ε

)

6 P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
Φn
s dXs

∣∣∣∣ > ε, τm > T

)

= P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣ˆ τm∧t

0
Φn
s dXs

∣∣∣∣ > ε, τm > T

)

= P(τm 6 t) + P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
(Φn)τms dXτm

s

∣∣∣∣ > ε, τm > T

)

6 δ + P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
(Φn)τms dXτm

s

∣∣∣∣ > ε

)
.

Since (Φn)τm ∈ L2(Xτm) for each n, we know that IX
τm

((Φn)τm) ∈ H2
0 . According to

Doob’s Lp-inequality, we have

P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
(Φn)τms dXτm

s

∣∣∣∣ > ε

)
6

1

ε2
E

[
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
(Φn)τms dXτm

s

∣∣∣∣2
]

6
4

ε2
E

[(ˆ T

0
(Φn)τms dXτm

s

)2
]

=
4

ε2
E
[ˆ T

0
|(Φn)τms |

2 d〈Xτm〉s
]
,

which converges to zero as n→∞ by the dominated convergence theorem. Therefore,

lim sup
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣ˆ t

0
Φn
s dXs

∣∣∣∣ > ε

)
6 δ,

which implies the desired convergence as δ is arbitrary.

A direct consequence of Proposition 5.14 is the following intuitive interpretation of
stochastic integrals.

Corollary 5.1. Let Φt be a left continuous and locally bounded process, and let Xt be
a continuous semimartingale. For given t > 0, let Pn be a sequence of finite partitions
over [0, t] such that mesh(Pn)→ 0. Then

lim
n→∞

∑
ti∈Pn

Φti−1(Xti −Xti−1) =

ˆ t

0
ΦsdXs in probability. (5.16)
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Proof. We only consider the case where X ∈ Mloc
0 . Suppose that X ∈ H2

0 and Φ is
bounded. Define

Φn
s = Φ01{0}(s) +

∑
ti∈Pn

Φti−11(ti−1,ti](s) + Φt1(t,∞)(s).

Then Φn is uniformly bounded and Φn → Φ pointwisely on [0, t] × Ω. Note that (c.f.
(5.12)) ˆ t

0
Φn
s dXs =

∑
ti∈Pn

Φti−1(Xti −Xti−1).

According to Proposition 5.14, we know that∑
ti∈Pn

Φti−1(Xti −Xti−1)→
ˆ t

0
ΦsdXs

in probability as n→∞. The general case follows from the same localization argument
as in the proof of Proposition 5.14.

Remark 5.6. Taking left endpints in the Riemann sum approximation is an important
feature of stochastic integrals. Indeed, (5.16) does not hold any more if we are not
taking left endpoints.

5.3 Itô’s formula

In classical analysis, if xt is a smooth path, we have the differentiation rule df(xt) =
f ′(xt)dxt, or equivalently, f(xt) − f(x0) =

´ t
0 f
′(xs)dxs. In the probabilistic setting,

a natural question is: what happens if we replace xt by a Brownian motion Bt? The
answer is surprisingly different from the classical situation: we have f(Bt) − f(B0) =´ t

0 f
′(Bs)dBs + 1

2

´ t
0 f
′′(Bs)ds. This is the renowned Itô’s formula. We can see why

it takes this form in the following naive way. Take the Taylor approximation up to
degree 2 (it is reasonable to expect that all higher degrees are negligible): df(Bt) =
f ′(Bt)dBt + (1/2)f ′′(Bt)(dBt)

2. Here comes the key point: we have (dBt)
2 = dt 6= 0.

This is not entirely obvious at the moment, and it is crucially related to the martingale
nature of Bt and the existence of its quadratic variation process. Therefore, Itô’s formula
follows naively.

Now we develop the mathematics.
We first consider the case when f(x) = x2. This is also known as the integration by

parts formula.

Proposition 5.15. Suppose that Xt, Yt are two continuous semimartingales. Then

XtYt = X0Y0 +

ˆ t

0
XsdYs +

ˆ t

0
YsdXs + 〈X,Y 〉t.

In particular,

X2
t = X2

0 + 2

ˆ t

0
XsdXs + 〈X〉t. (5.17)
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Proof. It suffices to prove (5.17). The general case follows immediately from considering
(Xt + Yt)

2, (Xt − Yt)2 and linearity. Indeed, for any given finite partition P of [0, t], we
have

X2
t −X2

0 = 2
∑
ti∈P

Xti−1(Xti −Xti−1) +
∑
ti∈P

(Xti −Xti−1)2.

According to Corollary 5.1 and the semimartingale version of Proposition 5.7, the result
follows from taking limit in probability as mesh(P)→ 0.

If we take X = M ∈Mloc
0 , (5.17) tells us that

M2
t − 〈M〉t = 2

ˆ t

0
MsdMs.

We have already seen in Subsection 5.1 that M2−〈M〉 ∈ Mloc
0 . Therefore, (5.17) gives

us an explicit formula for this local martingale.
The general Itô’s formula is stated as follows.

Theorem 5.5. Let Xt = (X1
t , · · · , Xd

t ) be a vector of d continuous semimartingales.
Suppose that F ∈ C2(Rd) (continuously differentiable up to degree 2). Then F (Xt) is
a continuous semimartingale given by

F (Xt) = F (X0) +
d∑
i=1

ˆ t

0

∂F

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

ˆ t

0

∂2F

∂xi∂xj
(Xs)d〈Xi, Xj〉s. (5.18)

Proof. Suppose that F ∈ C2(Rd) satisfies Itô’s formula (5.18). Let G(x) = xiF (x) for
some 1 6 i 6 d. According to the integration by parts formula (c.f. Proposition 5.15), it
is easy to see that G(Xt) also satisfies Itô’s formula. Therefore, Itô’s formula holds for
all polynomials.

For a general F ∈ C2(Rd), we first assume that |Xt| 6 K uniformly for some K > 0.
Let G ∈ C2(Rd) be such that G = F for |x| 6 K and G = 0 for |x| > 2K. We only
need to verify Itô’s formula for G in this case. From classical analysis, we know that
there exists a sequence pn of polynomials on Rd, such that for |α| 6 2,

sup
|x|62K

|Dαpn(x)−DαG(x)| → 0

as n → ∞, where “Dα” means the α-th derivative. Since Itô’s formula holds for each
pn, according to the stochastic dominated convergence theorem (c.f. Proposition 5.14),
we conclude that Itô’s formula holds for G as well.

For a general Xt, we need to apply a localization argument. For each n > 1, define

τn =

{
0, |X0| > n;

inf{t > 0 : |Xt| > n}, |X0| < n,

and set
X

(n)
t = X01{|X0|<n} +M τn

t +Aτnt ,
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where Mt, At are the (vector-valued) martingale and bounded variation parts of Xt re-
spectively. ThenX(n)

t is a uniformly bounded continuous semimartingale. By the previous
discussion, Itô’s formula holds for X(n)

t . On the other hand, since the stopped process
Xτn = X(n) on {τn > 0}, by Proposition 5.12 we conclude that Itô’s formula holds for
Xτn on {τn > 0}. Since ∪∞n=1{τn > 0} = Ω, by letting n→∞, we conclude that Itô’s
formula holds for Xt and F.

Remark 5.7. The same result holds if F ∈ C2(U) for some open subset U ⊆ Rd and
with probability one, the process Xt takes values in U. The proof is identical but we need
to use compact subsets to approximate U and localize on each of these compact subsets.

Formally, we usually write Itô’s formula in the following differential form although it
should always be understood in the integral sense:

dF (Xt) =

d∑
i=1

∂F

∂xi
(Xt)dX

i
t +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(Xt)d〈Xi, Xj〉t.

Now we present an important class of examples for Itô’s formula.

Proposition 5.16. Suppose that f(x, y) ∈ C2(R × R) is a complex-valued function
which satisfies

∂f

∂y
+

1

2

∂2f

∂x2
= 0.

Then for every M ∈Mloc
0 , f(Mt, 〈M〉t) is a continuous local martingale.

Proof. This is a straight forward application of Itô’s formua to the vector semimartingale
(Mt, 〈M〉t) and the function f.

A particular f satisfying Proposition 5.16 is the exponential function

fλ(x, y) = eλx−
1
2
λ2y

for given λ ∈ C. The resulting continuous local martingale

Eλ(M)t , eλMt− 1
2
λ2〈M〉t = 1 + λ

ˆ t

0
Eλ(M)sdMs

is known as the exponential martingale. This (local) martingale is very important in the
study of change of measure. In the case when Mt = Bt (Brownian motion), from the
distribution of Bt we can see directly that Eλ(B)t is a martingale, a fact which was
already used to prove the strong Markov property of Brownian motion and to compute
passage time distributions.

90



5.4 The Burkholder-Davis-Gundy Inequalities

It is absolutely not unreasonable to say that Itô’s formula is the most fundamental result
in stochastic calculus. Starting from here we will begin a long journey of applying Itô’s
formula to a very rich class of interesting topics.

To appreciate the profoundness of Itô’s formula, in this subsection we are going to
(solely) use it in a pretty non-trivial way to obtain a fundamental type of martingale
inequalities. These inequalities were first proved by Burkholder, Davis and Gundy and
we usually refer them as the BDG inequalities. They play a fundamental role in the
connection with harmonic analysis.

LetMt be a continuous and square integrable martingale. DefineM∗t , sup06s6t |Ms|
to be the running maximum process. According to Doob’s Lp-inequality (in the case when
p = 2) and the definition of quadratic variation, it is seen that

E[〈M〉t] = E[M2
t ] 6 E[(M∗t )2] 6 4E[M2

t ] = 4E[〈M〉t] (5.19)

for every t > 0. In other words, the running maximum and the quadratic variation control
each other in some universal way which is independent of the underlying martingale. In
a more functional analytic language, it suggests that the norm

‖M‖′ ,
√
E[(M∗∞)2]

on H2
0 is equivalent to the original norm ‖ · ‖H2 , where M∗∞ , sup06t<∞ |Mt|. However,

this simple fact relies on the very special L2-structure, in which we have E[M2
t ] = E[〈M〉t]

making the story a lot easier.
The BDG inequalities investigates the Lp-situation for all 0 < p < ∞. Here is the

main theorem.

Theorem 5.6. For each 0 < p <∞, there exist universal constants C1,p, C2,p > 0, such
that for every continuous local martingale M ∈Mloc

0 , we have

C1,pE[〈M〉pt ] 6 E[(M∗t )2p] 6 C2,pE[〈M〉pt ], ∀t > 0, (5.20)

where M∗t , sup06s6t |Ms|.

Proof. We prove the theorem by several steps. To simplify our notation, we will always
use Cp to denote a universal constant which depends only on p although it may be
different from line to line.

(1) By localization, we may assume that M and 〈M〉 are both uniformly bounded.
Indeed, if we are able to prove the theorem for this case, since the constants C1,p, C2,p

will be universal, it is not hard to see that the general case follows by removing the
localization.

(2) The case p = 1. This is done in view of (5.19). In this case, we have C1,1 = 1
and C2,1 = 4.

(3) The case p > 1.
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We first prove the right hand side of (5.20). Let f(x) = x2p. Then f ∈ C2(R1), and

f ′(x) = 2px2p−1, f ′′(x) = 2p(2p− 1)x2(p−1).

According to Itô’s formula, we have

M2p
t = 2p

ˆ t

0
M2p−1
s dMs + p(2p− 1)

ˆ t

0
M2(p−1)
s d〈M〉s. (5.21)

Since M and 〈M〉 are bounded, we can see that the local martingale part in (5.21) is
indeed a martingale. Therefore,

E[M2p
t ] = p(2p− 1)E

[ˆ t

0
M2(p−1)
s d〈M〉s

]
6 p(2p− 1)E

[
(M∗t )2(p−1)〈M〉t

]
.

On the one hand, Doob’s Lp-inequality gives that

E[(M∗t )2p] 6 CpE[M2p
t ],

while on the other hand, Hölder’s inequality gives that

E
[
(M∗t )2(p−1)〈M〉t

]
6 ‖〈M〉t‖p

∥∥∥(M∗t )2(p−1)
∥∥∥
q
,

where q , p/(p−1) is the Hölder conjugate of p. By rearranging the resulting inequality,
we arrive at

E
[
(M∗t )2p

]
6 CpE[〈M〉pt ].

To see the left hand side of (5.20), let At , 〈M〉t. To estimate Apt =
´ t

0 pA
p−1
s dAs,

the key is to regard it as the quadratic variation process of some martingale and use Itô’s

formula to estimate this martingale. More precisely, define Nt ,
´ t

0 A
p−1
2

s dMs. Then

〈N〉t = Apt /p. On the other hand, since the process A
p−1
2

t is bounded and increasing,
Itô’s formula yields that

MtA
p−1
2

t = Nt +

ˆ t

0
MsdA

p−1
2

s .

Therefore, |Nt| 6 2M∗t A
p−1
2

t and thus

1

p
E[Apt ] = E[〈N〉t] = E[|Nt|2] 6 4E[(M∗t )2Ap−1

t ].

By applying Hölder’s inequality on the right hand side and rearranging the resulting
inequality, we arrive at

E[Apt ] 6 CpE[(M∗t )2p].

(4) The case 0 < p < 1. We still use At to denote 〈M〉t.

92



We first prove the right hand side of (5.20). Again we define Nt ,
´ t

0 A
p−1
2

s dMs so
that 〈N〉t = Apt /p. According to the associativity of stochastic integrals (c.f. Proposition

5.10), we see thatMt =
´ t

0 A
1−p
2

s dNs. Since the process A
1−p
2

t is bounded and increasing,
by Itô’s formula, we have

NtA
1−p
2

t = Mt +

ˆ t

0
NsdA

1−p
2

s .

Therefore, |Mt| 6 2N∗t A
1−p
2

t . Since this is true for all t > 0, we see thatM∗t 6 2N∗t A
1−p
2

t

and thus

E[(M∗t )2p] 6 22pE
[
(N∗t )2pA

p(1−p)
t

]
6 22pE[(N∗t )2]p · E[Apt ]

1−p

6 22p4pE[N2
t ]p · E[Apt ]

1−p

= 22p4pE[〈N〉t]p · E[Apt ]
1−p

=
16p

pp
E[Apt ].

Finally, we prove the left hand side of (5.20). Given α > 0, consider

Apt = Apt (α+M∗t )−2p(1−p)(α+M∗t )2p(1−p)

and Hölder’s inequality gives

E[Apt ] 6
(
E[At(α+M∗t )−2(1−p)]

)p (
E[(α+M∗t )2p]

)1−p
. (5.22)

Here the reason of introducing α is to avoid the singularity in the term (α+M∗t )−2(1−p).
Now since

At(α+M∗t )−2(1−p) 6
ˆ t

0
(α+M∗s )−2(1−p)dAs, (5.23)

we introduce the martingale Nt =
´ t

0 (α+M∗s )−(1−p)dMs so that its quadratic variation
process coincides with the right hand side of (5.23). Since the process (α+M∗t )−(1−p)

is bounded and has bounded variation, from Itô’s formula, we know that

(α+M∗t )−(1−p)Mt = Nt +

ˆ t

0
Msd(α+M∗s )p−1

= Nt + (p− 1)

ˆ t

0
Ms(α+M∗s )p−2dM∗s .

Therefore,

|Nt| 6 (α+M∗t )p−1M∗t + (1− p)
ˆ t

0
M∗s (α+M∗s )p−2dM∗s

6 (M∗t )p +
1− p
p

(M∗t )p

=
1

p
(M∗t )p.
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It follows that
E[〈N〉t] = E[N2

t ] 6
1

p2
E[(M∗t )2p].

Combining this with inequalities (5.22) and (5.23), we arrive at

E[Apt ] 6
1

p2p

(
E[(M∗t )2p]

)p · (E[(α+M∗t )2p]
)1−p

.

Since this is true for all α > 0, the result follows by letting α ↓ 0.

Remark 5.8. From the proof, we can actually see that the constants C1,p and C2,p can
be written down explicitly, although there is no need to do so.

5.5 Lévy’s characterization of Brownian motion

It is a rather deep and remarkable fact that most Markov processes can be characterized
by certain martingale properties. This is the renowned martingale problem of Stroock
and Varadhan, which we will touch at an introductory level when we study stochastic
differential equations. Here we investigate the special case of Brownian motion, which
is the content of Lévy’s characterization theorem. This result, along with the series
of martingale representation theorems that we shall prove in the sequel, reveals the
intimacy between continuous martingales and Brownian motion. Probably this explains
why martingale methods are so powerful and why the Brownian motion is so fundamental
in the theory of Itô’s calculus.

Suppose that Bt = (B1
t , · · · , Bd

t ) is a d-dimensional {Ft}-Brownian motion. Ap-
parently, we have 〈Bi〉t = t for each 1 6 i 6 d. Moreover, for i 6= j, from the
simple observation that

√
2

2 (Bi
t ± Bj

t ) are both {Ft}-Brownian motions, we conclude

that
〈√

2
2 (Bi ±Bj)

〉
t

= t. Therefore, 〈Bi, Bj〉t = 0. In other words, we know that

〈Bi, Bj〉t = δijt for all 1 6 i, j 6 d. Lévy’s characterization theorem tells us that this
property characterizes the Brownian motion.

Theorem 5.7. Let Mt = (M1
t , · · · ,Md

t ) be a vector of continuous {Ft}-local martin-
gales vanishing at t = 0. Suppose that

〈M i,M j〉t = δijt, t > 0.

Then Mt is an {Ft}-Brownian motion.

Proof. The key is to use the following neat characterization of an {Ft}-Brownian motion
in terms of characteristic functions (see also the proof of Theorem 4.2): it suffices to
show that

E
[
ei〈θ,Mt−Ms〉|Fs

]
= e−

1
2
|θ|2(t−s), ∀θ ∈ Rd and s < t. (5.24)

Let f = (f1, · · · , fd) ∈ L2([0,∞);Rd) and define the (complex-valued) exponential
martingale

E if (M)t , exp

i d∑
j=1

ˆ t

0
fj(s)dM

j
s +

1

2

d∑
j=1

ˆ t

0
f2
j (s)ds

 , t > 0.
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By applying Itô’s formula to the vector semimartingale d∑
j=1

ˆ t

0
fj(s)dM

j
s ,

d∑
j=1

ˆ t

0
f2
j (s)ds


in R2 and the function f(x, y) = eix+y/2, it can be easily seen that E if (M)t is a
continuous local martingale (starting at 1). Since it is uniformly bounded, we know that
it is indeed a martingale (c.f. Proposition 5.2).

Now let θ ∈ Rd. For T > 0, consider f , θ1[0,T ] ∈ L2([0,∞);Rd). In this case, we
conclude that

E if (M)t = ei〈θ,MT∧t〉+ 1
2
|θ|2T∧t, t > 0,

is a martingale. This is true for every T > 0. Therefore, if we consider s < t < T, then
for any A ∈ Fs, we have

E
[
ei〈θ,Mt−Ms〉1A

]
= E

[
e−i〈θ,Ms〉1AE

[
ei〈θ,Mt〉|Fs

]]
= E

[
1Ae−

1
2
|θ|2(t−s)

]
= P(A)e−

1
2
|θ|2(t−s),

which implies (5.24).

5.6 Continuous local martingales as time-changed Brownian motions

Sometimes it can be very useful if we change the speed of a process. In particular, if
we change the speed of a continuous martingale in a proper way, we can get a Brownian
motion! Because the Brownian motion is so simple and explicit, this technique could
have lots of nice applications.

We should not be too surprised about this fact. Heuristically, let Mt be a continuous
martingale with quadratic variation process 〈M〉t. Since 〈M〉t is increasing, we can define
an “inverse” process τt of 〈M〉t. If we run M at speed τ, i.e. considering the process
M̂t ,Mτt , the optional sampling theorem will imply that M̂t is a martingale with respect
to the filtration {Fτt}. Therefore, it is not unreasonable to expect that 〈M̂〉 = 〈M〉τt = t

as τt is the “inverse” of 〈M〉t. Lévy’s characterization theorem then implies that M̂t is a
Brownian motion.

Now we put this philosophy in a rigorous mathematical form, which is however tech-
nically quite involved.

We start with the discussion of a general time-change. This part is completely de-
terministic. Let a : [0,∞) → [0,∞) be a continuous and increasing function which
vanishes at t = 0. Define

ct , inf{s > 0 : as > t}, t > 0.

Definition 5.10. The function ct is called the time-change associated with at.
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The following properties are elementary and should be clear when a picture is drawn.
They provide a good intuition about what the time-change looks like. The proof is easy
and we leave it to the reader as an exercise. Denote a∞ , limt→∞ at.

Proposition 5.17. The time-change ct of at satisfies the following properties.
(1) ct is strictly increasing and right continuous for t < a∞, and ct =∞ if t > a∞.

If a∞ =∞, then c∞ , limt→∞ ct =∞.
(2) For every s, t, ct < s ⇐⇒ as > t.
(3) Let t = as. Then ct− 6 s 6 ct. Moreover, for every t, a ≡ constant on [ct−, ct].

This implies that the size of every jump for ct corresponds to an interval of constancy
for at and vice versa.

(4) For every t 6 a∞, act = t, and for every s 6 ∞, cas > s. If s is an increasing
point of a (i.e. a(s′) > a(s) for all s′ > s), then cas = s.

The time-change can give us a useful change of variable formula for integration. But
we need to be a bit careful as it should involve some continuity property with respect to
the time-change.

Definition 5.11. A continuous function x : [0,∞) → R1 is called c-continuous if x is
constant on [ct−, ct] for each t, where c0− , 0.

Under c-continuity, we can prove the following change of variable formula.

Proposition 5.18. Let x be a c-continuous function which has bounded variation on
each finite interval. Then for any measurable function y : [0,∞)→ R1, we have

ˆ
[ct1 ,ct2 ]

yudxu =

ˆ
[t1,t2]

ycvdxcv ,

provided that t1 < t2 < a∞ and the integrals make sense.

Proof. First of all, observe that a|[ct1 ,ct2 ] : [ct1 , ct2 ]→ [t1, t2] is well-defined and surjec-
tive. For simplicity we still denote it by a. Respectively, dx denotes the Lebesgue-Stieltjes
measure induced by x on [ct1 , ct2 ] and µ denotes the push-forward of dx by a on [t1, t2].
It follows that for any [v1, v2] ⊆ [t1, t2],

[cv1 , cv2 ] ⊆ {u ∈ [ct1 , ct2 ] : v1 6 au 6 v2} ⊆ [cv1−, cv2 ].

Since x is c-continuous, we conclude that

µ([v1, v2]) = dx({u ∈ [ct1 , ct2 ] : v1 6 au 6 v2}) = xcv2 − xcv1 .

In particular, µ coincides with the Lebesgue-Stieltjes measure induced by the function
xcv on [t1, t2].

According to the classical change of variable formula in measure theory, we have
ˆ

[t1,t2]
ycvdxcv =

ˆ
[t1,t2]

ycvdµ =

ˆ
[ct1 ,ct2 ]

ycaudxu,
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whenever the integrals make sense. But we know that cau = u for every increasing point
u of a, and apparently there are at most countably many intervals of constancy for a.
Therefore, from the c-continuity of x, we conclude thatˆ

[ct1 ,ct2 ]
ycaudxu =

ˆ
[ct1 ,ct2 ]

yudxu,

which then completes the proof.

Now we put everything in a probabilistic context.
Recall that (Ω,F ,P; {Ft}) is a filtered probability space which satisfies the usual

conditions. Let At be an {Ft}-adapted process such that with probability one, every
sample path t 7→ At(ω) is continuous and increasing which vanishes at t = 0. Define the
process

Ct , inf{s > 0 : As > t}, t > 0,

to be the time-change associated with At.
Since the filtration {Fs} is right continuous, according to Proposition 5.17, (2), for

every t > 0, Ct is an {Fs}-stopping time. Therefore, we may define a new filtration
F̂t , FCt associated with the time-change. Since Ct is right continuous, from Problem
Sheet 2, Problem 4, (2), (i), we know that {F̂t} also satisfies the usual conditions. In
addition, for every s > 0, As is an {F̂t}-stopping time.

Now assume further that A∞ = ∞ almost surely, so that with probability one,
Ct <∞ for all t.

Definition 5.12. Let {Xt} be an {Ft}-progressively measurable stochastic process.
X̂t , XCt is called the time-changed process of Xt by Ct.

We are mainly interested in how a continuous local martingale behaves under a time-
change. To emphasize the dependence on the filtration, we use Mloc

0 ({Ft}) to denote
that space of continuous {Ft}-local martingales vanishing at t = 0.

It is quite a subtle point that a time-changed continuous martingale can fail to be a
local martingale even it is continuous. Here is a counterexample.

Example 5.1. Let Bt be a Brownian motion with augmented natural filtration {FBt }.
Define At , max06s6tBs. Then At is a continuous and increasing process vanishing
at t = 0, and A∞ = ∞ almost surely. Let Ct be the time-change associated with At.
Then we have BCt = t. Indeed, apparently we have BCt 6 ACt = t. If BCt < ACt ,
by the continuity of Brownian motion, we know that Au = ACt = t on [Ct, Ct + δ]
for some small δ > 0. It follows from the definition of Ct that Ct > Ct + δ, which is
a contradiction. Therefore, BCt = t. In particular, BCt cannot be a continuous local
martingale regardless of what filtration we take since it has bounded variation on finite
intervals.

To expect that a time-changed continuous local martingale is again a continuous local
martingale, we need the C-continuity. A stochastic process Xt is called C-continuous
if with probability one, X is constant on [Ct−, Ct] for each t, where C0− , 0 (c.f.
Definition 5.11).
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Proposition 5.19. Let A∞ =∞ almost surely, and let Ct be the time-change associated
with At. Suppose that M ∈Mloc

0 ({Ft}) is C-continuous.
(1) Let M̂t be the time-changed process of Mt by Ct. Then M̂ ∈ Mloc

0 ({F̂t}) and
〈M̂〉 = 〈̂M〉.

(2) Let Φ ∈ L2
loc(M) with respect to {Ft}. Then Φ̂ ∈ L2

loc(M̂) with respect to {F̂t}
and IM̂ (Φ̂) = ÎM (Φ).

Proof. (1) Since Mt is C-continuous, we know that M̂t is continuous and M̂0 = 0.

Moreover, it is obvious that M̂t is {F̂t}-adapted.
Now let τ be a finite {Ft}-stopping time such that the stopped process M τ

t is a
bounded {Ft}-martingale. Define τ̂ = Aτ . From Proposition 5.17, (2), we see that
{τ̂ > t} = {Ct < τ}. Therefore, τ̂ is a finite {F̂t}-stopping time. In addition, by
definition we have

M̂ τ̂
t = M̂τ̂∧t = MCτ̂∧t .

If τ̂ > t, then Ct < τ and M̂ τ̂
t = MCt = Mτ∧Ct . If τ̂ 6 t, then M̂ τ̂

t = MCτ̂ . But from
Proposition 5.17, (3), we know that Cτ̂− 6 τ 6 Cτ̂ . By the C-continuity of M, M is
constant on [τ, Cτ̂ ]. Therefore, M̂ τ̂

t = Mτ = Mτ∧Ct since Ct > τ in this case. In other
words, we conclude that M̂ τ̂

t = M τ
Ct

for all t. In particular, M̂ τ̂
t is a bounded process.

Applying the optional sampling theorem to the bounded {Ft}-martingaleM τ
t which thus

has a last element (c.f. Corollary 3.2), we conclude that M̂ τ̂
t is an {F̂t}-martingale. If

we let τ = τn ↑ ∞, then τ̂ = Aτn ↑ A∞ =∞. Therefore, M̂ ∈Mloc
0 ({F̂t}).

Finally, since Mt is C-continuous, according to Proposition 5.8, we see that 〈M〉t is
also C-continuous. Therefore, M2 − 〈M〉 ∈ Mloc

0 ({Ft}) is C-continuous. From what
was just proved, we know that M̂2 − 〈̂M〉 ∈ Mloc

0 ({F̂t}). Therefore, 〈M̂〉 = 〈̂M〉.
(2) First of all, it is apparent that

´ t
0 Φ̂2

sd〈M̂〉s =
´ Ct
C0

Φ2
sd〈M〉s < ∞ almost surely

for every t.
To prove the last claim, we first need to observe a slightly more general fact than

what was proved in (1): if M,N ∈ Mloc
0 ({Ft}) are C-continuous, then 〈M,N〉t is

C-continuous, and 〈M̂, N̂〉 = ̂〈M,N〉. Indeed, the fact that 〈M,N〉t is C-continuous
follows from the identity

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t).

Therefore, MN −〈M,N〉 ∈ Mloc
0 is C-continuous, which proves the claim according to

(1).
Coming back to the proposition, in order to show that IM̂ (Φ̂) = ÎM (Φ), it suffices

to show that
〈
IM̂ (Φ̂)− ÎM (Φ)

〉
= 0. On the one hand, we have

〈
IM̂ (Φ̂)

〉
t

=

ˆ t

0
Φ̂2
sd〈M̂〉s =

ˆ Ct

0
Φ2
sd〈M〉s =

〈
ÎM (Φ)

〉
t
.
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On the other hand,〈
IM̂ (Φ̂), ÎM (Φ)

〉
t

= Φ̂ •
〈
M̂, ÎM (Φ)

〉
= Φ̂ • ̂〈M, IM (Φ)〉

= Φ̂ •
(

Φ̂ • 〈M〉
)

=
〈
IM̂ (Φ̂)

〉
.

Therefore, the result follows.

Now we are able to prove the main result of this subsection. This is known as the
Dambis-Dubins-Schwarz theorem.

Theorem 5.8. Let M ∈ Mloc
0 ({Ft}) be such that 〈M〉∞ = ∞ almost surely. Define

Ct to be the time-change associated with 〈M〉t. Then Bt ,MCt is an {FCt}-Brownian
motion and Mt = B〈M〉t .

Proof. From Proposition 5.17, (3), we know that 〈M〉t, and hence Mt, is C-continuous.
Therefore, by Proposition 5.19, (1), B ∈Mloc

0 ({FCt}) and 〈B〉t = 〈̂M〉t = 〈M〉Ct = t.
According to Lévy’s characterization theorem (c.f. Theorem 5.7), we conclude that
Bt is an {FCt}-Brownian motion. Finally, for each t > 0, from Proposition 5.17, (3)
again, we know that 〈M〉, and hence M , is constant on [C〈M〉t−, C〈M〉t ], as well as
t ∈ [C〈M〉t−, C〈M〉t ]. Therefore, Mt = MC〈M〉t

= B〈M〉t .

The condition 〈M〉∞ = ∞ almost surely in the Dambis-Dubins-Schwarz theorem
ensures that the underlying probability space is rich enough to support a Brownian motion.
To generalize the theorem to the case when 〈M〉∞ < ∞ with positive probability, we
need to enlarge the underlying probability space.

Definition 5.13. An enlargement of a filtered probability space (Ω,F ,P; {Ft}) is another
filtered probability space (Ω̃, F̃ , P̃; {F̃t}) together with a projection π : Ω̃ → Ω, such
that P̃ ◦ π−1 = P, π−1(F) ⊆ F̃ and π−1(Ft) ⊆ π−1(F̃t) for all t.

If (Ω̃, F̃ , P̃; {F̃t}) is an enlargement of (Ω,F ,P; {Ft}), then associated with any
given stochastic process Xt on Ω, we can define a process X̃t on Ω̃ by

X̃t(ω̃) , Xt(π(ω̃)), ω̃ ∈ Ω̃, (5.25)

canonically. Apparently, the law of X̃ is the same as the law of X by the definition of
enlargement. For simplicity, we may use the same notation X to denote X̃.

Now we have the following extension of the Dambis-Dubins-Schwarz theorem. Recall
from Problem Sheet 5, Problem 1, (3) that if M ∈ Mloc

0 , then with probability one,
M∞ = limt→∞Mt exists finitely on the event {〈M〉∞ <∞}.

Theorem 5.9. Let M ∈ Mloc
0 ({Ft}). Define Ct to be the time-change associated

with 〈M〉t. Then there exists an enlargement (Ω̃, F̃ , P̃; {F̃t}) of (Ω,F ,P; {FCt}) and a
Brownian motion β̃ on Ω̃ which is independent of M , such that the process

Bt ,

{
MCt , t < 〈M〉∞;

M∞+ β̃t − β̃t∧〈M〉∞,t > 〈M〉∞,

is an {F̃t}-Brownian motion. Moreover, Mt = B〈M〉t .
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Proof. Let (Ω′,F ′,P′; {F ′t}) be a filtered probability space on which an {F ′t}-Brownian
motion βt is defined. Let (Ω̃, F̃ , P̃; {F̃t}) be the usual augmentation of (Ω × Ω′,F ×
F ′,P×P′; {FCt×F ′t}). Apparently, (Ω̃, F̃ , P̃; {F̃t}) is an enlargement of (Ω,F ,P; {FCt})
with projection π((ω, ω′)) = ω. Define β̃t((ω, ω′)) , βt(ω

′). Then β̃t is a Brownian mo-
tion on Ω̃. It is apparent that β̃ and M are independent.

An important general fact for this enlargement is that for every X ∈ Mloc
0 ({FCt})

on Ω, we have X̃ ∈ Mloc
0 ({F̃t}) and 〈X̃〉 = 〈̃X〉 almost surely on Ω̃, where X̃ (〈̃X〉,

respectively) is the process on Ω̃ defined by pulling back X (〈X〉, respectively) via the
projection π (c.f. (5.25)). Similarly, for every {FCt}-stopping time τ on Ω, τ̃ is an
{F̃t}-stopping time on Ω̃.

Now we rewrite the definition of Bt in the following form:

Bt = MCt +

ˆ t

0
1(〈M〉∞,∞)(s)dβ̃s.

On the one hand, by adapting the argument in the proof of Proposition 5.19, (1), we can
see that MC· ∈ Mloc

0 ({F̃t}) with quadratic variation process t ∧ 〈M〉∞. On the other
hand,

´ ·
0 1(〈M〉∞,∞)(s)dβ̃s ∈Mloc

0 ({F̃t}) with quadratic variation process t− t∧〈M〉∞.
Therefore, B ∈Mloc

0 ({F̃t}) and

〈B〉t = t+ 2

ˆ t

0
1(〈M〉∞,∞)(s)d〈MC· , β̃〉s.

Finally, by the independence of of π−1(F∞) and (π′)−1(F ′∞), it is not hard to see that
MC· β̃ ∈ Mloc

0 ({F̃t}). Therefore, 〈MC· , β̃〉 = 0, which implies that 〈B〉t = t. According
to Lévy’s characterization theorem, Bt is an {F̃t}-Brownian motion. The fact that
Mt = B〈M〉t follows from the same reason as in the proof of Theorem 5.8.

A natural question is whether the Dambis-Dubins-Schwarz theorem can be extended
to multidimensions. This is the content of Knight’s theorem.

Theorem 5.10. Let Mt = (M1
t , · · · ,Md

t ) be d continuous {Ft}-local martingales van-
ishing at t = 0, such that 〈M j ,Mk〉t = 0 for j 6= k. Then there exists an enlargement
(Ω̃, F̃ , P̃) of (Ω,F ,P) and a d-dimensional Brownian motion β on Ω̃ which is independent
of M , such that the process Bt = (B1

t , · · · , Bd
t ) defined by

Bj
t =

M
j

Cjt
, t < 〈M j〉∞;

M j
∞ + βjt − β

j
t∧〈Mj〉∞ , t > 〈M j〉∞,

is a d-dimensional Brownian motion.

Proof. From the proof of Theorem 5.9, we can see that on some enlargement (Ω̃, F̃ , P̃)
of (Ω,F ,P), every Bj

t is a one dimensional Brownian motion. It remains to show that
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B1, · · · , Bd are independent. To this end, we again use the method of characteristic
functions. Let fj (1 6 j 6 d) be a real step function of the form

fj(t) =
m∑
k=1

λkj1(tk−1,tk](t).

We only need to show that E[L] = 1, where

L , exp

i d∑
j=1

ˆ ∞
0

fj(s)dB
j
s +

1

2

d∑
j=1

ˆ ∞
0

f2
j (s)ds

 .

The independence then follows immediately since the equation E[L] = 1 (for arbitrary
λkj and tk) gives the right characteristic functions for the finite dimensional distributions
of Bt.

We use Ajt to denote 〈M j〉t. Since s < Aju 6 t ⇐⇒ Cjs < u 6 Cjt , we know that

M j

Cjt
−M j

Cjs
=

ˆ ∞
0

1
(Cjs ,C

j
t ]

(u)dM j
u =

ˆ ∞
0

1(s,t](A
j
u)dM j

u.

Therefore, by the definition of Bj and fj , we have
ˆ ∞

0
fj(t)dB

j
t =

ˆ Aj∞

0
fj(t)dB

j
t +

ˆ ∞
Aj∞

fj(t)dβ
j
t

=

ˆ ∞
0

fj(A
j
t )dM

j
t +

ˆ ∞
Aj∞

fj(t)dβ
j
t . (5.26)

On the other hand, a simple change of variables also shows thatˆ ∞
0

f2
j (t)dt =

ˆ ∞
0

f2
j (Ajt )dA

j
t +

ˆ ∞
Aj∞

f2
j (t)dt. (5.27)

Now define

It , exp

i d∑
j=1

ˆ t

0
fj(A

j
s)dM

j
s +

1

2

d∑
j=1

ˆ t

0
f2
j (Ajs)dA

j
s

 , t > 0.

From Itô’s formula and the assumption that 〈M j ,Mk〉t = 0 for j 6= k, It is a bounded
{Ft}-martingale. Therefore, E[I∞] = E[I0] = 1. Moreover, define

J , exp

i d∑
j=1

ˆ ∞
Aj∞

fj(t)dβ
j
t +

1

2

d∑
j=1

ˆ ∞
Aj∞

f2
j (t)dt

 .

From (5.26) and (5.27) we know that L = I∞J . But E
[
J |FM

]
= 1 where FM is

the σ-algebra generated by M , since the conditional distribution of
∑d

j=1

´∞
Aj∞

fj(t)dβ
j
t

given M is Gaussian with mean 0 and variance
∑d

j=1

´∞
Aj∞

f2
j (t)dt. Therefore,

E[L] = E[I∞J ] = E
[
E
[
I∞J |FM

]]
= E

[
I∞E

[
J |FM

]]
= E[I∞] = 1,

which completes the proof.
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Remark 5.9. Although Knight’s theorem is a generalization of the Dambis-Dubins-Schwarz
theorem to higher dimensions, it is somehow less precise because there is no counterpart
of a filtration with respect to which the time-changed process Bt is a Brownian motion.

5.7 Continuous local martingales as Itô’s integrals

Now we take up the question about when a continuous local martingale Mt can be
represented as an Itô’s integral

´ t
0 ΦsdBs where Bt is a Brownian motion. Formally

speaking, the main results can be summarized as two parts:
(1) If a Brownian motion is given, then every continuous local martingale with respect

to the Brownian filtration has such a representation.
(2) Given general continuous local martingale M, if d〈M〉t is absolutely continuous

with respect to dt, then M has such a representation for some Brownian motion defined
possibly on an enlarged probability space.

Now we develop the first part, which is indeed much more surprising than the second
one.

Suppose that Bt is a one dimensional Brownian motion and {FBt } is its augmented
natural filtration.

Let T be the space of real step functions on [0,∞) of the form

f(t) =
m∑
k=1

λk1(tk−1,tk](t), t > 0,

For an f ∈ T , define

Eft , exp

(ˆ t

0
f(s)dBs −

1

2

ˆ t

0
f2(s)ds

)
, t > 0,

to be the associated exponential martingale. It is apparent that Eft is uniformly bounded
in L2.

The following lemma reveals why the Brownian filtration is crucial.

Lemma 5.3. The set {Ef∞ : f ∈ T } is total in L2(Ω,FB∞,P).

Proof. Let Y ∈ L2(Ω,FB∞,P) be such that E[Y Ef∞] = 0 for all f ∈ T .We want to show
that Y = 0. Define a finite signed measure µ on (Ω,FB∞) by

µ(A) ,
ˆ
A
Y dP, A ∈ FB∞.

It is equivalent to showing that µ = 0. Since FB∞ is generated by the Brownian motion,
it then suffices to prove that the induced finite signed measure ν on (Rn,B(Rn)) given
by

ν(Γ) =

ˆ
Ω
Y 1{(Bt1 ,··· ,Btn )∈Γ}dP, Γ ∈ B(Rn),
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is identically zero, for every choice of n > 1 and 0 6 t1 < t2 < · · · < tn <∞. But this
is equivalent to showing that the Fourier transform of ν is zero.

By definition, the Fourier transform of ν is given by

ϕ(λ) ,
ˆ
Rn

ei(λ1x1+···+λnxn)ν(dx), λ = (λ1, · · · , λn) ∈ Rn.

Moreover, by the definition of ν and a standard approximation argument by simple func-
tions, it is easy to see that

ˆ
Rn
g(x1, · · · , xn)ν(dx) = E[Y g(Bt1 , · · · , Btn)]

for any bounded Borel measurable function g on Rn. In particular,

ϕ(λ) = E
[
Y ei(λ1Bt1+···+λnBtn )

]
.

To see why ϕ(λ) is identically zero, we define a complex-valued function Φ on Cn by

Φ(z) , E
[
Y ez1Bt1+···+znBtn

]
, z = (z1, · · · , zn) ∈ Cn.

It is apparent that Φ(z) is analytic on Cn. Moreover, when z ∈ Rn, by assumption we
have

Φ(z) = e
1
2

´∞
0 f2(s)ds · E

[
Y Ef∞

]
= 0,

where

f(t) ,
n∑
k=1

z′k1(tk−1,tk](t) ∈ T

with z′k , zk + · · · + zn. According to the identity theorem in complex analysis, we
conclude that Φ is identically zero on Cn. Therefore, by taking z = iλ, we know that
ϕ(λ) = 0.

Now we are able to prove the following representation theorem.

Theorem 5.11. Let ξ ∈ L2(Ω,FB∞,P). Then there exists a unique element Φ ∈ L2(B),
such that

ξ = E[ξ] +

ˆ ∞
0

ΦsdBs. (5.28)

Proof. Suppose that Φ and Φ′ both satisfy (5.28). Then
´∞

0 (Φs − Φ′s)dBs = 0, which
implies that

E
[ˆ ∞

0
(Φs − Φ′s)

2ds

]
= 0,

as
´ ·

0(Φs − Φ′s)dBs ∈ H2
0 . Therefore, Φ = Φ′ in L2(B) and the uniqueness holds.
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To see the existence, we first show that the space H of elements ξ ∈ L2(Ω,FB∞,P)
which has a representation (5.28) is a closed subspace of L2(Ω,FB∞,P). Indeed, let

ξn = E[ξn] +

ˆ ∞
0

Φ(n)
s dBs

be a sequence converging to some ξ ∈ L2(Ω,FB∞,P). It follows that E[ξn] → E[ξ].
Moreover, from∥∥∥∥ˆ ∞

0
Φ(m)
s dBs −

ˆ ∞
0

Φ(n)
s dBs

∥∥∥∥2

L2

= E
[ˆ ∞

0
(Φ(m)

s − Φ(n)
s )2ds

]
,

we know that Φ(n) is a Cauchy sequence in L2(B). According to Lemma 5.2, Φ(n) →
Φ ∈ L2(B). Therefore,

´ ·
0 Φ

(n)
s dBs →

´ ·
0 ΦsdBs in H2

0 , which implies that

ξ = E[ξ] +

ˆ ∞
0

ΦsdBs.

Therefore, H is a closed subspace of L2(Ω,FB∞,P).
Now the existence follows from the simple fact that H contains elements of the form

Ef∞ for f ∈ T and Lemma 5.3, since

Ef∞ = 1 +

ˆ ∞
0

f(s)Efs dBs,

where Eft is the exponential martingale defined by

Eft , exp

(ˆ t

0
f(s)dBs −

1

2

ˆ t

0
f2(s)ds

)
= 1 +

ˆ t

0
f(s)Efs dBs

according to Itô’s formula, and apparently f · Ef ∈ L2(B).

Remark 5.10. From the proof of Theorem 5.11, we can see that the uniqueness of Φ is
equivalent to saying that if Φ,Φ′ ∈ L2(B) both satisfy (5.28), then with probability one,
we have ˆ ∞

0
(Φs − Φ′s)

2ds = 0.

On the other hand, if we remove the restriction that Φ ∈ L2(B), then uniqueness fails in
the class L2

loc(B) provided
´∞

0 ΦsdBs = limt→∞
´ t

0 ΦsdBs exists finitely (c.f. Problem
Sheet 5, Problem 5).

Remark 5.11. The reader should find it easy to obtain a local version of Theorem 5.11,
i.e. the representation of ξ ∈ L2(Ω,FBT ,P) as an Itô’s integral over [0, T ] for given
T > 0.

Theorem 5.11 enables us to prove the following representation for continuous local
martingales with respect to the Brownian filtration. This is the main result of the first
part.
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Theorem 5.12. Let Mt be a continuous {FBt }-local martingale. Then Mt has the
representation

Mt = M0 +

ˆ t

0
ΦsdBs, (5.29)

for some Φ ∈ L2
loc(B). Such representation is unique in the following sense: if Φ′ is

another process in L2
loc(B) which also satisfies (5.29), then Φ·(·) = Φ′·(·) P× dt-almost

everywhere, or equivalently, with probability one, Φ·(ω) = Φ′·(ω) dt-almost everywhere.

Proof. We may assume that M0 = 0 so that M ∈Mloc
0 ({FBt }).

If M ∈ H2
0 , according to Theorem 5.11, we know that

M∞ =

ˆ ∞
0

ΦsdBs

for some Φ ∈ L2(B). Therefore,

Mt = E
[
M∞|FBt

]
= E

[ˆ ∞
0

ΦsdBs|FBt
]

=

ˆ t

0
ΦsdBs,

which proves the representation for M.
In general, suppose τn is a sequence of finite {FBt }-stopping times increasing to

infinity such that M τn ∈ H2
0 for each n. Write M τn

t =
´ t

0 Φ
(n)
s dBs for Φ(n) ∈ L2(B).

According to Proposition 5.11, we have
ˆ t

0
Φ(n)
s dBs = M τn

t = (M τn+1)τnt =

ˆ t

0
Φ(n+1)
s 1[0,τn](s)dBs.

Therefore, with probability one, Φ
(n)
· (ω) = Φ

(n+1)
· (ω)1[0,τn(ω)](·) dt-almost everywhere.

This implies that with probability one, Φ
(n+1)
· (ω) = Φ

(n)
· (ω) on [0, τn(ω)], which enables

us to patch all those Φ(n)’s to define a single process Φ. More precisely, let

Φ ,

(
lim sup
n→∞

Φ(n)

)
· 1{lim supn→∞ Φ(n) is finite}.

Apparently, Φ is progressively measurable, and Φ ∈ L2
loc(B). To see that Mt =´ t

0 ΦsdBs, let N ∈Mloc
0 ({FBt }). Then

〈M,N〉τn∧t = 〈M τn , N〉t =

ˆ t

0
Φ(n)
s d〈B,N〉s

for each n. But from the Kunita-Watanabi inequality (c.f. (5.4)) and the fact that with
probability one, Φ

(n)
· (ω) = Φ·(ω) dt-almost everywhere on [0, τn(ω)], we know that´ t

0 Φ
(n)
s d〈B,N〉s =

´ t
0 Φsd〈B,N〉s whenever t 6 τn. Therefore, by letting n → ∞, we

conclude that

〈M,N〉t =

ˆ t

0
Φsd〈B,N〉s.
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Since this is true for arbitrary N ∈Mloc
0 ({FBt }), we obtain the desired representation.

Finally, the uniqueness follows from the fact that if Φ ∈ L2
loc(B) satisfies

´ t
0 ΦsdBs =

0 for every t, then with probability one,
ˆ t

0
Φ2
sds = 0, ∀t > 0.

Remark 5.12. Since B0 = 0 and {FBt } is the augmented natural filtration of Bt, every
F0-measurable random variable is therefore a constant. In particular, M0 is a constant
for a continuous {FBt }-local martingale.

The same argument extends to the multidimensional case without any difficulty. We
only state the main result and leave the details to the reader.

Theorem 5.13. Let Bt be a d-dimensional Brownian motion and let {FBt } be its aug-
mented natural filtration. Then for any continuous {FBt }-local martingale Mt, there
exists Φj ∈ L2

loc(B
j), such that

Mt = M0 +

d∑
j=1

ˆ t

0
Φj
sdB

j
s .

These Φj ’s are unique in the sense that if Ψj ’s satisfy the same property, then with
probability one,

(Φ1
· (ω), · · · ,Φd

· (ω)) = (Ψ1
· (ω), · · · ,Ψd

· (ω)), dt− a.e.

An analogous result of Theorem 5.11 also holds in the multidimensional case, and we
will not state it here.

Now we turn to the second part: what if the underlying filtration is not the Brownian
filtration?

Suppose that Mt =
´ t

0 ΦsdBs for some Brownian motion. Then 〈M〉t =
´ t

0 Φ2
sds.

Therefore, a necessary condition for M having the representation as a stochastic integral
is that d〈M〉t is absolutely continuous with respect to the Lebesgue measure. Moreover,
if we know the Radon-Nikodym derivative d〈M〉t/dt = γt > 0, then Bt ,

´ t
0 γ
−1/2
s dMs

will be a Brownian motion by Lévy’s characterization theorem, and from the associativity
of stochastic integrals, of course we have Mt =

´ t
0 γ

1/2
s dBt. If γt is simply non-negative,

in order to support a Brownian motion we need to enlarge the underlying probability
space as we have seen in the last subsection.

To be precise, we are going to prove the following main result in the multidimensional
setting. Let (Ω,F ,P; {Ft}) be a filtered probability space which satisfies the usual
conditions.

We are going to use matrix notation exclusively and apply results from standard
linear algebra. To treat things in an elegant way, we first fix some notation. For a real
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m × n matrix A, A∗ is denoted as the transpose of A, and we define the norm of A
to be ‖A‖ , max16i6m,16j6n |Aij |. The space of real m × n matrices is denoted by
Mat(m,n). If Mt = (M1

t , · · · ,Md
t ) is a vector of continuous {Ft}-local martingales,

we use 〈M〉t to denote the matrix
(
〈M i,M j〉t

)
16i,j6d . It is apparent that this matrix

is symmetric and non-negative definite for each t. If Ψt is a matrix-valued process,
we use Ψ •M to denote the vector-valued stochastic integral

´
Ψ · dM as long as the

matrix multiplication and the stochastic integral make sense in a componentwise manner.
Apparently, 〈Ψ •M〉 = Ψ · 〈M〉 ·Ψ∗.

Recall that every real d × d matrix A has a singular value decomposition as A =
UΛV ∗, where U, V are orthogonal matrices, Λ is a diagonal matrix with non-negative
entries on the diagonal. Moreover, the nonzero elements on the diagonal of Λ are the
square roots of nonzero eigenvalues of AA∗ counted with multiplicity.

Theorem 5.14. Let Mt = (M1
t , · · · ,Md

t ) be a vector of d continuous {Ft}-local mar-
tingales. Suppose that there exist matrix-valued progressively measurable processes γt
and Φt taking values in Mat(d, d) and Mat(d, r) respectively, such that:

(1) with probability one,
´ t

0 ‖Φs‖2ds <∞ for every t > 0;
(2) 〈M〉t =

´ t
0 γsds for every t > 0;

(3) γt = Φt · Φ∗t for every t > 0.
Then on an enlargement (Ω̃, F̃ , P̃; {F̃t}) of (Ω,F ,P; {Ft}), there exists an r-dimensional
{F̃t}-Brownian motion, such that

Mt = M0 +

ˆ t

0
Φs · dBs.

Proof. We may assume that M0 = 0. By adding M i = 0 or Φi
j = 0 when necessary, it

suffices to prove the theorem in the case d = r.
First of all, let Φ = βρσ∗ be a singular value decomposition of Φ. Note that β, ρ, σ

are matrix-valued processes, where β, σ are orthogonal and ρ is diagonal . It follows that

γ = ΦΦ∗ = βρσ∗σρβ∗ = βρ2β∗.

This also gives the diagonalization of γ. Let α , βρ and λ , θβ∗, where θ is the
diagonal matrix formed by replacing each nonzero element on the diagonal of ρ by its
reciprocal. It is important to note that all these matrix-valued process constructed here
are progressively measurable, as they are constructed from a pointwise manner.

Now define ζt , rank(γt), and let Pζt to be the matrix-valued process given by
(Pζt)

i
j = 1 if i = j 6 ζt and (Pζt)

i
j = 0 otherwise. Define the stochastic integral process

N , λ •M. It follows that

d〈N〉t = λ · d〈M〉 · λ∗ = λγλ∗dt = θβ∗βρ2β∗βθdt = Pζdt.

Next define X , α •N . Then we have

d〈X〉t = αPζα
∗dt = βρPζρβ

∗dt = βρ2β∗dt = γdt = d〈M〉t,

107



and

d〈X,M〉t = d〈M,X〉∗ = αλd〈M〉t = αλγdt

= βρθβ∗βρ2β∗dt = γdt.

Therefore, 〈X −M〉 = 0, which implies that X = M.
To finish the proof, let (Ω̃, F̃ , P̃; {F̃t}) be an enlargement of (Ω,F ,P; {Ft}) which

supports a d-dimensional Brownian motion Wt independent of M. The construction of
(Ω̃, F̃ , P̃; {F̃t}) is similar to the one in the proof of Theorem 5.9. Define

W , N + (Id− Pζ) •W.

Then
d〈W 〉t = d〈N〉t + (Id− Pζ)dt = dt,

where we have used the fact that 〈N,W 〉 = 0 due to independence (the same reason
as in the last part of the proof of Theorem 5.9). Therefore, W t is an {F̃t}-Brownian
motion according to Lévy’s characterization theorem. Moreover, by the definition of α,
we know that

α •W = α •N + (α(Id− Pζ)) •W = X = M.

Since α = Φσ, we conclude that M = Φ • (σ •W ). But B , σ •W is also an {F̃t}-
Brownian motion according to Lévy’s characterization theorem as σ takes values in the
space of orthogonal matrices. Therefore, we arrive at the representation

Mt =

ˆ t

0
Φs · dBs.

Remark 5.13. The underlying idea of proving Theorem 5.14 is very simple. The com-
plexity arises from the possibility that γ is degenerate. If we further assume that γt is
positive definite everywhere, then B , Φ−1 •M will be an {Ft}-Brownian motion, and
M = Φ•B. In particular, in this case we do not need to enlarge the underlying probability
space.

5.8 The Cameron-Martin-Girsanov transformation

In Section 5.6, we have seen the notion of a random time-change. Now we study another
important technique: change of measure. This technique is very useful in the study of
stochastic differential equations.

It is well known that the Lebesgue measure on Rd is translation invariant, in the sense
that given any h ∈ Rd, the measure induced by the translation map x 7→ x+ h is again
the Lebesgue measure. The Lebesgue measure is essentially a finite dimensional object:
there is no counterpart of Lebesgue measure in infinite dimensions in any obvious way.
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However, a Gaussian measure is quite different: for instance, a natural infinite dimen-
sional counterpart of a finite dimensional Gaussian measure is just the law of Brownian
motion defined on the continuous path space. A natural question therefore arises: what
is the invariance property for a Gaussian measure with respect to translation?

We first illustrate the motivation by doing a series of formal calculations.
Let us first consider the finite dimensional situation. Let

µ(dx) =
1

(2π)d/2
e−
|x|2
2 dx

be the standard Gaussian measure on (Rd,B(Rd)), so that the coordinate random vari-
ables ξi(x) , xi define a standard Gaussian vector ξ = (ξ1, · · · , ξd) ∼ N (0, Id) under
the probability measure µ. Now fix h ∈ Rd. Consider the translation map Th : Rd → Rd
defined by Th(x) , x + h, and let µh , µ ◦ (T h)−1 be the push-forward of µ by Th.
From the simple relation that for any nice test function f : Rd → R1,

ˆ
Rd
f(y)µh(dy) =

ˆ
Rd
f(x+ h)µ(dx)

=
1

(2π)d/2

ˆ
Rd
f(x+ h)e−

|x|2
2 dx

=

ˆ
Rd
f(y)e〈h,y〉−

1
2
|h|2µ(dy),

we see that µh is absolutely continuous with respect to µ, and the Radon-Nikodym
derivative is given by

dµh

dµ
= e〈h,x〉−

1
2
|h|2 . (5.30)

This property is usually known as the quasi-invariance of Gaussian measures.
Another way of looking that this fact is the following: if we define µh by the formula

(5.30), then η , ξ − h is a standard Gaussian vector under µh, since its distribution,
which is the push-forward of µh by the map T−h : x 7→ x− h, is just µ.

Now we look for the infinite dimensional counterpart of this simple observation. For
simplicity, let W0 be the space of continuous paths w : [0, 1] → R1 vanishing at
t = 0, and let µ be the law of a one dimensional Brownian motion over [0, 1], which is
a probability measure on (W0,B(W0)). Define Bt(w) , wt, so that Bt is a Brownian
motion under µ. Now fix h ∈ W0, which is in this case a continuous path. We assume
that h has “nice” regularity properties and let us do not bother with what they are at the
moment. Again consider the translation map Th : W0 →W0 defined by Th(w) = w+h,
and let µh be the push-forward of µ by Th.

To understand the relationship between µh and µ, we need some kind of finite di-
mensional approximations. For each n > 1, consider the partition Pn : 0 = t0 < t1 <
· · · < tn = 1 of [0, 1] into n sub-intervals with equal length 1/n. Given w ∈ W0, let
w(n) ∈W0 be the piecewise linear interpolation of w over Pn. More precisely, w(n)

ti
= wti

for ti ∈ Pn and w(n) is linear on each sub-interval associated with Pn. Given a nice test
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function f : W → R1, we define an approximation f (n) of f by f (n)(w) , f(w(n)). A
crucial observation is that f (n) depends only on the values {wt1 , · · · , wtn}. Therefore,
f (n) is a finite dimensional function, in the sense that there exists H : Rn → R1, such
that f (n)(w) = H(wt1 , · · · , wtn) for all w ∈W0.

Now we do a similar calculation as in the finite dimensional case:ˆ
W0

f (n)(w)µh(dw)

=

ˆ
W0

f (n)(w + h)µ(dw)

=

ˆ
W0

H(wt1 + ht1 , · · · , wtn + htn)µ(dw)

= C

ˆ
Rn
H(x1 + ht1 , · · · , xn + htn) exp

(
−1

2

n∑
i=1

|xi − xi−1|2

ti − ti−1

)
dx

= C

ˆ
Rn
H(y1, · · · , yn) exp

(
n∑
i=1

hti − hti−1

ti − ti−1
· (yi − yi−1)− 1

2

n∑
i=1

(hti − hti−1)2

ti − ti−1

−1

2

n∑
i=1

(yi − yi−1)2

ti − ti−1

)
dy

=

ˆ
W0

f (n)(w) exp

(
n∑
i=1

hti − hti−1

ti − ti−1
· (wti − wti−1)− 1

2

n∑
i=1

(hti − hti−1)2

ti − ti−1

)
µ(dw),

where C , (2π)−n/2(t1(t2−t1) · · · (tn−tn−1))−1/2. Here comes the crucial observation.
If we let n→∞, it is natural to expect that f (n)(w)→ f(w), and also

n∑
i=1

hti − hti−1

ti − ti−1
· (wti − wti−1) →

ˆ 1

0
h′tdBt,

n∑
i=1

(hti − hti−1)2

ti − ti−1
=

n∑
i=1

(hti − hti−1)2

(ti − ti−1)2
· (ti − ti−1) →

ˆ 1

0
(h′t)

2dt, (5.31)

where the first limit is Itô’s integral! Therefore, formally we arrive at
ˆ
W0

f(w)µh(dw) =

ˆ
W0

f(w) exp

(ˆ 1

0
h′tdBt −

1

2

ˆ 1

0
(h′t)

2dt

)
µ(dw),

which suggests that µh is absolutely continuous with respect to µ, and the Radon-
Nikodym derivative is given by

dµh

dµ
= exp

(ˆ 1

0
h′tdBt −

1

2

ˆ 1

0
(h′t)

2dt

)
. (5.32)

Another way of looking at this fact is the following: if we define µh by the formula
(5.32), then under the new measure µh, B̃t , Bt − ht = Bt −

´ t
0 h
′
sds is a Brownian
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motion, since its distribution, which is the push-forward of µh by the map T−h : w 7→
w − h, is just µ.

The above argument outlines the philosophy of Cameron-Martin’s original work. The
main technical difficulty lies in verifying the convergence in (5.31) for the right class of
h. Here the right regularity assumption on h is the following: h needs to be absolutely
continuous and

´ 1
0 (h′t)

2dt < ∞. Cameron-Martin’s result can be stated as follows. We
refer the reader to [10] for a modern proof.

Theorem 5.15. Let H be the space of absolutely continuous paths h ∈ W0 with´ 1
0 (h′t)

2dt < ∞. Then for any h ∈ H, µh is absolutely continuous with respect to µ
with Radon-Nikodym derivative given by (5.32), and wt−

´ t
0 h
′
sds is a Brownian motion

under µh. In addition, for any h /∈ H, µh and µ are singular to each other.

Remark 5.14. We can see from Cameron-Martin’s theorem that the infinite dimensional
situation is very different from the finite dimensional one: the quasi-invariance prop-
erty is true and only true along directions in H. This space H, which is known as the
Cameron-Martin subspace, plays a fundamental role in the stochastic analysis on the
space (W0,B(W0), µ).

After Cameron-Martin’s important work, Girsanov pushed this idea further into a
more general situation. It is Girsanov’s work that we will explore in details with the help
of martingale methods.

Let (Ω,F ,P; {Ft}) be a filtered probability space which satisfies the usual conditions,
and let Bt = (B1

t , · · · , Bd
t ) be a d-dimensional {Ft}-Brownian motion. Suppose that

Xt = (X1
t , · · · , Xd

t ) is a stochastic process with Xi ∈ L2
loc(B

i) for each i.
Motivated from the previous discussion on Cameron-Martin’s work, we define the

exponential martingale

EXt , exp

(
d∑
i=1

ˆ t

0
Xi
sdB

i
s −

1

2

ˆ t

0
|Xs|2ds

)
, t > 0. (5.33)

According to Itô’s formula, we have

EXt = 1 +
d∑
i=1

ˆ t

0
EXs Xi

sdB
i
s.

Therefore, EXt is a continuous local martingale. Now take a localization sequence τn ↑ ∞
of stopping times such that EXτn∧t is martingale for each n, i.e.

E[EXτn∧t|Fs] = EXτn∧s.

Fatou’s lemma then allows us to conclude that EXt is a supermartingale and E[EXt ] 6
E[EX0 ] = 1 for all t > 0. In general, EXt can fail to be a martingale. However, we have
the following simple fact.

Proposition 5.20. EXt is a martingale if and only if E[EXt ] = 1 for all t > 0.
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Proof. Since EXt is a supermartingale, given s < t, we have
ˆ
A
EXt dP 6

ˆ
A
EXs dP, ∀A ∈ Fs. (5.34)

If EXt has constant expectation, then
ˆ
Ac
EXt dP >

ˆ
Ac
EXs dP, ∀A ∈ Fs. (5.35)

But (5.34) and (5.35) are true for all A ∈ Fs. It follows that
ˆ
A
EXt dP =

ˆ
A
EXs dP, ∀A ∈ Fs,

which implies the martingale property.

Remark 5.15. In Cameron-Martin’s work, given h ∈ H, since
´ t

0 h
′
sdBs is Gaussian

distributed with mean 0 and variance
´ t

0 (h′s)
2ds (c.f. Problem Sheet 5, Problem 1, (2)),

we know from Proposition 5.20 that the exponential martingale

Eht , exp

(ˆ t

0
(h′s)dBs −

1

2

ˆ t

0
(h′s)

2ds

)
is indeed a martingale.

Now we make the following assumption exclusively and explore its consequences.
At the end of this subsection, we will establish a useful condition which verifies the
assumption.

Assumption 5.1. {EXt ,Ft} is a martingale.

As in Cameron-Martin’s formula (5.32), for each given T > 0, we define

P̃T (A) , E[1AEXT ], A ∈ FT .

According to Assumption 5.1, P̃T is a probability measure on (Ω,FT ) which is obviously
equivalent to P.

The following lemma tells us how to compute conditional expectations under P̃T .

Lemma 5.4. Let 0 6 s 6 t 6 T. Suppose that Y is an {Ft}-measurable random variable
which is integrable with respect to P̃T . Then we have:

ẼT [Y |Fs] =
1

EXs
E[Y EXt |Fs], P and P̃T − a.s.,

where ẼT is the expectation under P̃T .
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Proof. For any A ∈ Fs, by the martingale property of EX under P, we have

ẼT [Y 1A] = E
[
Y 1AEXT

]
= E

[
Y 1AEXt

]
= E

[
1AE[Y EXt |Fs]

]
= E

[
EXT
EXs

1AE[Y EXt |Fs]
]

= ẼT
[

1

EXs
1AE[Y EXt |Fs]

]
.

Therefore, the result follows.

With the help of Lemma 5.4, we are able to understand the relationship between
continuous local martingales under P and P̃T . Given T > 0, we use the notationMloc

0;T

(respectively, M̃loc
0;T ) to denote the space of continuous local martingales {Mt,Ft : 0 6

t 6 T} on (Ω,FT ,P) (respectively, on (Ω,FT , P̃T )) which vanishes at t = 0. The
meaning of a local martingale defined on a finite interval [0, T ] should be clear to the
reader.

Theorem 5.16. For T > 0, the transformation map

GT : Mloc
0;T → M̃loc

0;T ,

Mt 7→ M̃t ,Mt −
d∑
i=1

ˆ t

0
Xi
sd〈M,Bi〉s,

is a linear isomorphism and respects the bracket, i.e. 〈M̃, Ñ〉 = 〈M,N〉 for all M,N ∈
Mloc

0;T , where the bracket processes are computed under the appropriate probability mea-
sures.

Proof. We first show that M̃ = GT (M) ∈ M̃loc
0;T for M ∈ Mloc

0;T . By localization,
we may assume that all involved local martingales and bounded variation processes are
uniformly bounded. By the definition of M̃ and the integration by parts formula (c.f.
Proposition5.15), we have

M̃tEXt =

ˆ t

0
EXs dMs +

d∑
i=1

ˆ t

0
M̃sEXs Xi

sdB
i
s,

which shows that M̃tEXt is a martingale under P. Therefore, by Lemma 5.4,

ẼT [M̃t|Fs] =
1

EXs
E[M̃tEXt |Fs] = M̃s,

showing that M̃t is a martingale under P̃T . This proves that GT mapsMloc
0;T toMloc

0;T .
It is apparent that GT is linear.

Now we show that GT respects the bracket. Indeed, again localizing in the bounded
setting, exactly the same but longer calculation based on the integration by parts formula
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shows that (M̃tÑt − 〈M,N〉t)EXt is a linear combination of stochastic integrals, which
proves that it is a martingale under P. Therefore, Lemma 5.4 again shows that M̃tÑt −
〈M,N〉t is a martingale under P̃T . This proves that 〈M̃, Ñ〉 = 〈M,N〉.

In particular, GT is injective since

M̃ = 0 =⇒ 〈M̃〉 = 〈M〉 = 0 =⇒ M = 0.

Finally, we show that GT is surjective. Let M̃ ∈ M̃loc
0;T . If M̃ is bounded, by Lemma

5.4, we know that
E[M̃tEXt |Fs] = EXs ẼT [M̃t|Fs] = M̃sEXs .

Therefore, M̃tEXt is a martingale under P. Since M̃t = (M̃tEXt )/EXt , after removing
the localization, Itô’s formula shows that M̃t is a continuous semimartingale under P.
Therefore, we may assume that under P, M̃t = Mt +At for some M ∈Mloc

0;T and some

bounded variation process A. Now define M , GT (M) ∈ M̃loc
0;T . It follows that

M̃t −M t = At +
d∑
i=1

ˆ t

0
Xi
sd〈M,Bi〉s.

This shows that M̃−M is a bounded variation process. But M̃−M ∈ M̃loc
0;T . Therefore,

M̃ = M = GT (M), which shows that GT is also surjective.

From the characterization of stochastic integrals, a direct corollary of Theorem 5.16
is that the transformation map GT respects stochastic integration.

Corollary 5.2. Let M ∈ Mloc
0;T , and let Φt be a progressively measurable process on

[0, T ] such that P
(´ T

0 Φ2
sd〈M〉s <∞

)
= 1. Then ĨM (Φ) = IM̃ (Φ).

Proof. Since 〈M̃〉 = 〈M〉, we have P̃T
(´ T

0 Φ2
sd〈M̃〉s <∞

)
= 1. The last claim follows

from the fact that〈
ĨM (Φ), Ñ

〉
= 〈IM (Φ), N〉 = Φ • 〈M,N〉

= Φ • 〈M̃, Ñ〉 =
〈
IM̃ (Φ), Ñ

〉
, ∀Ñ ∈Mloc

0;T .

Another direct consequence of Theorem 5.16 is the following result. This is the
original Girsanov’s theorem.

Theorem 5.17. Define the process B̃t = (B̃1
t , · · · , B̃d

t ) by

B̃i
t , Bi

t −
ˆ t

0
Xi
sds, t > 0, 1 6 i 6 d. (5.36)

Then for each T > 0, the process {B̃t,Ft : 0 6 t 6 T} is a d-dimensional Brownian
motion on (Ω,FT , P̃T ).
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Proof. From Theorem 5.16, we know that B̃i = GT (Bi) ∈ M̃loc
0;T for each 1 6 i 6 d.

Moreover, we have

〈B̃i, B̃j〉t = 〈Bi, Bj〉t = δijdt, t ∈ [0, T ].

Therefore, according to Lévy’s characterization theorem, we conclude that B̃t is an {Ft}-
Brownian motion on [0, T ] under P̃T .

The careful reader might ask if there exists a single probability measure P̃ on (Ω,F∞),
such that P̃ = P̃T on FT for every T > 0. This is not true in general. Indeed, if such
P̃ exists, then P̃ is absolutely continuous with respect to P on F∞ (A ∈ F∞, P(A) = 0
implies A ∈ F0, and hence P̃(A) = P̃0(A) = 0). In this case, if we let ξ , dP̃/dP on
(Ω,F∞), then it is not hard to see that EXt = E[ξ|Ft] so that EXt is uniformly integrable.
Certainly this is too strong to assume in general (for instance, the martingale eBt−

1
2
t2 is

not uniformly integrable). Conversely, if EXt is uniformly integrable, then EXt = E[ξ|Ft]
for ξ , limt→∞ EXt ∈ F∞. If we define P̃(A) =

´
A ξdP for A ∈ F∞, then P̃ = P̃T

on FT for every T > 0. Therefore, we see that an extension P̃ of {P̃T : T > 0}
exists on (Ω,F∞) if and only if EXt is uniformly integrable, in which case P̃ is absolutely
continuous with respect to P on F∞. This is crucially related to the fact that we assume
F0 contains all P-null sets, which is part of the usual conditions. Also note that in this
case, the process B̃t defined by (5.36) is an {Ft}-Brownian motion on [0,∞) under P̃.

However, if we only consider the natural filtration and do not take its usual augmen-
tation, then we do have such an extension P̃ even without the uniform integrability of
EXt , and the process B̃t is a Brownian motion on [0,∞) under P̃.

To be more precise, let us consider the continuous path space (W d,B(W d), µ), where
µ is the d-dimensional Wiener measure. Let Bt(w) , wt be the coordinate process
and let {GBt } be the natural filtration of Bt. It follows that {Bt,GBt } is a Brownian
motion under µ. Now consider a {GBt }-progressively measurable processXt which satisfies´ t

0 X
2
s (ω)ds < ∞ for every (t, ω). Define the exponential martingale EXt by (5.33) and

assume that it is a martingale (technically speaking, in order to make sense of the
stochastic integrals involved, we need to define EXt with respect to the augmented natural
filtration {FBt }, and assume that EXt is a martingale under this filtration). Then

P̃T (A) ,
ˆ
A
EXT dµ, A ∈ GBT ,

defines a compatible family of probability measures. Therefore, they extend to a proba-
bility measure on the π-system ∪T>0GBT . By verifying the conditions in Carathéodory’s
extension theorem, we get a single probability measure P̃ on GB∞ = B(W d) which ex-
tends those P̃T ’s. Apparently, B̃t , Bt −

´ t
0 Xsds is {GBt }-adapted and it is indeed a

{GBt }-Brownian motion on [0,∞) under P̃.
In general, althought P̃ is absolutely continuous with respect to µ when restricted on

each GBT (because P̃T is by definition), it can fail to be so on GB∞. A simple example is the
following: consider X ≡ c 6= 0. Then under the new probability measure P̃, B̃t = Bt−ct
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is a Brownian motion and therefore Bt = B̃t + ct is a Brownian motion with drift c. Let

Λ , {w ∈W d : lim
t→∞

wt/t = c} ∈ GB∞.

Then P̃(Λ) = 1 but µ(Λ) = 0.
We leave the reader to think about these details.
To finish this part, we give a useful condition, known as Novikov’s condition, under

which Assumption 5.1 holds.

Theorem 5.18. Let M ∈Mloc
0 . Suppose that

E
[
e

1
2
〈M〉t

]
<∞, ∀t > 0.

Then
EMt , eMt− 1

2
〈M〉t , t > 0,

is an {Ft}-martingale.

The idea of the proof is not hard: we try to use the Dambis-Dubins-Schwarz theorem,
which tells us thatMt = B〈M〉t for a Brownian motion possibly defined on some enlarged
probability space. Since eBs−

1
2
s is obviously a martingale and 〈M〉t is a stopping time

with respect to the relevant filtration, by applying the optional sampling theorem formally,
it is entirely reasonable to expect that

E
[
eMt− 1

2
〈M〉t

]
= E

[
eB〈M〉t−

1
2
〈M〉t

]
= 1.

Therefore, the result follows according to Proposition 5.20. To make this idea work, we
need to overcome the issue of integrability by a technical trick.

Proof of Theorem 5.18. According to the generalized Dambis-Dubins-Schwarz theorem
(c.f. Theorem 5.9), there exists an {F̃t}-Brownian motion Bt, possibly defined on some
enlarged space (Ω̃, F̃ , P̃; {F̃t}), such that Mt = B〈M〉t . Moreover, 〈M〉t is an {F̃s}-
stopping time for every t > 0.

For each b < 0, define

τb , inf{s > 0 : Bs − s = b}.

Note that in Problem Sheet 4, Problem 6, (2), we have computed the marginal distri-
bution of the running maximum process for the Brownian motion with drift. From that
formula it is not hard to see that the density of τb is given by

P(τb ∈ ds) =
|b|√
2πs3

e−
(b+s)2

2s ds, t > 0.

In particular,

E
[
e

1
2
τb
]

=

ˆ ∞
0

e
1
2
s · |b|√

2πs3
e−

(b+s)2

2s ds = e−b, (5.37)
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where we applied the change of variables u = |b|/
√
s.

Apparently, Zs , eBs−
1
2
s is an {F̃s}-martingale. Therefore, Zτbs is also an {F̃s}-

martingale. Moreover, since τb <∞ almost surely,

Zτb∞ = eBτb−
1
2
τb = e

1
2
τb+b.

Now on the one hand, Fatou’s lemma tells us that {Zτbs , F̃s : 0 6 s 6 ∞} is a
supermartingale with a last element. On the other hand, (5.37) tells us that E[Zτb∞] =
E[Zτbs ] = 1 for all s. Therefore, similar to the proof of Proposition 5.20, we know that
{Zτbs , F̃s : 0 6 s 6 ∞} is a martingale with a last element. This allows us to use the
optional sampling theorem to conclude that

E
[
Zτb〈M〉t

]
= E

[
eBτb∧〈M〉t−

1
2
τb∧〈M〉t

]
= 1

= E
[
1{〈M〉t>τb}e

1
2
τb+b

]
+ E

[
1{〈M〉t<τb}e

Mt− 1
2
〈M〉t

]
.

As b → −∞, the first term goes to zero by the dominated convergence theorem, since
the integrand is controlled by ebe

1
2
〈M〉t (note that E[e

1
2
〈M〉t ] < ∞ according to the

assumption) and τb →∞. Therefore,

E
[
eMt− 1

2
〈M〉t

]
= 1.

As this is true for all t, according to Proposition 5.20, we conclude that EMt is an {Ft}-
martingale.

Combing back to the setting of the Cameron-Martin-Girsanov theorem, we have the
following direct corollary.

Corollary 5.3. Suppose that Xi ∈ L2
loc(B

i) for i = 1, · · · , d. Suppose that

E
[
exp

(
1

2

ˆ t

0
|Xs|2ds

)]
<∞, ∀t > 0.

Then the exponential martingale EXt defined by (5.33) is indeed a martingale.

5.9 Local times for continuous semimartingales

From Itô’s formula, we know that the space of continuous semimartingales is stable under
composition by C2-functions. Now a natural question is: what happens if the function
fails to be in C2?

Let us consider the simplest case: f(x) = |x|. Then f ′(x) = sgn(x) and f ′′(x) =
2δ0(x), where δ0 is the Dirac δ-function at 0. Applying Itô’s formula for the one dimen-
sional Brownian motion and f in a formal way, we have

|Bt| =
ˆ t

0
sgn(Bs)dBs +

ˆ t

0
δ0(Bs)ds.
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Heuristically,
´ t

0 δ0(Bs)ds measures the “amount of time” before t that the Brownian
motion is at the zero level. Of course this is not m({s ∈ [0, t] : Bs = 0}) (m is the
Lebesgue measure), because level sets of Brownian motion are Lebesgue null sets with
probability one. More precise, the term

´ t
0 δ0(Bs)ds should be understood as

ˆ t

0
δ0(Bs)ds = lim

ε↓0

1

2ε
m({s ∈ [0, t] : |Bs| < ε}), (5.38)

so it measures some kind of occupation density at the zero level.
This motivates the definition of a local time, and with which we can extend Itô’s

formula to functions with singularities. The theory of local times for Brownian motion
is a very rich subject, and it leads to a large amount of deep distributional properties
related to the Brownian motion. Here we only introduce the basic theory for local times
of general continuous semimartingales, and we will not touch those deep computational
aspects.

We start with the following result. Let Xt = X0 + Mt + At be a continuous semi-
martingale.

Theorem 5.19. Let f be a convex function on R1. Then there exists a unique {Ft}-
adapted process Aft with continuous, increasing sample paths vanishing at t = 0, such
that

f(Xt) = f(X0) +

ˆ t

0
f ′−(Xs)dXs +Aft ,

where f ′− is the left derivative of f. In particular, f(Xt) is a continuous semimartingale.

Proof. Let ρ ∈ C∞(R1) be a non-negative function with compact support on (−∞, 0]
and
´
R1 ρ(y)dy = 1. We can think of ρ as a mollifier. For each n > 1, define ρn(y) =

nρ(ny) and fn(x) ,
´
R1 f(x + y)ρn(y)dy. Then fn ∈ C∞(R1) and fn(x) → f(x) for

every x ∈ R1. Moreover, since f is convex, it is locally Lipschitz. Therefore, f ′ exists
almost everywhere and f ′− is locally bounded. By the dominated convergence theorem,
we have

f ′n(x) =

ˆ
R1

f ′−(x+ y)ρn(y)dy =

ˆ
R1

f ′−

(
x+

z

n

)
ρ(z)dz.

But we know that for a convex function f , f ′− is left continuous. As ρ is supported on
(−∞, 0], we conclude that f ′n(x)→ f ′−(x) for every x ∈ R1.

Now we define

τm ,

{
0, |X0| > m;

inf{t > 0 : |Xt| > m}, |X0| < m,

and X(m)
t , X01{|X0|<m}+M τm

t +Aτmt in the same way as in the proof of Itô’s formula.
Then each X(m) is a bounded continuous semimartingale. By applying Itô’s formula to
X(m) and the function fn, we have

fn

(
X

(m)
t

)
= fn

(
X

(m)
0

)
+

ˆ t

0
f ′n

(
X(m)
s

)
dX(m)

s +An,mt ,
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where An,mt , 1
2

´ t
0 f
′′
n

(
X

(m)
s

)
d
〈
X(m)

〉
s
. If we let n→∞, according to the stochastic

and ordinary dominated convergence theorems (c.f. Proposition 5.14), we conclude that

f
(
X

(m)
t

)
= f

(
X

(m)
0

)
+

ˆ t

0
f ′−

(
X(m)
s

)
dX(m)

s +Amt ,

where Amt , limn→∞A
n,m
t which has to exist. In addition, as {τm > 0} ↑ Ω and

X(m) = Xτm on {τm > 0}, by letting m→∞, we arrive that

f(Xt) = f(X0) +

ˆ t

0
f ′−(Xs)dXs +At,

where At , limm→∞A
m
t which also has to exist. Since fn is convex, we know that

f ′′n > 0. Therefore, An,mt is increasing in t for every n,m. This implies that At is
increasing in t. Therefore, we can simply define

Aft , f(Xt)− f(X0)−
ˆ t

0
f ′−(Xs)dXs, (5.39)

which is continuous and has to be a modification of At. A
f
t will be the desired process,

and uniqueness is obvious as it has to be given by the formula (5.39).

The reader might think that Theorem 5.19 is very general and the increasing process
Aft can depend on f in some complicated way. In fact, this is not true. The process Aft
can be written down in a very explicit way in terms of the local time of X which we are
going to define now.

We define sgn(x) = 1 if x > 0 and and sgn(x) = −1 if x 6 0. If f(x) = |x|, then
f ′−(x) = sgn(x).

Theorem 5.20 (Tanaka’s formula). For any real number a ∈ R1, there exists a unique
{Ft}-adapted process Lat with continuous, increasing sample paths vanishing at t = 0,
such that

|Xt − a| = |X0 − a|+
ˆ t

0
sgn(Xs − a)dXs + Lat ,

(Xt − a)+ = (X0 − a)+ +

ˆ t

0
1{Xs>a}dXs +

1

2
Lat ,

(Xt − a)− = (X0 − a)− −
ˆ t

0
1{Xs6a}dXs +

1

2
Lat .

In particular, |Xt − a|, (Xt − a)± are all continuous semimartingales.

Proof. We apply Theorem 5.19 for the function f(x) = |x − a| and define Lat , Aft in
the theorem. Then the first identity holds. Let Bt and Ct be the increasing processes
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arising from Theorem 5.19 applied to the functions (x− a)± respectively, i.e.

(Xt − a)+ = (X0 − a)+ +

ˆ t

0
1{Xs>a}dXs +Bt,

(Xt − a)− = (X0 − a)− −
ˆ t

0
1{Xs6a}dXs + Ct.

Adding the two identities gives Bt +Ct = Lat , while subtracting them gives Bt−Ct = 0
as

Xt = X0 +

ˆ t

0
dXs.

Therefore, Bt = Ct = Lat /2.

Definition 5.14. The process {Lat : t > 0} is called the local time at a of the continuous
semimartingale X.

Example 5.2. Let Bt be a one dimensional Brownian motion. Then the first identity in
Tanaka’s formula gives the Doob-Meyer decomposition for the submartingale |Bt − a|,
where the corresponding increasing process is the local time at a, and the martingale
part is |B0− a|+

´ t
0 sgn(Bs− a)dBs, which interestingly, is a Brownian motion starting

at |B0 − a| according to Lévy’s characterization theorem.

Since Lat is increasing in t, it defines a (random) measure dLa on [0,∞). The first
property of Lat is that the random measure dLa is almost surely carried by the set
Λa , {t > 0 : Xt = a}.

Proposition 5.21. With probability one, dLa(Λca) = 0.

Proof. By applying Itô’s formula to the continuous semimartingale |Xt− a| given by the
first identity of Tanaka’s formula and the function f(x) = x2, we have

(Xt − a)2 = (X0 − a)2 + 2

ˆ t

0
|Xs − a| · sgn(Xs − a)dXs

+2

ˆ t

0
|Xs − a|dLas + 〈X〉t

= (X0 − a)2 + 2

ˆ t

0
(Xs − a)dXs + 2

ˆ t

0
|Xs − a|dLas + 〈X〉t.

On the other hand, Itô’s formula applied to Xt − a and the same function f(x) = x2

gives that

(Xt − a)2 = (X0 − a)2 + 2

ˆ t

0
(Xs − a)dXs + 〈X〉t.

Therefore,
´ t

0 |Xs − a|dLas = 0 for all t > 0. This implies that dLa(Λca) = 0.

120



So far the local time process is defined for each given a ∈ R1. In order to obtain
more interesting results from the analysis of local times, we should first look for better
versions of Lat as a process in the pair (a, t). At the very least, we should expect a jointly
measurable version of Lat . This is the content of the next result.

Proposition 5.22. There exists a B(R1) ⊗ B([0,∞)) ⊗ F-measurable L̃ : (a, t, ω) 7→
L̃at (ω), such that for every a ∈ R1, the processes {L̃at : t > 0} and {Lat : t > 0} are
indistinguishable.

Proof. This is a direct consequence of the stochastic Fubini’s theorem (c.f. Problem
Sheet 5, Problem 3).

With this jointly measurable version of local time process (which is still denoted as
Lat ), we are able to prove the following so-called Itô-Tanaka’s formula. This result gives
an explicit formula for the process Aft arising from Theorem 5.19 in terms of the local
time Lat .

Theorem 5.21. Let f be a convex function on R1 and let Xt be a continuous semi-
martingale. Then

f(Xt) = f(X0) +

ˆ t

0
f ′−(Xs)dXs +

1

2

ˆ
R1

Latµ(da),

where µ is the second derivative measure of f on (R1,B(R1)) induced by µ([a, b)) ,
f ′−(b)− f ′−(a) for a < b. In particular, f(Xt) is a continuous semimartingale.

Proof. The main idea is to represent a convex function in some more explicit way. This
part involves some notions from generalized functions.

First assume that µ is compactly supported. Define the convex function

g(x) ,
1

2

ˆ
R1

|x− a|µ(da), x ∈ R1. (5.40)

We claim that f(x)−g(x) = αx+β for some α, β ∈ R1. To this end, it suffices to show
that µ = g′′ in the sense of distributions. Let ϕ ∈ C∞c (R1) be a smooth function with
compact support. Then

Tg′′(ϕ) = −
ˆ
R1

g′ϕ′dx =

ˆ
R1

gϕ′′dx

=
1

2

ˆ
R1

(ˆ
R1

|x− a|µ(da)

)
ϕ′′(x)dx

=
1

2

ˆ
R1

µ(da)

ˆ
R1

2δa(x)ϕ(x)dx

=

ˆ
R1

ϕ(a)µ(da),
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where we have used the fact that |x− a|′′ = 2δa(x) in the sense of distributions. There-
fore, the claim holds. Since the theorem is apparently true for any affine function αx+β
(in which case µ = 0), it remains to show that it is true for g given by (5.40).

Integrating the first identity of Tanaka’s formula with respect to µ and applying the
stochastic Fubini’s theorem (c.f. Problem Sheet 5, Problem 3), we have

g(Xt) = g(X0) +

ˆ t

0

(
1

2

ˆ
R1

sgn(Xs − a)µ(da)

)
dXs +

1

2

ˆ
R1

Latµ(da)

= g(X0) +

ˆ t

0
g′−(Xs)dXs +

1

2

ˆ
R1

Latµ(da).

Therefore, the theorem holds for g.
In general, if µ is not compactly supported, we define fn to be a convex function such

that fn = f on [−n, n] and its second derivative measure µn is compactly supported on
[−n, n]. By stopping along a sequence τn of stopping times, we then localize Xt inside
[−n, n] in the same way as in the proofs of Itô’s formula and Theorem 5.19. It follows
that the theorem holds for f on each [0, τn] provided {τn > 0}, and therefore holds
globally by letting n→∞.

Itô-Tanaka’s formula immediately gives the following so-called occupation times for-
mula.

Corollary 5.4. There exists a P-null set outside which we have
ˆ t

0
Φ(Xs)d〈X〉s =

ˆ
R1

Φ(x)Lxt dx (5.41)

for all t > 0 and all non-negative Borel measurable functions Φ.

Proof. Let Φ ∈ Cc(R1) be a non-negative continuous function with compact support.
Let f ∈ C2(R1) be a convex function whose second derivative is Φ. By comparing Itô’s
formula and Itô-Tanaka’s formula for f, we conclude that outside a P-null set NΦ,ˆ t

0
Φ(Xs)d〈X〉s =

ˆ
R1

Φ(x)Lxt dx, ∀t > 0. (5.42)

To obtain a single P-null set independent of Φ, let H = {Φq1,q2,q3,q4 : q1 < q2 < q3 <
q4 ∈ Q} be the countable family of functions defined by

Φq1,q2,q3,q4(x) ,


0, x 6 q1 or x > q4;
x−q1
q2−q1 , q1 < x < q2;

1, q2 6 x 6 q3;
q4−x
q4−q3 , q3 < x < q4.

Let N , ∪Φ∈HNΦ. Then N is a P-null set outside which (5.42) holds for all Φ ∈ H.
From a standard approximation argument, this is sufficient to conclude that (5.42) holds
for all non-negative Borel measurable functions.
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It is tempting to choose Φn → δa so that we obtain Lat =
´ t

0 δa(Xs)d〈X〉s, at least
in the sense of (5.38), which verifies the intuitive meaning of local time (in the Brownian
motion case) that we explained at the beginning. To do so, we need an even better
version of Lat .

Theorem 5.22. Suppose that Xt = X0 +Mt+At is a continuous semimartingale. Then
there exists a modification {L̃at : a ∈ R1, t > 0} of the process {Lat : a ∈ R1, t > 0},
such that with probability one, the map (a, t) 7→ L̃at (ω) is continuous in t and càdlàg in
a. Moreover, for each a ∈ R1,

L̃at − L̃a−t = 2

ˆ t

0
1{Xs=a}dAs = 2

ˆ t

0
1{Xs=a}dXs. (5.43)

In particular, if Xt is a continuous local martingale, then there is a bicontinuous modifi-
cation of the process {Lat : a ∈ R1, t > 0}.

Proof. We start with the jointly measurable modification Lat given by Proposition 5.22,
which allows us to integrate with respect to a. From the second identity of Tanaka’s
formula, we have

1

2
Lat = (Xt − a)+ − (X0 − a)+ −

ˆ t

0
1{Xs>a}dMs −

ˆ t

0
1{Xs>a}dAs. (5.44)

We first show that the family M̂a
t ,
´ t

0 1{Xs>a}dMs of continuous local martingales
possesses a bicontinuous modification in the pair (a, t). To this end, given T > 0, let
WT be the space of continuous paths on [0, T ], equipped with the uniform topology. It
suffices to show that, when restricted on t ∈ [0, T ], the WT -valued stochastic process
{M̂a : a ∈ R1} possesses a continuous modification in a.

Indeed, for given a < b and k > 1, the BDG inequalities (c.f. (5.20)) implies that

E
[

sup
06t6T

∣∣∣M̂a
t − M̂ b

t

∣∣∣2k] 6 CkE

[(ˆ T

0
1{a<Xs6b}d〈M〉s

)k]
. (5.45)

By applying the occupation times formula (c.f. (5.41)) to the function Φ = 1(a,b], the
right hand side of (5.45) is equal to

CkE

[(ˆ b

a
LxTdx

)k]
6 Ck(b− a)kE

[(
1

b− a

ˆ b

a
Lx∞dx

)k]

6 Ck(b− a)kE
[

1

b− a

ˆ b

a
(Lx∞)kdx

]
6 Ck(b− a)k sup

x∈R1

E[(Lx∞)k].

Now from (5.44), we can see that

Lx∞ 6 2

(
sup
t>0
|Xt −X0|+ sup

t>0

∣∣∣∣ˆ t

0
1{Xs>x}dMs

∣∣∣∣+

ˆ ∞
0

d‖A‖s
)
,
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where ‖A‖t is the total variation process of At. The BDG inequalities again implies that

E[(Lx∞)k] 6 C ′kE

[
sup
t>0
|Xt −X0|k + 〈M〉k/2∞ +

(ˆ ∞
0

d‖A‖s
)k]

.

Observe that the right hand side is independent of x. If it is finite, then our claim follows
from Kolmogorov’s continuity theorem with state space WT which is a complete metric
space. In general, we define

τn , inf

{
t > 0 : |Xt −X0|k + 〈M〉k/2t +

(ˆ t

0
d‖A‖s

)k
> n

}
.

Then the previous argument applied to the stopped process Xτn (note that in this case
the corresponding local time Lx∞ will be the local time of the stopped process) implies
that for each n, the family (M̂a)τn possesses a bicontinuous modification in (a, t) ∈
R1 × [0, T ]. We denote such modification as M̃a,n

t . Note that when a, n are fixed, the
relevant processes are always continuous in t. Therefore, for each given n > 1 and
a, t > 0,

M̃a,n+1
τn∧t = M̃a,n

t a.s. (5.46)

From the bicontinuity property, outside a single null set (5.46) holds for all n, a, t. In
particular, we are able to define a single process M̃a

t on R1× [0, T ] such that M̃a
t = M̃a,n

t

on [0, τn ∧ T ]. Of course M̃a
t is bicontinuous in (a, t) with probability one and it is a

modification of M̂a
t .

Now consider the family of pathwise integral processes Âat ,
´ t

0 1{Xs>a}dAs. Appar-
ently,

Âa−t = lim
ε↓0

ˆ t

0
1{Xs>a−ε}dAs =

ˆ t

0
1{Xs>a}dAs, (5.47)

Âa+
t = lim

ε↓0

ˆ t

0
1{Xs>a+ε}dAs =

ˆ t

0
1{Xs>a}dAs = Âat .

Since Âat is already continuous in t and càdlàg in a pathwisely, there is no way to improve
the continuity of Âat by taking a modification.

Therefore, there exists a modification L̃at of Lat which is continuous in t and càdlàg
in a with probability one. If Xt is a continuous local martingale, then A = 0 and we
obtain a bicontinuous modification.

It remains to show (5.43). The first part is clear from (5.47). To see the second part,
it suffices to show that ˆ t

0
1{Xs=a}dMs = 0, ∀t > 0,

for each given a. But from the occupation times formula applied to the function Φ =
1{a}, we know that

ˆ t

0
1{Xs=a}d〈M〉s =

ˆ t

0
1{Xs=a}d〈X〉s =

ˆ
R1

1{a}(x)L̃xt dx = 0, ∀t > 0.
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Therefore the result follows.

Remark 5.16. It is important to point out that in the presence of At, we cannot expect
a modification which is bicontinuous in (a, t) in general (a good example is illustrated
in Problem Sheet 5, Problem 7). However, such possible discontinuity is not a pure
effect of the presence of At. Indeed, if M = 0, by the occupation times formula we
have

´
R1 Φ(x)Lxt dx = 0 for all non-negative Borel measurable Φ. In particular, Lxt = 0

for almost every x ∈ R1. Since Lxt is càdlàg in x, we conclude that Lxt = 0 for all
(x, t). Therefore, the possible discontinuity of Lat in a is a consequence of the interaction
between the martingale part and the bounded variation part of X.

Remark 5.17. From the proof of Theorem 5.22, if X is a continuous local martingale,
we have indeed shown that there exists a modification L̃at of {Lat : a ∈ R1, t > 0}, such
that with probability one, a 7→ L̃at is locally γ-Hölder continuous uniformly on every finite
t-interval for every γ ∈ (0, 1/2) :

P

 sup
t∈[0,T ]

sup
0<|a−b|<C

∣∣∣L̃at − L̃bt∣∣∣
|a− b|γ

<∞

 = 1

for every T,C > 0 and γ ∈ (0, 1/2).

Now we use the version Lat of local time that we obtain in Theorem 5.22. Then we
have the following result which verifies (5.38) at the beginning.

Corollary 5.5. With probability one, we have

Lat = lim
ε↓0

1

ε

ˆ t

0
1[a,a+ε)(Xs)d〈X〉s ∀a ∈ R1, t > 0. (5.48)

If Xt is a continuous local martingale, we also have

Lat = lim
ε↓0

1

2ε

ˆ t

0
1(a−ε,a+ε)(Xs)d〈X〉s, ∀a ∈ R1, t > 0. (5.49)

In particular, in the Brownian motion case, (5.38) holds with the left hand side being the
local time at 0 of the Brownian motion.

Proof. From the occupation times formula, we know that with probability one,

1

ε

ˆ t

0
1[a,a+ε)(Xs)d〈X〉s =

1

ε

ˆ a+ε

a
Lxt dx, ∀a, t, ε.

But Lat is right continuous in a, so we have (5.48) by letting ε→ 0. If Xt is a continuous
local martingale, then Lat is continuous in a, in which case (5.49) follows from the same
reasoning but with Φ = 1(a−ε,a+ε) when applying the occupation times formula.

Although we are not going to touch any distributional properties related to local
times, we finish this section by stating an elegant result for the Brownian local time
along this direction. This result is due to Lévy. We refer the reader to [8] for the proof.
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Theorem 5.23. Let Bt be a one dimensional Brownian motion, and let Lt be the local
time at 0 of B. Then the two-dimensional processes {(St − Bt, St) : t > 0} and
{(|Bt|, Lt) : t > 0} have the same distribution, where St , max06s6tBs is the running
maximum of B.
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6 Stochastic differential equations

Consider a second order differential operator A over Rn of the form

A =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
.

There are two fundamental questions one could ask in general:
(1) How can we construct a Markov process (or more precisely, a Markov family

((Ω,F ,P), {Xx
t ,Ft : x ∈ Rn, t > 0})) with A being its infinitesimal generator, in the

sense that
lim
t→0

1

t
(E[f(Xx

t )]− f(x)) = (Af)(x), ∀x ∈ Rn,

for all f ∈ C2
b (Rn)?

(2) How can we construct the fundamental solution to the parabolic PDE ∂u
∂t −Au =

0?
The first question is purely probabilistic and the second one is purely analytic. How-

ever, to some extent, these two questions are indeed equivalent. If a Markov family solves
Question (1) with a nice transition probability density function p(t, x, y) , P(Xx

t ∈
dy)/dy, then p(t, x, y) solves Question (2). Conversely, if p(t, x, y) is a solution to
Question (2), then a standard Kolmogorov’s extension argument allows us to construct
a Markov family on path space which solves Question (1).

It was Lévy who suggested a purely probabilistic approach to study these questions,
and Itô carried out this program in a series of far-reaching works. The philosophy of
this approach can be summarized as follows. Let a = σσ∗ for some matrix σ. Suppose
that there exists a stochastic process Xt which solves the following stochastic differential
equation (in matrix notation):{

dXx
t = σ(Xx

t )dBt + b(Xx
t )dt, t > 0,

X0 = x,

which is of course understood in Itô’s integral sense. Then the family {Xx
t } solves

Question (1), or equivalently, the probability density function p(t, x, y) , P(Xx
t ∈ dy)/dy

solves Question (2) provided that it exists and is reasonably regular. The existence and
regularity of the density p(t, x, y) is a rich subject under the framework of Malliavin’s
calculus, in which the theory is well developed in the case when A is a hypoelliptic
operator. The reader may consult [10] for a nice introduction to this theory.

This general discussion provides us with a natural motivation to study the theory of
stochastic differential equations in depth. This is the main focus of the present section.

6.1 Itô’s theory of stochastic differential equations

We start with Itô’s classical approach.
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Recall that (Wn,B(Wn)) is the space of continuous paths in Rn, equipped with a
metric ρ defined by (1.3) which characterizes uniform convergence on compact intervals.
We use {Bt(Wn)} to denote the natural filtration of the coordinate process on Wn.

In its full generality, we are interested in a stochastic differential equation (we simply
call it an SDE hereafter) of the form

dXt = α(t,X)dBt + β(t,X)dt. (6.1)

Here Bt is a d-dimensional Brownian motion, Xt is an n-dimensional continuous stochas-
tic process, α, β are maps defined on [0,∞)×Wn taking values in Mat(n, d) (the space
of real n × d matrices) and in Rn respectively. Note that α, β here can depend on the
whole trajectory of X, and we write X to emphasize that it is a random variable taking
values in Wn.

From now on, when we are concerned with an SDE of the form (6.1), we always
make the following measurability assumption on the coefficients α and β.

Assumption 6.1. Regarded as stochastic processes defined on (Wn,B(Wn)), α and β
are {Bt(Wn)}-progressively measurable.

Remark 6.1. Recall from the solution of Problem Sheet 2, Problem 6 that A ∈ Bt(Wn)
if and only if for any two w,w′ ∈ Wn, if w ∈ A, w = w′ on [0, t], then w′ ∈ Bt(Wn).
Given t > 0, consider

A , {w ∈Wn : α(t, w) = α(t, wt)} ∈ Bt(Wn),

where wt , (wt∧s)s>0 is the path obtained by stopping w at t. For every w ∈Wn, since
w = wt on [0, t] and wt ∈ A, we conclude that w ∈ A. Therefore, α(t, w) = α(t, wt)
for every (t, w) ∈ [0,∞)×Wn. Similar result holds for β.

Remark 6.2. If Xt is a progressively measurable process defined on some filtered proba-
bility space, then the process α(t,X) is progressively measurable. Similar result is true
for β(t,X).

Now we can talk about the meaning of solutions to (6.1). Unlike ordinary differential
equations, the meaning of an SDE is not just about a solution process itself; it should also
involve the underlying filtered probability space together with a Brownian motion. This
leads to two notions of solutions: strong and weak solutions. Heuristically, being solutions
in the strong sense means that we are solving the SDE on a given filtered probability space
with a given Brownian motion on it, while being solutions in the weak sense means that
the SDE is solvable on some filtered probability space with some Brownian motion on it.
In the strong setting, we are particularly interested in how a solution can be constructed
from the given initial data and the given Brownian motion. In the weak setting, we
are mainly interested in distributional properties of the solution process and do not care
what the underlying space and Brownian motion are (they can be arbitrary as long as
the equation is verified). From the next subsection, we will discuss the strong and weak
notions of solutions in detail .
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As an introduction to the theory, we start with Itô’s classical approach which falls
in the context of strong solutions. Therefore, we assume that (Ω,F ,P; {Ft}) is a given
filtered probability space which satisfies the usual conditions, and Bt is an {Ft}-Brownian
motion. Suppose that the coefficients α, β satisfy Assumption 6.1.

Itô’s theory, which is essentially an L2-theory, asserts that the SDE (6.1) is uniquely
solvable for any given initial data ξ ∈ L2(Ω,F0,P), provided that the coefficients satisfy
the Lipschitz condition and have linear growth.

Theorem 6.1. Suppose that the coefficients α, β satisfy the following two conditions:
there exists a constant K > 0, such that

(1) (Lipschitz condition) for any w,w′ ∈Wn and t > 0,

‖α(t, w)− α(t, w′)‖+ ‖β(t, w)− β(t, w′)‖ 6 K(w − w′)∗t ; (6.2)

(2) (linear growth condition) for any w ∈Wn and t > 0,

‖α(t, w)‖+ ‖β(t, w)‖ 6 K(1 + w∗t ), (6.3)

where w∗t , sups6t |ws| is the running maximum of w. Then for any initial data ξ ∈
L2(Ω,F0,P), there exists a unique continuous, {Ft}-adapted process Xt in Rn, such
that

Xi
t = ξ +

d∑
k=1

ˆ t

0
αik(s,X)dBk

s +

ˆ t

0
βi(s,X)ds, t > 0, 1 6 i 6 n. (6.4)

In addition, for each T > 0, there exists some constant CT,K depending only on T , K
and dimensions, such that

E[(X∗T )2] 6 CT,K(1 + E[|ξ|2]), t > 0. (6.5)

In particular, the martingale part of Xt is a square integrable {Ft}-martingale.

The key ingredient in proving the theorem is the following estimate. Although here
we only need the case when p = 2, the estimate for arbitrary p is quite useful for many
purposes.

Lemma 6.1. Let Xt = (X1
t , · · · , Xn

t ) be a vector of continuous semimartingales of the
form

Xt = ξ +

ˆ t

0
αsdBs +

ˆ t

0
βsds, (6.6)

provided the integrals are well defined in the appropriate sense, where (6.6) is written
in the matrix form. Then for each T > 0 and p > 2, there exists some constant CT,p
depending only on T , p and dimensions, such that

E[(X∗t )p] 6 CT,p

(
E[|ξ|p] + E

[ˆ t

0
(‖αs‖p + ‖βs‖p) ds

])
, 0 6 t 6 T,

where X∗t , sups6t |Xs|.
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Proof. Note that

(X∗t )p 6 Cp

(
|ξ|p + sup

06s6t

∣∣∣∣ˆ s

0
αudBu

∣∣∣∣p +

(ˆ t

0
‖βu‖du

)p)
.

The result then follows easily from the BDG inequalities (c.f. (5.20)) and Hölder’s
inequality.

Coming back to Theorem 6.1, we first prove uniqueness. It then allows us to patch
solutions defined on finite intervals to obtain a global solution defined on [0,∞).

Similar to ordinary differential equations, uniqueness is usually obtained by applying
the following Gronwall’s inequality.

Lemma 6.2. Let g : [0, T ]→ [0,∞) be a non-negative, continuous function defined on
[0, T ]. Suppose that

g(t) 6 c(t) + k

ˆ t

0
g(s)ds, 0 6 t 6 T, (6.7)

for some k > 0 and some integrable c : [0, T ]→ R1. Then

g(t) 6 c(t) + k

ˆ t

0
c(s)ek(t−s)ds, 0 6 t 6 T.

Proof. From (6.7), we have

g(t) 6 c(t) + k

ˆ t

0

(
c(s) + k

ˆ s

0
g(u)du

)
ds

= c(t) + k

ˆ t

0
c(s)ds+ k2

ˆ
0<u<s<t

g(u)duds

= c(t) + k

ˆ t

0
c(s)ds+ k2

ˆ t

0
g(u)(t− u)du.

By applying (6.7) inductively, for every m > 1, we have

g(t) 6 c(t) +

m∑
l=1

kl
ˆ t

0

c(s)(t− s)l−1

(l − 1)!
ds+ km+1

ˆ t

0

(t− s)m

m!
g(s)ds. (6.8)

Since g is continuous on [0, T ], we know that it is bounded on [0, T ]. Therefore, the last
term of (6.8) tends to zero as n → ∞. As c is integrable on [0, T ], it follows from the
dominated convergence theorem that

g(t) 6 c(t) + k

ˆ t

0
c(s)ek(t−s)ds.
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Now suppose that X,Y are two solutions to the SDE (6.1) (i.e. satisfying Theorem
6.1), so in matrix form we have

Xt = ξ +

ˆ t

0
α(s,X)dBs +

ˆ t

0
β(s,X)ds,

Yt = ξ +

ˆ t

0
α(s, Y )dBs +

ˆ t

0
β(s, Y )ds.

Define τm , inf{t > 0 : |Xt − Yt| > m}. Then we have

(X − Y )τmt =

ˆ t

0
(α(s,X)− α(s, Y ))1[0,τm]dBs

+

ˆ t

0
(β(s,X)− β(s, Y ))1[0,τm]ds.

By applying Lemma 6.1 in the case when p = 2 and the Lipschitz condition (6.2), we
conclude that for every given T > 0,

E
[(

(X − Y )∗t∧τm
)2]

6 CT,K

ˆ t

0
E
[(

(X − Y )∗s∧τm
)2]

ds, ∀0 6 t 6 T.

Now define
f(t) = E

[(
(X − Y )∗t∧τm

)2]
, t ∈ [0, T ].

From the dominated convergence theorem, we easily see that f is non-negative and
continuous on [0, T ]. Therefore, according to Gronwall’s inequality (c.f. Lemma 6.2),
f = 0. As τm ↑ ∞, we conclude that X = Y on [0, T ], which implies that X = Y as T
is arbitrary.

Now we consider existence. From the uniqueness part, it suffices to show existence
on every finite interval [0, T ]. Indeed, if X(T ) satisfies (6.4) on [0, T ], then the uniqueness
argument will imply that X(T+1) = X(T ) on [0, T ], which allows us to define a single
process X such that X = X(T ) on [0, T ]. In view of Remark 6.1, we see that

α(s,X) = α(s,Xs) = α
(
s,
(
X(T )

)s)
= α

(
s,X(T )

)
for every s 6 T, and similar result is true for β. Therefore, X is a global solution to the
SDE (6.1) in the sense of Theorem 6.1.

For fixed T > 0, define L2
T to be the space of all continuous, {Ft}-adapted processes

Xt on [0, T ] such that E[(X∗T )2] <∞ (technically we define Xt , XT for t > T so that
Xt is well defined on [0,∞)). Then L2

T is a Banach space. Indeed, if X(m) is a Cauchy
sequence in L2

T , then along a subsequence mk we have

E
[

sup
06t6T

∣∣∣X(mk+1)
t −X(mk)

t

∣∣∣2] < 1

2k
, ∀k > 1.

From Chebyshev’s inequality and the first Borel-Cantelli’s lemma, we know that with
probability one, X(mk) is a Cauchy sequence in the space of continuous paths on [0, T ]
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under uniform topology. Therefore, with probability one, X(mk)
t converges to some

continuousXt uniformly on [0, T ]. It is apparent thatXt is {Ft}-adapted and E[(X∗T )2] <
∞. Moreover, from Fatou’s lemma, we have

lim
m→∞

E
[

sup
06t6T

∣∣∣X(m)
t −Xt

∣∣∣2] 6 lim
m→∞

lim inf
k→∞

E
[

sup
06t6T

∣∣∣X(m)
t −X(mk)

t

∣∣∣2] = 0.

Therefore, L2
T is a Banach space. For t 6 T, we denote ‖X‖t ,

√
E[(X∗t )2].

The proof of existence on [0, T ] is a standard Picard’s iteration argument. Therefore
we consider the map R : L2

T → L2
T defined by

(RX)t , ξ +

ˆ t

0
α(s,X)dBs +

ˆ t

0
β(s,X)ds, t ∈ [0, T ].

Similar to the uniqueness argument, Lemma 6.1 and the Lipschitz condition show that

‖RX −RY ‖2t 6 CT,K

ˆ t

0
‖X − Y ‖2sds, ∀0 6 t 6 T. (6.9)

Now define X(0) , ξ, and for each m > 1, define X(m) , RX(m−1). By the linear
growth condition (6.3), It is apparent that

‖X(1) −X(0)‖2T 6 CT,K(1 + E[|ξ|2]).

In addition, from (6.9), we have

‖X(m+1) −X(m)‖2T 6 CT,K

ˆ T

0
‖X(m) −X(m−1)‖2sds

· · ·

6 CmT,K

ˆ
0<s1<···<sm<T

‖X(1) −X(0)‖2s1ds1 · · · dsm

6
Cm+1
T,K Tm

m!
(1 + E[|ξ|2]). (6.10)

Since the right hand side of (6.10) is summable, we conclude that X(m) is a Cauchy
sequence in L2

T . Suppose that X = limn→∞X
(m) in L2

T . It follows that

‖X −RX‖T 6 ‖X −X(m)‖T + ‖X(m) −RX(m)‖T + ‖RX(m) −RX‖T .

Combining with (6.9), (6.10) and the fact that X(m+1) = RX(m), we conclude that
X = RX, which shows that X is a solution to the SDE (6.1) on [0, T ].

Finally, since X ∈ L2
T , (6.5) follows immediately from Lemma 6.1 and Gronwall’s

inequality.
Now the proof of Theorem 6.1 is complete.
Let us take a second thought on the proof of Theorem 6.1. On the one hand,

to expect (pathwise) uniqueness, we can see that some kind of Lipschitz condition is
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necessary. Because of localization, this part does not really rely on the integrability of
solution. On the other hand, in the existence part, it is not so clear whether the Lipschitz
condition is playing a crucial role as the fixed point argument is certainly not the only
way to obtain existence. Moreover, in the previous argument we can see that the square
integrability of ξ does play an important role for the existence. It is not so clear from the
argument whether existence still holds if ξ is simply an F0-measurable random variable.

Therefore, to some extent, it is more fundamental to separate the study of existence
and uniqueness in different contexts, and to understand how they are combined to give
a single well-posed theory of SDE. This leads us to the realm of Yamada-Watanabe’s
theory.

6.2 Different notions of solutions and the Yamada-Watanabe theorem

In this subsection, we study different notions of existence and uniqueness for an SDE,
which are all very natural and important on their own. Then we present the fundamental
theorem of Yamada and Watanabe, which outlines the structure of the theory of SDEs.

We first make the following convention.

Definition 6.1. By a set-up ((Ω,F ,P; {Ft}), ξ, Bt), we mean that
(1) (Ω,F ,P; {Ft}) is a filtered probability space which satisfies the usual conditions;
(2) ξ is an F0-measurable random variable;
(3) Bt is a d-dimensional {Ft}-Brownian motion.

Now let α : [0,∞) ×Wn → Mat(n, d) and β : [0,∞) ×Wn → Rn be two maps
satisfying Assumption 6.1. We are interested in an SDE of the general form (6.1). For
simplicity, we always use matrix notation in writing our equations.

Motivated from Itô’s classical result, it is natural to introduce the following definition
in the strong sense.

Definition 6.2. We say that the SDE (6.1) is (pathwise) exact if on any given set-up
((Ω,F ,P; {Ft}), ξ, Bt), there exists exactly one (up to indistinguishability) continuous,
{Ft}-adapted n-dimensional process Xt, such that with probability one,

ˆ t

0

(
‖α(s,X)‖2 + ‖β(s,X)‖

)
ds <∞, ∀t > 0, (6.11)

and

Xt = ξ +

ˆ t

0
α(s,X)dBs +

ˆ t

0
β(s,X)ds, t > 0. (6.12)

As we mentioned at the end of last subsection, it is even not clear if exactness is
true in Itô’s setting (i.e. under the conditions in Theorem 6.1) although we do have
uniqueness. Therefore, it is a fundamental problem to understand how one can prove
exactness in general. Before doing so, we need to introduce different notions of existence
and uniqueness, which are all important and natural on their own.
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Definition 6.3. Let µ be a probability measure on Rn. We say that the SDE (6.1) has
a weak solution with initial distribution µ if there exists a set-up ((Ω,F ,P; {Ft}), ξ, Bt)
together with a continuous, {Ft}-adapted n-dimensional process Xt, such that

(1) ξ has distribution µ;
(2) Xt satisfies (6.11) and (6.12).
If for every probability measure µ on Rn, the SDE (6.1) has a weak solution with

initial distribution µ, we say that it has a weak solution.

From Definition 6.3, a weak solution is the existence of a set-up on which the SDE
is satisfied in Itô’s integral sense. A particular feature of a weak solution is that we have
large flexibility on choosing a set-up; it could be any set-up as long as conditions (1)
and (2) are verified on it. Therefore, in some sense a weak solution only reflects its
distributional properties.

Corresponding to weak solutions, we have the notion of uniqueness in law.

Definition 6.4. We say that the solution to the SDE (6.1) is unique in law if whenever
Xt and X ′t are two weak solutions (possibly defined on two different probability set-ups)
with the same initial distributions, they have the same law on Wn.

In contrast to the weak formulation, we have another (strong) notion of uniqueness.

Definition 6.5. We say that pathwise uniqueness holds for the SDE (6.1) if the fol-
lowing statement is true. Given any set-up ((Ω,F ,P; {Ft}), ξ, Bt), if Xt and X ′t are
two continuous, {Ft}-adapted n-dimensional process satisfying (6.11) and (6.12), then
P(Xt = X ′t ∀t > 0) = 1.

It is part of the Yamada-Watanabe theorem that pathwise uniqueness implies unique-
ness in law (c.f. Theorem 6.2 below). However, the converse is not true and the following
is a famous counterexample due to Tanaka.

Example 6.1. Consider the one dimensional SDE

dXt = σ(Xt)dBt (6.13)

where σ(x) = −1 if x 6 0 and σ(x) = 1 if x > 0.
Suppose that Xt is a weak solution with initial distribution µ on some given set-up

((Ω,F ,P; {Ft}), ξ, Bt), so that we have

Xt = ξ +

ˆ t

0
σ(Xs)dBs.

Since
´ t

0 σ(Xs)dBs is an {Ft}-Brownian motion according to Lévy’s characterization
theorem, we see immediately that the distribution of X is uniquely determined by µ and
the law of Brownian motion. Therefore, uniqueness in law holds. Moreover, for given
initial distribution µ, let ((Ω,F ,P; {Ft}), ξ, Bt) be an arbitrary set-up in which ξ has
distribution µ. Define Xt , ξ + Bt and let B̃t ,

´ t
0 σ(Xs)dBs. Lévy’s characterization
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theorem again tells us that B̃t is an {Ft}-Brownian motion, and the associativity of
stochastic integrals implies that

Xt = ξ +

ˆ t

0
σ(Xs)dB̃s.

Therefore, the SDE (6.13) has a weak solution.
However, pathwise uniqueness does not hold. Indeed, suppose thatXt =

´ t
0 σ(Xs)dBs

on some set-up (so X0 = 0 in this case). According to the occupation time formula (c.f.
(5.41)), we know that

´ t
0 1{Xs=0}ds = 0, which implies that

´ t
0 1{Xs=0}dBs = 0. There-

fore, (−Xt) =
´ t

0 σ(−Xs)dBs. This shows that pathwise uniqueness fails as X 6= −X.

Now we can state the renowned Yamada-Watanabe theorem which has far-reaching
consequences. The proof is beyond the scope of the course and hence omitted. The
interested reader may consult N. Ikeda and S. Watanabe, Stochastic differential equations
and diffusion processes, 1989 for basically the original proof.

Theorem 6.2. The SDE (6.1) is exact if and only if it has a weak solution and pathwise
uniqueness holds. In addition, pathwise uniqueness implies uniqueness in law.

If we have an exact SDE, it is natural to expect that there is some universal way
to produce the unique solution (as the output) whenever an initial data and a Brownian
motion are given (as the input), regardless of the set-up we are working on. In other
words, it is natural to look for a single function F : Rn ×W d →Wn, such that on any
given set-up ((Ω,F ,P; {Ft}), ξ, Bt), X , F (ξ,B) produces the unique solution. This
is indeed the original spirit of Yamada and Watanabe.

Definition 6.6. A function F : Rn ×W d → Wn is called Ê(Rn ×W d)-measurable
if for any probability measure µ on Rn, there exists a function Fµ : Rn × W d →

Wn which is B(Rn ×W d)
µ×PW

/B(Wn)-measurable, where PW is the distribution of

Brownian motion and B(Rn ×W d)
µ×PW

is the µ × PW -completion of B(Rn × W d),
such that for µ-almost all x ∈ Rn, we have

F (x,w) = Fµ(x,w) for PW − almost all w ∈W d.

If ξ is an Rn-valued random variable with distribution µ and Bt is a Brownian motion,
we set F (ξ,B) , Fµ(ξ,B).

Definition 6.7. We say that the SDE (6.1) has a unique strong solution if there exists
an Ê(Rn ×W d)-measurable function F : Rn ×W d →Wn, such that:

(1) for every fixed x ∈ Rn, w 7→ F (x,w) is Bt(W d)
PW
/Bt(Wn)-measurable for each

t > 0;
(2) given any set-up ((Ω,F ,P; {Ft}), ξ, Bt), X , F (ξ,B) is a continuous, {Ft}-

adapted process which satisfies (6.11) and (6.12);
(3) for any continuous, {Ft}-adapted process Xt satisfying (6.11) and (6.12) on a

given set-up ((Ω,F ,P; {Ft}), ξ, Bt), we have X = F (ξ,B) almost surely.
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The following elegant result puts the philosophy of “constructing the unique solution
out of initial data and Brownian motion in a universal way” on firm mathematical basis.
This is essentially another form of the Yamada-Watanabe theorem.

Theorem 6.3. The SDE (6.1) is exact if and only if it has a unique strong solution.

6.3 Existence of weak solutions

The Yamada-Watanabe theorem tells us that the structure of exactness is very simple:
we only need to study weak existence and pathwise uniqueness independently, and they
combine to give exactness.

We first study weak existence in this subsection. The main result is that (surprisingly)
continuity of coefficients is sufficient to guarantee weak existence (up to an intrinsic
explosion time), and it has nothing to do with any Lipschitz property (compare Theorem
6.1 in Itô’s theory).

In general, the weak existence has an elegant martingale characterization, which is
known as Stroock and Varadhan’s martingale problem. Let α, β be the coefficients of
the SDE (6.1) which satisfy Assumption 6.1. We define the generator A of the SDE in
the following way: for f ∈ C2

b (Rn) (the space of twice continuously differentiable with
bounded derivatives of up to second order), define Af to be the function on [0,∞)×Wn

given by

(Af)(t, w) ,
1

2

n∑
i,j=1

aij(t, w)
∂2f

∂xi∂xj
(wt)

+
n∑
i=1

βi(t, w)
∂f

∂xi
(wt), (t, w) ∈ [0,∞)×Wn, (6.14)

where a is the n× n matrix defined by a , αα∗.
Suppose that Xt satisfies (6.11) and (6.12) on a given set-up ((Ω,F ,P; {Ft}), ξ, Bt).

For any f ∈ C2
b (Rn), according to Itô’s formula, we have

f(Xt) = f(ξ) +
n∑
i=1

d∑
k=1

ˆ t

0

∂f

∂xi
(Xs)α

i
k(s,X)dBk

s +
n∑
i=1

ˆ t

0

∂f

∂xi
(Xs)β

i(s,X)ds

+
1

2

n∑
i,j=1

d∑
k=1

ˆ t

0

∂2f

∂xi∂xj
(Xs)α

i
k(s,X)αjk(s,X)ds.

Therefore,

f(X·)− f(ξ)−
ˆ ·

0
(Af)(s,X)ds ∈Mloc

0 (6.15)

on (Ω,F ,P; {Ft}).
Conversely, suppose that Xt is a continuous, {Ft}-adapted process defined on a given

filtered probability space (Ω,F ,P; {Ft}) satisfying the usual conditions, such that (6.11)
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and (6.15) hold for every f ∈ C2
b (Rn) (of course with ξ = X0). Let

Mt , Xt −X0 −
ˆ t

0
β(s,X)ds, t > 0.

For each R > 0, define f iR ∈ C2
b (Rn) to be such that f iR(x) = xi if |x| 6 R. Let

σR , inf

{
t > 0 : |Xt| > R or

∣∣∣∣ˆ t

0
βi(s,X)ds

∣∣∣∣ > R

}
.

From (6.15), we know that(
M i
)σR = f iR(XσR∧·)− f

i
R(X0)−

ˆ σR∧·

0
βi(s,X)ds ∈Mloc

0 .

But (M i)σR is uniformly bounded, so (M i)σR is indeed a martingale. Since σR ↑ ∞ as
R→∞, we conclude that M i ∈Mloc

0 .
Similarly, by considering f ijR ∈ C2

b (Rn) with f ijR (x) = xixj when |x| 6 R, and by
defining σR in a similar way but for f ijR , we know that

N ij
· , Xi

·X
j
· −Xi

0X
j
0 −
ˆ ·

0
aij(s,X)ds−

ˆ ·
0

(Xi
sβ

j(s,X) +Xj
sβ

i(s,X))ds ∈Mloc
0 .

(6.16)
On the other hand, from the integration by parts formula, we have

Xi
tX

j
t = Xi

0X
j
0 +

ˆ t

0
Xi
sdX

j
s +

ˆ t

0
Xj
sdX

i
s + 〈Xi, Xj〉t

= Xi
0X

j
0 +

ˆ t

0
Xi
sdM

j
s +

ˆ t

0
Xj
sdM

i
s

+

ˆ t

0
Xi
sβ

j(s,X)ds+

ˆ t

0
Xj
sβ

i(s,X)ds+ 〈M i,M j〉. (6.17)

By comparing (6.16) and (6.17), we conclude that

〈M i,M j〉t =

ˆ t

0
aij(s,X)ds.

According to the martingale representation theorem for general filtrations (c.f. Theorem
5.14), possibly on an enlargement of (Ω,F ,P; {Ft}), we have

Mt =

ˆ t

0
α(s,X)dBs

for some Brownian motion Bt. Therefore,

Xt = X0 +

ˆ t

0
α(s,X)dBs +

ˆ t

0
β(s,X)ds.

To summarize, we have proved the following result.
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Theorem 6.4. Let µ be a probability measure on Rn. Then the SDE (6.1) has a weak so-
lution with initial distribution µ if and only if there exists a continuous, {Ft}-adapted pro-
cess n-dimensional process Xt defined on some filtered probability space (Ω,F ,P; {Ft})
which satisfies the usual conditions, such that X0 has distribution µ, and (6.11) and
(6.15) hold for every f ∈ C2

b (Rn).

There is yet a more intrinsic way to formulate the martingale characterization de-
scribed in Theorem 6.4. Recall that (Wn,B(Wn)) is the continuous path space over Rn,
and {Bt(Wn)} is the natural filtration of the coordinate process.

Theorem 6.5. Let µ be a probability measure on Rn. Then the SDE (6.1) has a weak
solution with initial distribution µ if and only if there exists a probability measure Pµ on
(Wn,B(Wn)), such that:

(1) Pµ(w0 ∈ Γ) = µ(Γ) for every Γ ∈ B(Rn);
(2) Pµ-almost surely, we have

ˆ t

0

(
‖α(s, w)‖2 + ‖β(s, w)‖

)
ds <∞, ∀t > 0;

(3) for every f ∈ C2
b (Rn), under Pµ we have

f(w·)− f(w0)−
ˆ ·

0
(Af)(s, w)ds ∈Mloc

0 (Ht(Wn)),

where {Ht(Wn)} is the usual augmentation of {Bt(Wn)} under Pµ.

Proof. Sufficiency is already proved before.
Now we consider necessity. Suppose that Xt is a continuous, {Ft}-adapted process

on some (Ω,F ,P; {Ft}) satisfying the usual conditions, such that X0 has distribution
µ, and (6.11) and (6.15) hold for every f ∈ C2

b (Rn). Consider the distribution PX of
X on (Wn,B(Wn)). Apparently, (1) and (2) are satisfied for PX . To see (3), given
f ∈ C2

b (Rn), define

σR , inf

{
t > 0 :

∣∣∣∣ˆ t

0
(Af)(s,X)ds

∣∣∣∣ > R

}
on Ω, and consider the stopped process

Yt , f(XσR∧t)− f(X0)−
ˆ σR∧t

0
(Af)(s,X)ds.

Yt is indeed an {Ft}-martingale since it is uniformly bounded. Correspondingly, define

τR , inf

{
t > 0 :

∣∣∣∣ˆ t

0
(Af)(s, w)ds

∣∣∣∣ > R

}
on Wn, and consider the stopped process

138



zt , f(wτR∧t)− f(w0)−
ˆ τR∧t

0
(Af)(s, w)ds

which is also uniformly bounded. Now a crucial observation is that σR and Y are de-
termined by X pathwisely. Therefore, for Λ ∈ Hs(Wn), since {Ft} satisfies the usual
conditions, we have X−1Λ ∈ Fs, andˆ

Λ
ztdPX =

ˆ
X−1Λ

YtdP =

ˆ
X−1Λ

YsdP =

ˆ
Λ
zsdPX .

This shows that zt is an {Ht(Wn)}-martingale under PX . As τR ↑ ∞, we conclude that
(3) holds.

Remark 6.3. If we assume that the coefficients α, β are bounded, then all the relevant
local martingale properties in the previous discussion become true martingale properties,
and
´ t

0 (Af)(s, w)ds is finite for every (t, w) ∈ [0,∞)×Wn. In this case, we do not need
to pass to the usual augmentation, and (3) is equivalent to the following statement: for
every f ∈ C2

b (Rn), the process

mf
t , f(wt)− f(w0)−

ˆ t

0
(Af)(s, w)ds

is a {Bt(Wn)}-martingale under Pµ. Indeed, the only missing gap is perhaps the fact
that mf

t is a {Bt(Wn)}-martingale if and only if it is an {Ht(Wn)}-martingale, which
can be shown easily by using the discrete backward martingale convergence theorem.

In view of Theorem 6.5, there are lots of advantages working on the path space. For
instance, it has a nice metric structure, and we can apply the powerful tools of weak
convergence and regular conditional expectations. The search of a probability measure
Pµ on (Wn,B(Wn)) satisfying (1), (2), (3) in Theorem 6.5 is known as the martingale
problem.

As a byproduct, we have indeed proved the following nice result.

Corollary 6.1. (1) A continuous, {Ft}-adapted process Xt on (Ω,F ,P; {Ft}) satisfying
the usual conditions in an {Ft}-Brownian motion if and only if X0 = 0 almost surely and

f(Xt)− f(X0)− 1

2

ˆ t

0
(∆f)(Xs)ds

is an {Ft}-martingale for every f ∈ C2
b (Rn).

(2) A probability measure P on (Wn,B(Wn)) is the n-dimensional Wiener measure
if and only if P(w0 = 0) = 1 and

f(wt)− f(w0)− 1

2

ˆ t

0
(∆f)(ws)ds

is an {Bt(Wn)}-martingale under P for every f ∈ C2
b (Rn).
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By the same reasoning, it is easy to show that uniqueness in law holds if and only if
for every probability measure µ on Rn, there exists at most one probability measure on
(Wn,B(Wn)) which satisfies (1), (2), (3) in Theorem 6.5. Remark 6.3 also applies for
the uniqueness.

We will appreciate the power of the martingale characterization of weak existence in
the following general result.

Theorem 6.6. Suppose that α, β satisfy Assumption 6.1, and they are bounded and
continuous. Then for any probability measure µ on Rn with compact support, the SDE
(6.1) has a weak solution with initial distribution µ.

Proof. For m > 1, define αm : [0,∞)×Wn → Mat(n, d) by αm(t, w) , α(φm(t), w),
where φm(t) is the unique dyadic partition point k/2m such that k/2m 6 t < (k+1)/2m.
Define βm similarly. Now we construct a weak solution to the SDE with coefficients
αm, βm with initial distribution µ explicitly.

Let ((Ω,F ,P; {Ft}), ξ, Bt) be a set-up in which ξ has distribution µ. Define a process
X

(m)
t inductively in the following way. Set X(m)

0 , ξ. If X(m)
t is defined for t 6 k/2m,

then for t ∈ [k/2m, (k + 1)/2m], define

X
(m)
t , X

(m)
k/2m + α

(
k

2m
, X(m,k)

)
(Bt −Bk/2m) + β

(
k

2m
, X(m,k)

)(
t− k

2m

)
,

where X(m,k) is the stopped process defined by

X
(m,k)
t ,

{
X

(m)
t , t 6 k/2m;

X
(m)
k/2m , t > k/2m.

It follows from Remark 6.1 that

α

(
k

2m
, X(m,k)

)
= αm

(
t,X(m)

)
, β

(
k

2m
, X(m,k)

)
= βm

(
t,X(m)

)
,

provided that t ∈ [k/2m, (k + 1)/2m]. In particular, we conclude that

X
(m)
t = ξ +

ˆ t

0
αm

(
s,X(m)

)
dBs +

ˆ t

0
βm

(
s,X(m)

)
ds, t > 0.

In other words, X(m)
t is a weak solution to the SDE with coefficients αm, βm with

initial distribution µ. Now define P(m) to be the distribution of X(m) on (Wn,B(Wn)).
According to Theorem 6.5 and Remark 6.3, we know that for given f ∈ C2

b (Rn), the
process

f(wt)− f(w0)−
ˆ t

0
(Amf)(u,w)ds

is a {Bt(Wn)}-martingale under P(m), where the differential operator Am is defined by
(6.14) in terms of the coefficients αm, βm.

140



In addition, given constants γ, p > 1, we have

sup
m>1

E
[∣∣∣X(m)

0

∣∣∣γ] = E[|ξ|γ ] 6 Cγ ,

and by the BDG inequalities, we have

sup
m>1

E
[∣∣∣X(m)

t −X(m)
s

∣∣∣2p] 6 CT,p|t− s|p, ∀s, t ∈ [0, T ]. (6.18)

According to Problem Sheet 3, Problem 3, (3) (we take p = 2 in (6.18)), we conclude
that {P(m)} is tight. Without loss of generality, we may assume that P(m) converges
weakly to some probability measure P.

In view of Theorem 6.5 and Remark 6.3 again, it suffices to show that P(w0 ∈ Γ) =
µ(Γ) for Γ ∈ B(Rn) (which is trivial), and for every f ∈ C2

b (Rn), the process

f(wt)− f(w0)−
ˆ t

0
(Af)(u,w)du

is a {Bt(Wn)}-martingale under P.
Indeed, let s < t, and Φ(w) = ϕ(ws1 , · · · , wsk) for some s1 < · · · < sk 6 s and

ϕ ∈ Cb(Rn×k). Then from the P(m)-martingale property, we know that
ˆ
Wn

Φ(w) ·
(
f(wt)− f(ws)−

ˆ t

s
(Amf)(u,w)du

)
dP(m) = 0

for every m. To simplify our notation, set

ζms,t(w) , f(wt)− f(ws)−
ˆ t

s
(Amf)(u,w)du

and

ζs,t(w) , f(wt)− f(ws)−
ˆ t

s
(Af)(u,w)du

respectively. From the tightness of {P(m)}, given ε > 0, there exists a compact set
K ⊆Wn, such that

P(m)(Kc) < ε, ∀m > 1.

By the definition of αm, βm and the uniform continuity of α, β on [s, t]×K, when m is
large, we have

sup
w∈K
|ζms,t(w)− ζs,t(w)| < ε.

Therefore, when m is large,∣∣∣∣ˆ
Wn

Φ(w)ζms,t(w)dP(m) −
ˆ
Wn

Φ(w)ζs,t(w)dP(m)

∣∣∣∣ 6 C
(
P(m)(Kc) + ε

)
< 2Cε.
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On the other hand, by weak convergence we know that

lim
m→∞

ˆ
Wn

Φ(w)ζs,t(w)dP(m) =

ˆ
Wn

Φ(w)ζs,t(w)dP.

Since ε is arbitrary, we conclude that
ˆ
Wn

Φ(w)ζs,t(w)dP = 0,

which implies the desired P-martingale property.

Remark 6.4. The assumption that µ is compactly supported in Theorem 6.6 is just for
technical convenience. Indeed, we have shown that for every x ∈ Rn, there exists Px
which solves the martingale problem with initial distribution δx. For a general probability
measure µ on Rn, we can simply define

Pµ(Λ) ,
ˆ
Rn

Px(Λ)µ(dx), Λ ∈ B(Wn). (6.19)

This Pµ will then solve the martingale problem with initial distribution µ. Of course here
a rather subtle point is whether x 7→ Px is measurable before making sense of (6.19).
This is not true in general, but we can always select Px so that the map x 7→ Px is
measurable. This selection theorem is rather deep and technical, and we will not get into
the details.

From now on, we will restrict ourselves to a special but very important type of SDEs:

dXt = σ(Xt)dBt + b(Xt)dt, (6.20)

where σ : Rn → Mat(n, d) and b : Rn → Rn. This type of SDEs is usually known
as time homogeneous Markovian type, and it is closely related to the study of diffusion
processes. In particular, we are going to develop a relatively complete solution theory
along the line of Yamada and Watanabe’s philosophy.

Of course the general weak existence theorem (c.f. Theorem 6.6) that we just proved
covers this special case (with α(t, w) = σ(wt), β(t, w) = b(wt)). However, in general
it is not natural to assume uniform boundedness on the coefficients. And it is not so
clear how a localization argument should yield weak existence without the boundedness
assumption. Indeed, if we do not assume boundedness, the solution can possibly explode
in finite amount of time. Therefore, it is a good idea to start with this general situation
independently, and then to explore under what conditions on the coefficients will a solution
be globally defined in time without explosion. Uniform boundedness will be too strong
to assume and not so satisfactory.

To include the possibility of explosion, we take ∆ to be some given point outside Rn
which captures the explosion. Define R̂n , Rn∪{∆}. Topologically, R̂n is the one-point
compactification of Rn. In particular, R̂n is homeomorphic to the n-sphere Sn. In this
sphere model, ∆ corresponds to the north pole N, and Rn is homeomorphic to Sn\{N}.
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We consider the following continuous path space over R̂n. Let Ŵn be the space of
continuous paths w : [0,∞) → R̂n, such that if wt = ∆, then wt′ = ∆ for all t′ > t.

The Borel σ-algebra B(Ŵn) is the σ-algebra generated by cylinder sets in the usual way.
For each w ∈ Ŵn, we can define an intrinsic quantity

e(w) , inf{t > 0 : wt = ∆}.

e(w) is called the explosion time of w.
Unless otherwise stated, we assume exclusively that the coefficients σ, b are continu-

ous. Note that σ, b are defined on Rn instead of on R̂n.

Definition 6.8. Let µ be a probability measure on Rn. We say that the SDE (6.20) has
a weak solution with initial distribution µ if there exists a set-up ((Ω,F ,P; {Ft}), ξ, Bt)
together with a continuous, {Ft}-adapted process Xt in R̂n, such that:

(1) ξ has distribution µ;

(2) if e(ω) , e(X(ω)) is the explosion time of X(ω) ∈ Ŵn, then we have

Xt = ξ +

ˆ t

0
σ(Xs)dBs +

ˆ t

0
b(Xs)ds, t ∈ [0, e). (6.21)

Remark 6.5. The stochastic integral in (6.21) is defined in the following way. Let σm ,
inf{t > 0 : |Xt| > m}. From the continuity of σ, we know that for each fixed m > 1,
the process σ(Xt)1[0,σm](t) is uniformly bounded, and hence the stochastic integral

I
(m)
t ,

ˆ t

0
σ(Xs)1[0,σm](s)dBs

is well-defined on [0,∞). Moreover, by stopping we see that I(m+1) = I(m) on [0, σm].
Therefore, since σm ↑ e, we can define a single process It on [0, e), such that It = I

(m)
t

if t < σm 6 e. This It is our stochastic integral in (6.21).

Similarly, the notions of exactness, uniqueness in law, pathwise uniqueness, and
unique strong solution carry through without much difficulty. In particular, the Yamada-
Watanabe theorem remains true in this setting. Moreover, the martingale characterization
is also valid as long as we localize in the same way as Remark 6.5 when we describe the
martingale property.

To establish a solution theory for the SDE (6.20) in the spirit of Yamada and Watan-
abe, we first take up the question about weak existence. We have the following main
result.

Theorem 6.7. Suppose that the coefficients σ, b are continuous. Then for any probability
measure µ on Rn with compact support, the SDE (6.20) has a weak solution with initial
distribution µ.

The most convenient way to prove this result is to use the martingale characterization
in the sense of Theorem 6.4. To this end, we need to show that, on some filtered
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probability space (Ω,F ,P; {Ft}) satisfying the usual conditions, there exists a continuous,
{Ft}-adapted process Xt in R̂n, such that:

(1) P(X0 ∈ Γ) = µ(Γ) for Γ ∈ B(Rn);
(2) for every f ∈ C2

b (Rn) and m > 1, the process

f(Xσm∧t)− f(X0)−
ˆ σm∧t

0
(Af)(Xs)ds

is an {Ft}-martingale, where the differential operator A is defined by (6.14) in terms of
the coefficients σ, b, and

σm , inf{t > 0 : |Xt| > m}. (6.22)

The idea of proving Theorem 6.7 is to obtain X as the time-change of some X̃ which
is a weak solution to some SDE with bounded coefficients.

For this purpose, we choose a function ρ(x) on Rn such that 0 < ρ(x) 6 1 for
every x ∈ Rn, and ρ(x)a(x), ρ(x)b(x) are both bounded, where a(x) , σ(x)σ(x)∗.
It is not hard to see that such ρ exists. Consider the differential operator defined by
(Ãf)(x) , ρ(x)(Af)(x) for f ∈ C2

b (Rn). According to Theorem 6.6 and the martingale
characterization, there exists a continuous, {F̃t}-adapted process X̃t in Rn defined on
some filtered probability space (Ω,F ,P; {F̃t}) which satisfies the usual conditions, such
that X̃0 has distribution µ, and for every f ∈ C2

b (Rn),

f(X̃t)− f(X̃0)−
ˆ t

0
(Ãf)(X̃s)ds

is an {F̃t}-martingale.
Consider the strictly increasing process

At ,
ˆ t

0
ρ(X̃s)ds

and define
e ,
ˆ ∞

0
ρ(X̃s)ds.

Let Ct be the time-change associated with At, so that Ct < ∞ if and only if t < e.
Define Ft , F̃Ct , and

Xt ,

{
X̃Ct , t < e;

∆, t > e.

The key ingredient of the proof is to show that e is the explosion time of X. We assume
this is true for the moment and postpone its proof for a little while.

Now we show thatXt satisfies the desired martingale characterization on (Ω,F ,P; {Ft})
for the differential operator A. Recall that σm is defined by (6.22). Set σ̃m , inf{t >

144



0 : |X̃t| > m}. It follows that Cσm = σ̃m, and thus Cσm∧t = σ̃m ∧ Ct for all t > 0.
Now we know that

f(X̃σ̃m∧t)− f(X̃0)−
ˆ σ̃m∧t

0
(ρAf)(X̃s)ds

is a bounded {F̃t}-martingale. According to the optional sampling theorem,

f(X̃σ̃m∧Ct)− f(X̃0)−
ˆ σ̃m∧Ct

0
(ρAf)(X̃s)ds

= f(X̃Cσm∧t)− f(X̃0)−
ˆ Cσm∧t

0
(ρAf)(X̃s)ds

= f(Xσm∧t)− f(X0)−
ˆ Cσm∧t

0
(ρAf)(X̃s)ds

is an {Ft}-martingale. But a change of variables s = Cu (u = As) together with the
definition of As yields immediately that

ˆ Cσm∧t

0
(ρAf)(X̃s)ds =

ˆ σm∧t

0
(Af)(Xu)du.

Therefore, we have the desired martingale characterization property forXt on (Ω,F ,P; {Ft}).
Now it remains to prove the following key lemma.

Lemma 6.3. With probability one, if e(ω) <∞, then limt↑eXt = ∆.

Proof. It is equivalent to showing that, with probability one, if
´∞

0 ρ(X̃s)ds <∞, then
limt→∞ X̃t = ∆ in R̂n. This is not surprising to expect. Indeed, since ρ > 0, we know
that the minimum of ρ on any compact subset of Rn is strictly positive. Therefore, if X̃t

spends too much time being trapped inside a compact set, then the integral
´∞

0 ρ(X̃s)ds
will have a high chance of being infinity.

Now fix r < R such that |X̃0| < r almost surely. The key point is to demonstrate
that, with probability one, if

´∞
0 ρ(X̃s)ds <∞, then after exiting the R-ball and coming

back into the r-ball for at most finitely many times, X̃t will stay outside the r-ball forever.
As r can be arbitrarily large, this shows that X̃t has to explode to infinity as t→∞.

To be precise, define

σ̃1 , 0, τ̃1 , inf{t > σ̃1 : |X̃t| > R},
σ̃2 , inf{t > τ̃1 : |X̃t| 6 r}, τ̃2 , inf{t > σ̃2 : |X̃t| > R},
· · · · · · .

We want to show that, with probability one,{ˆ ∞
0

ρ(X̃s)ds <∞
}
⊆ {∃m > 1, s.t. τ̃m <∞ and σ̃m+1 =∞} . (6.23)
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This is equivalent to showing that, with probability one,

∞⋂
m=1

{τ̃m =∞ or σ̃m+1 <∞} ⊆
{ˆ ∞

0
ρ(X̃s)ds =∞

}
. (6.24)

Observe that the left hand side of (6.24) is equal to the event that

{∃m > 1, s.t. σ̃m <∞ and τ̃m =∞}
⋃
{σ̃m <∞ ∀m > 1}.

Therefore, we need to show that with probability one, this event triggers
´∞

0 ρ(X̃s)ds =
∞.

Case one. Suppose that there exists m > 1, such that σ̃m <∞ but τ̃m =∞. Then
|X̃t| 6 R for all t > σ̃m. Since min|x|6R ρ(x) > 0, we have

ˆ ∞
0

ρ(X̃s)ds >
ˆ ∞
σ̃m

ρ(X̃s)ds >

(
min
|x|6R

ρ(x)

)
·
ˆ ∞
σ̃m

ds =∞.

Case two. Suppose that σ̃m < ∞ for every m > 1. In this case, we only need to
show that

∞∑
m=1

(τ̃m − σ̃m) =∞. (6.25)

Indeed, if this is true, then

ˆ ∞
0

ρ(X̃s)ds >
∞∑
m=1

ˆ τ̃m

σ̃m

ρ(X̃s)ds >

(
min
|x|6R

ρ(x)

) ∞∑
m=1

(τ̃m − σ̃m) =∞.

Observe that (6.25) is equivalent to showing that with probability one,( ∞∏
m=1

1{σ̃m<∞}

)
e−

∑∞
m=1(τ̃m−σ̃m) =

∞∏
m=1

(
1{σ̃m<∞}e

−(τ̃m−σ̃m)
)

= 0,

which is also equivalent to showing that

E

[ ∞∏
m=1

(
1{σ̃m<∞}e

−(τ̃m−σ̃m)
)]

= 0. (6.26)

We write

E

[
m+1∏
k=1

(
1{σ̃k<∞}e

−(τ̃k−σ̃k)
)
|F̃σ̃m+1

]

=
m∏
k=1

(
1{σ̃k<∞}e

−(τ̃k−σ̃k)
)
· 1{σ̃m+1<∞}E

[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
. (6.27)

146



Now we estimate the quantity 1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
. In particular,

we are going to show that this quantity is bounded by some deterministic constant γ < 1,
which depends only on R, r and Ã. If this is true, then by taking expectation on both
sides of (6.27), we get (6.26) immediately.

Let
M i
· , X̃i

· − X̃i
0 −
ˆ ·

0
ρ(X̃s)b

i(X̃s)ds ∈Mloc
0 ({F̃t})

for each i (the reader may recall from the proof of Theorem 6.4). According to Itô’s
formula, we may write

|X̃t|2 = |X̃0|2 +Nt +At

in semimartingale form, where

Nt = 2

n∑
i=1

ˆ t

0
X̃i
sdM

i
s,

At =

n∑
i=1

(
2

ˆ t

0
X̃i
sρ(X̃s)b

i(X̃s)ds+ 〈M i〉t
)
.

Since ρ · a and ρ · b are both bounded, by the definition of σ̃m+1, it is not hard to see
that there exists a constant C > 0 depending only on Ã, such that on {σ̃m+1 <∞}, for
every 0 6 t 6 τ̃m+1 − σ̃m+1, we have

〈N〉σ̃m+1+t − 〈N〉σ̃m+1
6 CR2t,∣∣Aσ̃m+1+t −Aσ̃m+1

∣∣ 6 C(2R+ 1)t.

If τ̃m+1 <∞, then we know that

|X̃τ̃m+1
| = R, |X̃σ̃m+1

| = r.

Therefore,

|Nτ̃m+1
−Nσ̃m+1

| > R2 − r2

2
or |Aτ̃m+1

−Aσ̃m+1
| > R2 − r2

2
.

In particular, if we define

θ , inf

{
t > 0 : |Nσ̃m+1+t −Nσ̃m+1

| > R2 − r2

2

}
,

then

τ̃m+1 − σ̃m+1 > θ ∧ R2 − r2

2C(2R+ 1)
.

In addition, according to the generalized Dambis-Dubins-Schwarz theorem (c.f. Theorem
5.9), there exists an {F̂t}-Brownian motion defined possibly on some enlargement of the
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underlying filtered probability space, such that Nt = B〈N〉t , where F̂t , F̃Dt and Dt is
the time-change associated with 〈N〉t. Let

η , inf

{
u > 0 :

∣∣∣B〈N〉σ̃m+1
+u −B〈N〉σ̃m+1

∣∣∣ > R2 − r2

2

}
.

It follows that
η 6 〈N〉σ̃m+1+θ − 〈N〉σ̃m+1

6 CR2θ.

Therefore, we obtain that on {σ̃m+1 <∞},

τ̃m+1 − σ̃m+1 >
η

CR2
∧ R2 − r2

2C(2R+ 1)
.

It follows that

1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
6 1{σ̃m+1<∞}E

[
e
− η

CR2 ∧
R2−r2

2C(2R+1)

∣∣∣F̃σ̃m+1

]
.

In addition, observe that F̃σ̃m+1
⊆ F̂〈N〉σ̃m+1

. Indeed, if A ∈ F̃σ̃m+1
, according to

Proposition 2.4, we know that

A ∩ {〈N〉σ̃m+1
6 t} = A ∩ {σ̃m+1 6 Dt} ∈ F̃Dt = F̂t,

therefore A ∈ F̂〈N〉σ̃m+1
. It follows that

1{σ̃m+1<∞}E
[
e
− η

CR2 ∧
R2−r2

2C(2R+1)

∣∣∣F̃σ̃m+1

]
= 1{σ̃m+1<∞}E

[
E
[
1{〈N〉σ̃m+1

<∞}e
− η

CR2∧
R2−r2

2C(2R+1)

∣∣∣F̂〈N〉σ̃m+1

]∣∣∣∣ F̃σ̃m+1

]
.

Now a crucial observation is that on {〈N〉σ̃m+1
<∞}, B〈N〉σ̃m+1+u

−B〈N〉σ̃m+1
is a

Brownian motion independent of F̂〈N〉σ̃m+1
by the strong Markov property. Therefore,

E
[
e
− η

CR2 ∧
R2−r2

2C(2R+1)

∣∣∣F̂〈N〉σ̃m+1

]
= E[e

− τ
CR2 ∧

R2−r2
2C(2R+1) ] =: γ, on {〈N〉σ̃m+1

<∞},

where τ is the hitting time of the level set (R2 − r2)/2 by a one dimensional Brownian
motion. Apparently γ < 1, otherwise τ = 0 which is absurd. Therefore, we arrive at

1{σ̃m+1<∞}E
[
e−(τ̃m+1−σ̃m+1)|F̃σ̃m+1

]
6 γ,

which concludes (6.26).
To summarize, we have show that with probability one, (6.23) holds. Since r,R are

arbitrary, we conclude that with probability one, on
{´∞

0 ρ(X̃s)ds <∞
}
, X̃t → ∆ as

t→∞.
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The next question is about non-explosion criteria. The following result shows that
explosion will not happen if the coefficients have linear growth. This is compatible with
Theorem 6.1 in Itô’s classical theory.

Theorem 6.8. Suppose that the coefficients σ, b are continuous, and satisfy the following
linear growth condition: there exists some K > 0, such that

‖σ(x)‖+ ‖b(x)‖ 6 K(1 + |x|), ∀x ∈ Rn. (6.28)

Then for any weak solutionXt to the SDE (6.20) with E[|X0|2] <∞, we have E[|Xt|2] <
∞ for all t > 0. In particular, e =∞ almost surely.

Proof. Suppose that Xt is a weak solution on some set-up with E[|X0|2] < ∞. Let
σm , inf{t > 0 : |Xt| > m}. Then for any f ∈ C2

b (Rn), the process

f(Xσm∧t)− f(X0)−
ˆ σm∧t

0
(Af)(Xs)ds

is a bounded martingale. In particular, if we choose f ∈ C2
b (Rn) to be such that

f(x) = |x|2 when |x| 6 m, then by the martingale property and the condition (6.28),
we have

E
[
|Xσm∧t|2

]
6 E[|X0|2] +

n∑
i=1

E
[ˆ σm∧t

0

(
aii(Xs) + 2bi(Xs)X

i
s

)
ds

]
6 E[|X0|2] + CKE

[ˆ σm∧t

0
(1 + |Xs|2)ds

]
6 E[|X0|2] + CK

ˆ t

0

(
1 + E[|Xσm∧s|2]

)
ds.

Gronwall’s inequality then implies that

E[|Xσm∧t|2] 6
(
1 + E[|X0|2]

)
eCKt − 1.

By letting m → ∞, we conclude that e > t almost surely and E[|Xt|2] < ∞. Since t is
arbitrary, we know that e =∞ almost surely.

Remark 6.6. By the same reason as in Remark 6.4, we can remove the compactness
assumption on µ in Theorem 6.7. In addition, by Theorem 6.8, we know that every
weak solution with initial distribution µ = δx does not explode. By using the martingale
formulation on the continuous path space Ŵn, we have

Px
(

lim
m→∞

σm =∞
)

= 1, ∀x ∈ Rn,

where Px is a solution to the martingale problem with initial distribution δx, and σm ,
inf{w ∈ Ŵn : |wt| > m}. For an arbitrary probability measure µ on Rn, we define Pµ
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by (6.19) as in Remark 6.4 (after suitable measurable selection on the family {Px}). It
follows that

Pµ
(

lim
m→∞

σm =∞
)

= 1.

Therefore, Pµ is a non-exploding solution to the martingale problem with initial distribu-
tion µ. In particular, a non-exploding weak solution with initial distribution µ exists.

6.4 Pathwise uniqueness results

Now we study pathwise uniqueness for the SDE (6.20). It is a standard result that (local)
Lipschitz condition implies pathwise uniqueness.

Theorem 6.9. Suppose that the coefficients σ, b are locally Lipschitz, i.e. for every
N > 1, there exists KN > 0, such that

‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ 6 KN |x− y|, ∀x, y ∈ BN , (6.29)

where BN is the Euclidean ball of radius N. Then pathwise uniqueness holds for the SDE
(6.20).

Proof. Suppose that Xt, X
′
t are two solutions to the SDE (6.20) on a given set-up

((Ω,F ,P; {Ft}), ξ, Bt) with the same initial condition ξ. Define

σN , inf{t > 0 : |Xt| > N}, σ′N , inf{t > 0 : |X ′t| > N},

respectively. Then we have

XσN∧σ′N∧t −X
′
σN∧σ′N∧t

=

ˆ σN∧σ′N∧t

0

(
σ(Xs)− σ(X ′s)

)
dBs

+

ˆ σN∧σN∧t

0

(
b(Xs)− b(X ′s)

)
ds. (6.30)

Therefore, given T > 0, for every t ∈ [0, T ], we have

E
[∣∣∣XσN∧σ′N∧t −X

′
σN∧σ′N∧t

∣∣∣2]

6 2E

∣∣∣∣∣
ˆ σN∧σ′N∧t

0

(
σ(Xs)− σ(X ′s)

)
dBs

∣∣∣∣∣
2

+

∣∣∣∣ˆ σN∧σN∧t

0

(
b(Xs)− b(X ′s)

)
ds

∣∣∣∣2


6 2E

[ˆ σN∧σ′N∧t

0
‖σ(Xs)− σ(X ′s)‖2ds

]
+ 2TE

[ˆ σN∧σ′N∧t

0
‖b(Xs)− b(X ′s)‖2ds

]

6 2E
[ˆ t

0
‖σ(XσN∧σ′N∧s)− σ(X ′σN∧σ′N∧s

)‖2ds
]

+2TE
[ˆ t

0
‖b(XσN∧σ′N∧s)− b(X

′
σN∧σ′N∧s

)‖2ds
]

6 2KN (1 + T )

ˆ t

0
E
[
|XσN∧σ′N∧s −X

′
σN∧σ′N∧s

|2
]
ds.
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Since the function t ∈ [0, T ] 7→ E
[
|XσN∧σ′N∧t −X

′
σN∧σ′N∧t

|2
]
is non-negative and

continuous, according to Gronwall’s inequality, we conclude that

E
[
|XσN∧σ′N∧t −X

′
σN∧σ′N∧t

|2
]

= 0

for every t ∈ [0, T ]. As T is arbitrary, it follows that with probability one,

XσN∧σ′N∧t = XσN∧σ′N∧t, ∀t > 0.

This implies that Xt = X ′t on [0, σN ∧ σ′N ). By the definition of σN and σ′N , we must
have σN = σ′N . In particular, by letting N →∞, we conclude that with probability one,
e(X) = e(X ′) and Xt = Yt on [0, e(X)), where e(X) and e(Y ) are the explosion times
of X and Y respectively.

The local Lipschitz condition can be weakened in the one dimensional case. In par-
ticular, pathwise uniqueness holds if σ is 1/2-Hölder continuous and b is locally Lipschitz
continuous.

Theorem 6.10. Suppose that n = 1 and the coefficients σ, b are continuous. Assume
further that the following two conditions hold:

(1) there exists a strictly increasing function ρ on [0,∞) such that ρ(0) = 0,´
0+ ρ

−2(u)du =∞, and ‖σ(x)− σ(y)‖ 6 ρ(|x− y|) for all x, y ∈ R1;
(2) b is locally Lipschitz in the sense of (6.29).

Then pathwise uniqueness holds for the SDE (6.20).

Proof. According to Condition (1), we can find a sequence 0 < · · · < an < an−1 <
· · · < a2 < a1 < 1 such that

ˆ 1

a1

ρ−2(u)du = 1,

ˆ a1

a2

ρ−2(u)du = 2, · · · ,
ˆ an−1

an

ρ−2(u)du = n, · · · .

Apparently an ↓ 0 as n → ∞. For each n, choose a continuous function ψn supported
on [an, an−1], such that

0 6 ψn(u) 6
2ρ−2(u)

n
, ∀u > 0,

and ˆ an−1

an

ψn(u)du = 1.

Define

ϕn(x) ,
ˆ |x|

0
dy

ˆ y

0
ψn(u)du.

It is not hard to see that ϕn ∈ C2(R1), ϕn(x) ↑ |x|, |ϕ′n(x)| 6 1, and ϕ′′n(x) = ψn(|x|).
Now suppose that Xt, X

′
t are two solutions to the SDE (6.20) on a given set-up

((Ω,F ,P; {Ft}), ξ, Bt) with the same initial condition ξ. Define σN , σ′N in the same way
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as in the proof of Theorem 6.9. For the simplicity of notation, we set τ , σN ∧ σ′N ,
Yt , XσN∧σ′N∧t and Y

′
t , X ′σN∧σ′N∧t

. By rewriting the equation (6.30), we obtain that

Yt − Y ′t =

ˆ t

0

(
σ(Ys)− σ(Y ′s )

)
1[0,τ ](s)dBs +

ˆ t

0

(
b(Ys)− b(Y ′s )

)
1[0,τ ](s)ds.

According to Itô’s formula,

ϕn(Yt − Y ′t ) =

ˆ t

0
ϕ′n(Ys − Y ′s )

(
σ(Ys)− σ(Y ′s )

)
1[0,τ ](s)dBs

+

ˆ t

0
ϕ′n(Ys − Y ′s )

(
b(Ys)− b(Y ′s )

)
1[0,τ ](s)ds

+
1

2

ˆ t

0
ϕ′′n(Ys − Y ′s )‖σ(Ys)− σ(Y ′s )‖21[0,τ ](s)ds.

Since ϕ′n, σ are bounded, we know that the first term is a martingale. Therefore,

E
[
ϕn(Yt − Y ′t )

]
= I1

n + I2
n,

where

I1
n , E

[ˆ t

0
ϕ′n(Ys − Y ′s )

(
b(Ys)− b(Y ′s )

)
1[0,τ ](s)ds

]
,

I2
n ,

1

2
E
[ˆ t

0
ϕ′′n(Ys − Y ′s )

(
σ(Ys)− σ(Y ′s )

)2
1[0,τ ](s)ds

]
.

On the one hand, according to Condition (2), we have

I1
n 6 KN

ˆ t

0
E[|Ys − Y ′s |]ds.

On the other hand, since 0 6 ϕ′′n(x) = ψn(|x|) 6 2ρ−2(|x|)/n, according to Condition
(1), we have

I2
n 6

1

2
E
[ˆ t

0

2ρ−2(|Ys − Y ′s |)
n

· ρ2(|Ys − Y ′s |)ds
]

=
t

n
.

Since ϕn(x) ↑ |x|, by the monotone convergence theorem, we arrive at

E[|Yt − Y ′t |] 6 KN

ˆ t

0

(
E[|Ys − Y ′s |]

)
ds.

Gronwall’s inequality then implies that Yt = Y ′t for all t > 0. Since N is arbitrary, the
same reason as in the proof of Theorem 6.9 shows that e(X) = e(X ′) and Xt = X ′t on
[0, e(X)).
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The integrability condition on σ in Theorem 6.10 is essentially the best we can have.
The following example shows what can go wrong if the integrability condition is not
satisfied. This also gives an example in which uniqueness in law does not hold.

Example 6.2. Consider the case n = d = 1 with b = 0. Suppose that σ is a function
such that σ(0) = 0,

´ 1
−1 σ

−2(x)dx < ∞ and |σ(x)| > 1 for |x| > 1 (for instance,
σ(x) = |x|α with 0 < α < 1/2). Let Wt be a one dimensional Brownian motion, and let
Lxt be its local time process. For each λ > 0, define

Aλt ,
ˆ
R1

σ−2(x)Lxt dx+ λL0
t =

ˆ t

0
σ−2(Ws)ds+ λL0

t .

According to the assumptions on σ, apparently Aλt is well defined and strictly increasing.
Moreover, since L0

t
law
= St (c.f. Theorem 5.23), we know that Aλ∞ = ∞. Let Cλt be

the time-change associated with Aλt , and define Xλ
t ,WCλt

. It follows from Proposition
5.19 that Xλ

t is a local martingale with respect to the time-changed filtration, and

〈Xλ〉t = 〈W 〉Cλt = Cλt .

On the other hand, we know that

dAλt = σ−2(Wt)dt+ λL0
t .

Now a crucial observation is that σ2(Wt)dL
0
t ≡ 0 because σ(0) = 0 and dL0({t > 0 :

Wt 6= 0}) = 0. Therefore, dt = σ2(Wt)dA
λ
t and

Cλt =

ˆ Cλt

0
ds =

ˆ Cλt

0
σ2(Ws)dA

λ
s =

ˆ t

0
σ2(Xλ

u )du.

According to the martingale representation theorem (c.f. Theorem 5.14), we conclude
that

Xλ
t =

ˆ t

0
σ(Xλ

u )dBu

for some Brownian motion Bt. Therefore, we have a family of weak solutions Xλ
t with the

same initial distribution Xλ
0 = 0, which are possible defined on different set-ups because

the filtrations, which depend on λ, can be different. Apparently, the distribution of Xλ

varies for different λ (if λ1 < λ2, then Cλ2t < Cλ1t for all t, so that as λ increases, Xλ is
defined by running the Brownian motion in strictly slower speed which certainly results
in a different distribution). Therefore, uniqueness in law for the corresponding SDE does
not hold, and of course pathwise uniqueness fails as well.

Remark 6.7. The weak existence theorem and uniqueness theorems that we just proved
for the time homogeneous SDE (6.20) extend to the time inhomogeneous case

dXt = σ(t,Xt)dBt + b(t,Xt)dt
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without any difficulty. Indeed, by adding an additional equation dX0
t = dt, the time

inhomogeneous equation reduces to the time homogeneous case. In particular, Theorem
6.7 and Theorem 6.9 hold for this case. Moreover, it can be easily seen that the proof
of Theorem 6.10 works in exactly the same way without any difficulty in the time inho-
mogeneous case, although we cannot simply apply this reduction argument as the nature
of this theorem is one dimensional. In the time inhomogeneous case, the corresponding
assumptions on the coefficients in the uniqueness theorems should be made uniform with
respect to the time variable.

Remark 6.8. In the context of Theorem 6.9 or Theorem 6.10, we also know that weak
solution always exists. Therefore, according to the Yamada-Watanabe theorem, the SDE
(6.20) is exact and has a unique strong solution. In addition, if we assume that the
coefficients satisfy the linear growth condition, then for every probability measure µ on
Rn, a non-exploding weak solution with initial distribution µ exists (c.f. Theorem 6.8
and Remark 6.6). But we also know that pathwise uniqueness implies uniqueness in law,
which is part of the Yamada-Watanabe theorem (c.f. Theorem 6.2). Therefore, every
weak solution must not explode (note that the explosion time is intrinsically determined
by the process, so if two processes have the same distribution, their explosion times will
also have the same distribution).

6.5 A comparison theorem for one dimensional SDEs

Now let us use the same technique as in the proof of Theorem 6.10 to establish a useful
comparison result in dimension one.

Let σ(t, x), bi(t, x) (i = 1, 2) be real-valued continuous on [0,∞)×R1. We consider
the SDEs

dXt = σ(t,Xt)dBt + bi(t,Xt)dt (6.31)

for i = 1, 2.
We assume the same condition on σ as in Theorem 6.10, i.e. there exists a strictly

increasing function ρ on [0,∞) such that ρ(0) = 0,
´

0+ ρ
−2(u)du =∞, and ‖σ(t, x)−

σ(t, y)‖ 6 ρ(|x− y|) for all t > 0 and x, y ∈ R1.

Theorem 6.11. Suppose that
(1) b1(t, x) 6 b2(t, x) for all t > 0 and x ∈ R1;
(2) at least one of bi(t, x) is locally Lipschitz, i.e. for some i = 1, 2, for each N > 1,

there exists KN > 0, such that

|bi(t, x)− bi(t, y)| 6 KN |x− y|

for all t > 0 and x, y ∈ R1 with |x|, |y| 6 N.
Let Xi

t (i = 1, 2) be a solution to the SDE (6.31) on the same given filtered probability
space up to the intrinsic explosion time, i.e. Xi

t satisfies

Xi
t = Xi

0 +

ˆ t

0
σ(s,Xi

s)dBs +

ˆ t

0
bi(s,X

i
s)ds, 0 6 t < e(Xi),
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for i = 1, 2. Suppose further that X1
0 6 X2

0 < ∞ almost surely. Then with probability
one, we have

X1
t 6 X2

t ∀t < e(X1) ∧ e(X2).

Proof. Suppose that b1(t, x) is locally Lipschitz.
Define ψn in the same way as in the proof of Theorem 6.10, but we set

φn(x) ,

{
0, x 6 0;´ x

0 dy
´ y

0 ψn(u)du, x > 0.

Then φn ∈ C2(R1), φn(x) ↑ x+, 0 6 φ′n(x) 6 1, and φ′′n(x) = ψn(x)1{x>0}.
We also localize X1

t , X
2
t in the same way as in the proof of Theorem 6.10, so we

define Y i
t , Xi

τ∧t (i = 1, 2) where τ , σ1
N ∧ σ2

N .
By applying Itô’s formula, we have

φn(Y 1
t − Y 2

t ) = I1
n + I2

n + I3
n, (6.32)

where

I1
n ,

ˆ t

0
φ′n(Y 1

s − Y 2
s )(σ(s, Y 1

s )− σ(s, Y 2
s ))1[0,τ ](s)dBs,

I2
n ,

ˆ t

0
φ
′
n(Y 1

s − Y 2
s )(b1(s, Y 1

s )− b2(s, Y 2
s ))1[0,τ ](s)ds,

I3
n ,

1

2

ˆ t

0
φ′′n(Y 1

s − Y 2
s )
(
σ(s, Y 1

s )− σ(s, Y 2
s )
)2

1[0,τ ](s)ds.

From the boundedness assumption, we know that E[I1
n] = 0. Moreover,

E[I3
n] =

1

2
E
[ˆ t

0
ψn(Y 1

s − Y 2
s )1{Y 1

s >Y
2
s }
(
σ(s, Y 1

s )− σ(s, Y 2
s )
)2

1[0,τ ](s)ds

]
6

1

2
E
[ˆ t

0

2ρ−2(|Y 1
s − Y 2

s |)
n

· ρ2(|Y 1
s − Y 2

s |)ds
]

6
t

n
.

155



And also we have

I2
n =

ˆ t

0
φ
′
n(Y 1

s − Y 2
s )(b1(s, Y 1

s )− b2(s, Y 2
s ))1[0,τ ](s)ds

=

ˆ t

0
φ
′
n(Y 1

s − Y 2
s )(b1(s, Y 1

s )− b1(s, Y 2
s ))1[0,τ ](s)ds

+

ˆ t

0
φ
′
n(Y 1

s − Y 2
s )(b1(s, Y 2

s )− b2(s, Y 2
s ))1[0,τ ](s)ds

6
ˆ t

0
φ
′
n(Y 1

s − Y 2
s )(b1(s, Y 1

s )− b1(s, Y 2
s ))1[0,τ ](s)ds

6 K

ˆ t

0
1{Y 1

s >Y
2
s }|Y

1
s − Y 2

s |ds

= K

ˆ t

0
(Y 1
s − Y 2

s )+ds.

Therefore, by taking expectation on (6.32) and letting n→∞, we arrive at

E[(Y 1
t − Y 2

t )+] 6 K

ˆ t

0
E[(Y 1

s − Y 2
s )+]ds.

According to Gronwall’s inequality, we conclude that

E[(Y 1
t − Y 2

t )+] = 0, ∀t > 0,

which implies that with probability one,

Y 1
t 6 Y 2

t ∀t > 0. (6.33)

Now the result follows from letting N →∞.
In the case when b2(t, x) is locally Lipschitz, the same argument gives the desired

result.

Remark 6.9. If we make a more restrictive assumption that b1(t, x) < b2(t, x) for all
t > 0 and x ∈ R1, then we do not need to assume that at least one of bi is locally
Lipschitz. Indeed, after suitable localization, we may assume that bi(t, x) is uniformly
bounded on [0, T ]× R1 for each fixed T > 0. In this case, it is possible to choose some
b(t, x) defined on [0, T ] × R1 which is Lipschitz continuous. If we consider the unique
solution to the SDE{

dXt = σ(t,Xt)dBt + b(t,Xt)dt, 0 6 t 6 T ;

X0 = X2
0 ,

then the argument in the proof of Theorem 6.11 shows that with probability one

Y 1
t 6 Xt 6 Y 2

t , ∀t ∈ [0, T ].

As T is arbitrary, we conclude that (6.33) holds, which implies the desired result by letting
N →∞.
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6.6 Two useful techniques: transformation of drift and time-change

In this subsection, we introduce two important probabilistic techniques of solving SDEs in
the weak sense. These techniques usually apply to SDEs with discontinuous coefficients,
hence they are not covered by the existence and uniqueness theorems that we have proven
so far.

The first technique is transformation of drift, which is an application of the Cameron-
Martin-Girsanov transformation. For this part, we are interested transforming an SDE

dXt = α(t,X)dBt + β(t,X)dt, 0 6 t 6 T, (6.34)

to another SDE
dXt = α(t,X)dBt + β′(t,X)dt, 0 6 t 6 T, (6.35)

which has the same diffusion coefficient α but a different drift coefficient β′. In practice,
we usually want β′ = 0. In view of the Cameron-Martin-Girsanov transformation, we will
always fix T > 0 and consider SDEs defined on the finite interval [0, T ].

In this part, we will always make the following assumption.

Assumption 6.2. There exists some γ : [0, T ] ×Wn → Rd, such that γ is bounded,
{Bt(Wn)}-progressively measurable, and

β′ = β + αγ.

This is the case if α is invertible with bounded inverse, and β, β′ are bounded.
Suppose that Xt is a solution to the SDE (6.34) on some filtered probability space

(Ω,F ,P; {Ft : 0 6 t 6 T}) with an {Ft}-Brownian motion Bt. Define

Eγt , exp

(ˆ t

0
γ∗(s,X)dBs −

1

2

ˆ t

0
‖γ(s,X)‖2ds

)
.

Since γ is bounded, according to Novikov’s condition (c.f. Theorem 5.18), we know that
{Eγt ,Ft : 0 6 t 6 T} is a martingale. Define a probability measure P̃ on FT by

P̃(A) , E[1AEγT ], A ∈ FT .

It follows from Girsanov’s theorem (c.f. Theorem 5.17) that

B̃t , Bt −
ˆ t

0
γ(s,X)ds, 0 6 t 6 T,

is an {Ft}-Brownian motion under the probability measure P̃. Therefore, under P̃, Xt

satisfies

Xt = X0 +

ˆ t

0
α(s,X)dB̃s +

ˆ t

0
(β(s,X) + α(s,X)γ(s,X)) ds

= X0 +

ˆ t

0
α(s,X)dB̃s +

ˆ t

0
β′(s,X)ds.
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In other words, Xt solves the SDE (6.35) with the new Brownian motion B̃t under P̃.
On the other hand, suppose that Xt solves the SDE (6.35) with Brownian motion

Bt. By defining

E−γt , exp

(
−
ˆ t

0
γ∗(s,X)dBs −

1

2

ˆ t

0
‖γ(s,X)‖2ds

)
,

the same argument shows that Xt solves the SDE (6.34) with Brownian motion

B̃t , Bt +

ˆ t

0
γ(s,X)ds, 0 6 t 6 T, (6.36)

under the probability measure

P̃(A) , E[1AE−γT ], A ∈ FT . (6.37)

Now we consider uniqueness. A crucial point is the following: we can assume without
loss of generality that γ = α∗η for some {Bt(Wn)}-progressively measurable η : [0, T ]×
Wn → Rn. Indeed, for each (t, w) ∈ [0, T ]×Wn, write

Rd = (Im(α∗(t, w)))
⊕(

Im(α∗(t, w))⊥
)
,

where we regard α∗(t, w) as a linear map from Rn to Rd. Under this decomposition, we
can write

γ(t, w) = γ1(t, w) + γ2(t, w)

for some γ1(t, w) ∈ Im(α∗(t, w)). Since γ1 is defined pointwisely and ‖γ1‖ 6 ‖γ‖, we
know that γ1 is bounded, {Bt(Wn)}-progressively measurable. Moreover, since

〈α(t, w)γ2(t, w), y〉 = 〈γ2(t, w), α∗(t, w)y〉 = 0, ∀y ∈ Rn,

we have α(t, w)γ2(t, w) = 0, and hence α(t, w)γ(t, w) = α(t, w)γ1(t, w). As γ1(t, w) ∈
Im(α∗(t, w)), there is a canonical way of choosing η such that γ1 = α∗η and η is
{Bt(Wn)}-progressively measurable. For instance, we can define η(t, w) to be the unique
element in the affine space {η ∈ Rn : α∗(t, w)η(t, w) = γ1(t, w)} which minimizes its
Euclidean norm. In the following, we will assume that γ = α∗η.

Suppose that uniqueness in law holds for the SDE (6.34). Let Xt be a solution to
the SDE (6.35) with Brownian motion Bt. It follows from the previous discussion that
Xt solves the SDE (6.34) with a new Brownian motion B̃t defined by (6.36) under the
new probability measure P̃ defined by (6.37). However, we know that for every A ∈ FT ,

P(A)

= Ẽ
[
1A exp

(ˆ T

0
γ∗(s,X)dBs +

1

2

ˆ T

0
‖γ(s,X)‖2ds

)]
= Ẽ

[
1A exp

(ˆ T

0
η∗αdBs +

1

2

ˆ T

0
‖γ‖2ds

)]
= Ẽ

[
1A exp

(ˆ T

0
η∗αdB̃s −

1

2

ˆ T

0
‖γ‖2ds

)]
= Ẽ

[
1A exp

(ˆ T

0
η∗(s,X)dXs −

ˆ T

0

(
η∗(s,X)β(s,X) +

1

2
‖γ(s,X)‖2

)
ds

)]
.
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In particular, for given k > 1, 0 6 t1 < · · · < tk 6 T and f ∈ Cb(Rn×k), we have

E[f(Xt1 , · · · , Xtn)]

= Ẽ [f(Xt1 , · · · , Xtk)

exp

(ˆ T

0
η∗(s,X)dXs −

ˆ T

0

(
η∗(s,X)β(s,X) +

1

2
‖γ(s,X)‖2

)
ds

)]
.

But the integrand of the expectation on the right hand side is a functional of {Xt :
0 6 t 6 T}. So its distribution is uniquely determined by the distribution of X. Since
uniqueness in law holds for the SDE (6.34) and Xt solves this SDE under P̃, we conclude
that the distribution of X under P is uniquely determined by the distribution of X under
P̃. In particular, uniqueness in law holds for the SDE (6.35). Conversely, similar argument
shows that uniqueness in law for the SDE (6.35) implies uniqueness in law for the SDE
(6.34).

To summarize, we have obtained the following result.

Theorem 6.12. Under Assumption 6.2, the existence of weak solutions and uniqueness
in law are equivalent for the two SDEs (6.34) and (6.35).

The following is an important example which is not covered by our existence and
uniqueness theorems so far, but it is within the scope of Theorem 6.12.

Example 6.3. Let β : [0, T ]×W d → Rd be bounded, {Bt(W d)}-progressively measur-
able (here n = d). Then weak existence and uniqueness in law hold for the SDE

dXt = dBt + β(t,X)dt, 0 6 t 6 T. (6.38)

Indeed, we can just take γ , β in the previous discussion to see that weak existence and
uniqueness in law are both equivalent for the SDE

dXt = dBt, 0 6 t 6 T,

and the SDE (6.38). In particular, the law of the weak solution with initial distribution
δx is determined by

E [f(Xt1 , · · · , Xtk)]

= Ex
[
f(wt1 , · · · , wtk)exp

(ˆ T

0
β∗(t, w)dwt −

1

2

ˆ T

0
‖β(t, w)‖2ds

)]
for k > 1, 0 6 t1 < · · · < tk 6 T , and f ∈ Cb(Rd×k), where Px is the law of the
Brownian motion starting at x, and wt is the coordinate process on path space.

It should be pointed out that existence and uniqueness only hold in the weak sense.
In general, the SDE (6.38) can fail to be exact.
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Now we study another useful technique: time-change. This technique applies to the
one dimensional SDE of the following form:

dXt = α(t,X)dBt, (6.39)

where we assume that there exists constants C1, C2 > 0, such that

C1 6 α(t, w) 6 C2, ∀(t, w) ∈ [0,∞)×W 1.

We have already seen the notion of a time-change in Section 5.6. Here we consider
a more restrictive class of time-change. Denote I as the space of continuous functions
a : [0,∞)→ [0,∞) such that a0 = 0, t 7→ at is strictly increasing and limt→∞ at =∞.
An adapted process At on some filtered probability space is called a process of time-
change if for almost all ω, A(ω) ∈ I. As in Section 5.6, we use Ct to denote the
time-change associated with At. In this case, Ct is really the inverse of At. Given a
process Xt, we use TAX , XCt to denote the time-changed process of Xt by Ct (c.f.
Definition 5.12).

The following result gives a method of solving the SDE (6.39) by using a time-change
technique.

Theorem 6.13. (1) Let bt be a one dimensional Brownian motion defined on some
filtered probability space (Ω,F ,P; {F̃t}) which satisfies the usual conditions. Let X0 be
an F0-measurable random variable. Define ξt , X0 + bt. Suppose that there exists a
process At of time-change on Ω, such that with probability one, we have

At =

ˆ t

0
α(As, T

Aξ)−2ds, ∀t > 0. (6.40)

If we setX , TAξ = X0+bC· and Ft , F̃Ct , then there exists an {Ft}-Brownian motion
Bt, such that Xt solves the SDE (6.39) on (Ω,F ,P; {Ft}) with Brownian motion Bt.

(2) Every solution to the SDE (6.39) arises in the way described by (1).

Proof. (1) Let bt, X0 and At be given as in the assumption. According to Proposition
5.19, we know thatM , TAb ∈Mloc

0 ({Ft}) and 〈M〉t = Ct. In view of (6.40), we have

α(At, T
Aξ)2dAt = dt,

so that

t =

ˆ t

0
α(As, T

Aξ)2dAs =

ˆ t

0
α(As, X)2dAs,

and hence

Ct =

ˆ Ct

0
α(As, X)2dAs =

ˆ t

0
α(u,X)2du.

If we define Bt ,
´ t

0 α(s,X)−1dMs, by Lévy’s characterization theorem we know that
Bt is an {Ft}-Brownian motion, and

Xt −X0 = Mt =

ˆ t

0
α(s,X)dBs.
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In other words, Xt solves the SDE (6.39) on (Ω,F ,P; {Ft}) with Brownian motion Bt.
(2) Let Xt solves the SDE (6.39) on some filtered probability space (Ω,F ,P; {Ft})

with Brownian motionBt. ThenM· , X·−X0 ∈Mloc
0 ({Ft}) and 〈M〉t =

´ t
0 α(s,X)2ds.

Let At be the inverse of 〈M〉t. Define b , T 〈M〉M and F̃t , FAt . It follows that bt is
an {F̃t}-Brownian motion, and M = TAb. If we define ξt , X0 + bt, then apparently
X = TAξ. In addition, since

t =

ˆ t

0
α(s,X)−2d〈M〉s,

a simple change of variables shows that

At =

ˆ t

0
α(As, X)−2ds =

ˆ t

0
α(As, T

Aξ)−2ds.

Therefore, Xt arises in the way described by (1).

An important corollary of the second part of Theorem 6.13 is that if the ordinary
differential equation (6.40) is always uniquely solvable from (X0, b) in a pathwise sense,
then weak existence and uniqueness in law hold for the SDE (6.39). Indeed, in this case
the solution X is some deterministic functional of X0 and b, so that its distribution is
uniquely determined by the initial distribution and the distribution of Brownian motion.

Example 6.4. Consider the time homogeneous SDE

dXt = a(Xt)dBt,

where a : R1 → R1 is a Borel measurable function such that C1 6 a 6 C2 for some
positive constants C1, C2. By setting α(t, w) , a(wt), the differential equation (6.40)
becomes

At =

ˆ t

0
a
(
(TAξ)As

)−2
ds =

ˆ t

0
a(ξs)

−2ds. (6.41)

Apparently At is uniquely determined by X0 and b, and it is simply given by the formula
(6.41). Therefore, X , TAξ defines a weak solution and uniqueness in law holds.

Example 6.5. Consider the time inhomogeneous SDE

dXt = a(t,Xt)dBt,

where a : [0,∞)×R1 → R1 is a Borel measurable function such that C1 6 a 6 C2 for
some positive constants C1, C2. By setting α(t, w) , a(t, wt), the differential equation
(6.40) becomes

At =

ˆ t

0
a(As, ξs)

−2ds,

or {
dAt
dt = 1

a(At,ξt)2
,

A0 = 0.
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This equation has a unique solution along each fixed sample path of ξ, for instance if
a(t, x) is Lipschitz continuous in t. In this case, X , TAξ defines a weak solution and
uniqueness in law holds.

Example 6.6. Let f(x) be a locally bounded, Borel measurable function on R1, and let
a(x) be a Borel measurable function on R1 such that C1 6 a 6 C2 for some positive
constants C1, C2. For a fixed y ∈ R1, define

α(t, w) , a

(
y +

ˆ t

0
f(ws)ds

)
, (t, w) ∈ [0,∞)×W 1.

Consider the SDE

dXt = α(t,X)dBt = a

(
y +

ˆ t

0
f(Xs)ds

)
dBt.

The differential equation (6.40) now becomes

At =

ˆ t

0
a

(
y +

ˆ As

0
f(ξCu)du

)−2

ds

=

ˆ t

0
a

(
y +

ˆ s

0
f(ξu)Ȧudu

)−2

ds.

Define

Zt ,
ˆ t

0
f(ξu)Ȧudu.

It follows that
dZt
dt

= f(ξt)Ȧt =
f(ξt)

a (y + Zt)
2 ,

and hence ˆ t

0
a(y + Zs)

2dZs =

ˆ t

0
f(ξs)ds.

If we set
Φ(x) ,

ˆ x

0
a(y + z)2dz, x ∈ R1,

then Φ(x) is continuous, strictly increasing and

Φ(Zt) =

ˆ t

0
f(ξs)ds.

Therefore,

Zt = Φ−1

(ˆ t

0
f(ξs)ds

)
,

and At is uniquely solved as

At =

ˆ t

0
a

(
y + Φ−1

(ˆ s

0
f(ξu)du

))−2

ds.
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In this case, X , TAξ defines a weak solution and uniqueness in law holds.
A particular example is that f(x) = x. In this case, the SDE is equivalent to the

following equation of motion with random acceleration:
dYt = Xtdt,

dXt = a(Yt)dBt,

Y0 = y.

6.7 Examples: linear SDEs and Bessel processes

In this subsection, we discuss several useful examples of SDEs.
The first type of examples that we are going to study are linear SDEs. This is the

very nice case where we can obtain explicit formulae.
Consider the SDE

dXt = (A(t)Xt + a(t))dt+ σ(t)dBt, (6.42)

whereA(t), a(t) and σ(t) are bounded, deterministic functions taking values in Mat(n, n),
Mat(n, 1) and Mat(n, d) respectively.

This SDE can be solved explicitly in the following way. First of all, from classical
ODE theory, we know that the matrix equation{

dΦ(t)
dt = A(t)Φ(t), t > 0;

Φ(0) = Idn,

has a unique solution Φ(t) which is absolutely continuous. Moreover, it is not hard to see
that Φ(t) is non-singular for every t > 0. Indeed, suppose on the contrary that for some
t0 > 0 and some non-zero λ ∈ Rn, we have Φ(t0)λ = 0. Since the function x(t) , Φ(t)λ
solves the ODE

dx(t)

dt
= A(t)x(t) (6.43)

with condition x(t0) = 0, from the uniqueness of (6.43), we know that x(t) = 0 for all t.
But this contradicts the fact that x(0) = Φ(0)λ = λ 6= 0. Therefore, Φ(t) is non-singular
for every t > 0. In the case when A(t) = A, Φ(t) is explicitly given by

Φ(t) = etA ,
∞∑
k=0

Aktk

k!
,

and Φ−1(t) = e−tA.
Φ(t) is called the fundamental solution to the ODE (6.43). The reason for this name

is very simple: the solution to the inhomogeneous ODE

dx(t)

dt
= (A(t)x(t) + a(t)) (6.44)
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and even to the SDE (6.42) can be expressed in terms of Φ(t) and the coefficients.
Indeed, it is classical that the solution to the ODE (6.44) is given by

x(t) = Φ(t)

(
x(0) +

ˆ t

0
Φ−1(s)a(s)ds

)
.

Moreover, by using Itô’s formula, it is not hard to see that

Xt , Φ(t)

(
X0 +

ˆ t

0
Φ−1(s)a(s)ds+

ˆ t

0
Φ−1(s)σ(s)dBs

)
(6.45)

is a solution to the SDE (6.42). This is the unique solution because pathwise uniqueness
holds as a consequence of Lipschitz condition.

Since the integrands in the formula (6.45) are deterministic functions, we know that
Xt is a Gaussian process provided X0 is a Gaussian random variable. In this case, the
mean function m(t) , E[Xt] is given by

m(t) = Φ(t)

(
m(0) +

ˆ t

0
Φ−1(s)a(s)ds

)
and the covariance function ρ(s, t) , E[(Xs −m(s)) · (Xt −m(t))∗] is given by

ρ(s, t) = Φ(s)

(
ρ(0, 0) +

ˆ s∧t

0
Φ−1(u)σ(u)σ∗(u)

(
Φ−1(u)

)∗
du

)
Φ∗(t), s, t > 0.

A important example is the case when n = d = 1, A(t) = −γ (γ > 0), a(t) = 0,
σ(t) = σ, so the SDE takes the form

dXt = −γXtdt+ σdBt.

This is known as the Langevin equation and the solution is called the Ornstein-Uhlenbeck
process. In this case, the solution is given by

Xt = X0e−γt + σ

ˆ t

0
e−γ(t−s)dBs.

IfX0 is a Gaussian random variable with mean zero and variance η2, thenXt is a centered
Gaussian process with covariance function

ρ(s, t) = e−γ(s+t)

(
η2 + σ2

ˆ s

0
e2γudu

)
=

(
η2 − σ2

2γ

)
e−γ(s+t) +

σ2

2γ
e−γ(t−s)

provided s < t. In particular, if η2 = σ2/(2γ), then Xt is also stationary in the sense
that the distribution of (Xt1+h, · · · , Xtk+h) is independent of h for any given k > 1 and
t1 < · · · < tk.
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We can generalize the SDE (6.42) to the case where the diffusion coefficient depends
linearly on Xt. For simplicity, we only consider the one dimensional case (n = d = 1), in
which the SDE takes the form

dXt = (A(t)Xt + a(t))dt+ (C(t)Xt + c(t))dBt. (6.46)

Of course we also have pathwise uniqueness in this case.
To write down the explicit solution for this SDE, it is helpful to first understand

heuristically how to obtain the formula (6.45) in the previous discussion. Indeed, in the
SDE (6.42), the linear dependence on Xt appears only in the term A(t)Xtdt, which can
be viewed as contributing to an “exponential form” of the solution. Since Φ(t) behaves
like the exponential of

´
A(t)dt, it is reasonable to expect that if we apply Itô’s formula

to the process Φ−1(t)Xt, all those terms involving Xt should get killed and we will obtain
that

d(Φ−1(t)Xt) = Φ−1(t)a(t)dt+ Φ−1(t)σ(t)dBt.

The reader might do the computation to see that this is indeed the case.
Now to solve the SDE (6.46), note that the linear dependence on Xt appears in

the terms A(t)Xt and C(t)Xt. These two terms should contribute to the “exponential
form” of Xt. Therefore, taking into account the fact that C(t) appears in the diffusion
coefficient, we may define the “exponential” of (A(t), C(t)) by

Zt , exp

(ˆ t

0
A(s)ds+

ˆ t

0
C(s)dBs −

1

2

ˆ t

0
C2(s)ds

)
.

Then it is reasonable to expect that after applying Itô’s formula to the process Z−1
t Xt,

we should arrive at an expression which does not involve Xt. This is indeed the case, and
we can obtain that the solution to the SDE (6.46) is given by

Xt = Zt

(
X0 +

ˆ t

0
Z−1
s (a(s)− C(s)c(s))ds+

ˆ t

0
Z−1
s c(s)dBs

)
.

An important example is the case when A(t) = µ, C(t) = σ, and a(t) = c(t) = 0.
In this case, the SDE takes the form

dXt = µXtdt+ σXtdBt

and the solution is given by
Xt = X0eµt+σBt−

1
2
σ2t.

Xt is known as the geometric Brownian motion.
Another type of examples that we are going to study are Bessel processes. These

are one dimensional SDEs. They are important and useful because a lot of explicit
computations are possible and many interesting SDE models can be reduced to Bessel
processes.

We first take a slight detour to discuss a bit more about one dimensional SDEs.
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In the one dimensional case, explosion can be described in a more precise way as
there are exactly two possible ways to explode in finite time: to the left or to the right.
Therefore, we may consider more generally an SDE{

dXt = σ(Xt)dBt + b(Xt)dt, t > 0,

X0 = x ∈ I,
(6.47)

defined on an open interval I = (l, r) with −∞ 6 l < r 6 ∞, and we think of l and
r as two points of explosion. In Section 6.3, we were essentially identifying l and r in
the case of explosion, which we do not want to do here. The argument here fails in
higher dimensions, and indeed very little is known for the geometry of multidimensional
diffusions.

Suppose that σ, b are continuously differentiable on I. According to the Yamada-
Watanabe theory (continuity gives weak existence and local Lipschitz condition gives
pathwise uniqueness), the SDE (6.47) has a unique solutionXx

t defined up to an explosion
time e. More precisely, e = limn→∞ τn, where τn , inf{t > 0 : Xx

t /∈ [an, bn]} and
an, bn are two sequences of real numbers such that an ↓ l, bn ↑ r. If we define Ŵ I to be
the space of continuous paths w : [0,∞)→ [l, r] such that w0 ∈ I and wt = we(w) for
t > e(w), where e(w) , inf{t > 0 : wt = l or r}, then Xx is a random variable taking
values in Ŵ I , and the explosion time of Xx is e = e(Xx). What is more precise than
Section 6.3 is that limt↑eX

x
t exists and is equal to l or r on the event that {e <∞}, a

fact which can be proved by the same argument as in the proof of Theorem 6.7 and the
continuity of Xx.

From now on, we always assume that σ2 > 0 on I.
The following quantities play a fundamental role in studying the geometry of one

dimensional diffusions.

Definition 6.9. Let c ∈ I be a fixed real number.
(1) The scale function is defined by

s(x) ,
ˆ x

c
exp

(
−2

ˆ ξ

c

b(ζ)

σ2(ζ)
dζ

)
dξ, x ∈ I.

(2) The speed measure is defined by

m(dx) ,
2dx

s′(x)σ2(x)
, x ∈ I.

(3) The Green function is defined by

Ga,b(x, y) ,
(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
, x, y ∈ [a, b] ⊆ I.

We first show that these quantities can be used to compute expected exit times.
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Let [a, b] ⊆ I. Consider the ODE{
b(x)M ′(x) + 1

2σ
2(x)M ′′(x) = −1, a < x < b;

M(a) = M(b) = 0.
(6.48)

It is not hard to see that a solution is given by

Ma,b(x) ,
ˆ b

a
Ga,b(x, y)m(dy), x ∈ [a, b].

In particular, Ma,b is non-negative.
Define τa,b , inf{t < e : Xx

t /∈ [a, b]}. According to Itô’s formula and the ODE
(6.48), we see that

Ma,b(X
x
τa,b∧t) = Ma,b(x) +

ˆ τa,b∧t

0
M ′a,b(X

x
s )σ(Xx

s )dBs − τa,b ∧ t.

Therefore,

E[τa,b ∧ t] = Ma,b(x)− E[Ma,b(X
x
τa,b∧t)] 6Ma,b(x) <∞. (6.49)

In particular, τa,b is integrable. Indeed, in view of the boundary condition for the ODE
(6.48), by letting t→∞ in (6.49), we have obtained the following result.

Proposition 6.1. The expected exit time E[τa,b] equals Ma,b(x). In particular, τa,b <∞
almost surely.

Note that Proposition 6.1 does not imply that e <∞ almost surely. In fact, we are
going to study the limiting behavior of Xx

t as t → e and give a simple non-explosion
criterion for Xx

t . This is the content of the following elegant result.

Theorem 6.14. (1) Suppose that s(l+) = −∞ and s(r−) =∞, then

P(e =∞) = P
(

lim sup
t→∞

Xx
t = r

)
= P

(
lim inf
t→∞

Xx
t = l

)
= 1.

(2) If s(l+) > −∞ and s(r−) =∞, then limt↑eX
x
t exists almost surely and

P
(

lim
t↑e

Xx
t = l

)
= P

(
sup
t<e

Xx
t < r

)
= 1.

A similar assertion holds if the roles of l and r are interchanged.
(3) If s(l+) > −∞ and s(r−) <∞, then

P
(

lim
t↑e

Xx
t = l

)
= 1− P

(
lim
t↑e

Xx
t = r

)
=

s(r−)− s(x)

s(r−)− s(l+)
. (6.50)
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Proof. The main feature of the scale function is that (As)(x) = 0 for all x ∈ I, where

(Af)(x) =
1

2
σ2(x)f ′′(x) + b(x)f ′(x)

is the generator of the SDE. Given l < a < x < b < r, we again consider the first exit
time τa,b. According to the martingale characterization for the weak solution, we know
that s(Xx

τa,b∧t)− s(x) is a martingale. In particular, we have

E
[
s(Xx

τa,b∧t)
]

= s(x).

By letting t→∞ and noting that τa,b <∞ almost sure (c.f. Proposition 6.1), we obtain
that

s(a)P
(
Xx
τa,b

= a
)

+ s(b)P
(
Xx
τa,b

= b
)

= s(x)

as well as
P
(
Xx
τa,b

= a
)

+ P
(
Xx
τa,b

= b
)

= 1.

Therefore,

P
(
Xx
τa,b

= a
)

=
s(b)− s(x)

s(b)− s(a)
, P

(
Xx
τa,b

= b
)

=
s(x)− s(a)

s(b)− s(a)
.

(1) Suppose that s(l+) = −∞ and s(r−) =∞.
In this case, lima↓l P(Xx

τa,b
= b) = 1. Since {Xx

τa,b
= b} ⊆ {supt<eX

x
t > b} for all

a, we conclude that P(supt<eX
x
t > b) > 1. This is true for all b, which implies that

P(supt<eX
x
t = r) = 1. Similarly, we have P(inft<eX

x
t = l) = 1. This in particular

implies that P(e = ∞) = 1, for otherwise on the event that {e < ∞}, we know that
limt↑eXt exists and equals l or r, which is a contradiction.

(2) Suppose that s(l+) > −∞ and s(r−) =∞.
In this case, by the discussion in the first case, we see that

P
(

inf
t<e

Xx
t = l

)
= 1. (6.51)

On the other hand, the process

Y a,b
t , s(Xx

τa,b∧t)− s(l+)

is a non-negative martingale. According to Fatou’s lemma, by letting a ↓ l, b ↑ r, we
conclude that

Yt , s(Xx
e∧t)− s(l+)

is a non-negative supermartingale. In particular, with probability one limt→∞ Yt exists
finitely. This implies that limt↑e s(X

x
t ) exists finitely. But s is continuous and strictly

increasing, we therefore know that limt↑eX
x
t exists almost surely. In view of (6.51), we

conclude that P(limt↑eX
x
t = l) = 1. This also implies that P(supt<eX

x
t < r) = 1 since

{limt↑eX
x
t = l} ⊆ {supt<eX

x
t < r}.
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The case when s(l+) = −∞ and s(r−) <∞ is treated in a similar way.
(3) Suppose that s(l+) > −∞ and s(r−) <∞.
In this case, we have

P
(

sup
t<e

Xx
t > b

)
>
s(x)− s(l+)

s(b)− s(l+)

for all b. Therefore,

P
(

sup
t<e

Xx
t = r

)
>

s(x)− s(l+)

s(r−)− s(l+)
. (6.52)

Similarly,

P
(

inf
t<e

Xx
t = l

)
>

s(r−)− s(x)

s(r−)− s(l+)
. (6.53)

On the other hand, by the discussion in the second case, we see that limt↑eX
x
t exists

almost surely. Therefore,{
lim
t↑e

Xx
t = r

}
=

{
sup
t<e

Xx
t = r

}
,

{
lim
t↑e

Xx
t = l

}
=

{
inf
t<e

Xx
t = l

}
.

In particular, these two events are disjoint. Since the right hand sides of (6.52) and
(6.53) add up to one, we arrive at (6.50).

Remark 6.10. In the first case in Theorem 6.14, we see that Xx
t is recurrent, in the sense

that P(σy <∞) = 1 for every y ∈ I, where σy , inf{t > 0 : Xt = y}. This case gives a
simple non-explosion criterion for the SDE. In the second and third cases, there exists an
open subset U of (l, r), such that with positive probability Xx

t never enters U . In these
cases, it is not clear whether Xx

t explodes in finite time with positive probability. The
famous Feller’s test studies explosion and non-explosion criteria in a very elegant way, in
terms of a more complicated quantity than just the scale function. We are not going to
discuss Feller’s test here, and we refer the reader to [4] for a detailed introduction.

Now we come back to the example of Bessel processes.
Let Bt = (B1

t , · · · , Bn
t ) be an n-dimensional Brownian motion. Rt , |Bt| is known

as the classical n-dimensional Bessel process. By applying Itô’s formula to the process
ρt , R2

t =
∑n

i=1(Bi
t)

2, formally we have

dρt = 2
n∑
i=1

Bi
tdB

i
t + ndt

= 2
√
ρt ·

∑n
i=1B

i
tdB

i
t√

ρt
+ ndt.

But the process

Wt ,
n∑
i=1

ˆ t

0

Bi
sdB

i
s√

ρs
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is a one dimensional Brownian motion according to Lévy’s characterization theorem.
Therefore, ρt solves the SDE

dρt = 2
√
ρtdWt + ndt.

In terms of the SDE, we can generalize the previous notion of Bessel processes to
arbitrary (real) dimensions. To be precise, consider the one dimensional SDE

dρt = 2
√
|ρt|dBt + αdt, (6.54)

where α > 0 is a constant.

Proposition 6.2. The SDE (6.54) is exact without explosion to infinity in finite time.
Moreover, if ρ0 > 0, then ρt > 0 for all t.

Proof. Since the coefficients are continuous, weak existence holds. From the inequality
|
√
x−√y| 6

√
x− y, pathwise uniqueness holds. Moreover, since

√
|x| 6 (1 + |x|)/2,

the solution cannot explode. Therefore, the SDE is exact without explosion.
Now observe that the unique solution to the SDE{

dρt = 2
√
|ρt|dBt, t > 0,

ρ0 = 0,

is the trivial solution ρ ≡ 0. According to the comparison theorem (c.f. Theorem 6.11), we
conclude that the solution ρt to the SDE (6.54) is non-negative, provided that ρ0 > 0.

Due to Proposition 6.2, when writing the SDE (6.54), we may drop the absolute
value inside the square root.

Definition 6.10. Given α > 0 and x > 0, the solution to the equation

ρt = x+ 2

ˆ t

0

√
ρsdBs + αt

is called a squared Bessel process starting at x with dimension α and it is simply denoted
as BSEQα. The process Rt ,

√
ρt is called a Bessel process starting at

√
x with dimension

α and it is simply denoted as BSEα.

From the comparison theorem again, we easily see that if ρ1
t , ρ

2
t are BESQ

α1 ,BESQα2

starting at x1, x2 respectively such that α1 6 α2, x1 6 x2, then ρ1
t 6 ρ2

t for all t.
An important property for Bessel processes is the additivity property. For α > 0, x >

0, we use Qα
x to denote the law of BESQα starting at x on the path space W 1.

Proposition 6.3. Let α1, α2 > 0 and x1, x2 > 0. Then Qα
x1 ∗Q

α2
x2 = Qα1+α2

x1+x2 , where ∗
means convolution of two measures.
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Proof. In terms of processes, it is equivalent to prove the following. Suppose that B1, B2

are two independent Brownian motions. Let ρit (i = 1, 2) be the unique solution to the
following SDE: {

dρit = 2
√
ρitdB

i
t + αidt, t > 0,

ρi0 = xi.

Then ρ3
t , ρ1

t + ρ2
t solves the SDE{

dρ3
t = 2

√
ρ3
tdBt + (α1 + α2)dt, t > 0,

ρ3
0 = x1 + x2,

for some Brownian motion Bt. Indeed, this is true because

ρ3
t = x1 + x2 + 2

ˆ t

0

(√
ρ1
sdB

1
s +

√
ρ2
sdB

2
s

)
+ (α1 + α2)t

= x1 + x2 + 2

ˆ t

0

√
ρ3
s ·

(√
ρ1
sdB

1
s√

ρ3
s

+

√
ρ2
sdB

2
s√

ρ3
s

)
+ (α1 + α2)t

= x1 + x2 + 2

ˆ t

0

√
ρ3
sdBs + (α1 + α2)t,

where

Bt ,
ˆ t

0

(√
ρ1
sdB

1
s√

ρ3
s

+

√
ρ2
sdB

2
s√

ρ3
s

)
is a Brownian motion according to Lévy’s characterization theorem.

We can also derive the Laplace transform of a BSEQα explicitly. In fact, if α ∈ N, let
ρit (1 6 i 6 α) be a BESQ1 starting at x/α (driven by independent Brownian motions).
According to Proposition 6.3, we have

E
[
e−λ(ρ1t+···+ραt )

]
=
(
E
[
e−λρ

1
t

])α
=

1

(1 + 2λt)α/2
e
− λx

(1+2λt) , (6.55)

where we have used the formula for the Laplace transform of the square of a Gaussian
random variable. This formula must be true as the additivity holds even when α is not
an integer, as indicated by Proposition 6.3. In other words, we have the following result.

Proposition 6.4. The formula (6.55) gives the Laplace transform for a BESQα starting
at x for arbitrary α, x > 0. In particular,

P(Rt ∈ dy) =
e−

(x2+y2)
2t

t(xy)α/2−1
yα−1Iα/2−1

(xy
t

)
, y > 0,

where Rt is a BESα starting at x, and

Iν(x) ,
(x

2

)ν ∞∑
n=0

(x/2)2n

n!Γ(ν + n+ 1)

is the modified Bessel function.
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Proof. The function v(t, x) defined by the right hand side of (6.55) is in C1,2
b ([0,∞)×

[0,∞)) and satisfies ∂v/∂t = Av, where

(Af)(x) , 2|x|f ′′(x) + αf ′(x)

is the generator of the SDE (6.54). Given t0 > 0, define

u(t, x) , v(t0 − t, x), (t, x) ∈ [0, t0]× [0,∞).

By applying Itô’s formula to the process u(t, ρt), we can see that u(t, ρt) − u(0, x) is
martingale (one may see the integrability of quadratic variation process by comparing ρt
with a BESQα

′
where α′ > α is an integer). Therefore,

E[u(t0, ρt0)] = E[u(0, x)],

which is exactly the formula (6.55) at t0.
The second part follows from inverting the Laplace transform and the fact that Rt =√

ρt.

Another interesting property is the behavior at the boundary point 0.

Proposition 6.5. Let Rt be a BESα starting at
√
x > 0. If α > 2, then with probability

one, Rt never reaches 0.

Proof. It is equivalent to looking at ρt = R2
t . Let e , inf{t > 0 : ρt = 0}. As we are

only concerned with the process before e, we can use the model (6.47) with I = (0,∞)
and think of 0 and ∞ as two explosion times. In this framework, consider the scale
function

s(x) =

ˆ x

1
exp

(
−
ˆ y

1

2αdz

4z

)
dy =

ˆ x

1
y−

α
2 dy.

In particular, s(0+) = −∞ if and only if α > 2, and s(∞) = ∞ if and only if α 6 2.
Therefore, the result follows from Theorem 6.14 (Case (1) for α = 2 and Case (2) for
α > 2).

Remark 6.11. By using Feller’s test of explosion, it is possible to show that if 0 6 α < 2,
then with probability one, Rt reaches 0 in finite time. Moreover, by using pathwise
uniqueness and local times (we leave this part as a good exercise), one can show that
the point 0 is absorbing (i.e. the process remains at 0 once it reaches it) if α = 0 and
reflecting (i.e. whenever Rt0 = 0, we have for any δ > 0, there exists t ∈ (t0, t0 + δ)
such that Rt > 0) if 0 < α < 2.

As we mentioned before, Bessel processes are useful because they are related to many
interesting SDE models. Here we present two of them: the Cox-Ingersoll-Ross processes
and the Constant Elasticity of Variance processes.

(1) The Cox-Ingersoll-Ross (CIR) model
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Consider the SDE {
drt = k(θ − rt)dt+ σ

√
rtdBt, t > 0,

r0 = x > 0,
(6.56)

where k · θ > 0 and σ 6= 0. Apparently, the SDE (6.56) is exact without explosion.
Moreover, according to the comparison theorem, we know that rt > 0 for all t. The
solution to this SDE is nothing but a time-change and rescaling of a BESQ.

Proposition 6.6. The solution rt to the SDE (6.56) is given by

rt = e−ktρ

(
σ2

4k
(ekt − 1)

)
,

where ρt is a BESQα starting at x with α , 4kθ/σ2.

Proof. Let Zt , rte
kt. According to the integration by parts formula, we have

Zt = x+ θ(ekt − 1) +

ˆ t

0
σe

ks
2

√
ZsdBs.

To relate Zt with a BESQ, let At be a non-negative, increasing function to be determined
and let Ct be the associated time-change. It follows that

ZCt = x+ θ(ekCt − 1) +

ˆ Ct

0
σe

ks
2

√
ZsdBs

= x+ θ(ekCt − 1) + 2

ˆ t

0

σe
kCs
2

2
·
√
ZCsdBCs .

In view of the SDE (6.54) for a BESQ, we want

Wt ,
ˆ t

0

σe
kCs
2

2
dBCs

to be a Brownian motion. This is equivalent to saying that

d〈W 〉t =
σ2ekCt

4
C ′tdt = dt,

and hence
σ2ekCt

4
C ′t = 1.

Since we also want C0 = 0, we obtain easily that

t =
(ekc − 1)σ2

4k
, c > 0,
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and this is the increasing function c 7→ t = Ac that we need. Ct would just be the inverse
of At. If we set ρt , ZCt , then

ρt = x+
4kθ

σ2
t+ 2

ˆ t

0

√
ρsdWs,

which shows that ρt is a BESQα starting at x with α , 4kθ/σ2. The result then
follows.

From Proposition 6.6 and Theorem 6.14, we know that rt never reaches 0 if kθ >
σ2/2, provided r0 = x > 0.

(2) The Constant Elasticity of Variance (CEV) model
Consider the SDE {

dSt = St(µdt+ σSβt dBt), t > 0,

S0 = x > 0,
(6.57)

where β > 0 and σ 6= 0. Apparently, the SDE (6.57) is exact.
We first look at the case when µ = 0. Let τ0 , inf{t > 0 : St = 0}. Define

ρt ,
1

σ2β2
S−2β
t , t < τ0 ∧ e.

According to Itô’s formula, we have

ρt =
1

σ2β2
x−2β + 2

ˆ t

0

√
ρsdWs +

(
2 +

1

β

)
t, t < τ0 ∧ e,

where Wt , −Bt is a Brownian motion. Therefore, ρt is a BESQα starting at 1
σ2β2x

−2β

with α , 2 + β−1 > 2. In particular, we know that ρt does not explode in finite time
and hence P(τ0 = ∞) = 1. In other words, St never reaches 0. Moreover, according
to Proposition 6.5, we know that ρt never reaches 0. Therefore, St does not explode in
finite time. Since

St =

(
1

σ2β2

) 1
2β

ρ
− 1

2β

t = x+ σ

ˆ t

0
S1+β
u dBu,

we see that St is a local martingale with strictly decreasing expectation. In particular, St
is not a martingale (but of course it is a non-negative supermartingale). The distribution
of St can of course be computed from the distribution of BESQ explicitly.

Now we consider the case when µ 6= 0. Similar to the previous discussion, let τ0 ,
inf{t > 0 : St = 0}, and define

rt ,
1

4β2
S−2β
t , t < τ0 ∧ e.
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According to Itô’s formula, we obtain that

rt =
1

4β2
x−2β +

ˆ t

0
k(θ − rs)ds+ (−σ) ·

ˆ t

0

√
rsdBs, t < τ0 ∧ e.

where k , 2µβ, θ , (2β + 1)σ2/(4kβ). In particular, rt satisfies the CIR model with
parameters k, θ,−σ. Therefore, rt does not explode and hence P(τ0 =∞) = 1.Moreover,
since kθ > σ2/2, we know from the previous discussion on the CIR model that rt never
reaches 0. In other words, St does not explode. Since

St =

(
1

4β2

) 1
2β

r
− 1

2β

t ,

according to Proposition 6.6, the distribution of St can also be computed from the
distribution of BESQ explicitly.

6.8 Itô’s diffusion processes and partial differential equations

To conclude this course, we study Itô’s diffusion processes and explore their relationship
with partial differential equations. In particular, we are going to show that solutions to a
class of elliptic and parabolic equations admit stochastic representations.

Throughout this subsection, we consider the multidimensional SDE{
dXt = σ(Xt)dBt + b(Xt)dt, t > 0,

X0 = x,
(6.58)

where σ, b are Lipschitz continuous. We know from the Yamada-Watanabe theory that
this SDE is exact. Let {Xx

t : x ∈ Rn, t > 0} be the unique solution to the SDE (6.58)
on some given filtered probability space.

Definition 6.11. {Xx
t : x ∈ Rn, t > 0} is called a time homogeneous Itô’s diffusion

process.

A important consequence of exactness is the following strong Markov property.

Theorem 6.15. Suppose that τ is a finite {Ft}-stopping time. Then for any x ∈ Rn,
θ > 0 and f ∈ Bb(Rn), we have

E[f(Xx
τ+θ)|Fτ ] = E[f(Xy

θ )]|y=Xx
τ
.

Proof. From the SDE (6.58), for θ > 0, we have

Xx
τ+θ = x+

ˆ τ+θ

0
σ(Xx

s )dBs +

ˆ τ+θ

0
b(Xx

s )ds

= Xx
τ +

ˆ τ+θ

τ
σ(Xx

s )dBs +

ˆ τ+θ

τ
b(Xx

s )ds

= Xx
τ +

ˆ θ

0
σ(Xx

τ+u)dB(τ)
u +

ˆ θ

0
b(Xx

τ+u)du,
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where B(τ)
u , Bτ+u−Bτ is a Brownian motion. Therefore, the process θ 7→ Xx

τ+θ solves
the SDE (6.58) with initial data Xx

τ and Brownian motion B(τ). According to exactness,
Xx
τ+θ is a deterministic functional of Xx

τ and B(τ), and we may write

Xx
τ+θ = F (θ,Xx

τ , B
(τ))

for some deterministic functional F, where θ 7→ F (θ, y,B) gives the unique solution
to the SDE (6.58) starting at y with a given Brownian motion B. Now since Xx

τ is
Fτ -measurable and B(τ) is independent of Fτ , we see immediately that

E[f(Xx
τ+θ)|Fτ ] = E

[
f
(
F (θ,Xx

τ , B
(τ))
)
|Fτ
]

= E [f (F (θ, y,B))] |y=Xx
τ

= E[f(Xy
θ )]|y=Xx

τ
.

Now recall that the generator A of the SDE (6.58) is the second order differential
operator

(Af)(x) =
1

2

n∑
i,j=1

aij(x)
∂2f

∂xi∂xj
+

n∑
i=1

bi(x)
∂f

∂xi
,

where a , σ · σ∗.
In the theory of elliptic PDEs, we are usually interested in the boundary value problem

associated with the operator A. More precisely, suppose that D is a bounded domain
in Rn. Let k : D → [0,∞), g : D → R1 and f : ∂D → R1 be continuous
functions. We consider the following (Dirichlet) boundary value problem: find a function
u ∈ C(D) ∩ C2(D), such that{

Au− k · u = −g, x ∈ D,
u = f, x ∈ ∂D.

(6.59)

The existence of such u is well studied in PDE theory under suitable regularity conditions
on the coefficients and the geometry of ∂D. Here we are not concerned with existence,
but we are interested in representing the solution in terms of Itô’s diffusion process under
the assumption of existence.

Theorem 6.16. Suppose that there exists u ∈ C(D)∩C2(D) which solves the boundary
value problem (6.59). Let Xx

t be the solution to the SDE (6.58). Assume that the exit
time

τD , inf{t > 0 : Xx
t /∈ D}

satisfies
E[τD] <∞ (6.60)
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for every x ∈ D. Then u is given by

u(x) = E
[
f(Xx

τD
) exp

(
−
ˆ τD

0
k(Xx

s )ds

)
+

ˆ τD

0
g(Xx

s ) exp

(
−
ˆ s

0
k(Xx

θ )dθ

)
ds

]
. (6.61)

In particular, the solution to the boundary value problem is unique in C(D) ∩ C2(D).

Proof. Fix x ∈ D. According to Itô’s formula and the elliptic equation for u, we have

u(Xx
τD∧t) = u(x) +

n∑
i=1

d∑
k=1

ˆ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s +

ˆ τD∧t

0
(Au)(Xx

s )ds

= u(x) +
n∑
i=1

d∑
k=1

ˆ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s

+

ˆ τD∧t

0
k(Xx

s )u(Xx
s )ds−

ˆ τD∧t

0
g(Xx

s )ds.

By further applying the integration by parts formula to the process

u(Xx
τD∧t) · exp(−

ˆ τD∧t

0
k(Xx

s )ds), t > 0,

we conclude that the process

Mt , u(Xx
τD∧t) · exp

(
−
ˆ τD∧t

0
k(Xx

s )ds

)
+

ˆ τD∧t

0
g(Xx

s ) exp

(
−
ˆ s

0
k(Xx

θ )dθ

)
ds

= u(x) +

n∑
i=1

d∑
k=1

ˆ τD∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s ) exp

(
−
ˆ s

0
k(Xx

θ )dθ

)
dBk

s

is a continuous local martingale. Moreover, from continuity we see that

|Mt| 6 C(1 + τD), ∀t > 0.

According to the assumption (6.60), we conclude that Mt is of class (DL). In particular,
Mt is a martingale. Indeed, the same reason shows that Mt is a uniformly integrable
martingale. Therefore,

E[M0] = E[M∞],

which yields the desired formula (6.61).

One might wonder when the condition (6.60) holds. Here is a simple sufficient
condition.
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Proposition 6.7. Suppose that for some 1 6 i 6 n, we have

inf
x∈D

aii(x) > 0.

Then (6.60) holds for every x ∈ D.
Proof. Define

p , inf
x∈D

aii(x), q , sup
x∈D
|b(x)|, r , inf

x∈D
xi.

Let λ > 2q/p, and define
h(x) , −eλx

i
, x ∈ Rn.

Then we have

−(Ah)(x) = eλx
i ·
(

1

2
λ2aii(x) + λbi(x)

)
>

1

2
λpeλr

(
λ− 2q

p

)
=: γ > 0,

for every x ∈ D. On the other hand, for fixed x ∈ D, we know from the martingale
characterization that the process h(Xx

τD∧t)− h(x)−
´ τD∧t

0 (Ah)(Xx
s )ds is a martingale.

Therefore,

E[h(Xx
τD∧t)] = h(x) + E

[ˆ τD∧t

0
(Ah)(Xx

s )ds

]
6 h(x)− γE[τD ∧ t],

which implies that

E[τD ∧ t] 6
h(x)− E[h(Xx

τD∧t)]

γ
6

2 supx∈D |h(x)|
γ

.

Therefore, by letting t→∞, we conclude that (6.60) holds.

Next we turn to the parabolic problem. The idea of the analysis is similar to the
elliptic problem.

We fix an arbitrary T > 0. Let f : Rn → R1, k : [0, T ] × Rn → [0,∞) and
g : [0, T ]× Rn → [0,∞) be continuous functions. We consider the following backward
Cauchy problem: find a function v ∈ C([0, T ] × Rn) ∩ C1,2([0, T ) × Rn) (continuously
differentiable in t and twice continuously differentiable in x), such that{

−∂v
∂t + k · v = Av + g, (t, x) ∈ [0, T )× Rn,

v(T, x) = f(x), x ∈ Rn.
(6.62)

Here A acts on v by differentiating with respect to the spatial variable. Again we are not
concerned with existence which is contained in the standard parabolic theory, and we are
looking for a stochastic representation for the existing solution.

Suppose that f, g satisfy the following polynomial growth condition:

|f(x)| 6 C(1 + |x|µ), sup
06t6T

|g(t, x)| 6 C(1 + |x|µ), ∀x ∈ Rn, (6.63)

for some C, µ > 0. Then we have the following result which is known as the Feynman-Kac
formula.
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Theorem 6.17. Suppose that v ∈ C([0, T ] × Rn) ∩ C1,2([0, T ) × Rn) is a solution to
the backward Cauchy problem (6.62) which satisfies the polynomial growth condition:

sup
06t6T

|v(t, x)| 6 K(1 + |x|λ), ∀x ∈ Rn,

for some K,λ > 0. Then v has a representation

v(t, x) = E
[
f(Xx

T−t) exp

(
−
ˆ T−t

0
k(t+ s,Xx

s )ds

)
+

ˆ T−t

0
g(t+ s,Xx

s ) exp

(
−
ˆ s

0
k(t+ θ,Xx

θ )dθ

)
ds

]
In particular, the solution is unique in the space of C([0, T ]× Rn) ∩ C1,2([0, T )× Rn)-
functions which satisfy the polynomial growth condition.

Proof. The proof is essentially the same is the one of Theorem 6.16. Given 0 6 t 6 T,
by applying Itô’s formula to the process together with the parabolic equation for v,

Ys , v(t+ s,Xx
s ) · exp

(
−
ˆ s

0
k(t+ θ,Xx

θ )dθ

)
, 0 6 s 6 T − t,

we arrive at

dYs = −g(t+ s,Xx
s ) · exp

(
−
ˆ s

0
k(t+ θ,Xx

θ )dθ

)
ds

+
n∑
i=1

d∑
k=1

exp

(
−
ˆ s

0
k(t+ θ,Xx

θ )dθ

)
· ∂v
∂xi

(t+ s,Xx
s )σik(X

x
s )dBk

s

for 0 6 s 6 T − t. On the other hand, since σ, b satisfy the linear growth condition which
is a consequence of Lipschitz continuity, we see from the BDG inequalities and Gronwall’s
inequality that

E
[

sup
06s6t

|Xx
s |p
]
<∞, ∀x ∈ Rn, t > 0, p > 2.

In particular, together with the polynomial growth condition for g and v, we conclude
that the local martingale

Ys − v(t, x) +

ˆ s

0
g(t+ θ,Xx

θ ) · exp

(
−
ˆ θ

0
k(t+ r,Xx

r )dr

)
dθ, 0 6 s 6 T − t,

is indeed a martingale (one might show that this local martingale is of class (DL)).
Therefore, we arrive at

v(t, x) = E
[
YT−t +

ˆ T−t

0
g(t+ s,Xx

s ) exp

(
−
ˆ s

0
k(t+ θ,Xx

θ )dθ

)
ds

]
,

which yields the desired formula.
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We can see from the proof of Theorem 6.17 that the backward Cauchy problem
is a more natural one to consider from the probabilistic point of view. Of course one
can consider the following classical forward Cauchy problem, which is indeed a direct
consequence of the backward case.

Corollary 6.2. Let f : Rn → R1, k : [0,∞)×Rn → [0,∞) and g : [0,∞)×Rn → R1

be continuous functions such that f, g have local polynomial growth in the sense that
for each T > 0, there exists C, µ > 0 such that (6.63) holds. Suppose that u ∈
C([0,∞)× Rn)× C1,2((0,∞)× Rn) is a solution to the Cauchy problem{

∂u
∂t + k · u = Au+ g, (t, x) ∈ (0,∞)× Rn,
u(0, x) = f(x), x ∈ Rn,

(6.64)

which has local polynomial growth in the same sense. Then u is given by

u(t, x) = E
[
f(Xx

t ) exp

(
−
ˆ t

0
k(t− s,Xx

s )ds

)
+

ˆ t

0
g(t− s,Xx

s ) exp

(
−
ˆ s

0
k(t− θ,Xx

θ )dθ

)
ds

]
. (6.65)

In particular, the solution is unique in the space of C([0,∞)×Rn)∩C1,2((0,∞)×Rn)-
functions which have local polynomial growth.

Proof. For fixed T > 0, define

v(t, x) , u(T − t, x), 0 6 t 6 T.

Then v solves the backward Cauchy problem. The result follows from applying Theorem
6.62 to v.

Remark 6.12. A nice consequence of Theorem 6.16 (the elliptic problem) is a maximum
principle: suppose that g > 0, f > 0, then u > 0. Similar result holds for the parabolic
problem (backward and forward).

In the end, we give a brief answer (not entirely rigorous) to the two fundamental
questions that we raised in the introduction of this section.

(1) According to the martingale characterization for the SDE (6.58) and some bound-
edness estimates, we know that the process

f(Xx
t )− f(x)−

ˆ t

0
(Af)(Xx

s )ds

is a martingale. Therefore, it is very natural to expect that

E[f(Xx
t )]− f(x)

t
=

1

t

ˆ t

0
(Af)(Xx

s )ds→ (Af)(x)

as t ↓ 0.
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(2) Let p(t, x, y) be the fundamental solution (if it exists) to the parabolic equation
∂u
∂t −Au = 0. In other words, p(t, x, y) satisfies{

∂p
∂t − (Ap) = 0, t > 0,

p(0, x, y) = δx(y),

where A acts on p by differentiating with respect to the x variable. It follows that for
every f : Rn → R1, the function

u(t, x) ,
ˆ
Rn
p(t, x, y)f(y)dy

solves the forward Cauchy problem (6.64) (k = 0, g = 0) with initial condition given by
f. According to Corollary 6.2, we know that

u(t, x) = E[f(Xx
t )].

This implies that p(t, x, y) has to be given by

p(t, x, y) = P(Xx
t ∈ dy)/dy.

Remark 6.13. There are still technical gaps to fill in order to make the previous argument
work. Even so, a rather subtle point is that it is not at all clear that if we define
u(t, x) by the right hand side of (6.65) (respectively, define p(t, x, y) , P(Xx

t ∈ dy)/dy
if it exists), then u(t, x) (respectively, p(t, x, y)) solves the forward Cauchy problem
(respectively, defines a fundamental solution). This philosophy of proving existence was
not fully explored because it turns out to be not as efficient as traditional PDE methods in
general. The elegance of the stochastic representation lies in the fact that once a solution
exists, it has to be in the neat probabilistic form that we have seen here, which gives
us solid intuition about its structure and probabilistic ways to study its properties. On
the practical side, it enables us to simulate the solution to the PDE from a probabilistic
point of view (the so-called Monte Carlo method), which proves to be rather efficient
and successful.
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