Solutions for Problem Sheet 6

Problem 1. Exactness all follow from continuity and local Lipschitz property for the coefficients.
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(3) Let 7o 2 inf{t > 0: X; = 0} and let e be the explosion time. Define Y; £ In X;. According
to I1td's formula, we have
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Define Z, £ In X, + rfg X,ds. It follows that
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Integrating with respect to dt, we have
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Differentiating with respect to ¢, we arrive at
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This in particular implies that 70 = e = oo almost surely, and (1) defines the global solution to the
SDE.

Problem 2. (1) Since B; is a Gaussian process, we know that X; is also a Gaussian process. The
mean function is m(t) = E[X;] = 0, and the covariance function is
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(2) The SDE is a linear SDE with A(t) = —(1 —¢)7!, a(t) = 0 and o(t) = 1. By the general
formula for the solution, we have ®(¢t) =1 — ¢, and
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Since the integrand is deterministic, it is immediate that Y} is a Gaussian process. The mean function
is zero, and for s < ¢ < 1, we have
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In particular, Y; has the same mean and covariance functions as X;. Since they are both Gaussian

processes, we conclude that
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Moreover, since X; = 0, and by continuity, the probability P(lim;+; X; = 0) is determined by the
distribution of (X;)o<i<1, therefore we conclude that
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(3) Let B; be a one dimensional Brownian motion, and let S; £ SUpPp<s<1 Bs- The joint density
fis,.B1)(2,y) of (S1, B1) is given by
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Now a crucial observation is, the process X; has the same distribution as the Brownian motion
B, conditioned on B; = 0. More precisely, for 0 < t; < --- < t, < 1, the joint density of
(Xt,, -+, X, ) is the same as the conditional density of (B,,---,B:,) conditioned on B; = 0.
Therefore, the desired probability is
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Problem 3. (1) The coefficients are given by o(x) = —2|z|?/? and b(x) = 322. They are continuous
and locally Lipschitz. Therefore, the SDE is exact.
(2) The result follows from the comparison theorem, since the unique solution to the SDE
dY; = —2|Y;|3dB,, t>0,
Yb = Oa
is the zero solution.
(3) Let 7o 2 inf{t > 0 : Y; = 0}, and define Z, 2 Y; /%, According to It5's formula, we

conclude that
dZt = dBt, t < To N\ e.

Therefore,
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This in particular implies that 79 = oo almost surely (otherwise we have 1/(1 + B,,)? = 0 which is
absurd). In other words, Y; never reaches zero and we have
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It follows that e = inf{t > 0: B; = —1}. Therefore,
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From the density formula for e, it is easy to see that
Ple < 00) =1, Ele] = oo.
Problem 4. (1) According to [t6's formula, we have
deF = ECdG,.

Therefore,

dZ,

t
( / (55)1dH3) de€F + dH, + dEF - dH,
0

= Z,dG;+dH, + ECd(G, H),
=  Z,dG; + dH,.



(2)By the comparison theorem (c.f. Theorem 6.11 in the lecture notes), we may assume without
loss of generality that X = XZ2. Now suppose that b! is Lipschitz continuous. Then
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Define é’tG to be the stochastic exponential of G as before, and define
t
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It follows from the first part that
t
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But we have already seen that X? — X/ also satisfies the same (linear) equation. Apparently we
have uniqueness in this context. Therefore,
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Zo= X7 - x} =0 [ (€9 (P(XD) - ¥ (x2) ds.
0
Since £F > 0 for all ¢, by the assumption b2 > b', we conclude that with probability one, X? > X}

for all ¢ > 0.
The result does not hold if o is not Lipschitz continuous. For example, consider the two SDEs

dX} =24/|X}|dB; + odt,
where o' = 0 and a® = 1. Suppose that X} = X2 = 0, then X! = 0 and X? is the square of a

one dimensional Brownian motion. Since the Brownian motion visits the origin infinitely often, we
see that the result fails in this case.



