
Solutions for Problem Sheet 6

Problem 1. Exactness all follow from continuity and local Lipschitz property for the coefficients.
(1) We have

A(t) =

(
0 1
−k −c

)
, a(t) = 0, σ(t) =

(
0
σ

)
.

Therefore, (
Xt

Yt

)
= etA

(
X0

Y0

)
+

ˆ t

0

e(t−s)A ·
(

0
σ

)
dBs, t > 0.

(2) We have

A(t) =

(
0 1
− 1
LC −RL

)
, a(t) =

(
0
G(t)
L

)
, σ(t) =

(
0
α
L

)
.

Therefore,(
Xt

Yt

)
= etA

(
X0

Y0

)
+

ˆ t

0

e(t−s)A ·
(

0
G(s)
L

)
ds+

ˆ t

0

e(t−s)A ·
(

0
α
L

)
dBs.

(3) Let τ0 , inf{t > 0 : Xt = 0} and let e be the explosion time. Define Yt , lnXt. According
to Itô’s formula, we have

dYt = r(K −Xt)dt+ βdBt −
β2

2
dt, t < τ0 ∧ e.

Define Zt , lnXt + r
´ t
0
Xsds. It follows that

dZt =

(
rK − β2

2

)
dt+ βdBt.

Therefore,

ln

(
Xt

x

)
+ r

ˆ t

0

Xsds = βBt +

(
rK − β2

2

)
t,

and hence

Xt · exp

(
r

ˆ t

0

Xsds

)
= x exp

(
βBt +

(
rK − β2

2

)
t

)
.

Integrating with respect to dt, we have

exp

(
r

ˆ t

0

Xsds

)
− 1 = rx

ˆ t

0

exp

(
βBs +

(
rK − β2

2

)
s

)
ds.
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Therefore, ˆ t

0

Xsds =
1

r
· ln
(

1 + rx

ˆ t

0

exp

(
βBs +

(
rK − β2

2

)
s

)
ds

)
.

Differentiating with respect to t, we arrive at

Xt =
x exp

(
βBt +

(
rK − β2

2

)
t
)

1 + rx
´ t
0

exp
(
βBs +

(
rK − β2

2

)
s
)
ds
, t < τ0 ∧ e. (1)

This in particular implies that τ0 = e =∞ almost surely, and (1) defines the global solution to the
SDE.

Problem 2. (1) Since Bt is a Gaussian process, we know that Xt is also a Gaussian process. The
mean function is m(t) , E[Xt] = 0, and the covariance function is

ρ(s, t) , E[XsXt]

= E[(Bs − sB1)(Bt − tB1)]

= s ∧ t− st− st+ st

= s ∧ t− st

=

{
s(1− t), s 6 t;

t(1− s), s > t.

(2) The SDE is a linear SDE with A(t) = −(1 − t)−1, a(t) = 0 and σ(t) = 1. By the general
formula for the solution, we have Φ(t) = 1− t, and

Yt = (1− t)
ˆ t

0

dBs
1− s

, 0 6 t < 1.

Since the integrand is deterministic, it is immediate that Yt is a Gaussian process. The mean function
is zero, and for s < t < 1, we have

E[YsYt] = (1− s)(1− t)E
[ˆ s

0

du

(1− u)2

]
= s(1− t).

In particular, Yt has the same mean and covariance functions as Xt. Since they are both Gaussian
processes, we conclude that

(Xt)06t<1
law
= (Yt)06t<1.

Moreover, since X1 = 0, and by continuity, the probability P(limt↑1Xt = 0) is determined by the
distribution of (Xt)06t<1, therefore we conclude that

P
(

lim
t↑1

Yt = 0

)
= 1.

(3) Let Bt be a one dimensional Brownian motion, and let St , sup06s61Bs. The joint density
f(S1,B1)(x, y) of (S1, B1) is given by

P(S1 ∈ dx, B1 ∈ dy) =
2(2x− y)√

2π
e−

(2x−y)2

2 dxdy, x > 0, x > y.
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Now a crucial observation is, the process Xt has the same distribution as the Brownian motion
Bt conditioned on B1 = 0. More precisely, for 0 < t1 < · · · < tn < 1, the joint density of
(Xt1 , · · · , Xtn) is the same as the conditional density of (Bt1 , · · · , Btn) conditioned on B1 = 0.
Therefore, the desired probability is

P (S1 > x|B1 = 0) =

ˆ ∞
x

f(S1,B1)(z, 0)dz

fB1(0)
=

ˆ ∞
x

4z · e−2z
2

dz = e−2x
2

.

Problem 3. (1) The coefficients are given by σ(x) = −2|x|3/2 and b(x) = 3x2. They are continuous
and locally Lipschitz. Therefore, the SDE is exact.

(2) The result follows from the comparison theorem, since the unique solution to the SDE{
dYt = −2|Yt|

3
2 dBt, t > 0,

Y0 = 0,

is the zero solution.
(3) Let τ0 , inf{t > 0 : Yt = 0}, and define Zt , Y

−1/2
t . According to Itô’s formula, we

conclude that
dZt = dBt, t < τ0 ∧ e.

Therefore,

Yt =
1

(1 +Bt)2
, t < τ0 ∧ e.

This in particular implies that τ0 =∞ almost surely (otherwise we have 1/(1 +Bτ0)2 = 0 which is
absurd). In other words, Yt never reaches zero and we have

Yt =
1

(1 +Bt)2
, t < e.

It follows that e = inf{t > 0 : Bt = −1}. Therefore,

P(e > t) = 1− 2P(Bt > 1) = 1− 2

ˆ ∞
1

1√
2πt

e−
u2

2t du.

From the density formula for e, it is easy to see that

P(e <∞) = 1, E[e] =∞.

Problem 4. (1) According to Itô’s formula, we have

dEGt = EGt dGt.

Therefore,

dZt =

(ˆ t

0

(EGs )−1dHs

)
dEGt + dHt + dEGt · dHt

= ZtdGt + dHt + EGt d〈G,H〉t
= ZtdGt + dHt.

3



(2)By the comparison theorem (c.f. Theorem 6.11 in the lecture notes), we may assume without
loss of generality that X1

0 = X2
0 . Now suppose that b1 is Lipschitz continuous. Then

X2
t −X1

t =

ˆ t

0

(
b2(X2

s )− b1(X1
s )
)
ds+

ˆ t

0

(
σ(s,X2

s )− σ(s,X1
s )
)
dBs

=

ˆ t

0

(
b2(X2

s )− b1(X2
s )
)
ds+

ˆ t

0

(
σ(s,X2

s )− σ(s,X1
s )
)
dBs

+

ˆ t

0

(
b1(X2

s )− b1(X1
s )
)
ds

= Ht +

ˆ t

0

(X2
s −X1

s )dGs,

where

Ht ,
ˆ t

0

(
b2(X2

s )− b1(X2
s )
)
ds,

Gt ,
ˆ t

0

1{X1
s 6=X2

s}(X
2
s −X1

s )−1
(
(σ(s,X2

s )− σ(s,X1
s ))dBs + (b1(X2

s )− b1(X1
s ))ds

)
.

Define EGt to be the stochastic exponential of G as before, and define

Zt , EGt
ˆ t

0

(EGs )−1dHs.

It follows from the first part that

Zt = Ht +

ˆ t

0

ZsdGs.

But we have already seen that X2
t − X1

t also satisfies the same (linear) equation. Apparently we
have uniqueness in this context. Therefore,

Zt = X2
t −X1

t = EGt
ˆ t

0

(EGs )−1
(
b2(X2

s )− b1(X2
s )
)
ds.

Since EGt > 0 for all t, by the assumption b2 > b1, we conclude that with probability one, X2
t > X1

t

for all t > 0.
The result does not hold if σ is not Lipschitz continuous. For example, consider the two SDEs

dXi
t = 2

√
|Xi

t |dBt + αidt,

where α1 = 0 and α2 = 1. Suppose that X1
0 = X2

0 = 0, then X1
t = 0 and X2

t is the square of a
one dimensional Brownian motion. Since the Brownian motion visits the origin infinitely often, we
see that the result fails in this case.
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