Solutions for Problem Sheet 5

Problem 1. (1) Necessity. Suppose that M € HZ. Then M; — M, in L?. Therefore, we may take
limit on the identity
E[M?] = E[(M)]
to conclude that
E[(M)o] = E[M2)] < c0.

Sufficiency. Suppose that E[(M )] < 0o. According to the BDG inequalities, we know that

E {sup|Mt|2] < 00. (1)
20
Let 7,, be a sequence of stopping times converging to infinity such that M ™ is a martingale for each
n. Then for s < ¢t and A € Fs, we have E[M, At1a] = E[M,, ss1a]. Moreover, (1) implies that
{M; rt: n =1} and {M,, rs: n > 1} are both bounded in L? and hence uniformly integrable.
Therefore, we conclude that M; is a martingale. The L2?-boundedness follows again from (1).

(2) Necessity. Suppose that (M); = f(t) for some deterministic continuous increasing function f
vanishing at ¢ = 0. According to (1) (more precisely, a local version of (1), that {M;, F,: 0 <t < T}
is a square integrable martingale if and only of E[{M)7] < o0). Exactly the same argument as in
the proof of Lévy's characterization theorem shows that

E [emMﬁMs) ;s} — o307 (p()=p())
Therefore, M is a Gaussian martingale with independent increments (indeed M; — M, and Fg are
independent).

Sufficiency. Suppose that M; is a Gaussian martingale. Let {F} be the augmented natural
filtration of M. It follows that FM C F, and M, is an {FM }-martingale. Moreover, since

E[Ms(Mt - Ms)] =E [MSE[Mt - Ms'-FSH =0,

we conclude that M, has independent increments. Define f(t) £ E[M?2]. It is not hard to see that
f(t) is continuous, increasing and vanishes at ¢ = 0. Moreover,

E[MZ— fOIFM] = E[(M;— M, +M)?FM] - £(2)
= J() ~ f(s) + M2 — J(t)
= M2 - (s).

Therefore, the quadratic variation process of M; with respect to the filtration {FM} is f(t). Ac-
cording to Proposition 5.7 in the lecture notes, we conclude that

li M, — M, )?>=f(t
”P"{I”I;Otiepn( t; to,)” = f(t)



in probability. But since M € MIP° with respect to the filtration {F;}, the quadratic variation
process of M; with respect to {F;} also satisfies Proposition 5.7. Therefore, (M); = f(t). As in
the necessity part, we can also conclude that M; — My and F; are independent.

(3) Given n > 1, let 7, 2 inf{t > 0: (M); > n}. Then (M™), = (M)]* < n for all ¢, which
implies from (1) that M™ € HZ. In particular, M;" converges almost surely to a finite random
variable as ¢ — oco. One could of course take a single null set outside which this statement is true
for all n > 1. Since

{{M)oo < 00} C | J{rn = o0}

It follows that with probability one, for every w, M;(w) = M;"“)(w) (take n to be such that
Tn(w) = 00) converges to a finite limit. Therefore, with probability one, we have

c L : .
{M)s <0} C {thj& M, exists ﬁmtely} .

On the other hand, by the generalized Dambis-Dubins-Schwarz theorem (c.f. Theorem 5.9), we
know that M; = By, for some Brownian motion possibly defined on an enlarged space. According
to Proposition 4.2 in the lecture notes, we know that with probability one,

limsup B; = oo, liminf B; = —o0.
t—00 t—o0

But if (M)s = 00, we have lim;_, o, C; = 0o where C} is the time-change associated with (M);.

Therefore, with probability one,

{M)s = o0} C {limsup]\/[t =00, liminf M; = oo} .
t—00 t—oo
Problem 2. (1) Since f(z) £ |z|~" is harmonic on R3\{0} and from Problem Sheet 4, Problem 7,

(2), (iv) that By never hits z = 0 on (0, 00), we conclude from It6's formula that X; = 1/|B14¢] is
a continuous {F ,}-local martingale. Moreover, we have

Cs
E[|X:|*] = E[|B1| %] =
1507 = Bl Buad ) = {2,
where Cy £ E[|Z| 2] with Z ~ N(0,1). Therefore, {X;} is uniformly bounded in L2. However, it

is not a martingale because
Ch

Vv1+t

is not a constant in ¢, where C; = E[|Z|~!] with Z ~ A(0,1).

(2) Let Y; be a uniformly integrable continuous submartingale with a Doob-Meyer decomposition
Y; = My + A;. Since Y; — Yoo in L, we see that A, € L! which shows that A is of class (D).
Moreover, {M,} is easily seen to by uniformly integrable, which implies from the optional sampling
theorem that

E[X:] = E[|Bip| "] =

M, = E[M|F;], Vr finite stopping time,

where M, = lim;_,, M;. Therefore, Y; is of class (D).



Now we show that X; is not of class (D). Note that X; is a non-negative supermartingale with
a last element X, = 0. Define 7,, £ inf{t > 0: |X;| > n}. It follows that

<|B1 V n) 1{Tn<c>o}-

In general, 7,, is not finite almost surely. Indeed, from Problem Sheet 4, Problem 7, (2), (ii), we
know that )

P(r, < o0|B1) = —— A1,

(T OO‘ 1) TL‘B1|
and hence )
P(r, < ) =E|[P(r, < ©|B E[ /\1}
which is easily seen to be strictly less than 1 by direct computation. Therefore, we are going to show
that the family {X; Am : m,m > 1} is not uniformly integrable.
We first show that there exists ¢ > 0, such that for every A > 0, there exists some n > 1 with

ElXr 1ix,, >xn] 2 ¢ (2)

Indeed, observe that

1

If n > A, then
XTn]'{X >AY Z nl{‘rn<oo}v
and hence

1
E [XTnl{X7n>)\}j| = ’I’LP(Tn < OO) [m A n] .

Apparently, there exists ng > 1, such that for any n > ng, we have
1 1 1
E{&/\n} /QE[BIJ =:c> 0.
Taking n = ng V A will verify (2).
On the other hand, for every n > 0, we have
X, Lx, >ay = hm Xrpam (X, am>A}s
and Fatou's lemma shows that

E [Xrnl{Xm»\ﬂ < 1}7{31ng [an/\ml{XmAmM}] :

Therefore, for the previous particular choice of n, we can further find m, such that

c
E [XT,,L/\m]-{XTn/\m>)\}] P 5

This proves that {X, am : m,m > 1} cannot be uniformly integrable, and hence X, is not of
class (D). In particular, it does not have a Doob-Meyer decomposition.



Problem 3. (1) Since 1r,qr, = 1r, - 1r,, and 1p,\p, = 1p, — 1p, if 'y C Ty, it is seen that P
is closed under complement and finite union. Moreover, if I';, 1 I', then 1 1 1p. From this we
also see that P is closed under increasing limit. Therefore, P is a o-algebra. To see that P is a
sub-c-algebra of B([0,00)) ® F, we only need to observe that

T()([0,4] x Q) = {(s,w) € [0,£] x Q: 1p(s,w) = 1} € B([0,1]) @ F.

(2) First of all, it suffices to prove the claim on ¢ € [0,T]. Indeed, if for each T' > 0, there exists

a process
YT R x[0,7] x Q — R!

which verifies the claim for ¢ € [0, 77, then the process

Y £ <hm sup YT) : ]-{lirnsupT‘wc YT is finite}

T—o0

will have the desired properties on [0, c0).
Now consider a fixed time interval [0, T]. It is apparent that the claim is true for ® of the form

P} (w) = f(a)Hi(w), (3)

where f is a bounded B(R!)-measurable function and H is a bounded progressively measurable
process. Let S be the vector space spanned by such ®. Then the claim is true for all ® € S.

If @ is a general bounded B(R!) ® P-measurable process, a standard measure theoretic argument
shows that there exists a sequence ®,, € S, such that |(®,,)¢(w)| < |P¢(w)| and (®,,)¢ (w) — P¢(w)
for every (a,t,w) € R! x [0,T] x Q. For each n, let Y,, be the process with the desired properties
associated with ®,,. It follows from the stochastic dominated convergence theorem that for every
a € R,

v - 15 (@) (4)

in probability uniformly on [0, 7], and

Y& | Yiu(da) = TX(h) — IX(9") (5)
Rl
in probability uniformly on [0, 7], where ® £ [, ®2p(da) (similarly for /).

Of course we want to define Y as the limit of Y;,. More precisely, we want to take a subsequence
ny, (depending on a), such that along this subsequence we can define Y as the pointwise limit of
Y,.. Here the main difficulty lies in choosing a subsequence ny(a) in a way which is measurable in a.

To do so, we first define

Unm(w) = sup (V) (w) = (Vi) ()]
0<t<T
It is apparent that (a,w) — Ug () is B(R') ® F-measurable. Moreover, we know that for each
a € RY, Unm
k > 1, define

converges to zero in probability as n,m — co. We define ng(a) = 1, and for each

ni(a) £ inf {n > kVng_1(a): sup P(Ug .0 > 27F) < 2]“} .

’
m,m’>n



Then it is easy to see that ny is B(R!)-measurable, and for every a € R!, ny(a) 1 oco.
Now we define ¥, £ ®,,, and Z;, £, , and let

Vi) 2 sup [(Z2)i(w) = (Zu)i (@)

By the definition of ny, we know that
P(Viepyp >27%) <27F

forall a € R and k, p > 1. According to the Borel-Cantelli lemma, for every a € R, with probability
one, (Z,)* is a Cauchy sequence in C([0, T]; R!). More precisely, let

Aé{(a,w); lim v;{m(w):o} € BRY) @ F.

n,m—oo

Then for every a € R,
/ 1ae (@, w0)P(dw) = 0.
Q

According to Fubini's theorem, we conclude that u ® P(A) = 0 and with probability one,

/ 1ac(a,w)p(da) = 0.
Rl

Finally, we define

Y £ (hm sup Zk) : ]-{limsup,cﬁoc Zy, is finite}-

k— o0

Apparently Y is B(R') ® P-measurable. According to (4) and (5), and the fact that Y is the uniform
limit of Z; on A where @ P(A) = 0, we conclude that with probability one, for each a € R*,
Ye = 1%(®?), and

yHr & 8 Yu(da) = I* (®H).

Here a technical point is to see that with probability one, [;, Z'u(da) — [, Y*u(da) in probability
uniformly on [0, 7]. One could see this by first considering the case where X is bounded (in which
case one has convergence in L?) and then using the standard localization argument to remove the
localization (c.f. the proof of Proposition 5.14).

Problem 4. (1) Define

t t
1
Xtéexp(/ Usst—l—/ <u3—205>ds), t>0.
0 0

From It&'s formula, we see immediately that X satisfies the desired integral equation.
Now suppose that Y; is another process that also satisfies the integral equation. Let

t t
1
Zt L thXt_l — Y;exp (—/ Usst —/ (/J,S — 20'?) dS)
0 0



Ité's formula again, or more precisely, the integration by parts formula, will imply that the martin-
gale part and the bounded variation part of the continuous semimartingale Z; are identically zero.
Therefore,

Zy=Zo =1,

which shows that ¥; = X;. In other words, there exists a unique continuous, {F;}-adapted process
which satisfies the integral equation.
(2) First of all, we know that

t t
Xt—l—/ Xsusds:/ Xs04dBs, 0<t<T,
0 0

is a continuous local martingale under P. Suppose we want to find a process ¢; which is used to
define the change of measure in the way that

B T 1 /7
Pr(A) 2 E lexp </ qsdB,s — 5/ qfds) 14
0 0

Then we know from Theorem 5.16 in the lecture notes that the process

¢ ¢ t t
/ Xso0sdBg — / Qs Xs05ds = Xy — 1 — / Xspsds — / Qs Xs0sds
0 0 0 0

is a continuous local martingale under Pr (provided that the exponential martingale is a true mar-

, Ae Fr.

tingale so that Py is a probability measure). Now we want this process to be X; — 1, therefore we
just need to choose

N -1
qt = — [0y .

Since py is uniformly bounded and o > C, in this way we can see easily that Novikov's condition
holds for the continuous local martingale fot qsdBg, which verifies that the exponential martingale is
a true martingale.

Problem 5. (1) From It&’s formula, we have

T
B2 =T+2/ B.dB;,
0

SO (bt = 2Bt
Similarly,

&
S
Il

T T
3 / B}dB; +3 / Bydt
0 0

T T
3 / B2dB; +3TBr — 3 / tdBy
0 0

T
= / (3B7 + 3T — 3t) dB,
0

so &, = 3B7 4 3T — 3t.



(2) Fix T > 0, define o7 £ inf{t > T : B, = 0}. Consider ®,(w) £ 1( ;,.() (t). Apparently
0 < or < oo almost surely (note that By # 0, and B is unbounded from above and from below

almost surely), so we know that

(o)
0</ ®Idt = o7 < o0
0

almost surely. However,

/ ®,dB, = B,, — By = 0.
0

Therefore, uniqueness for Theorem 5.11 does not hold in the space L2 (B).
(3) For 0 <t < 1, let M; = E[S;|FP]. Since

S1 max{St, sup Bu} max{St,BtJr sup (BuBt)}7

t<ugl t<ugl
and the Brownian motion has independent increments, we know that
Mt = F(ShBtvt)v

where

F(z,y,t) = E[max{x,er sup (BuBt)}]

t<u<l
= E[max{z,y+ Si1_.}].

By using the distribution formula for S;_;, we see that
Flaapt) = [ max{e,y+ VT tlul)o(u)du

where ¢ is the density for a standard Gaussian distribution.

Since F is continuous, we see that M; is a continuous martingale (more generally, the reader
should think about why every cadlag {F 7 }-martingale is continuous). Moreover, F € C2 on t < 1.

Therefore, according to 1té’s formula, we have

t
F
M, = MO+/ OF (8. Bu,u)dBa, t<1.
o Oy
Now
OF o
aiy(xay7t) = a 1{y+\/ﬁ\u|>x}¢(u)du = f(z7y7t)a <1,
Therefore,

M,

t
MO + / f(Sua Buvu)dBu
0

= ]E[Sl]+/0t2<1¢>(si;%)>dBu, t<1,



where ®(z) £ [*_ o(u)du is the standard Gaussian distribution function. Note that f(z,y,t) is
well defined even for t = 1. Letting ¢ 1 1, we conclude that

s ['2(1- 0 (522 ) s,

[ a5 s,

S

Problem 6. (1) Since the Brownian motion is rotationally invariant, we know that the distribution
of B, is rotationally invariant on the unit sphere S~1. Let y be the unique rotationally invariant
probability measure (the normalized volume measure) on S¢~1. Then the distribution of B, is v.

Now we show that B, and 7 are independent. For a given orthogonal matrix O, define BC £
O - By, and 79 £ inf{t > 0: |B?| = 1}. A crucial observation is that 7¢ = 7. Therefore, for any
bounded measurable function f on S?~! and g on [0, 00), we have

E[f(BY)g(r)] = E[f(Br)g(r)].

In particular, this shows that the conditional distribution of B, given 7 is again rotationally invariant,
which implies that it has to be v. Therefore,

E[f(Br)g(r)] = Elg(r)E[f(B:)l7]]

This shows that B, and 7 are independent.

(2) Consider the continuous path space (W<, B(W)). Let i be the Wiener measure on W<.
Let B;(w) £ w; be the coordinate process, which is a Brownian motion under 4, and let {B,(W?)}
be the natural filtration of B;. Define P to be the unique extension of the family

Br(A) 2 / oleBra)=31ePT gy A € Bp(WH), T > 0,
A

of probability measures to B(W?). It follows that under P, B, is a Brownian motion with drift vector
c. The reader might refer to the discussion after the proof of Theorem 5.17 for this part.

Now let f, g be two bounded measurable functions. Since eleBo—3lel’t js 5 martingale, it follows
from the optional sampling theorem that

E[f(Bra)g(tAt)] = E :f(BT/\t)g(T A t)e<CvBt —%\el%}
= E [7(Brnog(r At)ele P2l o]

Since |B;at| < 1, by the dominated convergence theorem, we have

E[/(B-)g(r)] = E [F(B.)g(r)elc:r) =317



The same reason shows that
E {e<c,BT>—%\c|2T} — 1

Moreover, from the first part, B, and 7 are independent under p. It follows that

E [£(B)g(r)eleBr)-41et"r]
= E[f(B)elBr >} E [g(r)e e
= E [f(BT)e<° B-) } [ —%lc\z‘r-i-(c,BT)} B [g(r)e—%lc\ﬂ
= E :f(Br)e {e,Br)=3lef*r } ‘E {g('r)e@vBT)*% cm}

= E[f(B,)]-Elg(r)].
Therefore, B B B
E[f(Br)g(7)] = E[f(B;)] - Elg()],
which shows that B, and 7 are independent under P.
Problem 7. (1) Starting from the second Tanaka formula to estimate sup,r |L{ — L

is then identical to the one of Theorem 5.22 in the lecture notes, keeping L7, instead of LZ_ in the
estimates. In particular, observe that E[(I1)2*] < oo, it is then not hard to obtain

sup E[LT] < oo,
zeR?

so no localization is needed in the proof.
(2) Let X; 2 AB;" — uB;, where A # 1 > 0. Let L¢ be the local time process of X; which is
continuous in ¢t and cadlag in a. Then

t
L) — L) = 2/0 1ix,—0ydAs.

On the one hand, according to the Tanaka's formula for Brownian motion, we have

At:)\_’u

ly
where [; is the local time at 0 of Brownian motion. On the other hand,
{s: Xy=0}={s: ABf =uB;}={s: B, =0}.
But we know that the random measure dl; is supported on {t > 0: B; = 0}. Therefore,
t
I =18 = =0 [ 1 mmopdl = A=l

which is strictly non-zero almost surely.



