
Solutions for Problem Sheet 5

Problem 1. (1) Necessity. Suppose that M ∈ H2
0 . Then Mt →M∞ in L2. Therefore, we may take

limit on the identity
E[M2

t ] = E[〈M〉t]
to conclude that

E[〈M〉∞] = E[M2
∞] <∞.

Sufficiency. Suppose that E[〈M〉∞] <∞. According to the BDG inequalities, we know that

E
[
sup
t>0
|Mt|2

]
<∞. (1)

Let τn be a sequence of stopping times converging to infinity such that Mτn is a martingale for each
n. Then for s < t and A ∈ Fs, we have E[Mτn∧t1A] = E[Mτn∧s1A]. Moreover, (1) implies that
{Mτn∧t : n > 1} and {Mτn∧s : n > 1} are both bounded in L2 and hence uniformly integrable.
Therefore, we conclude that Mt is a martingale. The L2-boundedness follows again from (1).

(2) Necessity. Suppose that 〈M〉t = f(t) for some deterministic continuous increasing function f
vanishing at t = 0. According to (1) (more precisely, a local version of (1), that {Mt,Ft : 0 6 t 6 T}
is a square integrable martingale if and only of E[〈M〉T ] < ∞). Exactly the same argument as in
the proof of Lévy’s characterization theorem shows that

E
[
eiθ(Mt−Ms)|Fs

]
= e−

1
2 θ

2(ρ(t)−ρ(s)).

Therefore, Mt is a Gaussian martingale with independent increments (indeed Mt −Ms and Fs are
independent).

Sufficiency. Suppose that Mt is a Gaussian martingale. Let {FMt } be the augmented natural
filtration of Mt. It follows that FMt ⊆ Ft and Mt is an {FMt }-martingale. Moreover, since

E[Ms(Mt −Ms)] = E [MsE[Mt −Ms|Fs]] = 0,

we conclude that Mt has independent increments. Define f(t) , E[M2
t ]. It is not hard to see that

f(t) is continuous, increasing and vanishes at t = 0. Moreover,

E
[
M2
t − f(t)|FMs

]
= E

[
(Mt −Ms +Ms)

2|FMs
]
− f(t)

= f(t)− f(s) +M2
s − f(t)

= M2
s − f(s).

Therefore, the quadratic variation process of Mt with respect to the filtration {FMt } is f(t). Ac-
cording to Proposition 5.7 in the lecture notes, we conclude that

lim
‖Pn‖→0

∑
ti∈Pn

(Mti −Mti−1
)2 = f(t)
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in probability. But since M ∈ Mloc
0 with respect to the filtration {Ft}, the quadratic variation

process of Mt with respect to {Ft} also satisfies Proposition 5.7. Therefore, 〈M〉t = f(t). As in
the necessity part, we can also conclude that Mt −Ms and Fs are independent.

(3) Given n > 1, let τn , inf{t > 0 : 〈M〉t > n}. Then 〈Mτn〉t = 〈M〉τnt 6 n for all t, which
implies from (1) that Mτn ∈ H2

0 . In particular, Mτn
t converges almost surely to a finite random

variable as t → ∞. One could of course take a single null set outside which this statement is true
for all n > 1. Since

{〈M〉∞ <∞} ⊆
∞⋃
n

{τn =∞}.

It follows that with probability one, for every ω, Mt(ω) = M
τn(ω)
t (ω) (take n to be such that

τn(ω) =∞) converges to a finite limit. Therefore, with probability one, we have

{〈M〉∞ <∞} ⊆
{

lim
t→∞

Mt exists finitely
}
.

On the other hand, by the generalized Dambis-Dubins-Schwarz theorem (c.f. Theorem 5.9), we
know that Mt = B〈M〉t for some Brownian motion possibly defined on an enlarged space. According
to Proposition 4.2 in the lecture notes, we know that with probability one,

lim sup
t→∞

Bt =∞, lim inf
t→∞

Bt = −∞.

But if 〈M〉∞ = ∞, we have limt→∞ Ct = ∞ where Ct is the time-change associated with 〈M〉t.
Therefore, with probability one,

{〈M〉∞ =∞} ⊆
{

lim sup
t→∞

Mt =∞, lim inf
t→∞

Mt = −∞
}
.

Problem 2. (1) Since f(x) , |x|−1 is harmonic on R3\{0} and from Problem Sheet 4, Problem 7,
(2), (iv) that Bt never hits x = 0 on (0,∞), we conclude from Itô’s formula that Xt = 1/|B1+t| is
a continuous {FB1+t}-local martingale. Moreover, we have

E[|Xt|2] = E[|B1+t|−2] =
C2

1 + t
,

where C2 , E[|Z|−2] with Z ∼ N (0, 1). Therefore, {Xt} is uniformly bounded in L2. However, it
is not a martingale because

E[Xt] = E[|B1+t|−1] =
C1√
1 + t

is not a constant in t, where C1 , E[|Z|−1] with Z ∼ N (0, 1).
(2) Let Yt be a uniformly integrable continuous submartingale with a Doob-Meyer decomposition

Yt = Mt + At. Since Yt → Y∞ in L1, we see that A∞ ∈ L1 which shows that A∞ is of class (D).
Moreover, {Mt} is easily seen to by uniformly integrable, which implies from the optional sampling
theorem that

Mτ = E[M∞|Fτ ], ∀τ finite stopping time,

where M∞ , limt→∞Mt. Therefore, Yt is of class (D).
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Now we show that Xt is not of class (D). Note that Xt is a non-negative supermartingale with
a last element X∞ = 0. Define τn , inf{t > 0 : |Xt| > n}. It follows that

Xτn =

(
1

|B1|
∨ n
)
1{τn<∞}.

In general, τn is not finite almost surely. Indeed, from Problem Sheet 4, Problem 7, (2), (ii), we
know that

P(τn <∞|B1) =
1

n|B1|
∧ 1,

and hence

P(τn <∞) = E [P(τn <∞|B1)] = E
[

1

n|B1|
∧ 1

]
,

which is easily seen to be strictly less than 1 by direct computation. Therefore, we are going to show
that the family {Xτn∧m : n,m > 1} is not uniformly integrable.

We first show that there exists c > 0, such that for every λ > 0, there exists some n > 1 with

E[Xτn1{Xτn>λ}] > c. (2)

Indeed, observe that

Xτn1{Xτn>λ} =

(
1

|B1|
∨ n
)
1{

1
|B1|
∨n>λ, τn<∞

}.
If n > λ, then

Xτn1{Xτn>λ} > n1{τn<∞},

and hence

E
[
Xτn1{Xτn>λ}

]
= nP(τn <∞) = E

[
1

|B1|
∧ n
]
.

Apparently, there exists n0 > 1, such that for any n > n0, we have

E
[

1

|B1|
∧ n
]
>

1

2
E
[

1

|B1|

]
=: c > 0.

Taking n = n0 ∨ λ will verify (2).
On the other hand, for every n > 0, we have

Xτn1{Xτn>λ} = lim
m→∞

Xτn∧m1{Xτn∧m>λ},

and Fatou’s lemma shows that

E
[
Xτn1{Xτn>λ}

]
6 lim inf

m→∞
E
[
Xτn∧m1{Xτn∧m>λ}

]
.

Therefore, for the previous particular choice of n, we can further find m, such that

E
[
Xτn∧m1{Xτn∧m>λ}

]
>
c

2
.

This proves that {Xτn∧m : n,m > 1} cannot be uniformly integrable, and hence Xt is not of
class (D). In particular, it does not have a Doob-Meyer decomposition.
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Problem 3. (1) Since 1Γ1∩Γ2 = 1Γ1 · 1Γ2 , and 1Γ2\Γ1
= 1Γ2 − 1Γ1 if Γ1 ⊆ Γ2, it is seen that P

is closed under complement and finite union. Moreover, if Γn ↑ Γ, then 1Γn ↑ 1Γ. From this we
also see that P is closed under increasing limit. Therefore, P is a σ-algebra. To see that P is a
sub-σ-algebra of B([0,∞))⊗F , we only need to observe that

Γ
⋂

([0, t]× Ω) = {(s, ω) ∈ [0, t]× Ω : 1Γ(s, ω) = 1} ∈ B([0, t])⊗Ft.

(2) First of all, it suffices to prove the claim on t ∈ [0, T ]. Indeed, if for each T > 0, there exists
a process

Y T : R1 × [0, T ]× Ω→ R1

which verifies the claim for t ∈ [0, T ], then the process

Y ,

(
lim sup
T→∞

Y T
)
· 1{lim supT→∞ Y T is finite}

will have the desired properties on [0,∞).
Now consider a fixed time interval [0, T ]. It is apparent that the claim is true for Φ of the form

Φat (ω) = f(a)Ht(ω), (3)

where f is a bounded B(R1)-measurable function and H is a bounded progressively measurable
process. Let S be the vector space spanned by such Φ. Then the claim is true for all Φ ∈ S.

If Φ is a general bounded B(R1)⊗P-measurable process, a standard measure theoretic argument
shows that there exists a sequence Φn ∈ S, such that |(Φn)at (ω)| 6 |Φat (ω)| and (Φn)at (ω)→ Φat (ω)
for every (a, t, ω) ∈ R1 × [0, T ] × Ω. For each n, let Yn be the process with the desired properties
associated with Φn. It follows from the stochastic dominated convergence theorem that for every
a ∈ R1,

Y an → IX(Φa) (4)

in probability uniformly on [0, T ], and

Y µn ,
ˆ
R1

Y an µ(da) = IX(Φµn)→ IX(Φµ) (5)

in probability uniformly on [0, T ], where Φµn ,
´
R1 Φanµ(da) (similarly for Φµ).

Of course we want to define Y as the limit of Yn. More precisely, we want to take a subsequence
nk (depending on a), such that along this subsequence we can define Y as the pointwise limit of
Yn. Here the main difficulty lies in choosing a subsequence nk(a) in a way which is measurable in a.

To do so, we first define

Uan,m(ω) , sup
06t6T

|(Yn)at (ω)− (Ym)at (ω)| .

It is apparent that (a, ω) 7→ Uan,m(ω) is B(R1) ⊗ F-measurable. Moreover, we know that for each
a ∈ R1, Uan,m converges to zero in probability as n,m → ∞. We define n0(a) , 1, and for each
k > 1, define

nk(a) , inf

{
n > k ∨ nk−1(a) : sup

m,m′>n
P(Uam,m′ > 2−k) 6 2−k

}
.
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Then it is easy to see that nk is B(R1)-measurable, and for every a ∈ R1, nk(a) ↑ ∞.
Now we define Ψk , Φnk and Zk , Ynk , and let

V an,m(ω) , sup
06t6T

|(Zn)at (ω)− (Zm)at (ω)| .

By the definition of nk, we know that

P(V ak,k+p > 2−k) 6 2−k

for all a ∈ R1 and k, p > 1. According to the Borel-Cantelli lemma, for every a ∈ R1, with probability
one, (Zn)a is a Cauchy sequence in C([0, T ];R1). More precisely, let

A ,

{
(a, ω) : lim

n,m→∞
V an,m(ω) = 0

}
∈ B(R1)⊗F .

Then for every a ∈ R1, ˆ
Ω

1Ac(a, ω)P(dω) = 0.

According to Fubini’s theorem, we conclude that µ⊗ P(A) = 0 and with probability one,
ˆ
R1

1Ac(a, ω)µ(da) = 0.

Finally, we define

Y ,

(
lim sup
k→∞

Zk

)
· 1{lim supk→∞ Zk is finite}.

Apparently Y is B(R1)⊗P-measurable. According to (4) and (5), and the fact that Y is the uniform
limit of Zk on A where µ ⊗ P(A) = 0, we conclude that with probability one, for each a ∈ R1,
Y a = IX(Φa), and

Y µ ,
ˆ
R1

Y aµ(da) = IX(Φµ).

Here a technical point is to see that with probability one,
´
R1 Z

a
kµ(da)→

´
R1 Y

aµ(da) in probability
uniformly on [0, T ]. One could see this by first considering the case where X is bounded (in which
case one has convergence in L2) and then using the standard localization argument to remove the
localization (c.f. the proof of Proposition 5.14).

Problem 4. (1) Define

Xt , exp

(ˆ t

0

σsdBs +

ˆ t

0

(
µs −

1

2
σ2
s

)
ds

)
, t > 0.

From Itô’s formula, we see immediately that Xt satisfies the desired integral equation.
Now suppose that Yt is another process that also satisfies the integral equation. Let

Zt , YtX
−1
t = Yt exp

(
−
ˆ t

0

σsdBs −
ˆ t

0

(
µs −

1

2
σ2
s

)
ds

)

5



Itô’s formula again, or more precisely, the integration by parts formula, will imply that the martin-
gale part and the bounded variation part of the continuous semimartingale Zt are identically zero.
Therefore,

Zt = Z0 = 1,

which shows that Yt = Xt. In other words, there exists a unique continuous, {Ft}-adapted process
which satisfies the integral equation.

(2) First of all, we know that

Xt − 1−
ˆ t

0

Xsµsds =

ˆ t

0

XsσsdBs, 0 6 t 6 T,

is a continuous local martingale under P. Suppose we want to find a process qt which is used to
define the change of measure in the way that

P̃T (A) , E

[
exp

(ˆ T

0

qsdBs −
1

2

ˆ T

0

q2
sds

)
1A

]
, A ∈ FT .

Then we know from Theorem 5.16 in the lecture notes that the process
ˆ t

0

XsσsdBs −
ˆ t

0

qsXsσsds = Xt − 1−
ˆ t

0

Xsµsds−
ˆ t

0

qsXsσsds

is a continuous local martingale under P̃T (provided that the exponential martingale is a true mar-
tingale so that P̃T is a probability measure). Now we want this process to be Xt − 1, therefore we
just need to choose

qt , −µtσ−1
t .

Since µt is uniformly bounded and σ > C, in this way we can see easily that Novikov’s condition
holds for the continuous local martingale

´ t
0
qsdBs, which verifies that the exponential martingale is

a true martingale.

Problem 5. (1) From Itô’s formula, we have

B2
T = T + 2

ˆ T

0

BtdBt,

so Φt = 2Bt.
Similarly,

B3
T = 3

ˆ T

0

B2
t dBt + 3

ˆ T

0

Btdt

= 3

ˆ T

0

B2
t dBt + 3TBT − 3

ˆ T

0

tdBt

=

ˆ T

0

(
3B2

t + 3T − 3t
)
dBt,

so Φt = 3B2
t + 3T − 3t.
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(2) Fix T > 0, define σT , inf{t > T : Bt = 0}. Consider Φt(ω) , 1[0,σT (ω)](t). Apparently
0 < σT < ∞ almost surely (note that BT 6= 0, and B is unbounded from above and from below
almost surely), so we know that

0 <

ˆ ∞
0

Φ2
tdt = σT <∞

almost surely. However, ˆ ∞
0

ΦtdBt = BσT −B0 = 0.

Therefore, uniqueness for Theorem 5.11 does not hold in the space L2
loc(B).

(3) For 0 6 t 6 1, let Mt , E[S1|FBt ]. Since

S1 = max

{
St, sup

t6u61
Bu

}
= max

{
St, Bt + sup

t6u61
(Bu −Bt)

}
,

and the Brownian motion has independent increments, we know that

Mt = F (St, Bt, t), (6)

where

F (x, y, t) , E
[
max

{
x, y + sup

t6u61

(
Bu −Bt)}

]
= E [max {x, y + S1−t}] .

By using the distribution formula for S1−t, we see that

F (x, y, t) =

ˆ ∞
−∞

max{x, y +
√

1− t|u|}ϕ(u)du,

where ϕ is the density for a standard Gaussian distribution.
Since F is continuous, we see that Mt is a continuous martingale (more generally, the reader

should think about why every càdlàg {FBt }-martingale is continuous). Moreover, F ∈ C2 on t < 1.
Therefore, according to Itô’s formula, we have

Mt = M0 +

ˆ t

0

∂F

∂y
(Su, Bu, u)dBu, t < 1.

Now
∂F

∂y
(x, y, t) =

ˆ ∞
−∞

1{y+
√

1−t|u|>x}ϕ(u)du =: f(x, y, t), t < 1,

Therefore,

Mt = M0 +

ˆ t

0

f(Su, Bu, u)dBu

= E[S1] +

ˆ t

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu, t < 1,
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where Φ(x) ,
´ x
−∞ ϕ(u)du is the standard Gaussian distribution function. Note that f(x, y, t) is

well defined even for t = 1. Letting t ↑ 1, we conclude that

S1 = E[S1] +

ˆ 1

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu

=

√
2

π
+

ˆ 1

0

2

(
1− Φ

(
Su −Bu√

1− u

))
dBu.

Problem 6. (1) Since the Brownian motion is rotationally invariant, we know that the distribution
of Bτ is rotationally invariant on the unit sphere Sd−1. Let µ be the unique rotationally invariant
probability measure (the normalized volume measure) on Sd−1. Then the distribution of Bτ is ν.

Now we show that Bτ and τ are independent. For a given orthogonal matrix O, define BOt ,
O · Bt, and τO , inf{t > 0 : |BOt | = 1}. A crucial observation is that τO = τ. Therefore, for any
bounded measurable function f on Sd−1 and g on [0,∞), we have

E[f(BOτ )g(τ)] = E[f(Bτ )g(τ)].

In particular, this shows that the conditional distribution of Bτ given τ is again rotationally invariant,
which implies that it has to be ν. Therefore,

E[f(Bτ )g(τ)] = E [g(τ)E[f(Bτ )|τ ]]

= E
[
g(τ) ·

ˆ
Sd−1

f(x)ν(dx)

]
=

(ˆ
Sd−1

f(x)ν(dx)

)
· E[g(τ)]

= E[f(Bτ )] · E[g(τ)].

This shows that Bτ and τ are independent.
(2) Consider the continuous path space (W d,B(W d)). Let µ be the Wiener measure on W d.

Let Bt(w) , wt be the coordinate process, which is a Brownian motion under µ, and let {Bt(W d)}
be the natural filtration of Bt. Define P̃ to be the unique extension of the family

P̃T (A) ,
ˆ
A

e〈c,BT (w)〉− 1
2 |c|

2Tµ(dw), A ∈ BT (W d), T > 0,

of probability measures to B(W d). It follows that under P̃, Bt is a Brownian motion with drift vector
c. The reader might refer to the discussion after the proof of Theorem 5.17 for this part.

Now let f, g be two bounded measurable functions. Since e〈c,Bt〉−
1
2 |c|

2t is a martingale, it follows
from the optional sampling theorem that

Ẽ [f(Bτ∧t)g(τ ∧ t)] = E
[
f(Bτ∧t)g(τ ∧ t)e〈c,Bt〉− 1

2 |c|
2t
]

= E
[
f(Bτ∧t)g(τ ∧ t)e〈c,Bτ∧t〉− 1

2 |c|
2τ∧t

]
.

Since |Bτ∧t| 6 1, by the dominated convergence theorem, we have

Ẽ [f(Bτ )g(τ)] = E
[
f(Bτ )g(τ)e〈c,Bτ 〉−

1
2 |c|

2τ
]
.

8



The same reason shows that
E
[
e〈c,Bτ 〉−

1
2 |c|

2τ
]

= 1.

Moreover, from the first part, Bτ and τ are independent under µ. It follows that

E
[
f(Bτ )g(τ)e〈c,Bτ 〉−

1
2 |c|

2τ
]

= E
[
f(Bτ )e〈c,Bτ 〉

]
· E
[
g(τ)e−

1
2 |c|

2τ
]

= E
[
f(Bτ )e〈c,Bτ 〉

]
· E
[
e−

1
2 |c|

2τ+〈c,Bτ 〉
]
· E
[
g(τ)e−

1
2 |c|

2τ
]

= E
[
f(Bτ )e〈c,Bτ 〉−

1
2 |c|

2τ
]
· E
[
g(τ)e〈c,Bτ 〉−

1
2 |c|

2τ
]

= Ẽ[f(Bτ )] · Ẽ[g(τ)].

Therefore,
Ẽ [f(Bτ )g(τ)] = Ẽ[f(Bτ )] · Ẽ[g(τ)],

which shows that Bτ and τ are independent under P̃.

Problem 7. (1) Starting from the second Tanaka formula to estimate supt6T |Lat − Lbt |, the proof
is then identical to the one of Theorem 5.22 in the lecture notes, keeping LxT instead of Lx∞ in the
estimates. In particular, observe that E[(lT )2k] <∞, it is then not hard to obtain

sup
x∈R1

E[LxT ] <∞,

so no localization is needed in the proof.
(2) Let Xt , λB+

t − µB−t , where λ 6= µ > 0. Let Lat be the local time process of Xt which is
continuous in t and càdlàg in a. Then

L0
t − L0−

t = 2

ˆ t

0

1{Xs=0}dAs.

On the one hand, according to the Tanaka’s formula for Brownian motion, we have

At =
λ− µ

2
lt,

where lt is the local time at 0 of Brownian motion. On the other hand,

{s : Xs = 0} = {s : λB+
s = µB−s } = {s : Bs = 0}.

But we know that the random measure dlt is supported on {t > 0 : Bt = 0}. Therefore,

L0
t − L0−

t = (λ− µ)

ˆ t

0

1{s: Bs=0}dls = (λ− µ)lt,

which is strictly non-zero almost surely.
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