
Solutions for Problem Sheet 4

Problem 1. (1) The only thing which is not entirely trivial is that O · (Bt −Bs) ∼ N (0, (t− s)Id)
and 〈µ,Bt − Bs〉 ∼ N (0, 1). But this can be seen by using characteristic functions. Of course the
problem can also be solved simply by applying Lévy’s characterization theorem once we notice that
O ·Bt =

´ t
0
O · dBs and 〈µ,Bt〉 =

´ t
0
〈µ, dBs〉.

(2) We first show that E[Bs|Bt] = sBt/t for s < t. Indeed, consider the time reversal B̃r ,
rB1/r. From Problem 2, (1), we know that B̃r is a Brownian motion. Let u = 1/s, v = 1/t so that
u > v. It follows that

E[B̃u|B̃v] = B̃v + E[B̃u − B̃v|B̃v] = B̃v = Bt/t.

But B̃u = Bs/s and conditioning on B̃v is the same as conditioning on Bt. Therefore,

E[Bs|Bt] =
s

t
Bt.

Now for the general case, we have

E[Bu|Bs, Bt] = Bs + E[Bu −Bs|Bs, Bt]
= Bs + E[Bu −Bs|Bs, Bt −Bs]
= Bs + E[Bu −Bs|Bt −Bs],

where in the last equality, we used the fact that (Bu − Bs, Bt − Bs) and Bs are independent (c.f.
Problem Sheet 1, Problem (1), (iii)). Therefore, from what we just proved, we have

E[Bu|Bs, Bt] = Bs +
u− s
t− s

(Bt −Bs) =
t− u
t− s

Bs +
u− s
t− s

Bt.

Problem 2. (1) It is easy to see that (Xt)t>0 has the right distribution as a Brownian motion, and
t 7→ Xt is continuous for t > 0. The only fact which is not so clear is the continuity at t = 0. By
the defintion of Xt, this is equivalent to showing that with probability one, Bt/t → 0 as t → ∞.
Indeed, from the strong law of large numbers, we know that

lim
n→∞

Bn
n

= lim
n→∞

∑n
k=1(Bk −Bk−1)

n
= 0 a.s.

Moreover, since

P
(

sup
n−16t6n

|Bt −Bn−1|
n

> ε

)
6

1

(nε)2
E
[

sup
n−16t6n

|Bt −Bn−1|2
]

6
4

(nε)2
E[|Bn −Bn−1|2]

6
4

(nε)2
,
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from the first Borel-Cantelli’s lemma, we know that with probability one,

lim
n→∞

sup
n−16t6n

|Bt −Bn−1|
n

= 0.

Therefore, Bt/t→ 0 almost surely as t→∞.
(2) Since {Xt : t > 0} is a Brownian motion, this part follows from Proposition 4.2 in the

lecture notes.
(3) Since

Xt

t
= B1/t, t > 0,

the non-differentiability of Xt at t = 0 also follows directly from Proposition 4.2. Now we show
the almost everywhere non-differentiability of B. For each t > 0, let At be the event that B
is differentiable at t. Then P(At) = 0 by applying what we just proved to the Brownian motion
{Bu+t −Bt : u > 0}. According to Fubini’s theorem, we have

E
[ˆ ∞

0

1Atdt

]
=

ˆ ∞
0

P(At)dt = 0.

Therefore, with probability one, ˆ ∞
0

1At(ω)dt = 0,

which implies that ω /∈ At for almost every t > 0. This means that t 7→ Bt(ω) is almost everywhere
non-differentiable.

Problem 3. We only need to consider the case when f is bounded and continuous. The case when
f is bounded Borel measurable follows from a monotone class argument. Let

σn ,
∞∑
k=1

k

2n
1{(k−1)/2n6σ<k/2n}.

Define τn similarly. Apparently, σn, τn are stopping times, and σn ↓ σ, τn ↓ τ. Moreover, τn ∈ Fσ
since τ ∈ Fσ. From the Strong Markov property of Brownian motion, we know that

E[f(Bσn+k/2n)|Fσn ] = Pk/2nf(Bσn).

Therefore,
E[f(Bσn+k/2n)|Fσ] = E[Pk/2nf(Bσn)|Fσ]. (1)

But we know that 1{τn=σn+k/2n} ∈ Fσ. By multiplying this function on both sides of (1) and
summing over k, we arrive at

E[f(Bτn)|Fσ] = E[Pτn−σnf(Bσn)|Fσ].

By continuity and the dominated convergence theorem, we conclude that

E[f(Bτ )|Fσ] = E[Pτ−σf(Bσ)|Fσ] = Pτ−σf(Bσ).

It is not true that Bτ − Bσ and Fσ are independent. Consider the one dimensional case. Let
σ , inf{t > 0 : Bt = a} for given a > 0, and let τ , 2σ. Suppose that B2σ − Bσ and Fσ are
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independent. Then B2σ and Fσ must be independent since Bσ = a is a deterministic constant.
Therefore, the conditional expectation

E[f(B2σ)|Fσ] = E[f(B2σ)]

is a deterministic constant. However, according to what we just proved,

E[f(B2σ)|Fσ] = Pσf(Bσ) = Pσf(a) =

ˆ
R1

1√
2πσ

e−
(a−y)2

2σ f(y)dy.

This cannot be a deterministic constant for a large class of f as σ is random. Therefore, we have a
contradiction, which shows that B2σ −Bσ and Fσ are not independent.

Problem 4. From direct computation, we have

D1 =

{
1, X = 0, 1, 2;

−1, X = −2,−1,

and

X1 = E[X1|D1 = 1] · 1{D1=1} + E[X1|D1 = −1] · 1{D1=−1}

= 1 · 1{D1=1} −
3

2
· 1{D1=−1}.

Now
{D1 = 1, D2 = 1} = {X = 1, 2}, {D1 = 1, D2 = −1} = {X = 0},
{D1 = −1, D2 = 1} = {X = −1}, {D1 = −1, D2 = −1} = {X = −2}.

It follows that

X2 =
3

2
1{D1=1,D2=1} + 0 · 1{D1=1,D2=−1} + (−1) · 1{D1=−1,D2=1} + (−2) · 1{D1=−1,D2=−1}

=
3

2
1{X1=1,D2=1} + 0 · 1{X1=1,D2=−1} + (−1) · 1{X1=−3/2,D2=1}

+(−2) · 1{X1=−3/2,D2=−1}.

Similarly, we can obtain that

X3 = 2 · 1{D1=1,D2=1,D3=1} + 1 · 1{D1=1,D2=1,D3=−1} + 0 · 1{D1=1,D2=−1}

+(−1) · 1{D1=−1,D2=1} + (−2) · 1{D1=−1,D2=−1}

2 · 1{X1=1,X2=3/2,D3=1} + 1 · 1{X1=1,X2=3/2,D3=−1} + 0 · 1{X1=1,X2=0}

+(−1) · 1{X1=−3/2,X2=−1} + (−2) · 1{X1=−3/2,X2=−2},

and Xn = X3 for n > 3.
The stopping time τ is defined in the following way. Let τ1 be the first exit time of the interval

(−3/2, 1). Define τ2 as follows: if Bτ1 = 1, then τ2 is the exit time of the interval (0, 3/2) after
τ1, and if Bτ1 = −3/2, then τ2 is the exist time of the interval (−2,−1). Define τ3 as follows: if
(Bτ1 , Bτ2) = (1, 3/2), then τ3 is the exist time of the interval (1, 2) after τ2, and in all other cases,
τ3 , τ2. The desired stopping time τ will be τ , τ3 (in the proof of the Skorokhod embedding
theorem, in this case we have Xn = X3 and τn = τ3 for n > 3, so τ = τ3). See the Figure below
for an illustration of the construction of τ.
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Problem 5. (1) Write Bt = Bxt + iByt where Bxt is a standard Brownian motion and Byt is a
Brownian motion starting at position 1. Note that Bx and By are independent. Therefore,

E
[
eλi·Bt |FBs

]
= E

[
eλi·(Bt−Bs)

]
· eλi·Bs

= E
[
eiλ(B

x
t −B

x
s )−λ(B

y
t−B

y
s )
]
· eλi·Bs

= eλi·Bs ,

which shows that Xt , eλi·Bt is an {FBt }-martingale.
(2) A crucial observation is that τ = inf{t > 0 : Byt = 0}, which is independent of Bx and has

density

fτ (t) =
1√

2πt3
e−

1
2t , t > 0.

Now let ϕ ∈ Bb(R1). Then we have

E[ϕ(Bτ )] =

ˆ ∞
0

E[ϕ(Bτ )|τ = t]fτ (t)dt

=

ˆ ∞
0

E[ϕ(Bxt )|τ = t]fτ (t)dt

=

ˆ ∞
0

E[ϕ(Bxt )]fτ (t)dt

=

ˆ ∞
0

(ˆ
R1

ϕ(u)
1√
2πt

e−
u2

2t du

)
1√

2πt3
e−

1
2t dt.

4



By using Fubini’s theorem and integrating out t by a change of variables s = 1/t, we arrive at

E[ϕ(Bτ )] =

ˆ
R1

ϕ(u)
1

π(u2 + 1)
du.

Therefore, Bτ is Cauchy distributed.

Problem 6. (1) Note that under Px,c, the coordinate process is a Brownian motion starting at x
with drift c. Therefore, for any n > 1, t1 < · · · < tn = t, and f ∈ Cb(Rn), we have
ˆ
W 1

f(wt1 , · · · , wtn)dPx,c =

ˆ
W 1

f(wt1 + ct1, · · · , wtn + ctn)dPx,0

=

ˆ
Rn
f(u1 + ct1, · · · , un + ctn)pt1(u1 − x)

·pt2−t1(u2 − u1) · · · ptn−tn−1(un − un−1)du

=

ˆ
Rn
f(v1, · · · vn)pt1(v1 − x− ct1) · pt2−t1(v2 − v1 − c(t2 − t1))

· · · ptn−tn−1
(vn − vn−1 − c(tn − tn−1))dv

=

ˆ
Rn
f(v1, · · · , vn)ec(vn−x)−

1
2 c

2tγ(dv)

=

ˆ
W 1

f(wt1 , · · · , wtn)ec(wt−x)−
1
2 c

2tdPx,0,

where
pt(u) ,

1√
2πt

e−
u2

2t

and γ(dv) is the distribution of (wt1 , · · · , wtn) under Px,0. Therefore, the result follows.
(2) Since (St, Xt) is Ft-measurable, for any f ∈ Cb(R2), from (1) we have

E0,c[f(St, Xt)] = E0,0
[
f(St, Xt)e

cXt− 1
2 c

2t
]
.

According to Proposition 4.9 in the lecture notes, this equals
ˆ
{x>0,x>y}

f(x, y)ecy−
1
2 c

2t 2(2x− y)√
2πt3

e−
(2x−y)2

2t dxdy.

Therefore,

P0,c(St ∈ dx,Xt ∈ dy) =
2(2x− y)√

2πt3
ecy−

1
2 c

2t− (2x−y)2
2t , x > 0, x > y.

Problem 7. (1) The first part follows from Itô’s formula and the boundedness of eθ. The second
part follows from integrating the martingale property of eθ(Bt) against φ(θ)dθ. Note that we can
integrate because ‖eθ‖ 6 1 and φ(θ) is rapidly decreasing.

(2) (i) Trivial.
(ii) Choose f ∈ C∞c (Rd) such that on the annulus Aa,b , {x ∈ Rd : a 6 |x| 6 b}, f(x) = log |x|

for d = 2 and f(x) = |x|2−d for d > 3. Since

f(Bt)− f(0)− 1

2

ˆ t

0

∆f(Bs)ds
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is a bounded martingale and ∆f(Bs) = 0 on [0, τa∧τb], according to the optional sampling theorem,
we have

f(0) = E[f(Bτa∧τb)]

= f(Bτa)Pxd(τa < τb) + f(Bτb) (1− Pxd(τa < τb)) .

By the definition of f on the annulus Aa,b, we obtain that

Pxd(τa < τb) =

{
log b−log |x|
log b−log a , d = 2;
|x|2−d−b2−d
a2−d−b2−d , d > 3.

(2)

Since
{τa <∞} =

⋃
b>|x|

{τb > τa},

we also obtain that

Pxd(τa <∞) = lim
b→∞

Pxd(τa < τb) =

1, d = 2;(
a
|x|

)d−2
, d > 3.

(iii) We first consider the case when d = 2. Let B(x0, ε) be an open ball contained in U , and
take N > 1 such that U

⋃
{0} ⊆ B(x0, N). Define

θ1 , inf{t > 0 : |Xt| = N}, τ1 , inf{t > θ1 : |Xt| = ε},
θ2 , inf{t > τ1, |Xt| = N + 1}, τ2 , inf{t > θ2 : |Xt| = ε},
· · ·

θn , inf{t > τn−1, |Xt| = N + n− 1}, τn inf{t > θn : |Xt| = ε}.

Apparently, θn ↑ ∞ and hence τn ↑ ∞. Therefore, it is clear that
∞⋂
n=1

{τn <∞} ⊆ {σ =∞}.

Moreover, for each n,
P0
2(τn <∞) = E0

2[P0
2(τn <∞)|Fσn ],

and conditioned on Fσn , Bσn+t is a Brownian motion starting at Bσn . According to the strong
Markov property and (2), (ii), we have

P0
2(τn <∞) = 1.

Therefore,
P0
2(σ =∞) = 1.

Now we consider the case when d > 3. Let B(x0, r) be an open ball such that U ⊆ B(x0, r).
For each R > r with 0 ∈ B(x0, R), define inductively

θn , inf{t > τn−1, |Xt| = R}, τn , inf{t > θn : |Xt| = r},
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where τ0 , 0. It follows that

{σ =∞} ⊆
∞⋂
n=1

{τn <∞}.

But in dimension greater than 2, we have

P0
d(τn <∞) =

( r
R

)d−2
.

Therefore,

P0
d(σ =∞) 6

( r
R

)d−2
.

As this is true for all R, we conclude that P0
d(σ =∞) = 0.

(iv) We first consider the case when y 6= 0. For each r < |y| < R, define

τr , inf{t > 0 : |Xt| = r}, τR , inf{t > 0 : |Xt| = R}.

It follows that

{σy <∞} =
⋃
R>|y|

{σy < τR} ⊆
⋃
R>|y|

 ⋂
r<|y|

{τr < τR}

 .

Moreover, for each fixed R, in view of the formula (2), we have

P0
d

 ⋂
r<|y|

{τr < τR}

 = lim
r↓0

P0
d(τr < τR) = 0,

for all d > 2. Therefore,
P0
d(σy <∞) = 0

for all d > 2.
Now we consider the case when y = 0. For each r > 0, define

τr , inf{t > 0 : |Xt| = r}, θr , inf{t > τr : Xt = 0}.

Then we have
{0 < σy <∞} ⊆

⋃
r>0

{θr <∞}.

But according to the result in the case when y 6= 0, we have

P0
d(θr <∞) = E0

d[P0
d(θr <∞|Fτr )] = 0.

Therefore,
P0
d(0 < σy <∞) = 0.

It remains to show that P0
d(σy = 0) = 0. To this end, first observe that the probability P0

d(σy = 0)
is determined by the distribution of Brownian motion. Therefore, we may use the Brownian motion
tX1/t to compute this probability (so define σ̃y = inf{t > 0 : tX1/t = y}). In this case, we have

{σ̃y = 0} = {∃tn ↑ ∞, Xtn = 0} ⊆ {θr <∞},

for any fixed r > 0, where τr, θr are defined in the same way as before for the process Xt. Therefore,

P0
d(σy = 0) = P0

d(σ̃y = 0) 6 P0
d(θr <∞) = 0.
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