Solutions for Problem Sheet 4

Problem 1. (1) The only thing which is not entirely trivial is that O - (B; — Bs) ~ N (0, (t — s)Id)
and (u, By — Bs) ~ N(0,1). But this can be seen by using characteristic functions. Of course the
problem can also be solved simply by applying Lévy's characterization theorem once we notice that
O-By= [, 0-dB, and {1, B) = [ (1, dBy).

(2) We first show that E[B,|B,] = sB,/t for s < t. Indeed, consider the time reversal B, £
7By /. From Problem 2, (1), we know that B, is a Brownian motion. Let u = 1/s, v = 1/t so that
u > v. It follows that

E[B,|B,] = B, + E[B, — B,|B,] = B, = B;/t.
But Eu = B,/s and conditioning on EU is the same as conditioning on B;. Therefore,

S
E[Bs|B:] = ZBt'

Now for the general case, we have
E[Bu|Bs7Bt] = Bs +E[Bu - Bs|BsaBt]
= Bs + E[Bu - Bs|357 Bt - Bs]
= B;+E[B, — Bs|B: — B,
where in the last equality, we used the fact that (B, — Bs, By — Bs) and B; are independent (c.f.
Problem Sheet 1, Problem (1), (iii)). Therefore, from what we just proved, we have
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Problem 2. (1) It is easy to see that (X;):~o has the right distribution as a Brownian motion, and
t — X; is continuous for ¢ > 0. The only fact which is not so clear is the continuity at ¢ = 0. By
the defintion of X, this is equivalent to showing that with probability one, B;/t — 0 as t — .
Indeed, from the strong law of large numbers, we know that
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from the first Borel-Cantelli's lemma, we know that with probability one,

li |Bt - Bn—1| o
im sup ——— =
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0.

Therefore, B/t — 0 almost surely as ¢t — oo.
(2) Since {X; : t > 0} is a Brownian motion, this part follows from Proposition 4.2 in the
lecture notes.
(3) Since
X
= = Bl/ta t> 07
the non-differentiability of X; at ¢ = 0 also follows directly from Proposition 4.2. Now we show
the almost everywhere non-differentiability of B. For each t > 0, let A; be the event that B
is differentiable at ¢. Then P(A4;) = 0 by applying what we just proved to the Brownian motion
{Bu+t — Bt : u > 0}. According to Fubini's theorem, we have

E UOOO lAtdt} = /OOOIP’(At)dt =0.

Therefore, with probability one,
/ 1a, (w)dt = 0,
0

which implies that w ¢ A, for almost every ¢ > 0. This means that ¢t — B;(w) is almost everywhere
non-differentiable.

Problem 3. We only need to consider the case when f is bounded and continuous. The case when
f is bounded Borel measurable follows from a monotone class argument. Let

— k
on Z o H(k=1)/2n<o<k/2n}:
k=1

Define 7, similarly. Apparently, o,,, 7, are stopping times, and o,, | 0,7, | 7. Moreover, 7, € F,
since 7 € F,. From the Strong Markov property of Brownian motion, we know that

E[f (B, +k/27 )|Fo,] = Prjon f(Bs, )

Therefore,
E[f(Bo, +r/20 )| Fo] = E[Pyj2n f(Bo, )| Fo]. (1)

But we know that 1;, _, ix/2n} € Fo. By multiplying this function on both sides of (1) and
summing over k, we arrive at

E[f(B,)

By continuity and the dominated convergence theorem, we conclude that

Fo| =E[P;, —o, f(Bs, )| Fsl-

E[f(B‘r)‘]:ff] = E[PTfo(BU)l}-U] = PTfof(BU)'

It is not true that B, — B, and F, are independent. Consider the one dimensional case. Let
o 2 inf{t > 0: B, = a} for given a > 0, and let 7 £ 20. Suppose that Bo, — B, and F, are



independent. Then By, and F, must be independent since B, = a is a deterministic constant.
Therefore, the conditional expectation

]E[f(B2U)|‘FG} = E[f(BQJ)]
is a deterministic constant. However, according to what we just proved,
1 (a—y)?
e 2 dy.

This cannot be a deterministic constant for a large class of f as o is random. Therefore, we have a
contradiction, which shows that By, — B, and F, are not independent.

]E[f(BQG)LFa] = Pdf(BU) = Pof(a) - /]Rl

Problem 4. From direct computation, we have

1, X=0,1,2;
D1 — ) 0’ b )
-1, X =-2-1,

and
X1 = E[Xi|D1=1] 1ip,=1y +E[Xi1|D1 = —1] - 1p,= 1}
= 1-1p,=1) — g “lip,——1}-
Now
{D1=1,D =1} ={X =1,2}, {D1=1,D; = -1} ={X =0},

{D1=-1,Dy=1}={X=-1}, {D1=-1,Dy=-1}={X = -2}
It follows that

3
X2 = Slpi=1,0:=13 0 Lpi=1,pp=—1y + (=1 Lpy=—1,p,=1} + (=2) - L{Di=-1,0,=-1}

3
= 51{X1=1,D2:1} +0-1ix,=1,p,=—1) + (=1) - L{x,=—3/2,D,=1}
+(=2) - 1{x,=—3/2,D,=—1}-

Similarly, we can obtain that

X3 = 2-1ip,=1,py=1,0s=1} T 1" 1{p,=1,Dy=1,05=—1} T 0 1{p,=1, Dy=—1}
+(=1) 1(p,=—1,05=1} + (=2) " L{p,= 1, D=1}
2-11x,=1,x,=3/2,05=1} T 1 - 1{x,=1 x,=3/2,D5=—11 + 0 1{x, =1 x,=0}
+(=1) - 1ix,=—3/2,x,=—1} + (=2)  L{x,=—3/2, x,=—2},

and X,, = X3 forn > 3.

The stopping time 7 is defined in the following way. Let 7; be the first exit time of the interval
(—=3/2,1). Define 5 as follows: if B;, = 1, then 7 is the exit time of the interval (0,3/2) after
71, and if By, = —3/2, then 73 is the exist time of the interval (—2,—1). Define 73 as follows: if
(B+,, Br,) = (1,3/2), then 73 is the exist time of the interval (1,2) after 7o, and in all other cases,
73 2 5. The desired stopping time 7 will be 7 = 73 (in the proof of the Skorokhod embedding
theorem, in this case we have X,, = X3 and 7,, = 73 for n > 3, so 7 = 73). See the Figure below
for an illustration of the construction of 7.



Problem 5. (1) Write B, = By + iB] where B} is a standard Brownian motion and B} is a
Brownian motion starting at position 1. Note that B* and BY are independent. Therefore,

BB = E[BBa]
- E [eM(BffB:)fA(B}j’fBg)} . NiBs
—  NBs

which shows that X; £ B¢ is an {FF}-martingale.

(2) A crucial observation is that 7 = inf{t > 0: B} = 0}, which is independent of B* and has
density

= e
V23

“ar, > 0.

fT(t) =

Now let ¢ € B,(R!). Then we have

E[p(B;)] =




By using Fubini's theorem and integrating out ¢ by a change of variables s = 1/t, we arrive at

2le(5)] = [ !

» @(u)mdu.

Therefore, B, is Cauchy distributed.

Problem 6. (1) Note that under P*¢, the coordinate process is a Brownian motion starting at z
with drift c¢. Therefore, for anyn > 1, t; <--- <t, =t, and f € C,(R™), we have

/ flwgy, - wy, )dP™C = / flws, +cty, -+ wy, + ct,)dP™0
wi wt

f(ul + Ctl) R Ctn)ptl (Ul - .13)
R”L

Pry—ty (U2 —u1) -+ P, 1,y (Un — Up—1)du

o, vp)pe, (v1 — @ — ctr) - pry—t, (V2 — v1 — c(ta — t1))
Rﬂ,
Pyt (Un = VU1 — c(tn — tp—1))dv

Fo1,--+ y0,)eUn D=3 ()

R”L
— f(wt17 . 7wtn)ec(wtfz)f%szsdﬂpac,o7
w1l
where
(w2 =
u) = e
br 2mt
and ~y(dv) is the distribution of (wy,, -+ ,w;, ) under P*:0. Therefore, the result follows.

(2) Since (S;, X;) is Fi-measurable, for any f € C,(R?), from (1) we have
E2CTf(S1, X0)] = B0 [£(Si, XppeeX 3]

According to Proposition 4.9 in the lecture notes, this equals

/ f(x y)ecy—%cztwe_ (21’;1/)2 dxdy
(220,039} 2nt?

Therefore,
22z — o—y)?
BOC(S, € di, X, € dy) = 2o Wttt s p sy

V2rt ’
Problem 7. (1) The first part follows from [t8's formula and the boundedness of eg. The second
part follows from integrating the martingale property of eg(B;) against ¢(6)df. Note that we can
integrate because |leg|] < 1 and ¢(0) is rapidly decreasing.
(2) (i) Trivial.
(ii) Choose f € C°(R?) such that on the annulus A, ;, = {z € R?: a < |z < b}, f(z) = log ||
for d =2 and f(z) = |z|*>~¢ for d > 3. Since

1

F(B) = 10)~ 5 [ ArBds



is a bounded martingale and Af(Bs) = 0 on [0, 7, A7), according to the optional sampling theorem,
we have

f0) = E[f(Br.an)]
= f(Br)Pi(1a < 7))+ f(Br,) (1 = Pg(1a < 7)) .

By the definition of f on the annulus A, ;, we obtain that

log b—log |z| d=2
Pi(ra <) = { o8lige) )
%7 d = 3.
Since
{ra < o0} = U {7 > 74},
b>|z|
we also obtain that
1, d=2;
P% (14 = lim P%(7, = d—2
e <o) = B il <m) =0 () s

(i) We first consider the case when d = 2. Let B(xq,) be an open ball contained in U, and
take N > 1 such that U |J{0} C B(=zg, V). Define

6 = inf{t>0: |Xy|=N}, 7 =inf{t>0,: | X =¢},
O = inf{t>7, | X¢|=N+1}, n2inf{t>0: |Xi| =¢},
0, = if{t=7,—1, | Xe|=N+n-1}, 7, inf{t >0, : | X =¢}.

Apparently, 6,, T oo and hence 7,, T co. Therefore, it is clear that

({m < o0} € {o = o0}
n=1
Moreover, for each n,
Pg(Tn < o0) = Eg[Pg(Tn < o0)|Fs, ],

and conditioned on F, , B, 4 is a Brownian motion starting at B, . According to the strong
Markov property and (2), (ii), we have

PY(7, < 00) = 1.

Therefore,
PY(c = oc0) = 1.

Now we consider the case when d > 3. Let B(zg,r) be an open ball such that U C B(x,r).
For each R > r with 0 € B(xg, R), define inductively

0, & inf{t > r,_1, | X¢| = R}, ™ £ inf{t > 0, : | X¢| =r},



where 79 £ 0. It follows that
{o =0} C m{Tn < 00}
n=1

But in dimension greater than 2, we have

PY (7, < o0) = (%)dﬂ.

Therefore,

P(o = o0) < (%)H.

As this is true for all R, we conclude that PY(c = oo) = 0.
(iv) We first consider the case when y # 0. For each r < |y| < R, define
m=inf{t>0: |X¢| =7}, 7R =Inf{t >0: |X| = R}.
It follows that

{0y<oo}:U{Uy<TR}§ U ﬂ{T,«<TR}

R>|y| R>[y| \r<l|y|

Moreover, for each fixed R, in view of the formula (2), we have

P Q{’TT <Tr}| = lriﬁ]ﬂ?g(n < 7Rr) =0,
r<|y

for all d > 2. Therefore,
PY(o, < 00) =0
for all d > 2.
Now we consider the case when y = 0. For each r > 0, define

T 2inf{t>0: |X¢| =7}, 6, 2inf{t >7,: X; =0}.
Then we have
{0 <oy < oo} C {0 < o0}
r>0
But according to the result in the case when y # 0, we have
Py(6, < 0o) = EG[PY(0, < oo|F,)] = 0.

Therefore,

PY(0 < 0, < 00) = 0.

It remains to show that PY(s, = 0) = 0. To this end, first observe that the probability P4(o, = 0)
is determined by the distribution of Brownian motion. Therefore, we may use the Brownian motion
tX1/: to compute this probability (so define o, = inf{t > 0: tX;,, = y}). In this case, we have

{51/ = 0} = {th T oo, Xt" = 0} - {97‘ < OO},
for any fixed r > 0, where 7., 0,. are defined in the same way as before for the process X;. Therefore,

PY(o, = 0) = PY(5, = 0) < PY(6, < o0) = 0.



