Solutions for Problem Sheet 3

Problem 1. (1) The supermartingale property with respect to the filtration $\{\mathcal{F}_{\tau\wedge t}\}\)$ is a direct consequence of the optional sampling theorem for bounded stopping times. As for the original filtration, first observe that

$$
X_{\tau \wedge s} \geqslant \mathbb{E}[X_{\tau \wedge t} | \mathcal{F}_{\tau \wedge s}] = \mathbb{E}[X_{\tau \wedge t} \mathbf{1}_{\{\tau \leqslant s\}} | \mathcal{F}_{\tau \wedge s}] + \mathbb{E}[X_{\tau \wedge t} \mathbf{1}_{\{\tau > s\}} | \mathcal{F}_{\tau \wedge s}]
$$

for $s \leq t$. The first term equals $\mathbb{E}[X_{\tau \wedge t}\mathbf{1}_{\{\tau \leq s\}}|\mathcal{F}_s]$ since $X_{\tau \wedge t}\mathbf{1}_{\{\tau \leq s\}} = X_{\tau \wedge s}\mathbf{1}_{\{\tau \leq s\}}$ is $\mathcal{F}_{\tau \wedge s}$ measurable. The second term equals $\mathbb{E}\left[1_{\{\tau>s\}}\mathbb{E}[X_{\tau\wedge t}|\mathcal{F}_s]|\mathcal{F}_{\tau\wedge s}\right],$ where the integrand

$$
\mathbf{1}_{\{\tau>s\}}\mathbb{E}[X_{\tau\wedge t}|\mathcal{F}_s] \in \mathcal{F}_{\tau\wedge s}.
$$

Therefore,

$$
X_{\tau\wedge s} \geqslant \mathbb{E}[X_{\tau\wedge t}\mathbf{1}_{\{\tau\leqslant s\}}|\mathcal{F}_s]+\mathbf{1}_{\{\tau>s\}}\mathbb{E}[X_{\tau\wedge s}|\mathcal{F}_s]=\mathbb{E}[X_{\tau\wedge t}|\mathcal{F}_s].
$$

(2) Let $s < t$ and $A \in \mathcal{F}_s$. Define $\sigma = s1_A + t1_{A^c}$ and $\tau = t$. It is obvious that σ, τ are bounded $\{\mathcal{F}_t\}$ -stopping times. Therefore,

$$
\mathbb{E}[X_{\sigma}]=\mathbb{E}[X_s\mathbf{1}_A]+\mathbb{E}[X_t\mathbf{1}_{A^c}]\leqslant \mathbb{E}[X_{\tau}]=\mathbb{E}[X_t],
$$

which implies the desired submartingale property.

Problem 2. (1) Let $s < t$ and $A \in \mathcal{F}_s$. Since $\mathcal{F}_s \subseteq \mathcal{F}_t$, we have

$$
\int_A M_t d\mathbb{P} = \mathbb{Q}(A) = \int_A M_s d\mathbb{P}.
$$

Therefore, $\{M_t, \mathcal{F}_t\}$ is a martingale.

(2) Necessity. Suppose that $\{M_t\}$ is uniformly integrable. Then $M_t \to M_\infty$ almost surely and in L^1 for some $M_\infty\in\mathcal F_\infty.$ Let $A\in\mathcal F_t$ for some $t\geqslant 0.$ Then for any $u>t,$ we have $A\in\mathcal F_u$ and thus

$$
\mathbb{Q}(A) = \int_A M_u d\mathbb{P}.
$$

By letting $u \to \infty$, we obtain that

$$
\mathbb{Q}(A) = \int_A M_\infty d\mathbb{P}.
$$

This is indeed true for all $A \in \mathcal{F}_{\infty}$ by the monotone class theorem, since \mathcal{F}_{∞} is generated by the π -system $\cup_{t\geqslant 0} \mathcal{F}_t$. Therefore, $\mathbb{Q}\ll \mathbb{P}$ when restricted on \mathcal{F}_∞ with the Radon-Nikodym derivative given by M_{∞} .

Sufficiency. Suppose that $\mathbb{Q} \ll \mathbb{P}$ when restricted on \mathcal{F}_{∞} with $d\mathbb{Q}/d\mathbb{P} = Z$ for some $Z \in \mathcal{F}_{\infty}$. Then for each $t \geqslant 0$ and $A \in \mathcal{F}_t$, we have

$$
\mathbb{Q}(A) = \int_A M_t d\mathbb{P} = \int_A Z d\mathbb{P}.
$$

Therefore, $M_t = \mathbb{E}[Z|\mathcal{F}_t]$ which implies that $\{M_t\}$ is uniformly integrable.

Apparently, from the above argument we have already proved that $M_\infty \triangleq \lim_{t\to\infty} M_t$ is the Radon-Nikodym derivative of $\mathbb Q$ against $\mathbb P$ on $\mathcal F_\infty$. To see the final part, since in this case M_t is an $\{\mathcal{F}_t\}$ -martingale with a last element M_{∞} , from the optional sampling theorem, we know that

$$
\mathbb{Q}(A) = \int_A M_{\infty} d\mathbb{P} = \int_A M_{\tau} d\mathbb{P}, \quad \forall A \in \mathcal{F}_{\tau}.
$$

Therefore, $\mathbb{Q} \ll \mathbb{P}$ when restricted on \mathcal{F}_{τ} and $M_{\tau} = d\mathbb{Q}/d\mathbb{P}$ on \mathcal{F}_{τ} .

Problem 3. Since $|X_t|$ is a right continuous submartingale, Doob's L^p -inequality implies that

$$
\mathbb{E}\left[\sup_{0\leq s\leq t}|X_s|^p\right]\leqslant q^p\mathbb{E}[|X_t|^p]\leqslant q^pM,
$$

where $M\triangleq \sup_{t\geqslant0}\mathbb{E}[|X_t|^p]$ and $q=p/(p{-}1).$ In particular, Fatou's lemma implies that $\sup_{t\geqslant0}|X_t|^p\in$ $L^p.$ On the other hand, since $\{X_t\}$ is uniformly integrable (because it is bounded in L^p), X_t converges to some X_∞ almost surely and in $L^1.$ Now

$$
|X_t-X_\infty|^p\leqslant 2^p(|X_t|^p+|X_\infty|^p)\leqslant 2^{p+1}\sup_{t\geqslant 0}|X_t|^p\in L^1.
$$

The dominated convergence theorem then implies that

$$
\lim_{t \to \infty} \mathbb{E}[|X_t - X_{\infty}|^p] = 0.
$$

Problem 4. (1) Let $f(t) = \log t - t/e$ $(t > 0)$, then $f'(t) = 1/t - 1/e$. Therefore, $f(t) \le f(e) = 0$. Now we prove that $a \log^+ b \leq a \log^+ a + b/e$ for $a, b > 0$. If $b \leq 1$, this is trivial. If $b > 1, a \leq 1$, then

$$
a\log^+ b = a\log b \leqslant \log b \leqslant \frac{b}{e} = a\log^+ a + \frac{b}{e}.
$$

If $a, b > 1$, then the desired inequality follows from the fact that $log(b/a) \leq (b/a)/e$.

(2) Similar to the proof of Doob's L^p -inequality, we have

$$
\mathbb{E}[\rho(X_T^*)] \leq \mathbb{E}\left[\int_0^{X_T^*} \rho(d\lambda)\right]
$$

\n
$$
= \mathbb{E}\left[\int_0^{\infty} \mathbf{1}_{\{X_T^* \geq \lambda\}} \rho(d\lambda)\right]
$$

\n
$$
= \int_0^{\infty} \mathbb{P}(X_T^* \geq \lambda) \rho(d\lambda)
$$

\n
$$
\leq \int_0^{\infty} \frac{1}{\lambda} \mathbb{E}[X_T \mathbf{1}_{\{X_T^* \geq \lambda\}}] \rho(d\lambda)
$$

\n
$$
= \mathbb{E}\left[X_T \int_0^{X_T^*} \lambda^{-1} \rho(d\lambda)\right].
$$

(3) Let $\rho(t) = (t-1)^{+}$ $(t \ge 0)$. Then from the second part, we have

$$
\mathbb{E}[X_T^*] - 1 \leq \mathbb{E}[(X_T^* - 1); X_T^* \geq 1]
$$

\n
$$
\leq \mathbb{E}\left[X_T \int_0^{X_T^*} \lambda^{-1} \rho(d\lambda)\right]
$$

\n
$$
= \mathbb{E}\left[X_T \int_1^{X_T^*} \lambda^{-1} \rho(d\lambda); X_T^* \geq 1\right]
$$

\n
$$
= \mathbb{E}[X_T \log X_T^*; X_T^* \geq 1]
$$

\n
$$
= \mathbb{E}[X_T \log^+ X_T^*]
$$

\n
$$
\leq \mathbb{E}[X_T \log^+ X_T^*] + \frac{1}{e} \mathbb{E}[X_T^*].
$$

Rearranging the terms yields the desired inequality.

Problem 5. From the assumption that

$$
\sup_{0\leqslant t<\infty}X_t(\omega)=\infty,\quad \inf_{0\leqslant t<\infty}X_t(\omega)=-\infty,
$$

it is apparent that every τ_n is well-defined finitely. Since X_t is $\{\mathcal{F}_t\}$ -adapted and has continuous sample paths, according to Proposition 2.7 in the lecture notes, we know that τ_1 is an $\{F_t\}$ -stopping time. To see why τ_2 is also an $\{\mathcal{F}_t\}$ -stopping time, define $\widetilde{X}_t \triangleq X_{\tau_1+t} - X_{\tau_1}$ and $\mathcal{G}_t \triangleq \mathcal{F}_{t+\tau_1}$. It follows that \tilde{X}_t is $\{\mathcal{G}_t\}$ -adapted and has continuous sample paths. Therefore, the same reason implies that $\tau_2 - \tau_1$ is a $\{G_t\}$ -stopping time. According to Problem Sheet 2, Problem 4, (2), (ii), we conclude that τ_2 is an $\{\mathcal{F}_t\}$ -stopping time. Inductively, we know that every τ_n is an $\{\mathcal{F}_t\}$ -stopping time.

Now we study the distribution of the random sequence $\{X_{\tau_n}:\ n\geqslant 1\}.$ Define $\sigma_n\triangleq\inf\{t\geqslant 0:$ $|X_t| > 2n$ }. Then $\tau_n < \sigma_n$ (in fact, $|X_t| \leqslant n$ for all $t \in [0,\tau_n]$) and $X_t^{\sigma_n} \triangleq X_{\sigma_n \wedge t}$ is a bounded ${F_t}$ -martingale. In particular, X_t has a last element $X_\infty = \lim_{t\to\infty} X_t$. By the optional sampling theorem, we conclude that

$$
\mathbb{E}[X_{\tau_n} - X_{\tau_{n-1}} | \mathcal{F}_{\tau_{n-1}}] = \mathbb{E}[X_{\tau_n}^{\sigma_n} - X_{\tau_{n-1}}^{\sigma_n} | \mathcal{F}_{\tau_{n-1}}] = 0.
$$

Now let $A_n^+\triangleq\{X_{\tau_n}-X_{\tau_{n-1}}=1\}$ and $A_n^-\triangleq\{X_{\tau_n}-X_{\tau_{n-1}}=-1\}$ respectively. It follows that

$$
\mathbb{P}(A_n^+ | \mathcal{F}_{\tau_{n-1}}) = \mathbb{P}(A_n^- | \mathcal{F}_{\tau_{n-1}}) = \frac{1}{2} \text{ a.s.}
$$

Therefore, for any $i_1, \dots, i_n = \pm 1$, we have

$$
\mathbb{P}(X_{\tau_1} = i_1, X_{\tau_2} - X_{\tau_1} = i_2, \cdots, X_{\tau_n} - X_{\tau_{n-1}} = i_n)
$$
\n
$$
= \int_{\{X_{\tau_1} = i_1, \cdots, X_{\tau_{n-1}} - X_{\tau_{n-2}} = i_{n-1}\}} \mathbb{P}(\{X_{\tau_n} - X_{\tau_{n-1}} = i_n\} | \mathcal{F}_{\tau_{n-1}}) d\mathbb{P}
$$
\n
$$
= \frac{1}{2} \mathbb{P}(X_{\tau_1} = i_1, \cdots, X_{\tau_{n-1}} - X_{\tau_{n-2}} = i_{n-1}).
$$

Recursively, in the end this will imply that $X_{\tau_1}, X_{\tau_2}-X_{\tau_1}, \cdots, X_{\tau_n}-X_{\tau_{n-1}}$ are independent and identically distributed with distribution $\mathbb{P}(X_{\tau_1}=\pm 1)=1/2.$ Therefore, $\{X_{\tau_n}^{\top}:\ n\geqslant 1\}$ is distributed as the standard simple random walk.

Problem 6. (1) We first prove a claim:

$$
\mathbb{E}[|X_{\tau} - X_{\sigma}||\mathcal{F}_{\sigma}] \leqslant M_X,\tag{1}
$$

for any $\{\mathcal{F}_t\}$ -stopping times $\sigma \leq \tau$. Indeed, since $\{X_t : 0 \leq t \leq \infty\}$ is a continuous martingale with a last element, the optional sampling theorem and the assumption imply that

$$
\mathbb{E}[|X_{\tau} - X_{\sigma}||\mathcal{F}_{\sigma}] = \mathbb{E}[|\mathbb{E}[X_{\infty}|\mathcal{F}_{\tau}] - X_{\sigma}||\mathcal{F}_{\sigma}]
$$

\n
$$
\leq \mathbb{E}[\mathbb{E}[|X_{\infty} - X_{\sigma}||\mathcal{F}_{\tau}]|\mathcal{F}_{\sigma}]
$$

\n
$$
= \mathbb{E}[|X_{\infty} - X_{\sigma}||\mathcal{F}_{\sigma}]
$$

\n
$$
\leq M_X.
$$

Now for $\lambda, \mu > 0$, let

$$
\begin{array}{rcl}\n\sigma & \triangleq & \inf\{t \geqslant 0: \ |X_t| \geqslant \lambda\}, \\
\tau & \triangleq & \inf\{t \geqslant 0: \ |X_t| \geqslant \lambda + \mu\}.\n\end{array}
$$

According to (1), we have

$$
\int_{\{\sigma<\infty\}} |X_{\tau} - X_{\sigma}| d\mathbb{P} \leqslant M_X \mathbb{P}(\sigma < \infty) \leqslant M_X \mathbb{P}(X^* \geqslant \lambda).
$$

But since $\{X^* \geq \lambda + \mu\} \subseteq \{\sigma < \infty\}$ and $|X_{\tau} - X_{\sigma}| = \mu$ on $\{X^* \geq \lambda + \mu\}$, it follows that

$$
\int_{\{\sigma<\infty\}} |X_{\tau} - X_{\sigma}|d\mathbb{P} \geqslant \mu \mathbb{P}(X^* \geqslant \lambda + \mu).
$$

Therefore,

$$
\mathbb{P}(X^* \geq \lambda + \mu) \leq \frac{M_X}{\mu} \mathbb{P}(X^* \geq \lambda).
$$

(2) Let $\lambda > 0$. Note that for any $k \geq 1$, from (1) we have

$$
\mathbb{P}(X^* \geq k \cdot \mathbb{M}_X) \leq \frac{1}{e} \mathbb{P}(X^* \geq (k-1) \cdot \mathbb{M}_X) \leq \cdots \leq e^{-k}.
$$

Now if $\lambda \ge e M_X$, let k be the unique positive integer such that $k e M_X \le \lambda < (k+1)e M_X$. Then

$$
\mathbb{P}(X^* \geq \lambda) \leq \mathbb{P}(X^* \geq k \epsilon M_X) \leq e^{-k} \leq e^{1 - \frac{\lambda}{\epsilon M_X}} \leq e^{2 - \frac{\lambda}{\epsilon M_X}}.
$$

The inequality is trivial for $0<\lambda<\mathrm{e}M_X$ since in this case $\mathrm{e}^{2-\frac{\lambda}{\mathrm{e}M_X}}>1.$

To see the exponential integrability, first note that the first part implies that $X^* < \infty$ almost surely, and

$$
\mathbb{P}(\mathrm{e}^{\alpha X^*} \geqslant \mathrm{e}^{\alpha \lambda}) \leqslant \mathrm{e}^{2 - \frac{\lambda}{\mathrm{e}M_X}}, \ \ \forall \lambda > 0.
$$

Therefore,

$$
\mathbb{E}[e^{\alpha X^*}] = \int_0^\infty \mathbb{P}(e^{\alpha X^*} \ge \mu) d\mu
$$

\n
$$
\le 1 + \int_1^\infty \mathbb{P}(e^{\alpha X^*} \ge \mu) d\mu
$$

\n
$$
= 1 + \alpha \int_0^\infty \mathbb{P}(e^{\alpha X^*} \ge e^{\alpha \lambda}) e^{\alpha \lambda} d\lambda
$$

\n
$$
\le 1 + \alpha \int_0^\infty e^{2 - \left(\frac{1}{e^{\alpha X}} - \alpha\right) \lambda} d\lambda,
$$

which is finite if $0<\alpha<({\rm e}M_X)^{-1}.$ The L^p -integrability follows from then the exponential integrability.

Problem 7. (1) Let $\tau \in S_T$. By the optional sampling theorem,

$$
\mathbb{E}[X_{\tau}\mathbf{1}_{\{X_{\tau}>\lambda\}}] \leq \mathbb{E}[X_T\mathbf{1}_{\{X_{\tau}>\lambda\}}].
$$

But

$$
\mathbb{P}(X_\tau > \lambda) \leqslant \frac{\mathbb{E}[X_\tau]}{\lambda} \leqslant \frac{\mathbb{E}[X_T]}{\lambda} \to 0
$$

uniformly in $\tau \in \mathcal{S}_T$ as $\lambda \to \infty$. Therefore, $\mathbb{E}[X_\tau \mathbf{1}_{\{X_\tau > \lambda\}}] \to 0$ uniformly in $\tau \in \mathcal{S}_T$ as $\lambda \to \infty$, which proves the claim that X_t is of class (DL). Suppose further that X_t is continuous. Let $\tau_n \uparrow \tau \in \mathcal{S}_T$. Then $X_{\tau_n} \to X_\tau$ almost surely as $n \to \infty$. But X_t is of class (DL), so $\{X_{\tau_n}\}$ is uniformly integrable. Therefore, $X_{\tau_n} \to X_\tau$ in $L^1,$ which implies that X_t is regular.

(2) If X_t is non-negative and uniformly integrable, then X_t converges to some X_∞ almost surely and in $L^1.$ Moreover, we have

$$
X_t \leq \mathbb{E}[X_\infty | \mathcal{F}_t]
$$

for every $t \geq 0$. The optional sampling theorem then implies that

$$
X_{\tau} \leqslant \mathbb{E}[X_{\infty}|\mathcal{F}_{\tau}]
$$

for every finite $\{\mathcal{F}_t\}$ -stopping time τ . The uniform integrability of $\{X_\tau\}$ follows from the same argument as in the first part of the problem.

Since $X_t = M_t + A_t$ by the Doob-Meyer decomposition, we know that $\mathbb{E}[X_t] = \mathbb{E}[M_0] + \mathbb{E}[A_t]$. By letting $t\to\infty$, we conclude that $\mathbb{E}[X_\infty]=\mathbb{E}[M_0]+\mathbb{E}[A_\infty]$. In particular, $\mathbb{E}[A_\infty]<\infty$.