Solutions for Problem Sheet 3

Problem 1. (1) The supermartingale property with respect to the filtration {F,x:} is a direct
consequence of the optional sampling theorem for bounded stopping times. As for the original
filtration, first observe that

X'r/\s > E[XT/\tLFT/\S] = E[X'r/\tl{Tgst‘r/\s] + ]E[X'r/\t]-{7->s}‘f7'/\s]

for s < t. The first term equals E[X ni11r<oy|Fs] since Xonilircor = Xonslirgsy 15 Fras-
measurable. The second term equals E [1{T>S}E[XTM|]-"S]|]-'TAS] , where the integrand

1{T>S}E[XT/\t|~FS] € fT/\S'

Therefore,
X'r/\s = E[XTAtl{T<S}|fS] + 1{T>3}E[XT/\S|~FS] = ]E[X'r/\t|fs}~

(2) Let s < t and A € F;. Define 0 = s14 +t14- and 7 = ¢. It is obvious that o, 7 are bounded
{Ft}-stopping times. Therefore,

E[X,] = E[X14] + E[X;1 4] < E[X,] = E[X{],
which implies the desired submartingale property.

Problem 2. (1) Let s <t and A € Fs. Since Fs C F;, we have

/A MdP = Q(A) = /A M,dP.

Therefore, {M;, F;} is a martingale.

(2) Necessity. Suppose that {M;} is uniformly integrable. Then M; — M, almost surely and
in L' for some Mo, € Foo. Let A € F, for some t > 0. Then for any u > t, we have A € F,, and
thus

Q(A) = /A M,dP.

By letting u — oo, we obtain that

Q(A) = /A Mo dP.

This is indeed true for all A € F, by the monotone class theorem, since F, is generated by the
m-system U;>oF:. Therefore, Q <« P when restricted on F with the Radon-Nikodym derivative
given by M.



Sufficiency. Suppose that Q < P when restricted on Fo, with dQ/dP = Z for some Z € F.
Then for each ¢ > 0 and A € F;, we have

Q(A) = /A M,dP = /A ZdP.

Therefore, M; = E[Z|F;] which implies that {M;} is uniformly integrable.

Apparently, from the above argument we have already proved that M., £ lim;_,oo M, is the
Radon-Nikodym derivative of Q against P on F.. To see the final part, since in this case M; is an
{Fi}-martingale with a last element M., from the optional sampling theorem, we know that

Q(A) = / M odP = / M.dP, VYAe€F,.
A A
Therefore, Q < P when restricted on F and M, = dQ/dP on F,.
Problem 3. Since | X;| is a right continuous submartingale, Doob’s LP-inequality implies that

B | sw [X.P] < oBXP] < 0
0<s<t

where M £ sup, -, E[|X;|] and ¢ = p/(p—1). In particular, Fatou's lemma implies that sup, - | X; |7 €
L?. On the other hand, since { X;} is uniformly integrable (because it is bounded in L?), X; converges
to some X, almost surely and in L!. Now

|X; — Xoof? < 2P(|X4]P 4 [ Xoo|P) < 2P sup | Xy P € L.
t>0

The dominated convergence theorem then implies that

lim E[|X; — Xo|?] = 0.

t—o0
Problem 4. (1) Let f(t) =logt—t/e (t > 0), then f'(t) = 1/t —1/e. Therefore, f(t)
Now we prove that alog™ b < alog® a + b/e for a,b > 0. If b < 1, this is trivial. If b
then

< f(e) =0.
>1,a<1

b

Al

b b
alogtb=alogh <logh< - =alogta+ —.
e e

If a,b > 1, then the desired inequality follows from the fact that log(b/a) < (b/a)/e.
(2) Similar to the proof of Doob’s LP-inequality, we have

E [ / " p(dm]
E [/OOO 1{X;>>\}P(d)\)}
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E[p(X7)]
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A

= E [XT /OX% /\1p(d/\)] .

Doob 1
< / TE[X1lix:>x]p(dN)
0



(3) Let p(t) = (¢t —1)T (¢ = 0). Then from the second part, we have
E(X;—1 < B[(X;—1)X5>1]

< E lXT / . A‘lp(dA)]
0

X7
= E [XT/ A lp(dN); X > 11
1

= E[X7log Xj; X5 > 1]
= E[Xrlogt X}]

1
< E[Xplogh X3+ gE[X;].

Rearranging the terms yields the desired inequality.

Problem 5. From the assumption that

S Xi(w)=co,  inf Xi(w)=-—oo,

it is apparent that every 7,, is well-defined finitely. Since X; is {F;}-adapted and has continuous
sample paths, according to Proposition 2.7 in the lecture notes, we know that 71 is an {F;}-stopping
time. To see why 7, is also an {F;}-stopping time, define X, £ X, 1, — X, and G 2 Fipr..
It follows that X; is {G+}-adapted and has continuous sample paths. Therefore, the same reason
implies that 72 — 7 is a {G; }-stopping time. According to Problem Sheet 2, Problem 4, (2), (ii), we
conclude that 75 is an {F;}-stopping time. Inductively, we know that every 7,, is an {F;}-stopping
time.

Now we study the distribution of the random sequence {X, : n > 1}. Define o,, = inf{t > 0:
| X¢| > 2n}. Then 7,, < o, (in fact, | X;| < n for all t € [0,7,]) and X" £ X, ,; is a bounded
{F:}-martingale. In particular, X; has a last element X, = lim;_,~, X;. By the optional sampling
theorem, we conclude that

]E[Xﬂ'n - X‘rn_l “F‘rn—l] = E[X;I: - X;f:_l |‘F7-n—1] =0.

Now let A} £ {X, — X

Tn—1

=1} and A, £ {X,, — X,, , = —1} respectively. It follows that

1
P(Art|f7'n—1) = P(A;L]:Tn,l) = 5 a.s.

Therefore, for any i1, -- .4, = £1, we have

P(Xﬁ =11, XTQ - X7'1 =g, " 7X7'n - an,l = iﬂ,)

- / P(X,, — X, , = in}|Fr, ,)dP
{Xry=in, X = Xr _p=in—1}

1 , ‘
= i]P)(X‘rl =11, 7XTTL,1 _X‘rn,z :anl)-
Recursively, in the end this will imply that X, X,, — X,,,---, X, — X, ., are independent and

identically distributed with distribution P(X;, = +1) = 1/2. Therefore, { X : n > 1} is distributed
as the standard simple random walk.



Problem 6. (1) We first prove a claim:
EHXT - XU”]:U] < Mx, (1)

for any {F;}-stopping times o < 7. Indeed, since {X; : 0 < ¢t < oo} is a continuous martingale
with a last element, the optional sampling theorem and the assumption imply that

B X: = Xo[|Fs] = E[E[Xoo|Fr] = Xo| | 5]
< E [EHXOO - XUHFTH‘FU]
= EHXOO - Xcr”]:a]
< Mx.

Now for A\, > 0, let
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.
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According to (1), we have
/{ } 1X, — X, |dP < MxP(o < 00) < MxP(X* > A).
o<oo
But since {X* > A+ u} C {0 < o0} and | X, — X,| = pon {X* > A+ u}, it follows that
/{ } X, — X, |dP > uP(X* > A+ p).
o<o0

Therefore, o
P(X* > A+ p) < —XP(X* > N).
1

(2) Let A > 0. Note that for any k > 1, from (1) we have

P(X* > keMy) <

o

P(X* > (k—1)eMx) <---<e "

Now if A > eMx, let k be the unique positive integer such that keMx < A < (k + 1)eMx. Then

_a A
P(X* > \) < P(X* > keMy) < e ® o' malix Lo #lix
A
The inequality is trivial for 0 < A\ < eMx since in this case T x> 1.
To see the exponential integrability, first note that the first part implies that X* < oo almost
surely, and

2—

P(e®X” > e*) <e X, YA >0
= B 9 .

Therefore,
Ele**’] = / P(e**" > p)dp
0

oo
< 1+/ P(eX" > p)du
1
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which is finite if 0 < o < (eMx)~!. The LP-integrability follows from then the exponential integra-
bility.

Problem 7. (1) Let 7 € Sr. By the optional sampling theorem,
BIX:1(x, 2] SE[Xrlix, s

But
— 0

E[X,] _ E[Xq]
AT
uniformly in 7 € Sy as A — oo. Therefore, E[X;1¢x s3] — O uniformly in 7 € Sz as A — oo, which
proves the claim that X is of class (DL). Suppose further that X; is continuous. Let 7, T 7 € Sr.
Then X, — X, almost surely as n — oo. But X; is of class (DL), so { X} is uniformly integrable.

Therefore, X, — X, in L', which implies that X; is regular.
(2) If X; is non-negative and uniformly integrable, then X; converges to some X, almost surely
and in L!. Moreover, we have

P(X, > A) <

X: < E[X | F]

for every t > 0. The optional sampling theorem then implies that
X, < E[Xuo|F]

for every finite {F;}-stopping time 7. The uniform integrability of {X,} follows from the same
argument as in the first part of the problem.

Since X; = M; + A; by the Doob-Meyer decomposition, we know that E[X;] = E[My] + E[A,].
By letting ¢ — 0o, we conclude that E[X ] = E[M] + E[A]. In particular, E[Ax] < 0.



