
Solutions for Problem Sheet 2

Problem 1. Necessity. Suppose that Pn converges weakly to some probability measure P on
(W d,B(Rd)). Obviously {Pn} is tight by Prokhorov’s theorem. In addition, given m > 1 and
0 6 t1 < t2 < · · · < tm, let ϕ ∈ Cb(Rd×m) and define Φ ∈ Cb(W d) by

Φ(w) = ϕ(wt1 , · · · , wtm), w ∈W d.

Then ˆ
Rd×m

ϕdQn =

ˆ
Wd

ΦdPn →
ˆ
Wd

ΦdP =

ˆ
Rd×m

ϕdQ,

where Q is the finite dimensional distribution of P at (t1, · · · , tm). Therefore, Qn converges weakly
to Q.

Sufficiency. We first show that the sequence Pn has exactly one weak limit point. Indeed, since
{Pn} is tight, Prokhorov’s theorem tells us that Pn has at least one weak limit point. Suppose
that P′ and P′′ are two weak limit points of Pn. According to Assumption (i), we know that P′
and P′′ have the same finite dimensional distributions. Therefore, by the monotone class theorem,
P′ = P′′. In other words, Pn has exactly one weak limit point, which is denoted by P. Now let
f ∈ Cb(W d). Then as a bounded sequence in R1,

´
Wd fdPn has exactly one limit point which is´

Wd fdP. Therefore, Pn converges weakly to P.

Problem 2. (1) Let

pt(x) =
1

(2πt)
d
2

exp(−|x|
2

2t
), t > 0, x ∈ Rd.

We define a family of {Qt : t ∈ T } of finite dimensional distributions on Rd in the following way.
For t = (t1, · · · , tn) where n > 1 and 0 < t1 < t2 < · · · < tn, define

Qt(Γ) ,
ˆ

Γ

pt1(x1)pt2−t1(x2 − x1) · · · ptn−tn−1(xn − xn−1)dx1 · · · dxn, Γ ∈ B(Rd×n). (1)

The definition of Qt for general disordered (t1, · · · , tn) ∈ T is easily obtained by permuting (1).
The first consistency property is just definition, while the second consistency property follows from
the fact thatˆ

R1

pti−ti−1(xi − xi−1)pti+1−ti(xi+1 − xi)dxi = pti+1−ti−1(xi+1 − xi−1)

if ti−1 < ti < ti+1, which can be shown by direct (but lengthy) computation. Therefore, according
to Kolmogorov’s extension theorem, there exists a unique probability measure P on the full path
space

(
(Rd)[0,∞),B

(
(Rd)[0,∞)

))
whose finite dimensional distributions coincide with {Qt : t ∈ T }.

From the construction of Qt, it is apparent that P satisfies the desired properties.
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(2) Since |Xt−Xs|n 6 Cn,d
∑d
i=1 |Xi

t−Xi
s|n, it is sufficient to consider the case when d = 1. In

the one dimensional case, for s < t, since (Xt −Xs)/
√
t− s is a standard normal random variable,

we have

E[|Xt −Xs|2n] = E

[∣∣∣∣Xt −Xs√
t− s

∣∣∣∣2n · |t− s|n
]

= Kn|t− s|1+(n−1)

for every n > 1, where Kn is the 2n-th moment of the standard normal distribution (i.e. Kn ,
E[|Z|2n] where Z ∼ N (0, 1)). As (n−1)/2n→ 1/2 as n→∞, the result follows from Kolmogorov’s
continuity theorem.

(3) For the first assertion, for simplicity assume that T = 1. Then

sup
s,t∈[0,1]
s6=t

∣∣∣X̃t − X̃s

∣∣∣
√
t− s

> sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

. (2)

Therefore, it suffices to show that the right hand side of (2) is infinite almost surely. Indeed, given
λ > 0, let

Aλn =

 sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ

 , n > 1.

Then

P(Aλn) = P

 n⋂
k=1


∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ




= (P(|Z| 6 λ)n

for every n, where Z ∼ N (0, 1). As P(|Z| 6 λ) < 1, we know that

P

sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

6 λ

 6 P

( ∞⋂
n=1

Aλn

)
= lim
n→∞

P(Aλn) = 0.

This is true for every λ, which concludes that

sup
n>1

sup
16k6n

∣∣∣X̃k/n − X̃(k−1)/n

∣∣∣√
1/n

=∞, a.s.

The second assertion is proved in a similar way. First note that

sup
s,t∈[0,∞)

s 6=t

∣∣∣X̃t − X̃s

∣∣∣
(t− s)γ

> sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ .
In addition, for every λ > 0, we have

P
(

sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ 6 λ

)
= lim

n→∞
P
(∣∣∣X̃k − X̃k−1

∣∣∣ 6 λ, ∀k 6 n
)

= lim
n→∞

P(|Z| 6 λ)n

= 0.
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Therefore,
sup
n>1

∣∣∣X̃n − X̃n−1

∣∣∣ =∞, a.s.,

which implies the desired claim.

Problem 3. (1) Let τ be a finite random time defined on some probability space (Ω,F ,P) which
has a bounded density f(t) with respect the Lebesgue measure (i.e. P(τ ∈ A) =

´
A
f(t)dt for

A ∈ B([0,∞))). Define a stochastic process Xt by

X(t, ω) =

{
1, if t > τ(ω);

0, otherwise.

Then for every α > 0 and s < t,

E[|Xt −Xs|α] = E[1 · 1{s<τ6t}] = P(s < τ 6 t)

=

ˆ t

s

f(u)du 6 ‖f‖∞(t− s).

However, apparently there is no modification of X whose sample paths are continuous.
(2) Let τ be as in (1) and define a stochastic process Xt by

X(t, ω) =

{
1, if τ(ω) = t;

0, otherwise.

Then for each fixed t, Xt = 0 almost surely because P(τ = t) = 0. Therefore, the conditions in
Kolmogorov’s continuity theorem are verified. But every sample path of X is discontinuous because
τ(ω) <∞ for every ω.

If we further assume that every sample path of X is right continuous with left limits, then the
assertion is true. Indeed, following the notation in the proof of the theorem, for every ω ∈ Ω∗, we
have

d(Xt(ω), Xs(ω)) 6 2γ
(

1 +
2

2γ − 1

)
|t− s|γ (3)

for each s, t ∈ D with 0 < |t − s| < 2−n
∗(ω). Since every sample path of X is right continuous

with left limits, we know that (3) is true for all s, t ∈ [0, 1] with 0 < |t − s| < 2−n
∗(ω). Therefore,

t 7→ Xt(ω) is continuous for every ω ∈ Ω∗.
(3) From Theorem 1.10 in Section 1, we need to show that

lim
a→∞

sup
n

P(|X(n)
0 | > a) = 0,

and
lim
δ↓0

sup
n

P(∆(δ, k;X(n)) > ε) = 0

for each ε > 0 and k > 1.
The first assertion follows immediately from Chebyshev’s inequality and the first assumption in the

problem. For the second claim, as in the proof of Kolmogorov’s continuity theorem, let 0 < γ < β/α.
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For notation simplicity, we write Yt = X
(n)
t (it is important that the estimates below are uniform in

n). Then for fixed k > 1, we have

P
(∣∣∣Y l

2m
− Y l−1

2m

∣∣∣ > 1

2γm

)
6Mk2αγm2−m(1+β)

for each m > 1 and 1 6 l 6 2mk. Therefore,

P
(

max
16l62mk

∣∣∣Y l
2m
− Y l−1

2m

∣∣∣ > 1

2γm

)
6 kMk2−m(β−αγ).

Given ε, η > 0, let p > 1 be such that

kMk

∞∑
m=p

2−m(β−αγ) =
kMk2−p(β−αγ)

1− 2−(β−αγ)
< η

and

2γ
(

1 +
2

2γ − 1

)
2−γp < ε.

Define

Ωp =

∞⋃
m=p

{
max

16l62mk

∣∣∣Y l
2m
− Y l−1

2m

∣∣∣ > 1

2γm

}
.

It follows that P(Ωp) < η. Now we show that for every δ < 2−p, we have

{∆(δ, k;Y ) > ε} ⊆ Ωp, (4)

which completes the proof. Indeed, let ω /∈ Ωp, then∣∣∣Y l
2m

(ω)− Y l−1
2m

(ω)
∣∣∣ 6 1

2γm

for each m > p and 1 6 l 6 2mk. Let D = ∪∞m=1Dm, where Dm = {l/2m : 0 6 l 6 2mk}. The
same argument as in the proof of Kolmogorov’s continuity theorem allows us to conclude that for
each s, t ∈ D with 0 < |s− t| < 2−p, we have

|Yt(ω)− Ys(ω)| 6 2γ
(

1 +
2

2γ − 1

)
· |t− s|γ < 2γ

(
1 +

2

2γ − 1

)
2−γp < ε.

Since Y has continuous sample paths, the above inequality is true for all s, t ∈ [0, k]. This implies
that

∆(δ, k;Y (ω)) 6 ε

provided δ < 2−p. Therefore, (4) holds for δ < 2−p.

Problem 4. (1) The intuition behind this property is the following. If we have the information up
to time t, we know whether {τ 6 t} occurs since τ is an {Ft}-stopping time. If it occurs, then we
have the information up to τ. But σ is Fτ -measurable, so we are able to determine the value of σ,
and of course the occurrence of {σ 6 t} or not. If {τ 6 t} does not occur, then τ > t. But σ > τ,
so we conclude that σ > t.
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The mathematical proof is the following. For t > 0, we have

{σ > t} = {τ > t}
⋃
{σ > t, τ 6 t}.

By assumption, we know that {τ > t} ∈ Ft and {σ > t} ∩ {τ 6 t} ∈ Ft. Therefore, {σ > t} ∈ Ft,
which implies that σ is an {Ft}-stopping time.

(2) The following observation is generally useful.
Proposition. Suppose that {Ft} is a right continuous filtration. Then τ is an {Ft}-stopping

time if and only if {τ < t} ∈ Ft for every t > 0. In this case, A ∈ Fτ if and only if A∩{τ < t} ∈ Ft
for every t > 0.

Proof. We only proof the sufficiency of the first part. All other parts are either easy or similar.
Suppose that τ satisfies {τ < t} ∈ Ft for every t > 0. Since {Ft} is right continuous, it suffices
to show that {τ 6 t} ∈ Ft+ = ∩u>tFu for each given t. Indeed, for every u > t, we have
{τ 6 t} = ∩n>(u−t)−1{τ < t+ 1/n} ∈ Fu. Therefore, the desired property holds. Q.E.D.

(i) For the first part, since {τ < t} = ∪∞n=1{τn < t} ∈ Ft, from the above proposition we
know that τ is an {Ft}-stopping time. For the second part, suppose that A ∈ ∩∞n=1Fτn . Then
A ∩ {τ < t} = ∪∞n=1(A ∩ {τn < t}) ∈ Ft. Therefore, again from the above proposition we know
that A ∈ Fτ . The other direction is obvious.

(ii) The intuition is the following. Suppose that we have the information up to time t. If we
observe that {σ > t}, then of course we can conclude that {σ+ τ > t} happens. If we observe that
{σ 6 t}, then we know the information of “Gt−σ” (this thing is actually not well defined because
t−σ is not a stopping time, but we can still think in this way naively). Therefore, we can determine
the occurrence of {τ 6 t− σ} = {σ + τ 6 t} because τ is a {Gt}-stopping time.

The rigorous proof is the following. For any given t > 0, we have {σ+ τ < t} = ∪r∈(0,t)∩Q{σ <
r, τ < t− r}. Since {τ < t− r} ∈ Fσ+(t−r), we know that

{τ < t− r} ∩ {σ + (t− r) < t} = {τ < t− r, σ < r} ∈ Ft.

Therefore, {σ+τ < t} ∈ Ft. From the above proposition, this implies that σ+τ is an {Ft}-stopping
time.

Problem 5. (1) It will be sufficient if we can prove that

E[F · ϕ(Xt+u1
−Xt, · · · , Xt+un

−Xt)] = E[F ]E[ϕ(Xt+u1
−Xt, · · · , Xt+un

−Xt)], (5)

for any bounded GXt+-measurable F and ϕ ∈ Cb
(
(Rd)n

)
where n > 1, 0 6 u1 < · · · < un <∞.

Indeed, for any ε > 0, by assumption we know that GXt+ε and Ut+ε are independent. Since F is
also GXt+ε-measurable, we have

E[F ·ϕ(Xt+u1+ε−Xt+ε, · · · , Xt+un+ε−Xt+ε)] = E[F ]E[ϕ(Xt+u1+ε−Xt+ε, · · · , Xt+un+ε−Xt+ε)].

Since Xt has right continuous sample paths, the desired identity (5) follows from letting ε→ 0.
(2) For fixed t > 0, we first show that GXt+ ⊆ FXt . To this end, let ξ be an arbitrary bounded

GXt+-measurable random variable. Define η = ξ−E[ξ|GXt ]. If we can show that η = 0, then we know
that ξ is equivalent to a GXt -measurable random variable, which implies that ξ is FXt -measurable.
Our claim then follows.

Now we show that η = 0. Let C , {A ∩ B : A ∈ Gt, B ∈ Ut}. Then C is a π-system which
generates GX∞ = σ(Xt : t > 0). Since η is GX∞-measurable, it suffices to show that: for any A ∈ GXt
and B ∈ Ut, we have E[η1A∩B ] = 0. Indeed, since η1A is GXt+-measurable, from (1) we know that

E[η1A∩B ] = E[η1A]P(B).
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But E[η1A] = 0 for A ∈ GXt by the definition of conditional expectation. Therefore, E[η1A∩B ] = 0.
This implies that η = 0.

Finally, we show that FXt+ is right continuous. Let un ↓ t. Then FXt+ = ∩∞n=1σ(Gun
,N ). Since

we have shown that σ(GXt+,N ) = σ(GXt ,N ), it suffices to show that ∩∞n=1σ(GXun
,N ) = σ(GXt+,N ).

The argument here is a standard argument in measure theory when we construct the completion of
a measure space.

The key point is the following general fact: let (Ω,F ,P) be a probability space, let G ⊆ F be a
sub-σ-algebra, and let N be the set of P-null sets, then F ∈ σ(G,N ) if and only if there exists some
G ∈ G, such that F∆G , (F\G) ∪ (G\F ) ∈ N . This fact can be easily shown by proving that the
set of F satisfying the latter property is a σ-algebra.

Coming back to our assertion, let F ∈ ∩∞n=1σ(GXun
,N ). Then for every n > 1, there exists

Gn ∈ GXun
such that F∆Gn ∈ N . Define G = ∩∞n=1 ∪∞m=n Gm. Then it is not hard to see that

G ∈ GXt+. Moreover,

F\G ⊆
∞⋃
n=1

F\Gn ∈ N , G\F ⊆
∞⋃
n=1

Gn\F ∈ N .

Therefore, F∆G ∈ N , which implies that F ∈ σ(GXt+,N ). Hence ∩∞n=1σ(GXun
,N ) ⊆ σ(GXt+,N ).

The other direction is trivial.

Problem 6. This is a hard problem although the assertion is so natural to expect.
One direction is easy. Since X is {FXt }-adapted and continuous, from Proposition 2.2 we know

that it is progressively measurable. It follows from Proposition 2.6 that for every t > 0, Xτ∧t is
FXτ∧t-measurable, and is thus Fτ -measurable. Therefore, σ(Xτ∧t : t > 0) ⊆ FXτ .

The other direction is hard. It requires a good microscopic intuition on filtrations and stopping
times. We do it step by step.

We always interpret a particular sample point w ∈ Ω as doing a particular experiment.
We first take a more careful look at natural filtrations.
Let t > 0. An event A ∈ FXt means that the occurrence of A can be determined by an observation

of the trajectory of X up to time t. Therefore, if we consider two experiments w,w′ ∈ Ω in which
w triggers A (i.e. w ∈ A), and if we assume that both experiments lead to the same observation
of trajectory up to time t (i.e. the trajectory up to time t corresponding to the experiment w is
exactly the same as the one corresponding to w′), then we should conclude that w′ triggers A as
well (w′ ∈ A). The starting point of this problem is to understand this philosophy in a mathematical
way. Here is the way to write it down precisely. Note that we are considering the coordinate process
Xt(w) = wt.

Proposition 1: Let G be the set of A ∈ F which satisfies the following property: for any
w,w′ ∈ Ω, if w ∈ A and ws = w′s for all s ∈ [0, t], then w′ ∈ A. Then G = Ft.

Proof. From definition it is apparent that G is a σ-algebra and Xs is G-measurable for every
s ∈ [0, t]. Therefore, FXt ⊆ G.

Conversely, let A ∈ G. Since A ∈ F = B(W d), from general properties of product σ-algebras
over an arbitrary index set, we know that A has the form

A = {w ∈W d : (wt1 , wt2 , · · · ) ∈ Γ}

for some countable sequence tn ∈ [0,∞) and Γ ∈ Π∞1 B(Rd). Moreover, for every w ∈ Ω we know
that the path wts , wt∧s (s > 0) coincides with w on [0, t]. Therefore, from the definition of G, we
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conclude that for every w ∈ Ω, w ∈ A if and only if wt ∈ A. In other words,

A = {w ∈W d : (wt∧t1 , wt∧t2 , · · · ) ∈ Γ}.

But {w ∈W d : (wt∧t1 , wt∧t2 , · · · ) ∈ Γ} ∈ FXt since FXt = σ(Xt∧s : s > 0). Therefore, A ∈ FXt .
Q.E.D.

To extend Proposition 1 to the case where t = τ, we need a more careful look at stopping times.
If τ is a stopping time, then we know that for every t > 0, the occurrent of the event {τ = t} can

be determined by an observation of the trajectory of X up to time t. Let w ∈ Ω be an experiment
and think of τ(ω) is a deterministic number. It follows that the occurrence of the event {w′ ∈ Ω :
τ(w′) = τ(w)} is determined by an observation of trajectory up to time τ(w). Now suppose that
w′ ∈ Ω is another experiment such that w′ = w on [0, τ(w)]. This implies that w and w′ give the
same observation of trajectory up to time τ(w). Therefore, they should both trigger {τ = τ(w)} or
both not trigger it. But w triggers this event since τ(w) = τ(w) trivially, therefore w′ should also
trigger this event (this is essentially the philosophy of the previous Proposition 1). In other words,
we should have τ(w′) = τ(w). The way of making this philosophy precise is the following.

Proposition 2. Let τ : Ω → [0,∞] be an F-measurable map. Then τ is an {FXt }-stopping
time if and only if the following property holds: for any w,w′ ∈ Ω with w = w′ on [0, τ(w)]∩ [0,∞),
we have τ(w′) = τ(w).

Proof. Necessity. Suppose that τ is an {FXt }-stopping time. Let w,w′ be such that w = w′

on [0, τ(w)] ∩ [0,∞). If τ(w) = ∞, then w = w′ and thus τ(w′) = τ(w) = ∞. Therefore, we
may assume that τ(w) < ∞. In this case, we know that A , {τ = τ(w)} ∈ FXτ(w). Since w ∈ A,
according to Proposition 1, we know that w′ ∈ A. Therefore, τ(w′) = τ(w).

Sufficiency. Suppose that τ satisfies the assumed property. We are going to use Proposition 1
to show that {τ 6 t} ∈ FXt for every given t > 0. Indeed, let w ∈ {τ 6 t} so that τ(w) 6 t and let
w′ ∈ Ω be such that w = w′ on [0, t]. This particularly implies that w = w′ on [0, τ(w)] ∩ [0,∞).
Therefore, by assumption we have τ(w′) = τ(w) 6 t. From Proposition 1, we know that {τ 6 t} ∈
FXt . Q.E.D.

Now we are able to generalize Proposition 1 to the stopping time case. The underlying philosophy
is of course the same.

Proposition 3. Let τ be an {FXt }-stopping time. Let H be the set of A ∈ F which satisfies the
following property: for any w,w′ ∈ Ω, if w ∈ A and w = w′ for all [0, τ(w)] ∩ [0,∞), then w′ ∈ A.
Then H = σ(Xτ

t : t > 0).
Proof. Keeping Proposition 2 in mind, the proof is exactly the same as the proof of Proposition

1. Q.E.D.
The next thing is to characterize FXτ in a similar way. For w ∈ Ω, define wτt = wτ∧t (t > 0).

Then w = wτ on [0, τ(w)] ∩ [0,∞) and τ(w) = τ(wτ ). Therefore, if w triggers A, then wτ should
also trigger A.

Proposition 4. Let A ∈ F . Then A ∈ FXτ if and only if for every w ∈ Ω, w ∈ A⇐⇒ wτ ∈ A.
Proof. Necessity. Suppose that A ∈ FXτ . For w ∈ Ω, if τ(w) = ∞, then w = wτ , in

which case the claim is trivial. Therefore, we may assume that τ(w) < ∞. In this case we have
A ∩ {τ 6 τ(w)} ∈ FXτ(w). If w ∈ A, then w ∈ A ∩ {τ 6 τ(w)}. But w = wτ on [0, τ(w)].

By Proposition 1, we conclude that wτ ∈ A ∩ {τ 6 τ(w)} ⊆ A. Conversely, if wτ ∈ A, since
τ(w) = τ(wτ ) by Proposition 2, we know that wτ ∈ A ∩ {τ 6 τ(w)}. It follows from Proposition 1
that w ∈ A ∩ {τ 6 τ(w)} ⊆ A.

Sufficiency. Suppose that A ∈ F satisfies the assumed property. For given t > 0, we want
to show that A ∩ {τ 6 t} ∈ FXt . Let w ∈ A ∩ {τ 6 t} and w′ = w on [0, t]. This implies that
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τ(w) 6 t and w = w′ on [0, τ(w)]. Since w ∈ A, by assumption, we conclude that wτ = (w′)τ ∈ A,
which implies that w′ ∈ A. Of course we also have τ(w) = τ(w′) by Proposition 2. Therefore,
w′ ∈ A ∩ {τ 6 t}. It follows from Proposition 1 that A ∩ {τ 6 t} ∈ FXt . Q.E.D.

Now we are able to complete the proof of our main claim.
Proof of “FXτ ⊆ σ(Xτ

t : t > 0)”. Let A ∈ FXτ . Since A ∈ F , by Proposition 3, it suffices to
show that for given w,w′, if w ∈ A and w = w′ on [0, τ(w)] ∩ [0,∞), then w′ ∈ A. Indeed, we
only need to consider the case when τ(w) < ∞. In this case we have wτ = (w′)τ . Since A ∈ FXτ ,
by Proposition 4 we know that wτ = (w′)τ ∈ A, which further implies that w′ ∈ A. Q.E.D.
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