
Solutions for Problem Sheet 1

Problem 1. (1) (i) We have

E[XE[Y |G]] = E[E[XE[Y |G]|G]] = E[E[X|G] · E[Y |G]].

Similarly for E[Y E[X|G]].
(ii) We call a bounded measurable function satisfying property P if

E[f(X,Y )|G] = E[f(x, Y )]|x=X .

Let E = {E ∈ B(R2) : 1E satisfies property P}. Then E is a monotone class containing the
π-system C , {A × B : A,B ∈ B(R1)}. By the monotone class theorem in measure theory, we
conclude that E = B(R2). In other words, 1E satisfies property P for every E ∈ B(R2).

Note that the property P is linear in f. By writing f = f+ − f−, we only need to consider the
case when f is bounded and non-negative. But then there exists a sequence fn of simple functions on
R2 such that 0 6 fn ↑ f. We know that each fn satisfies property P. By the monotone convergence
theorem for both conditional and unconditional expectations, we conclude that f satisfies property
P.

(iii) Since both sides are σ(G,H)-measurable, it suffices to show that
ˆ
E

XdP =

ˆ
E

E[X|G]dP, ∀E ∈ σ(G,H). (1)

Let E = {E ∈ σ(G,H) : equation (1) holds}, and let C = {A ∩ B : A ∈ G, B ∈ H}. Apparently,
C is a π-system. For any A ∈ G, B ∈ H, we have

E[X1A1B ] = E[X1A]P(B) = E[E[X|G]1A]P(B) = E[E[X|G]1A1B ].

Therefore, C ⊆ E . Moreover, it is easy to see that E is a monotone class. By the monotone class
theorem, we conclude that σ(G,H) = E .

(2) By assumption, we know that for every r ∈ R1,

E
[
(X − Y )1{X6r}

]
= E

[
(X − Y )1{Y6r}

]
= 0.

Therefore,

E
[
(X − Y )1{X6r,Y >r}

]
+ E

[
(X − Y )1{X6r,Y6r}

]
= 0,

E
[
(X − Y )1{X>r,Y6r}

]
+ E

[
(X − Y )1{X6r,Y6r}

]
= 0.

It follows that
E
[
(X − Y )1{X>r,Y6r}

]
+ E

[
(Y −X)1{X6r,Y >r}

]
= 0.
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But the integrand inside each of the above expectations is non-negative. Therefore,

(X − Y )1{X>r,Y6r} = (Y −X)1{X6r,Y >r} = 0 a.s.

This implies that
P(X > r, Y 6 r) = P(X 6 r, Y > r) = 0.

And this is true for all r ∈ R1. The result then follows from the fact that

{X 6= Y } ⊆ {X > Y }
⋃
{X < Y } ⊆

⋃
n∈Z

(
{X > n > Y }

⋃
{Y > n > X}

)
.

Problem 2. (1) For λ > 0, we have

|E[X|Gi]|1{|E[X|Gi]|>λ} 6 E[|X||Gi]1{E[|X||Gi]>λ}.

Therefore, by taking expectations on both sides, we obtain that

E
[
|E[X|Gi]|1{|E[X|Gi]|>λ}

]
6 E[|X|1{E[|X||Gi]>λ}].

But

E[|X|1{E[|X||Gi]>λ}] = E[|X|1{E[|X||Gi]>λ}; |X| >
√
λ] + E[|X|1{E[|X||Gi]>λ}; |X| 6

√
λ]

6 E[|X|; |X| >
√
λ] +

√
λ · 1

λ
E[E[|X||Gi]]

= E[|X|; |X| >
√
λ] +

1√
λ
E[|X|],

which goes to zero uniformly in i ∈ I as λ→∞ since X is integrable. Therefore, {E[X|Gi] : i ∈ I}
is uniformly integrable.

(2) Let M = supt∈T E[ϕ(|Xt|)]. For ε > 0, let R = M/ε. Then there exists some Λ > 0, such
that for any x > Λ, we have ϕ(x)/x > R. Therefore, for λ > Λ, we have

E[|Xt|1{|Xt|>λ}] 6
1

R
E[ϕ(|Xt|)] 6

M

R
= ε, ∀t ∈ T.

Consequently, {Xt : t ∈ T} is uniformly integrable.

Problem 3. (1) P(Xn > α log n) = e−α logn = 1/nα. Therefore, by the Borel-Cantelli lemma, we
have

P(Xn > α log n for infinitely many n) =

{
0, α > 1;

1, 0 < α 6 1.

(2) Let Aα = {Xn > α log n for infinitely many n}. Since P(A1) = 1, we know that L > 1
almost surely. Moreover,

{L > 1} ⊆
∞⋃
k=1

{
L > 1 +

1

k

}
⊆
∞⋃
k=1

A1+ 1
2k
.

It follows that P(L > 1) = 0. Therefore, L = 1 almost surely.
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(3) For each x ∈ R1, we have

P(Mn 6 x) = P
(

max
16i6n

Xi 6 x+ log n

)
= (1− e−x−logn)n,

provided that x+ log n > 0. Therefore,

lim
n→∞

P(Mn 6 x) = e−e
−x
, ∀x ∈ R1.

Apparently, the function F (x) , e−e
−x

defines a continuous distribution function on R1. Therefore,
Mn converges weakly to F .

Problem 4. (1) =⇒ (2). Suppose that Pn converges weakly to P. According to Theorem 1.7,
we know that Pn(A) → P(A) for every A ∈ B(R1) satisfying P(∂A) = 0. In particular, let x be a
continuity point of F and let A = (−∞, x]. Then P(∂A) = dF ({x}) = 0. Therefore,

Fn(x) = Pn(A)→ P(A) = F (x).

(2) =⇒ (1). Suppose that Fn converges in distribution to F. Let CF be the set of continuity
points of F. Since CcF is at most countable, we conclude that CF is dense in R1.

Let ϕ ∈ Cb(R1). Given ε > 0, let a, b ∈ CF be such that a < 0 < b and

F (a) < ε, 1− F (b) < ε.

Then there exists N > 1, such that for any n > N,

|Fn(a)− F (a)| < ε,|Fn(b)− F (b)| < ε.

It follows that
Fn(a) < 2ε, 1− Fn(b) < 2ε, ∀n > N.

Therefore,∣∣∣∣ˆ
R1

ϕdFn −
ˆ
R1

ϕdF

∣∣∣∣ 6

∣∣∣∣∣
ˆ
(a,b]

ϕ(dFn − dF )

∣∣∣∣∣+ ‖ϕ‖∞(dFn((a, b]c) + dF ((a, b]c))

6

∣∣∣∣∣
ˆ
(a,b]

ϕ(dFn − dF )

∣∣∣∣∣+ 6‖ϕ‖∞ε (2)

for every n > N.
Since ϕ is uniformly continuous on [a, b], there exists δ > 0, such that whenever x, y ∈ [a, b] with

|x− y| < δ, we have |ϕ(x)− ϕ(y)| < ε. Choose a finite partition P : a = x0 < x1 < · · · < xk = b
of [a, b], such that x0, x1, · · · , xk ∈ CF and |xi − xi−1| < δ for each i. Define a step function ψ by
taking ψ(x) = ϕ(xi−1) for x ∈ [xi−1, xi]. It follows that

sup
x∈[a,b]

|ϕ(x)− ψ(x)| 6 ε.
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Therefore,∣∣∣∣∣
ˆ
(a,b]

ϕ(dFn − dF )

∣∣∣∣∣ 6 2 sup
x∈[a,b]

|ϕ(x)− ψ(x)|+

∣∣∣∣∣
ˆ
(a,b]

ψ(dFn − dF )

∣∣∣∣∣
6 2ε+

∑
i

|ϕ(xi−1)| · ((Fn(xi)− F (xi))− (Fn(xi−1)− F (xi−1))) .(3)

Note that the partition P we chose before does not depend on n.
By substituting (3) into (2) and letting n→∞, we arrive at

lim sup
n→∞

∣∣∣∣ˆ
R1

ϕdFn −
ˆ
R1

ϕdF

∣∣∣∣ 6 (2 + 6‖ϕ‖∞)ε.

Since ε is arbitrary, we conclude that
´
R1 ϕdFn →

´
R1 ϕdF as n → ∞. Therefore, Pn converges

weakly to P.

Problem 5. (1) Necessity. Suppose that {Pn} is tight. Then there exists M > 0, such that

Pn([−M,M ]) >
3

4
, ∀n > 1.

It follows that |µn| 6M for all n. Indeed, if this is not the case, suppose for instance that µn > M
for some n. Then

1

2
6 Pn([µn,∞)) 6 Pn((M,∞)) <

1

4
,

which is a contradiction. In addition, we have

3

4
6 Pn([−M,M ]) =

1√
2πσn

ˆ M

−M
e
− (x−µn)2

2σ2n dx

=
1√
2π

ˆ M−µn
σn

−M−µn
σn

e−
x2

2 dx 6
1√
2π

ˆ 2M
σn

−2M
σn

e−
x2

2 dx. (4)

This implies that σn is bounded. Indeed, if σn ↑ ∞ along a subsequence, then the right hand side
of (4) goes to zero along this subsequence, which is a contradiction.

Sufficiency. Suppose that |µn| 6 M1, σn 6 M1 for some M1 > 0. Then for any M > M1, we
have

Pn([−M,M ]) =
1√
2π

ˆ M−µn
σn

−M−µn
σn

e−
x2

2 dx >
1√
2π

ˆ M−M1
σn

−M−M1
σn

e−
x2

2 dx >
1√
2π

ˆ M−M1
M1

−M−M1
M1

e−
x2

2 dx. (5)

Since the right hand side of (5) converges to 1 as M →∞, we conclude that

lim
M→∞

inf
n>1

Pn([−M,M ]) = 1.

In other words, {Pn} is tight.
(2) Sufficiency. Suppose that µn → µ and σ2

n → σ2. Then

eiµnt−
1
2σ

2
nt → eiµt−

1
2σ

2t
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for every t ∈ R1 as n→∞. Therefore, Pn converges weakly to N (µ, σ2).
Necessity. Suppose that {Pn} is weakly convergent. From the first part we already know that

{µn} and {σ2
n} are both bounded. Assume that µ and µ′ are two limit points of µn. We may further

assume without loss of generality that µnk → µ, σ2
nk
→ σ2, and µn′l → µ′, σ2

n′l
→ σ′2 along two

subsequences nk and n′l. By the sufficiency part and the uniqueness of weak limits, we know that
N (µ, σ2) = N (µ′, σ′2), and hence µ = µ′ and σ2 = σ′2. Therefore, µn converges to some µ ∈ R1.
Similarly, we conclude that σ2

n has exactly one limit point, which means that it converges to some
σ2 > 0.
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