Solutions for Problem Sheet 1

Problem 1. (1) (i) We have
E[XE[Y|d]] = E[E[XE[Y|F]|g]] = E[E[X|g] - E[Y[G]].

Similarly for E[YE[X|G]].
(i) We call a bounded measurable function satisfying property P if

E[f(Xv Y)‘g] = E[f(:r?Y)Hx:X

Let £ = {F € B(R?) : 1 satisfies property P}. Then £ is a monotone class containing the
m-system C = {A x B : A, B € B(R')}. By the monotone class theorem in measure theory, we
conclude that £ = B(R?). In other words, 15 satisfies property P for every E € B(R?).

Note that the property P is linear in f. By writing f = fT — f~, we only need to consider the
case when f is bounded and non-negative. But then there exists a sequence f,, of simple functions on
R? such that 0 < f,, T f. We know that each f,, satisfies property P. By the monotone convergence
theorem for both conditional and unconditional expectations, we conclude that f satisfies property
P.

(iii) Since both sides are (G, H)-measurable, it suffices to show that

/Xd]P’:/E[X|g]d]P>, VE € 0(G, H). (1)
E E

Let £ = {F € 0(G,H) : equation (1) holds}, and let C={ANB: A€ G,Bc H}. Apparently,
C is a w-system. For any A € G, B € H, we have

E[X1415] = E[X14]P(B) = E[E[X|G]14]P(B) = E[E[X|G]1415].

Therefore, C C £. Moreover, it is easy to see that £ is a monotone class. By the monotone class
theorem, we conclude that o(G,H) = £.
(2) By assumption, we know that for every r € R,

E[(X -Y)lix<y] =E[(X —=Y)liy<y] =0.
Therefore,

E[(X -Y)lix<rysn] TE[(X -Y)lix<rven] = 0,
E[(X -Y)lixsry<r}] +E[(X —Y)lix<very] =

It follows that
E[(X —Y)lxsry<ny) FE(Y = X)lx<rysny) = 0.



But the integrand inside each of the above expectations is non-negative. Therefore,
(X - Y)l{X>7‘,Y§7‘} = (Y - X)l{Xgr,Y>r} =0 as.

This implies that
PX>nrnY<r)=PX<rY>r)=0.

And this is true for all » € R!. The result then follows from the fact that

(X#£Vyc(x>vy Jix<vic Y ({X>n>Y}U{Y>n>X}).

neEZ
Problem 2. (1) For A > 0, we have
[E[X|G]|1{eixig.1>7 < EIIX1Gi]1(m)1x) 1052
Therefore, by taking expectations on both sides, we obtain that
E [[B[X|G:]11(gxig>0] < EIX]1E)x)g)>x]
But
E[ X1 xgsx) = EIXIL@Egxensay X > VA + B[ X [1g)x)i6057: 1 X] < VA
1
E[X]; |X| > VA + VA EIE[X]6:]]
L
VA

which goes to zero uniformly in i € 7 as A — oo since X is integrable. Therefore, {E[X|G;]: i € T}
is uniformly integrable.

(2) Let M = sup,cp Elp(|X¢])]. For e > 0, let R = M/e. Then there exists some A > 0, such
that for any > A, we have ¢(z)/x > R. Therefore, for A > A, we have

N

E[IX];|X] > VAl + —=E[| X]],

1 M
E[| X [1qx,1523] < EE[@(lXtD] Sp=e Vel

Consequently, {X; : t € T'} is uniformly integrable.

Problem 3. (1) P(X,, > alogn) = e~ ®!°8™ = 1/n®. Therefore, by the Borel-Cantelli lemma, we
have
0, a>1;

P(X,, > alogn for infinitely ma =
(X, > alogn for infinitely many n) {17 0<as<l.

(2) Let A, = {X,, > alogn for infinitely many n}. Since P(4;) = 1, we know that L > 1
almost surely. Moreover,

(o] 1 o0
{L>1}QU{L>1+k}§UA1+;k.
k=1 k=1

It follows that P(L > 1) = 0. Therefore, L = 1 almost surely.



3) For each z € R!, we have
(

P(M, <z)=P < max X; < z + log n) = (1 —e @ logmyn,

1<i<n
provided that x + logn > 0. Therefore,

lim P(M, <z)=e¢° , VzeR.

n—oo

Apparently, the function F(z) £ e=¢" defines a continuous distribution function on R*. Therefore,
M,, converges weakly to F'.

Problem 4. (1) = (2). Suppose that P,, converges weakly to P. According to Theorem 1.7,
we know that P, (A) — P(A) for every A € B(R!) satisfying P(DA) = 0. In particular, let = be a
continuity point of F and let A = (—o0,z]. Then P(0A) = dF({z}) = 0. Therefore,

Fo(z) = Pp(A) — P(A) = F(z).

(2) = (1). Suppose that F,, converges in distribution to F. Let Cr be the set of continuity
points of F. Since C% is at most countable, we conclude that C is dense in R.
Let p € Cp(RY). Given € > 0, let a,b € Cr be such that a < 0 < b and

F(a)<e, 1=F() <e.
Then there exists N > 1, such that for any n > N,
|F,(a) — F(a)| < &,|Fn(b) — F(b)| < e.

It follows that
F,(a) <2e, 1 —F,(b) <2, VYn>N.

Therefore,

[ ear.- [ wdF‘ <
R R

<

+ l[#lloc (dFn((a, b]%) + dF ((a, b]%))

/ o(dF,, — dF)
(a,b]

+6lelloce ()

/ (P(an - dF)
(a,0]

for every n > N.

Since ¢ is uniformly continuous on [a, b], there exists 6 > 0, such that whenever z,y € [a, b] with
|z — y| < 6, we have |p(z) — ¢(y)| < . Choose a finite partition P: a=2¢ < a1 <--- <z =b
of [a,b], such that xg,z1,- -+ , 2, € Cp and |z; — 2;_1| < § for each i. Define a step function ¢ by
taking ¢ (x) = p(x;—-1) for x € [x;_1, 2;]. It follows that

sup [p(z) —(2)| <e.
z€[a,b]



Therefore,

/ p(dF, —dF)| < 2 sup |p(@)—v(@)|+|[ (dF, - dF)
(a,b] z€la,b] (a,b]
< 20t Blolr)| ((aler) = Flo) = (Falaics) = Flai-1) )

Note that the partition P we chose before does not depend on n.
By substituting (3) into (2) and letting n — oo, we arrive at

/ ngFn—/ @dF‘<(2+6||S0||oo)€.
R? R?

Since ¢ is arbitrary, we conclude that [;, ¢dF,, = [;, ¢dF as n — oc. Therefore, P,, converges
weakly to PP.

lim sup
n—oo

Problem 5. (1) Necessity. Suppose that {P,} is tight. Then there exists M > 0, such that

3

Pr([=M, M]) > 7,

Vn>1
It follows that |u,| < M for all n. Indeed, if this is not the case, suppose for instance that p,, > M
for some n. Then )

3 < P ([ptn, 0)) < Pp((M,00)) <

17
which is a contradiction. In addition, we have
5 < P(-M M LY,
_ g e 20” €T
: (= —— [
M — M—pn 2M
” %d < I efgdx (4)
\/ﬂ My ¢ TS Vor J—2m ’

This implies that o, is bounded. Indeed, if o,, T oo along a subsequence, then the right hand side
of (4) goes to zero along this subsequence, which is a contradiction.

Sufficiency. Suppose that |u,| < My,0, < M; for some My > 0. Then for any M > M;, we
have

M—pn M— M,

1 M— M,
on _ﬁ on _m2 My _ﬁ
P, ([—M, M]) W/Mune deZ\/? e, & \/ﬁ/MMle Tdx. (5)

Since the right hand side of (5) converges to 1 as M — oo, we conclude that

lim inf P,([-M, M]) =

M—ocon>1

In other words, {IP,,} is tight.
(2) Sufficiency. Suppose that p, — p and 02 — 2. Then

: 1.2
ez,u,ntfgant N ez,u,tf—o t



for every t € R! as n — oo. Therefore, IP,, converges weakly to N (j, o%).

Necessity. Suppose that {P,} is weakly convergent. From the first part we already know that
{un} and {02} are both bounded. Assume that ; and p are two limit points of p,,. We may further
assume without loss of generality that p,, — p,0n, — o2, and p,, — u’,ai; — 0’2 along two
subsequences n;, and n;. By the sufficiency part and the uniqueness of weak limits, we know that
N (i, 0%) = N(u',0"%), and hence = i/ and 02 = 0’2, Therefore, ju,, converges to some p € R*.
Similarly, we conclude that o2 has exactly one limit point, which means that it converges to some
02> 0.



