Question 1. (1) [Filtered Probability Space] A filtration over a probability space (0, F,P) is a
increasing sequence {F; : t > 0} of sub-c-algebras of F, i.e. Fs C F; C F for0 < s < t. A filtered
probability space is a probability space equipped with a filtration.

[Stopping Time] Let (0, F,P; {F;}) be a filtered probability space. An {F;}-stopping time is a
random time T : Q — [0, 00] such that {T <t} € F; for every t > 0.

[Continuous Time Submartingale] A real-valued stochastic process {X; : ¢ > 0} is called a
continuous time submartingale if for every t > 0, X; is Fy-measurable and integrable, and for every
0 < s < t, we have E[X;|F;] > X,.

[Optional Sampling Theorem] Let { X, F;} be a right continuous submartingale, and let o, T be
two bounded {F;}-stopping times such that o < 7. Then the optional sampling theorem asserts that
{Xo, Fo; X7, Fr} is a two-step submartinagle.

(2) From the optional sampling theorem, we know that

X‘r/\s < IE[*Xv'r/\t|‘/l—_.7'/\s] = E[X‘r/\tl{Tgs}lf‘r/\s] + E[XT/\t]-{T>S}‘fT/\S]

for s < t. First term equals E[X 1<y |Fs] since Xontlir<sy = Xrnsl{rgsy i Fras-measurable.
The second term equals E [1(,~ s\ E[X ;7| Fs]|Frns| , where the integrand

1{T>5}E[XT/\t|]:s] S ]:T/\s-

Therefore,
X‘r/\s g ]E[XT/\tl{Tgs”]:s] + 1{T>S}E[XT/\S|]:S] = IE[AXV‘F/\t|]:s]-
(3) (i) Since
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Therefore, the process e is an {FB}-martingale.

Now if we write
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the martingale property says that for 0 < s < t, we have
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Since this is true for all X\, by comparing the coefficients of \", we conclude that the process
t3 H, (B:/\'t) is an {FP}-martingale.



(i) From part (3) (i), we can easily see that
Hy(x) = 2% — 1, Hy(z) = z* — 62> + 3.

Therefore, the processes
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are {FP}-martingales. According to the optional sampling theorem, we have

E[B? \ =7 At, Vt=0
Therefore, we have

E[B? | =r* =E[r].
Similarly,
EMM] =r* — 6r°E[r,] + 3E[?] = 0,
which implies that
6r2E[r,] — r4 _ 5rd
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Question 2. (1) [Ité's formula] Let Xy = (X},--- , X2) be a vector of d continuous semimartingales.
Suppose that F € C%(RY). Then F(X,) is a continuous semimartingale given by

Z 2 F .
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[Girsanov's theorem] Let (2, ]-', P; {F:}) be a filtered probability space which satisfies the usual
conditions, and let By = (B},---, B%) be a d-dimensional {F;}-Brownian motion. Suppose that
Xy = (X}, X isa stochast:c process in R with X* € L2 _(B*) for each i. Define

t
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Assume that {£X,F; : t > 0} is a martingale. For each given T > 0, we define a probability
measure Pr on Fr by

E[r?] =

F(X:) = F(Xo)

Pr(A) 2 E[1487], A€ Fr.
Define the process B; = (B},--- ,B%) b

t
—/ Xids, t>0,1<i<d.
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Then for each T > 0, {Et, Fi: 0<t < T} is ad-dimensional Brownian motion under I@T.

(2) (i) Define
t t 1
X; £ exp (/ osdBy +/ (us — 0?) ds) , t>=0.
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From Ité’s formula, we see immediately that X, satisfies the desired integral equation.
Now suppose that Y; is another continuous semimartingale that also satisfies the integral equa-

tion. Let . ¢
Z, A Ytthl =Y, exp (—/ o.dBg — / (,us — 20?) ds)
0 0

Ité’s formula again, or more precisely, the integration by parts formula, will imply that the martin-
gale part and the bounded variation part of the continuous semimartingale Z,; are identically zero.
Therefore,

Zy = Zy =1,

which shows that Y, = X,. In other words, X, is the unique continuous semimiartingale which
satisfies the integral equation.
(ii) First of all, we know that

t t
X, —1-— / X, psds = / X,0,dBs, 0<t<T,
0 0

is a continuous local martingale under P. Suppose we want to find a process q, which is used to
define the change of measure in the way that
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Then we know from Theorem 5.16 in the lecture notes that the process

t t t t
/ X,o0,dBg — / s Xs0sds = Xy — 1 — / Xspsds — / s Xs0sds
0 0 0 0

is a continuous local martingale under Pr (provided that the exponential martingale is a true mar-
tingale so that Py is a probability measure). Now we want this process to be X; — 1, therefore we
Just need to choose

, A€ Fr.
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Since py is uniformly bounded and o > C, in this way we can see easily that Novikov’s condition
holds for the continuous local martingale fot qsdByg, which verifies that the exponential martingale is
a true martingale.

(3) In matrix notation, we need to solve

(A 0s)=(5),
(5)=(7)

Q(A) £E [Lyexp(—3Bp + B — 5T)], A € Fr,

which gives

Therefore, define



and

EtABt<z3)u0<th

It follows that under Q, By is a Brownian motion, and X, satisfies

1 1 ~
Xo = Y,
which is apparently a martingale.

Question 3. (1) [Exactness] We say that the SDE is exact if on any given set-up (0, F,P; {F:}),&, By),
there exists exactly one (up to indistinguishability) continuous, {F;}-adapted n-dimensional process
Xy, such that with probability one,

A(wgmﬁ+ngm@<m,w>m (2)

and . .
Xt=§—|—/ a(s,X)dBs+ | B(s,X)ds, t>0. (b)
0 0

[Weak Solution] Let 1. be a probability measure on R™. We say that the SDE has a weak solution
with initial distribution p if there exists a set-up ((Q, F,P;{F:}), &, Bt) together with a continuous,
{Fi}-adapted n-dimensional process X, such that

(i) € has distribution p;

(i) X, satisfies (a) and (b).

If for every probability measure i on R™, the SDE has a weak solution with initial distribution p, we
say that it has a weak solution.

[Pathwise Uniqueness] We say that pathwise uniqueness holds for the SDE if the following state-
ment is true. Given any set-up ((Q, F,P;{F:}),&, By), if X; and X are two continuous, {F;}-
adapted n-dimensional process satisfying (a) and (b), then P(X; = X, ¥Vt > 0) = 1.

(2) (i) Let B, be the reflection of By at x = 1 defined by

E é Bt, t<7'1;
T l2-B, t>n1.

Let 5, & SUP,<t B, . From the reflection principle, we know that B, is also a Brownian motion.
Now observe that {S; > 1} = {§t > 1}. Therefore,

P <t) = P(S;>1)
= P(S;>1,B <1)+P(S; >1,B, > 1)
= P(S;>1,B, <1)+P(S, >1,B, >1)
= P(S;>21,B:21)+P(S; >21,B > 1)
= 2P(B, > 1)
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By differentiation, we arrive at

P(m € dt) = e z2tdt, t>0. (c
ne®= T ©
(ii) Let 7o = inf{t > 0: X, = 0}, and define
YtéXt_l/Q, t<T1HAe.

According to It6’s formula, we conclude that
dY; =dB;, t<TyAe.

This in particular implies that 79 = oo almost surely and therefore we have

1
X,=—— t<e.
"1+ By)?

It follows that e = inf{t > 0: B, = —1}. From the density formula (c) for e, it is easy to see that
Ple < o0) =1, Ele] = 0.
(3) Let o 2 {t > 0: X, =0}, and define
V2 X% t<mAe.

It follows from Ité’s formula that

1
4y, = (—ea + (9(9; )2 eg) Yt> dt — 07Y,dB,, t< o Ae.

72
Zy £ exp <vBt + (ﬁ— 2) t) ,

t
Y, =27" <Y00A9/ Zfds), t<ToAe.
0

Therefore, if we define
then

This implies that 1o = oo almost surely, and we have

. _
X =2 <x9 — a&/ Zfds) , t<e.
0

In particular, we conclude that
t
e:inf{t}O: x_e—oﬂ/ ZdeZO}.
0

t
x*"—aa/ Z%s >0, Vt=>0.
0

D=

If « <0, it is apparent that

Therefore, P(e = c0) = 1.



Question 4. (1) According to Green's theorem in calculus, the value of the integral

1

t
7/ (l‘sdys - ysdxs)
2 0

is the geometric (signed) area enclosed by the path {; : 0 < s <t} and the segment connecting

Y0, Vt-
(2) (i) The solution is given by

eQ\/ﬂ(S—f,) -1

g(S) =2« - 462\/%(57” + 17

(ii) According to part (i), we have
¢ 1t 1t
E |exp —a/ blds || =E |- 7/ g'(s)bgds—i—f/ g*(s)b%ds ) | .
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Now let F(s,z) = g(s)x2. By applying It6’s formula to F(s,b,), we obtain
¢ ¢ ¢
/ g’(s)bidsm/ g(8)bsdbs +/ g(s)ds = 0.
0 0 0
Therefore,

E [exp (—a/ot bidsﬂ — exp (; /Otg(s)ds) E {exp (/Otg(s)bsdbs _ ;/Ot gQ(S)bgdsﬂ .

On the other hand, it is apparent that

1 t t
exp (2/ gz(s)bzds> < exp (a/ bfds) .
0 0

By assumption (« is small), the martingale { fos g(uw)bydb, : 0 < s <t} satisfies Novikov's condition.
Therefore, the exponential martingale

s 1 t
exp (/ g(u)bydb, — 5/ g%u)bidu) , 0<s
0 0

is a true martingale. In particular, we conclude that
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(iii) First of all, we know that p, satisfies the SDE

dpy = 2(B}dB} + B}dB}) + 2dt
= 2/pydb, + 2dt, (d)



where

t pl 1 2 2
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is a Brownian motion according to Lévy's characterization theorem. On the other hand, we have

1 [t B!B? 1 [t B!B?
(L,b); = — = s&¢+f/ 575 ds = 0.
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According to Knight's theorem, we know that the processes Wy, = L¢, and b, are independent
Brownian motions. But we know from the Yamada-Watanabe theorem that the SDE (d) is exact.
Therefore, the process p is a functional of b, and in particular it is measurable with respect to the
o-algebra generated by b. It follows that the processes W and p are independent.

(iv) First of all, we have

() = B W] = [B [V |77]]

where F* is the o-algebra generated by p. Since

L= [+ s e P

and conditioned on F,, Wy, is a Gaussian random variable with mean zero and variance (L);, from
the result of part (iii), we conclude that

12 A2t
chy(\) =E [e_f/\ <L>f] =E [exp (_8/ psds>} .
0

(v) According to part (ii), we arrive at

= (eon (4 [)) -

at least when X is small. But it is easy to see that the functions

A 1

P(z) & E[eZLt], U(2) m7

are holomorphic on the common domain U C C which contains the whole imaginary axis. According
to the identity theorem in complex analysis, we conclude that (e) holds for all X € R!.



