Problem Sheet 4

Due for Submission: 10/17 Monday

You are encouraged to discuss with your classmates whenever you find it helpful.

Problem 1. Let B_t be a *d*-dimensional Brownian motion.

(1) Show that $X_t \triangleq O \cdot B_t$ and $Y_t \triangleq \langle \mu, B_t \rangle$ are both Brownian motions, where O is a $d \times d$ orthogonal matrix (i.e. $O^T O = I_d$) and μ is a unit vector in \mathbb{R}^d .

(2) Given s < u < t, compute $\mathbb{E}[B_u | B_s, B_t]$.

Problem 2. Let B_t be a one dimensional Brownian motion.

(1) Show that

$$X_t \triangleq \begin{cases} tB_{\frac{1}{t}}, & t > 0; \\ 0, & t = 0, \end{cases}$$

is a Browninan motion.

(2) Show that with probability one, there exist two sequences of positive times $s_n \downarrow 0$, $t_n \downarrow 0$, such that $B_{s_n} < 0$ and $B_{t_n} > 0$ for every n.

(3) Show that with probability one, B is not differentiable at t = 0, and hence conclude that with probability one, $t \mapsto B_t(\omega)$ is almost everywhere non-differentiable.

Problem 3. Let B_t be an $\{\mathcal{F}_t\}$ -Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}; \{\mathcal{F}_t\})$, where \mathcal{F}_0 contains all \mathbb{P} -null sets. Let σ, τ be two finite $\{\mathcal{F}_t\}$ -stopping times such that $\tau \in \mathcal{F}_{\sigma}$ and $\sigma \leq \tau$. Show that for any bounded Borel measurable function f,

$$\mathbb{E}[f(B_{\tau})|\mathcal{F}_{\sigma}] = P_t f(x) \mid_{t=\tau-\sigma, x=B_{\sigma}}.$$

Is it true that $B_{\tau} - B_{\sigma}$ and \mathcal{F}_{σ} are independent?

Problem 4. Let B_t be a one dimensional Brownian motion with $\{\mathcal{F}_t^B\}$ being its augmented natural filtration. Construct an $\{\mathcal{F}_t^B\}$ -stopping time τ explicitly which satisfies the Skorokhod embedding theorem for the uniform distribution on the set $\{-2, -1, 0, 1, 2\}$. Draw a picture to illustrate the construction as well.

Problem 5. Let B_t be a 2-dimensional Brownian motion starting at i = (0, 1) with $\{\mathcal{F}_t^B\}$ being its augmented natural filtration.

(1) Show that for each $\lambda \in \mathbb{R}^1$, the process $X_t^{\lambda} \triangleq e^{\lambda i \cdot B_t}$ is an $\{\mathcal{F}_t^B\}$ -martingale, where the multiplication in the exponential function is the complex multiplication.

(2) Let τ be the hitting time of the real axis by B_t . Show that $B_{\tau} \in \mathbb{R}^1$ is Cauchy distributed (i.e. $\mathbb{P}(B_{\tau} \in dx) = (\pi(1+x^2))^{-1}, x \in \mathbb{R}^1$).

Problem 6. Let $X_t(w) \triangleq w_t$ be the coordinate process on W^1 and let $\{\mathcal{F}_t\}$ be the natural filtration of X_t . Denote $\mathbb{P}^{x,c}$ on $(W^1, \mathcal{B}(W^1))$ as the law of a one dimensional Brownian motion starting at x with drift c.

(1) Show that when restricted on each \mathcal{F}_t , $\mathbb{P}^{x,c}$ is absolutely continuous with respect to $\mathbb{P}^{x,0}$, with density given by

$$\left. \frac{d\mathbb{P}^{x,c}}{d\mathbb{P}^{x,0}} \right| = \mathrm{e}^{c(X_t - x) - \frac{1}{2}c^2 t}.$$

(2) Define $S_t = \max_{0 \le s \le t} X_s$. Compute $\mathbb{P}^{0,c} (S_t \in dx, X_t \in dy) (x \ge 0, x \ge y)$.

Problem 7. (1) Let B_t be a *d*-dimensional Brownian motion with $\{\mathcal{F}_t^B\}$ being its augmented natural filtration.

(i) Given $\theta \in \mathbb{R}^d$, define $e_{\theta}(x) = e^{i\langle x, \theta \rangle}$ for $x \in \mathbb{R}^d$. Show that the process

$$\mathbf{e}_{\theta}(B_t) - 1 - \frac{1}{2} \int_0^t (\Delta \mathbf{e}_{\theta})(B_s) ds, \ t \ge 0,$$

is an $\{\mathcal{F}_t^B\}$ -martingale.

(ii) Let f be a smooth function on \mathbb{R}^d with compact support. Taking as granted the fact that there exists a rapidly decreasing function ϕ on \mathbb{R}^d (i.e. $\sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial^{\beta} \phi(x)| < \infty$ for all α, β), such that

$$f(x) = \int_{\mathbb{R}^d} e^{i\langle x, \theta \rangle} \phi(\theta) d\theta, \quad \forall x \in \mathbb{R}^d,$$

show that the process

$$f(B_t) - f(0) - \frac{1}{2} \int_0^t (\Delta f)(B_s) ds, \ t \ge 0,$$

is an $\{\mathcal{F}_t^B\}$ -martingale.

(2) Let $X_t(w) \triangleq w_t$ be the coordinate process on W^d . Denote \mathbb{P}_d^x on $(W^d, \mathcal{B}(W^d))$ as the law of a *d*-dimensional Brownian motion starting at $x \in \mathbb{R}^d$.

(i) Show that $f(x) \triangleq \log |x|$ (in dimension d = 2) and $f(x) = |x|^{2-d}$ (in dimension $d \ge 3$) are harmonic on $\mathbb{R}^d \setminus \{0\}$ (i.e. $\Delta f(x) = 0$ for every $x \neq 0$).

(ii) Let 0 < a < |x| < b. Define τ_a (respectively, τ_b) to be the hitting time of the sphere |y| = a (respectively, |y| = b) by X_t . By choosing suitable f in (1), (ii), compute $\mathbb{P}^x_d(\tau_a < \tau_b)$ and $\mathbb{P}^x_d(\tau_a < \infty)$ in all dimensions $d \ge 2$.

(iii) Let U be a non-empty, bounded open subset of \mathbb{R}^d . Define $\sigma = \sup\{t \ge 0 : X_t \in U\}$. Show that $\mathbb{P}^0_d(\sigma = \infty) = 1$ in dimension d = 2, while $\mathbb{P}^0_d(\sigma < \infty) = 1$ in dimension $d \ge 3$. Therefore, the Brownian motion is *neighbourhood-recurrent* in dimension d = 2 and *neighbourhood-transient* in dimension $d \ge 3$.

(iv) For every dimension $d \ge 2$, show that $\mathbb{P}^0_d(\sigma_y < \infty) = 0$ for every $y \in \mathbb{R}^d$, where $\sigma_y \triangleq \inf\{t > 0 : X_t = y\}$. Therefore, the Brownian motion is *point-recurrent* only in dimension one.

Remark. It can be shown that in dimension d = 2, with probability one, there exists $y \in \mathbb{R}^2$ such that the set $\{t \ge 0 : X_t = y\}$ has cardinality of the continuum.