Problem Sheet 3

Due for Submission: 09/30 Friday

You are encouraged to discuss with your classmates whenever you find it helpful.

Problem 1 (*). (1) Suppose that $\{X_t, \mathcal{F}_t : t \ge 0\}$ is a right continuous supermartingale and τ is an $\{\mathcal{F}_t\}$ -stopping time. Show that the stopped process $X_t^{\tau} \triangleq X_{\tau \wedge t}$ is a supermartingale both with respect to the filtrations $\{\mathcal{F}_t : t \ge 0\}$ and $\{\mathcal{F}_{\tau \wedge t} : t \ge 0\}$.

(2) Let $\{X_t : t \ge 0\}$ be an $\{\mathcal{F}_t\}$ -adapted and right continuous stochastic process. Suppose that for any bounded $\{\mathcal{F}_t\}$ -stopping times $\sigma \le \tau$, X_σ , X_τ are integrable and $\mathbb{E}[X_\sigma] \le \mathbb{E}[X_\tau]$. Show that $\{X_t, \mathcal{F}_t\}$ is a submartingale.

Problem 2. Let $(\Omega, \mathcal{F}, \mathbb{P}; \{\mathcal{F}_t : t \ge 0\})$ be a filtered probability space which satisfies the usual conditions. Suppose that \mathbb{Q} is another probability measure on $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $\mathbb{Q} \ll \mathbb{P}$ when restricted on \mathcal{F}_t for every $t \ge 0$.

(1) Let M_t be a version of $d\mathbb{Q}/d\mathbb{P}$ when \mathbb{P}, \mathbb{Q} are restricted on \mathcal{F}_t . Show that $\{M_t, \mathcal{F}_t\}$ is a martingale.

(2) Take a càdlàg modification of M_t and still denote it by M_t for simplicity. Show that $\{M_t\}$ is uniformly integrable if and only if $\mathbb{Q} \ll \mathbb{P}$ when restricted on \mathcal{F}_{∞} . In this case, we have:

(i) $M_{\infty} \triangleq \lim_{t \to \infty} M_t = d\mathbb{Q}/d\mathbb{P}$ when restricted on \mathcal{F}_{∞} ,

(ii) for every $\{\mathcal{F}_t\}$ -stopping time τ , $\mathbb{Q} \ll \mathbb{P}$ when restricted on \mathcal{F}_{τ} and $M_{\tau} = d\mathbb{Q}/d\mathbb{P}$ on \mathcal{F}_{τ} .

Problem 3 (*). Let $\{X_t, \mathcal{F}_t\}$ be a right continuous martingale which is bounded in L^p for some p > 1 (i.e. $\sup_{0 \le t < \infty} \mathbb{E}[|X_t|^p] < \infty$). Show that X_t converges to some X_∞ almost surely and in L^p .

Problem 4. (1) Show that $\log t \leq t/e$ for every t > 0, and conclude that

$$a\log^+ b \leqslant a\log^+ a + \frac{b}{e}$$

for every a, b > 0, where $\log^+ t = \max\{0, \log t\}$ (t > 0).

(2) Suppose that $\{X_t, \mathcal{F}_t : t \ge 0\}$ is a non-negative and right continuous submartingale. Let $\rho : [0, \infty) \to \mathbb{R}$ be an increasing and right continuous function with $\rho(0) = 0$. Show that

$$\mathbb{E}[\rho(X_T^*)] \leqslant \mathbb{E}\left[X_T \int_0^{X_T^*} \lambda^{-1} d\rho(\lambda)\right], \quad \forall T > 0,$$

where $X_T^* \triangleq \sup_{t \in [0,T]} X_t$.

(3) By choosing $\rho(t) = (t-1)^+$ $(t \ge 0)$, show that

$$\mathbb{E}[X_T^*] \leqslant \frac{e}{e-1} (1 + \mathbb{E}[X_T \log^+ X_T]), \quad \forall T > 0.$$

Problem 5. Suppose that $\{X_t, \mathcal{F}_t : t \ge 0\}$ is a continuous martingale vanishing at t = 0 and

$$\sup_{t \ge 0} X_t(\omega) = \infty, \ \inf_{t \ge 0} X_t(\omega) = -\infty, \ \forall \omega \in \Omega.$$

Define $\tau_0 = 0$, and $\tau_n = \inf \{ t > \tau_{n-1} : |X_t - X_{\tau_{n-1}}| = 1 \}$ $(n \ge 1)$. Show that τ_n are finite $\{\mathcal{F}_t\}$ -stopping times. What is the distribution of the random sequence $\{X_{\tau_n} : n \ge 1\}$?

Problem 6. Let $\{X_t, \mathcal{F}_t\}$ be a continuous martingale which is uniformly integrable. Suppose that there exists a constant $M_X > 0$ such that

$$\mathbb{E}[|X_{\infty} - X_{\tau}||\mathcal{F}_{\tau}] \leq M_X \text{ a.s.},$$

for every $\{\mathcal{F}_t\}$ -stopping time τ , where $X_{\infty} = \lim_{t \to \infty} X_t$ which exists almost surely and in L^1 according to uniform integrability. Let $X^* = \sup_{t \ge 0} |X_t|$.

(1) Show that for every $\lambda, \mu > 0$,

$$\mathbb{P}(X^* > \lambda + \mu) \leqslant \frac{M_X}{\mu} \mathbb{P}(X^* > \lambda).$$

(2) By using the result of (1), show that

$$\mathbb{P}(X^* > \lambda) \leqslant e^{2 - \frac{\lambda}{e \cdot M_X}}, \quad \forall \lambda > 0.$$

In particular, $e^{\alpha X^*}$ is integrable when $0 < \alpha < (eM_X)^{-1}$, which also implies that $X^* \in L^p$ for every $p \ge 1$.

Problem 7. Let $\{X_t, \mathcal{F}_t : t \ge 0\}$ be a càdlàg submartingale over a filtered probability space which satisfies the usual conditions.

(1)(*) Suppose that X_t is non-negative, show that X_t is of class (DL). Suppose further that X_t is continuous, show that X_t is regular.

(2) Suppose that X_t is non-negative and uniformly integrable. Show that X_t is of *class* (D) in the sense that $\{X_{\tau} : \tau \in S\}$ is uniformly integrable, where S is the set of finite $\{\mathcal{F}_t\}$ -stopping times. Moreover, $A_{\infty} \triangleq \lim_{t\to\infty} A_t$ is integrable, where A_t is the natural increasing process in the Doob-Meyer decomposition of X_t .