Problem Sheet 2

Due for Submission: 09/16 Friday

You are encouraged to discuss with your classmates whenever you find it helpful.

Problem 1. Recall that $(W^d, \mathcal{B}(W^d), \rho)$ is the continuous path space over \mathbb{R}^d . Let $\{\mathbb{P}_n\}$ be a sequence of probability measures on $(W^d, \mathcal{B}(\mathbb{R}^d))$. Show that \mathbb{P}_n is weakly convergent if and only if the following conditions hold:

(i) the finite dimensional distributions of \mathbb{P}_n are weakly convergent, i.e. for every $\mathfrak{t} = (t_1, \cdots, t_m)$ with $m \ge 1$, $t_1 < \cdots < t_m$, the sequence of probability measures

$$Q_{\mathfrak{t}}^{n}(\Gamma) \triangleq \mathbb{P}_{n}((w_{t_{1}}, \cdots, w_{t_{m}}) \in \Gamma), \quad \Gamma \in \mathcal{B}(\mathbb{R}^{d \times m}),$$

on $(\mathbb{R}^{d \times m}, \mathcal{B}(\mathbb{R}^{d \times m}))$ is weakly convergent;

(ii) the family $\{\mathbb{P}_n\}$ is tight.

Problem 2 (*). Consider the path space $((\mathbb{R}^d)^{[0,\infty)}, \mathcal{B}((\mathbb{R}^d)^{[0,\infty)}))$. Let $X_t(w) = w_t$ be the canonical coordinate process.

(1) By using Kolmogorov's extension theorem, show that there exists a unique probability measure \mathbb{P} on $((\mathbb{R}^d)^{[0,\infty)}, \mathcal{B}((\mathbb{R}^d)^{[0,\infty)}))$, such that under \mathbb{P} ,

(i) $X_0 = 0$ almost surely,

(ii) for every $0 \leq s < t$, $X_t - X_s$ is normally distributed with mean zero and covariance matrix $(t - s)I_d$, where I_d is the $d \times d$ identity matrix;

(iii) for every $0 \le t_1 < \cdots < t_n$, the increments $X_{t_1}, X_{t_2} - X_{t_1}, \cdots, X_{t_n} - X_{t_{n-1}}$ are independent. (2) Show that there exists a continuous modification \widetilde{X}_t of X_t on $[0, \infty)$, such that for every $0 < \gamma < 1/2$, with probability one, \widetilde{X}_t has γ -Hölder continuous sample paths on every finite interval [0, T].

(3) Let \widetilde{X}_t be the continuous modification of X_t given in (2). Show that with probability one,

$$\sup_{\substack{s,t\in[0,T]\\s\neq t}} \frac{|\widetilde{X}_t - \widetilde{X}_s|}{|t-s|^{\frac{1}{2}}} = \infty \text{ and } \sup_{\substack{s,t\in[0,\infty)\\s\neq t}} \frac{|\widetilde{X}_t - \widetilde{X}_s|}{|t-s|^{\gamma}} = \infty,$$

for every $T<\infty$ and $\gamma\in(0,1/2).$

Remark. The process \widetilde{X}_t constructed in this problem is called a *d*-dimensional pre-Brownian motion.

Problem 3. (1) Give an example to show that we cannot allow $\beta = 0$ in Kolmogorov's continuity theorem (i.e. Theorem 2.3).

(2) Give an example to show that, under the assumptions in Kolmogorov's continuity theorem, we cannot strengthen the result to conclude that there exists a \mathbb{P} -null set outside which every sample path of X is continuous. What if we assume further that every sample path of X is right continuous with left limits?

(3) By adapting the proof of Kolmogorov's continuity theorem, prove the following result.

Let $X_t^{(n)}$ be a sequence of *d*-dimensional stochastic processes with continuous sample paths such that:

(i) there exist positive constants M and γ , such that

$$\mathbb{E}\left[\left|X_{0}^{(n)}\right|^{\gamma}\right] \leqslant M$$

for every n;

(ii) there exist positive constants α, β and M_k for $k \in \mathbb{N}$, such that

$$\mathbb{E}\left[\left|X_t^{(n)} - X_s^{(n)}\right|^{\alpha}\right] \leqslant M_k |t - s|^{1+\beta}$$

for every n, k and $s, t \in [0, k]$.

Then the sequence of probability measures \mathbb{P}_n on $(W^d, \mathcal{B}(W^d))$ induced by $X_t^{(n)}$ is tight.

Problem 4. Let $(\Omega, \mathcal{F}, \mathbb{P}; \{\mathcal{F}_t\})$ be a filtered probability space.

(1) Let τ be an $\{\mathcal{F}_t\}$ -stopping time and σ be a random time such that $\sigma \ge \tau$. Suppose that σ is \mathcal{F}_{τ} -measurable. Show that σ is an $\{\mathcal{F}_t\}$ -stopping time.

(2) Suppose further that $\{\mathcal{F}_t\}$ is right continuous.

(i) Let $\{\tau_n\}$ be a decreasing sequence of $\{\mathcal{F}_t\}$ -stopping times, and define $\tau = \lim_{n \to \infty} \tau_n$. Show that τ is an $\{\mathcal{F}_t\}$ -stopping time and $\mathcal{F}_{\tau} = \bigcap_{n=1}^{\infty} \mathcal{F}_{\tau_n}$.

(ii)(*) Let σ be an $\{\mathcal{F}_t\}$ -stopping time. For $t \ge 0$, define $\mathcal{G}_t = \mathcal{F}_{\sigma+t}$. Suppose that τ is a $\{\mathcal{G}_t\}$ -stopping time. Show that $\sigma + \tau$ is an $\{\mathcal{F}_t\}$ -stopping time.

Problem 5. Let X_t be a stochastic process on some probability space $(\Omega, \mathcal{G}, \mathbb{P})$ with independent increments, i.e. $X_{t_0}, X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$ are independent whenever $0 < t_0 < t_1 < \dots < t_n$. Suppose further that X_t has right continuous sample paths.

(1) For $t \ge 0$, show that $\mathcal{U}_t \triangleq \sigma(X_{t+u} - X_t : u \ge 0)$ and \mathcal{G}_{t+}^X are independent, where $\{\mathcal{G}_t^X\}$ is the natural filtration of X.

(2)(*) Let $\mathcal{F}_t^X = \sigma \left(\mathcal{G}_t^X, \mathcal{N} \right)$ be the augmented natural filtration of X_t , where \mathcal{N} is the collection of \mathbb{P} -null sets. Show that $\{\mathcal{F}_t^X\}$ is right continuous.

Problem 6. Let $(\Omega, \mathcal{F}) = (W^d, \mathcal{B}(W^d))$. Define $X_t(w) = w_t$ to be the coordinate process on (Ω, \mathcal{F}) , and $\mathcal{F}_t^X \triangleq \sigma(X_s: 0 \leq s \leq t)$ to be the natural filtration of X_t . Suppose that τ is an $\{\mathcal{F}_t^X\}$ -stopping time. Show that

$$\mathcal{F}_{\tau}^{X} = \sigma(X_{\tau \wedge t} : t \ge 0).$$