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1 Fundamentals of differentiable manifolds

1.1 Definition of differentiable manifold.
In the present notes, we will be in the realm of differentiable manifolds. Intu-
itively, a differentiable manifold locally looks like a piece of Euclidean space,
but globally those pieces are glued together in a smooth manner.

Let M be a non-empty set.
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Definition 1.1. An (n-dimensional) coordinate chart on M is a non-empty
subset U of M together with a bijection ϕ : U → ϕ(U) ⊂ Rn onto some open
subset ϕ(U) of Rn. An (n-dimensional) atlas on M is a family of coordinate
charts {(Uα, ϕα)}α∈A such that

(1) M is covered by {Uα}α∈A;
(2) for any α, β ∈ A, ϕα(Uα ∩ Uβ) is open in Rn;
(3) (C∞ compatibility) for any α, β ∈ A, if Uα ∩ Uβ 6= ∅, then the map

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is C∞ (has continuous partial derivatives of all order) with C∞ inverse.

The previous definition illustrates what the space M looks like locally and
globally in the mathematical way, if it is equipped with an atlas. This is very
close to the description of a differentiable manifold. However, the precise def-
inition should be independent of the choice of atlas (the way of parametrizing
M) in some sense.

Definition 1.2. Two atlases {(Uα, ϕα)} and {(Vi, ψi)} are compatible if their
union is again an atlas.

Compatibility is nothing but an additional requirement that

ψi ◦ ϕ−1
α : ϕα(Uα ∩ Vi)→ ψi(Uα ∩ Vi)

is C∞ with C∞ inverse provided Uα ∩ Vi 6= ∅. Compatibility is obviously an
equivalence relation on the set of atlases.

Now we can give the definition of differentiable manifold.

Definition 1.3. A differential structure on M is an equivalence class of at-
lases. A spaceM equipped with a differential structure is called a differentiable
manifold. The dimension of the differential structure (i.e., of any atlas in the
equivalence class) is called the dimension of the differentiable manifold M.

Since we are always working with differentiable manifolds in this note, from
now on a differentiable manifold will be simply called a manifold.

Remark 1.1. By Definition 1.3, to specify a differential structure on a space M
which makes M a manifold, it suffices to assign an atlas on M.

Now we give some examples of manifolds, which will serve as fundamental
spaces we are going to study in this note.

Example 1.1. The Euclidean space Rn. We can choose an atlas which consists
of only one coordinate chart U = Rn, and ϕ = id. Then Rn becomes an n-
dimensional manifold. Similarly for open subsets of Rn. When we talk about
the open subsets of Rn, we always use this canonical atlas.

Example 1.2. The unit circle

S1 = {(x0, x1) ∈ R2 : (x0)2 + (x1)2 = 1}.
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We can choose four coordinate charts

U = {(x0, x1) ∈ S1 : x1 > 0}, ϕU ((x0, x1)) = x0;

D = {(x0, x1) ∈ S1 : x1 < 0}, ϕD((x0, x1)) = x0;

L = {(x0, x1) ∈ S1 : x0 < 0}, ϕL((x0, x1)) = x1;

R = {(x0, x1) ∈ S1 : x0 > 0}, ϕR((x0, x1)) = x1,

each of which is parametrized by a copy of the open interval (−1, 1). It is easy
to check that these coordinate charts together form an atlas of S1. Then S1

becomes a one dimensional manifold. Similarly, the n-sphere

Sn = {(x0, x1 · · · , xn) ∈ Rn+1 : (x0)2 + (x1)2 + · · ·+ (xn)2 = 1}

is an n-dimensional manifold by specifying an atlas consisting of 2n coordinate
charts, each of which is parametrized by the open unit disk in Rn.

Example 1.3. The product manifold. Let M and N be manifolds of dimen-
sion m and n with atlases {(Uα, ϕα)} and {(Vi, ψi)} defining their differential
structures respectively. Then M × N is a manifold of dimension m + n with
differential structure given by the atlas {(Uα × Vi, ζα,i)}, where ζα,i is the map

ζα,i : Uα × Vi → ϕα(Uα)× ψi(Vi) ⊂ Rm × Rn,
(x, y) 7→ (ϕα(x), ψi(y)).

A particular example is the n-dimensional torus Tn = S1 × · · · × S1.

Example 1.4. The n-dimensional real projective space RPn: the space of
one dimensional linear subspaces (real lines through the origin) of Rn+1. More
precisely, define an equivalence relation ” ∼ ” on Rn+1\{0} by

x ∼ y ⇐⇒ y = λx for some nonzero λ ∈ R.

Then RPn is defined to be the space of ∼-equivalence classes. For i = 0, · · · , n,
let

Ui = {[x] : x = (x0, · · · , xn) ∈ Rn+1\{0} with xi 6= 0},
where [x] denotes the ∼-equivalence class of x, and define the map

ϕi : Ui → Rn,
[x] 7→ (iξ

0, · · · ,i ξi−1,i ξ
i+1, · · · ,i ξn),

where iξ
j = xj/xi for j 6= i. Note that ϕi is well-defined (independent of the

choice of representatives in [x]). Moreover, ϕi is a bijection so that (Ui, ϕi) is a
coordinate chart on RPn. Finally, the change of coordinates on Ui ∩ Uj (i 6= j)
is given by {

jξ
h = iξ

h

iξj
, h 6= i, j;

jξ
i = 1

iξj
,

which is clearly C∞ with C∞ inverse. Therefore, {(Ui, ϕi)}i=0,··· ,n is an atlas
on RPn, which makes RPn an n-dimensional manifold.
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Example 1.5. The n-dimensional complex projective space CPn. Similar to
the real projective space, CPn is defined to be the space of one dimensional
complex linear subspaces of Cn+1, namely, the space of ∼-equivalence classes
on Cn+1\{0} where

z ∼ w ⇐⇒ w = λz for some nonzero λ ∈ C.

As in the case of RPn, we can construct an atlas consisting of n+ 1 coordinate
charts parametrized by a copy of Cn ∼= R2n. This makes CPn a 2n-dimensional
manifold. In fact, CPn is a complex manifold of dimension n since it is easy
to see that the change of coordinates is always holomorphic with holomorphic
inverse.

There will be more examples of manifolds arising from C∞ maps between
manifolds, matrix groups and fiber bundles etc., as we shall see later on.

The differential structure of a manifold M induces a canonical topology on
M , called the manifold topology, defined as follows.

Take an atlas {(Uα, ϕα)}α∈A in the differential structure of M . Then for
any U ⊂M, U is defined to be open if and only if

ϕα(U ∩ Uα) is open in ϕα(Uα) for any α ∈ A.

We leave it as an exercise to check that this defines a topology on M, and it is
independent of the choice of atlases in the given differential structure.

Proposition 1.1. Under the manifold topology, for any α ∈ A, Uα is open,
and ϕα : Uα → ϕα(Uα) is a homeomorphism.

Proof. The fact that Uα is open follows directly from the definition of atlas.
The fact that ϕα maps open sets in Uα to open sets in ϕα(Uα) follows from the
openness of Uα in M and the definition of open sets in M. To see that ϕα is
continuous, let W be an open subset of ϕα(Uα), and

U = ϕ−1
α (W ) ⊂ Uα.

Then for any β ∈ I with Uα ∩ Uβ 6= ∅,

ϕβ(U ∩ Uβ) = ϕβ(U ∩ Uα ∩ Uβ)

= ϕβ ◦ ϕ−1
α (ϕα(U ∩ Uα ∩ Uβ))

= ϕβ ◦ ϕ−1
α (W ∩ ϕα(Uα ∩ Uβ)).

Since U ∩Uβ is open in M , we know that ϕα(U ∩Uβ ∩Uα) is an open subset of
ϕα(Uα ∩ Uβ). By the definition of atlas,

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is a diffeomorphism and hence a homeomorphism. Therefore, ϕβ(U ∩ Uβ) is
open in ϕβ(Uα ∩ Uβ), and hence open in ϕβ(Uβ).
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So far there is not much about the manifold topology and geometry we can
say for a manifold M , and little analysis we can do on M if we don’t impose
additional conditions on the manifold topology. Throughout the rest of this
note, we will make the following assumption on the manifold topology:

• the manifold topology is Hausdorff and has a countable base of open sets
(second countability axiom).

It is easy to verify that all examples given before satisfy this assumption (in
Example 1.3, assume that M and N both satisfy this assumption). Moreover,
the manifold topology of Sn coincides with the relative topology as a subset of
Rn+1, and the manifold topology of RPn (CPn, respectively) coincides with the
quotient topology on (Rn+1\{0})/∼ ((Cn+1\{0})/∼, respectively).
Remark 1.2. In some textbooks (for example [2], [5]), the definition of differen-
tiable manifold starts from a Hausdorff space M with a countable topological
basis. In this situation, a coordinate chart is required to be a homeomorphism
from a non-empty open subset of M onto some open subset of Rn. Once a dif-
ferential structure is given, it is not hard to show that the manifold topology is
the same as the original topology of M.

From now on, when we talk about topological properties, we always use the
manifold topology.

As in the case of Euclidean spaces, it makes perfect sense to talk about C∞
functions on a manifold and C∞ maps between manifolds.

Definition 1.4. Let M be a manifold. A function f : M → R is said to be
C∞ at p ∈M if

f ◦ ϕ−1 : ϕ(U)→ R

is C∞ at ϕ(p) (there exists some open neighborhood W of ϕ(p) in ϕ(U), such
that fϕ−1 has continuous partial derivatives of all order at any point in W ) for
some coordinate chart (U,ϕ) around p. f is said to be C∞ if it is C∞ at every
point of M. The space of C∞ functions on M is denoted by C∞(M).

A map F : M → N between two manifoldsM,N is said to be C∞ at p ∈M
if there exists coordinate charts (U,ϕ) around p and (V, ψ) around f(p) such
that F (U) ⊂ V and

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V )

is C∞ at ϕ(p). F is said to be C∞ if it is C∞ at every point of M. Two
manifolds M and N are said to be diffeomorphic if there exists some bijection
F : M → N such that F, F−1 are both C∞.

Remark 1.3. The previous definition of smoothness at p does not depend on the
choice of coordinate charts.

It is easy to show that C∞ functions and C∞ maps are always continuous
with respect to the manifold topology.
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Example 1.6. An important example of C∞ functions is a bump function on
a manifold M . More precisely, for any open sets U, V ⊂ M with U compact
and U ⊂ V, there exists some f ∈ C∞(M), such that

f(x) =

{
1, x ∈ U ;

0, x /∈ V.

The precise construction is in Problem Sheet 1.

Example 1.7. In Example 1.3, the natural projections

π1 : M ×N →M, π2 : M ×N → N

given by
π1(x, y) = x, π2(x, y) = y

are C∞. In Example 1.4 and 1.5, the corresponding quotient maps are C∞.

Example 1.8. An important example of C∞ maps is a smooth curve on a
manifold M : a C∞ map from some open interval I ⊂ R to M.

Remark 1.4. It is possible that a spaceM has two distinct differential structures
which are diffeomorphic (so they induce the same manifold topology). It is also
possible that M has two distinct non-diffeomorphic differential structures with
the same manifold topology (the Milnor’s exotic sphere).

Now we present a fundamental tool in the study of manifolds: partition of
unity. It is particularly important when we develop analysis on a manifold.

Definition 1.5. A collection {Aα} of subsets of a manifold M is called locally
finite if for any p ∈ M , there exists some neighborhood U of p, such that
U ∩Aα 6= ∅ for only finitely many α.

Definition 1.6. A partition of unity onM is a family {ϕi}i∈I of C∞ functions
such that

(1) for any i ∈ I, 0 6 ϕi 6 1;
(2) the collection of supports {suppϕi = {x ∈M : ϕi(x) 6= 0}}i∈I is locally

finite;
(3) for any p ∈ M,

∑
i∈I ϕi(p) = 1 (this is in fact a finite sum according to

(2)).

The following theorem is the existence of partitions of unity on a manifold
M. One can refer to [5] for its proof.

Theorem 1.1. LetM be a manifold and {Uα}α∈A be an open cover ofM. Then
(1) there exists a countable partition of unity {ϕi : i = 1, 2, · · · } such that

for any i > 1, suppϕi is compact and there exists some α ∈ A with suppϕi ⊂ Uα
(this is called subordinate to the open cover {Uα}α∈A);

(2) there exists a partition of unity {ϕα}α∈A such that at most countably
many ϕα are not identically zero and for any α ∈ A, suppϕα ⊂ Uα (this is
called subordinate to the open cover {Uα}α∈A with the same index).
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1.2 The tangent space
On a smooth curve or surface sitting inside R3, one can define tangent lines or
tangent planes in a natural way. However, although geometrically intuitive such
definition is extrinsic and cannot be carried to an arbitrary manifold. We need
an intrinsic description of tangent vectors and tangent spaces. The idea is to
regard a tangent vector as taking directional derivatives or as a linear derivation
of locally C∞ functions. These two approaches are in fact equivalent.

We start with the notion of cotangent space.
Let M be an n-dimensional manifold.
Fix p ∈ M . Let C∞p be the space of C∞ functions defined on some open

neighborhood of p. It makes sense to talk about addition and multiplication on
C∞p (for example, if f, g are defined on U, V respectively, then f + g, fg are
defined on U ∩ V ). Introduce an equivalence relation ” ∼ ” on C∞p by

f ∼ g ⇐⇒ f = g on some open neighborhood of p.

Definition 1.7. The space of ∼-equivalence classes, denoted by Fp, is called
the space of C∞ germs at p.

By acting on representatives, Fp is an (infinite dimensional) algebra over R.
Moreover, from the definition it makes sense to talk about the evaluation of a
C∞ germ [f ] at p as f(p).

If we think of a tangent vector as taking directional derivatives, reasonably
it should act on C∞ germs linearly. Moreover, from the Euclidean case we
know that two functions with the same first order partial derivatives at p have
the same directional derivatives at p along any direction. Therefore, a tangent
vector, regarded as taking directional derivatives, should be defined as a linear
functional on a quotient space over Fp in which two C∞ germs with the same
first order partial derivatives at p are identified.

Let Hp be the set of C∞ germs [f ] ∈ Fp such that for some coordinate chart
(U,ϕ) around p,

∂

∂xi
|ϕ(p)fϕ

−1(x1, · · · , xn) = 0, for all i = 1, · · · , n.

By the chain rule of calculus, it is easy to see that such definition is independent
of the choice of coordinate charts around p. Hp is a linear subspace of Fp.

Definition 1.8. The quotient space Fp/Hp is called the cotangent space of M
at p, denoted by T ∗pM . An element of T ∗pM, which is an Hp-equivalence class
[f ] +Hp over Fp, is called a cotangent vector at p, denoted by (df)p.

Theorem 1.2. Let f1, · · · , fs ∈ C∞p , and F (y1, · · · , ys) be a C∞ function on
some open neighborhood of (f1(p), · · · , fs(p)) ⊂ Rs. Then f = F (f1, · · · , fs) ∈
C∞p , and

(df)p =

s∑
i=1

∂F

∂yi
|(f1(p),··· ,fs(p))(df

i)p.
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Proof. By the definition of Hp and T ∗pM , it suffices to show that for some
coordinate chart (U,ϕ) around p, f ◦ ϕ−1 and

∑s
i=1

∂F
∂yi |(f1(p),··· ,fs(p))f

i ◦ ϕ−1

have the same first order partial derivatives at ϕ(p). But this is obvious from
the chain rule of calculus.

A immediate corollary of Theorem 1.2 is:

Corollary 1.1. For any f, g ∈ C∞p and α ∈ R,
(1) d(f + g)p = (df)p + (dg)p;
(2) d(αf)p = α(df)p;
(3) d(fg)p = f(p)(dg)p + g(p)(df)p.

Another important corollary of Theorem 1.2 is the following.

Corollary 1.2. T ∗pM is an n-dimensional vector space, where n is the dimen-
sion of M. Moreover, for any coordinate chart (U,ϕ) around p,

{(dx1)p, · · · , (dxn)p}

is a basis of T ∗pM (called the natural basis under (U,ϕ)), and for any f ∈ C∞p ,

(df)p =

n∑
i=1

∂fϕ−1

∂xi
|ϕ(p)(dx

i)p, (1.1)

where xi ∈ C∞p is the i-th coordinate function under (U,ϕ).

Proof. Fix a coordinate chart (U,ϕ) around p. For any f ∈ C∞p , we may write

f = f ◦ ϕ−1(x1, · · · , xn),

where we regard xi ∈ C∞p as coordinate functions defined on U. It follows from
Theorem 1.2 that

(df)p =

n∑
i=1

∂f ◦ ϕ−1

∂xi
|ϕ(p)(dx

i)p.

Therefore, T ∗pM is spanned by {(dx1)p, · · · , (dxn)p}.
Moreover, assume that

n∑
i=1

λi(dx
i)p = 0 (in T ∗pM)

for some λi ∈ R. By definition this means that under (U,ϕ),
∑n
i=1 λix

i and the
zero function have the same first order partial derivatives at ϕ(p). Note that
here x1, · · · , xn are variables of the function

∑n
i=1 λix

i defined on ϕ(U). By
taking partial derivatives, it follows immediately that

λi = 0, for all i.

Therefore, (dx1)p, · · · , (dxn)p are linearly independent.
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Now we are able to give the definition of tangent space.

Definition 1.9. The dual space of T ∗pM is called the tangent space of M at p,
denoted by TpM. Elements of TpM are called tangent vectors at p.

Let (U,ϕ) be a coordinate chart around p. We use

{ ∂

∂x1
|p, · · · ,

∂

∂xn
|p}

to denote the dual basis of {(dx1)p, · · · , (dxn)p}. This is the natural basis of
Tp(M) under (U,ϕ). Moreover, for any f ∈ C∞p , we have

〈 ∂
∂xi
|p, (df)p〉 =

n∑
j=1

∂f ◦ ϕ−1

∂xj
|ϕ(p)〈

∂

∂xi
|p, (dxj)p〉 =

∂f ◦ ϕ−1

∂xi
|ϕ(p).

Therefore, ∂
∂xi |p can be regarded as the i-th partial derivative operator when

acting on C∞ germs.
In general, for any tangent vector v ∈ TpM, v can be equivalently viewed

as the differential operator taking directional derivatives along the “direction”
v. This point will become clearer in Problem 5 of Problem Sheet 1, where the
tangent space TpM is identified to be the space of equivalence classes of smooth
curves through p representing “directions”.

Example 1.9. For any point x ∈ Rn, TxRn is canonically identified as Rn since
Rn is parametrized by one natural coordinate chart and { ∂

∂x1 |x, · · · , ∂
∂xn |x} is

the universal natural basis of TxRn for all x ∈ Rn.

Remark 1.5. In the rest of the notes, sometimes we may use (U ;xi) to denote
a coordinate chart in order to emphasize the coordinates, or simply use U . We
may also frequently drop the notion of ϕ when doing calculation in a coordinate
chart (U,ϕ). So for example, we may simply write (1.1)

(df)p =

n∑
i=1

∂f

∂xi
(p)(dxi)p.

Equivalently, we can define tangent vector as linear derivation over Fp (the
space of C∞ germs).

Theorem 1.3. Let T̃pM to be the vector space of linear derivations over Fp,
i.e., the space of linear functionals X : Fp → R such that

X([f ] · [g]) = f(p)X([g]) + g(p)X([f ]).

Define the map
Φ : T̃pM → TpM

by
〈Φ(X), (df)p〉 := X([f ]), (df)p ∈ T ∗pM,

where [f ] is any representative of (df)p. Then Φ is well-defined, and it is a linear
isomorphism.
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Proof. To see that Φ is well-defined, it suffices to prove: for any X ∈ T̃pM, if
[f ] ∈ Hp, then X([f ]) = 0.

In fact, assume that [f ] ∈ Hp and take some representative f ∈ C∞p . Choose
a convex coordinate chart (U,ϕ) on which f is defined (this is always possible
by shrinking an arbitrary coordinate chart). Then by definition we know that

∂f

∂xi
(p) = 0, ∀i = 1, · · · , n.

For any x ∈ U, by convexity and the fundamental theorem of calculus, we have

f(x) = f(a) +

n∑
i=1

ˆ 1

0

∂f

∂xi
((1− t)p+ tx)(xi − pi)dt,

where (p1, · · · , pn) denotes the coordinate of p under (U,ϕ). Now for any i =
1, · · · , n, define gi, hi ∈ C∞p by

gi(x) =

ˆ 1

0

∂f

∂xi
((1− t)p+ tx)dt, hi(x) = xi − pi.

It follows that

f(x) = f(a) +

n∑
i=1

gi(x)hi(x),

and
gi(p) = hi(p) = 0, ∀i = 1, · · · , n.

On the other hand, since

X([1]) = X([1] · [1]) = 2X([1])

and
X([c]) = X(c[1]) = cX([1]), ∀c ∈ R,

we know that X annihilates constant germs. Therefore, by linearity and the
derivation property, we have

X([f ]) = 0.

The linearity and injectivity of Φ follows directly from definition.
To see that Φ is surjective, let v ∈ TpM, and define

X : Fp → R

by
X([f ]) := 〈v, (df)p〉,

Then by Corollary 1.1 we know that X ∈ T̃pM. It is then obvious that

v = Φ(X).

Therefore, Φ is a linear isomorphism.
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One might wonder how the natural basis of T ∗pM or TpM transforms under
change of coordinates. In fact, this is an easy consequence of Corollary 1.2.

Proposition 1.2. If (U,ϕ) and (V, ψ) are two coordinate charts around p, then
for any i = 1, · · · , n,

(dyi)p =

n∑
j=1

∂yi

∂xj
(p)(dxj)p,

∂

∂yi
|p =

n∑
j=1

∂xj

∂yi
(p)

∂

∂xj
|p,

where (x1, · · · , xn) and (y1, · · · , yn) are coordinates under (U,ϕ) and (V, ψ)
respectively.

Therefore, if α ∈ T ∗pM with

α =

n∑
i=1

λi(dx
i)p =

n∑
j=1

µj(dy
j)p,

then

µj =

n∑
i=1

λi
∂xi

∂yj
, ∀j = 1, · · · , n.

Similarly, if v ∈ TpM with

v =

n∑
i=1

ai
∂

∂xi
|p =

n∑
j=1

bj
∂

∂yj
|p,

then

bj =

n∑
i=1

ai
∂yj

∂xi
.

1.3 The differential of C∞ map and submanifolds
The notion of cotangent and tangent spaces enables us to linearize a C∞ map
locally. This is crucial in the study of manifolds.

Definition 1.10. Let F : M → N be a C∞ map between manifolds M,N. Fix
p ∈ M and let q = F (p). The pullback of cotangent vectors by F at p is the
linear map

F ∗ : T ∗qN → T ∗pM

defined by
F ∗((df)q) = (d(f ◦ F ))p.

The differential of F at p is the dual map of F ∗, usually denoted by (dF )p.
More precisely,

〈(dF )p(v), α〉 = 〈v, F ∗(α)〉, ∀v ∈ TpM,α ∈ T ∗qN.
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Assume that dimM = m, dimN = n. Under coordinate charts (U,ϕ) around
p and (V, ψ) around q, F is represented by

yα = Fα(x1, · · · , xm), α = 1, · · · , n.

For any f ∈ C∞q , we have

∂f ◦ F
∂xi

(p) =

n∑
α=1

∂f

∂yα
(q)

∂Fα

∂xi
(p), for all i.

It is then easy to see that F ∗ is well-defined. Moreover, by Corollary 1.1,

F ∗((dyα)q) =

m∑
i=1

∂Fα

∂xi
(p)(dxi)p, for all α,

and by duality,

(dF )p(
∂

∂xi
|p) =

n∑
α=1

∂Fα

∂xi
(p)(

∂

∂yα
|q), for all i.

Therefore, under the natural basis, the matrices of F ∗ and (dF )p are just the
Jacobian (∂F

α

∂xi (p)).
It follows immediately from the definition that if F : M → N and G : N →

P are C∞ maps between manifolds and q = F (p), then

(G ◦ F )∗ = F ∗ ◦G∗,

and
(d(G ◦ F ))p = (dG)q ◦ (dF )p. (1.2)

Example 1.10. Let γ : I →M be a smooth curve on M. For any t ∈ I,

(dγ)t(
∂

∂t
|t) ∈ Tγ(t)M

is called the tangent vector of γ at t.

Example 1.11. If F : Rm → Rn, then (dF )x is given by the linear map

v 7→ d

dε
|ε=0F (x+ εv), v ∈ Rm,

where we identify TxRm and TF (x)Rn to be Rm and Rn in the canonical way,
respectively.

Definition 1.11. If (dF )p is injective, dF is called nonsingular at p. Of course
this definition implies that dimM 6 dimN.

If F is a diffeomorphism, then dF is an isomorphism everywhere from the
chain rule (1.2) applied to F−1 ◦ F = idM . Conversely, by the inverse function
theorem, we have the following local result.
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Theorem 1.4. Let F : M → N be a C∞ map between two manifolds M,N
of the same dimension, and let p ∈ M. If (dF )p is an isomorphism, then there
exists open neighborhoods U of p and V of q = f(p), such that F (U) ⊂ V and
F |U : U → V is a diffeomorphism.

Proof. Choose coordinate charts (U0, ϕ) around p and (V0, ψ) around q, such
that F (U0) ⊂ V0. Then by assumption the Jacobian of F at p under these
coordinate charts is nonsingular. It follows from the inverse function theorem
that there exists open neighborhoods Ũ ⊂ ϕ(U0) of ϕ(p) and Ṽ ⊂ ψ(V0) of ψ(q),
such that

F̃ = ψ ◦ F ◦ ϕ−1 : Ũ → Ṽ

is a diffeomorphism. Take

U = ϕ−1(Ũ), V = ψ−1(Ṽ ),

then
F = ψ−1 ◦ F̃ ◦ ϕ : U → V

is a diffeomorphism.

Definition 1.12. Let F : M → N be a C∞ map between two manifolds of the
same dimension. If for any p ∈ M, there exists an open neighborhood U of p,
such that F (U) is open in N and

F |U : U → F (U)

is a diffeomorphism, then F is called a local diffeomorphism.

Remark 1.6. Theorem 1.4 tells us that if dF is an isomorphism everywhere,
then F is a local diffeomorphism. However, F may fail to be a diffeomorphism.
One can consider the map

F : R→ S1

given by
F (x) = eix.

However, if F : M → N is C∞, bijective, and dF is nonsingular everywhere,
then F is a diffeomorphism (we don’t need to assume that M and N have the
same dimension–it can be proved!). The proof of this result relies heavily on
the second countability of the manifold topology. We will leave the challenging
proof as an exercise (one can consult [5] for some hints).

Another application of the inverse function theorem is the following descrip-
tion of the local geometry of a C∞ map F : M → N at some point p where dF
is nonsingular.

Theorem 1.5. Let M,N be two manifolds with m = dimM < n = dimN.
If the differential of a C∞ map F : M → N is nonsingular at p ∈ M, then

13



there exists cubic coordinate charts (U,ϕ) centered at p and (V, ψ) centered at
q = F (p), such that

F (U) = ψ−1{y ∈ ψ(V ) : yi = 0 for all m+ 1 6 i 6 n} ⊂ V,

and for any p′ ∈ U, {
yi(F (p′)) = xi(p′), 1 6 i 6 m;

yi(F (p′)) = 0, m+ 1 6 i 6 n,

where xi, yi are coordinates under U, V respectively.

Proof. Choose coordinate charts (U0, ϕ) around p and (V0, ψ0) around q, such
that F (U0) ⊂ V0. Under these coordinate charts, the Jacobian of F at p has
rank m. By a permutation of the coordinates under V0, we may assume that
the matrix

(
∂yi

∂xj
(p))16i,j6m

is nonsingular, where under U0, V0,

yi = F i(x1, · · · , xm), i = 1, · · · , n.

Now define a C∞ map

Φ : ϕ(U0)× Rn−m → ψ0(V0)

by

(x1, · · · , xm, w1, · · · , wn−m) 7→ (y1, · · · , ym, w1 + ym+1, · · · , wn−m + yn).

Then
∂Φ

∂(x,w)
((p, 0)) =

(
( ∂y

i

∂xj (p))16i,j6m 0
∗ Idn−m

)
,

which is again nonsingular. It follows from the inverse function theorem that
we can find a cube Ṽ in ϕ(U0) × Rn−m centered at (ϕ(p), 0) and some open
neighborhood V ⊂ ψ0(V0) of ψ(q), such that

Φ|Ṽ : Ṽ → V

is a diffeomorphism. Finally, the cubic coordinate charts

(U = {x ∈ ϕ(U0) : (x, 0) ∈ Ṽ }, ϕ)

and
(V = ψ−1

0 ◦ Φ(Ṽ ), ψ = Φ−1 ◦ ψ0)

are desired.

14



Theorem 1.5 tells us that if (dF )p is nonsingular, then we can parametrize
p and F (p) by cubes U and V such that F (U) is a slice of V. In particular, F is
injective near p.

It should be pointed out that if we look at the whole image F (M) inside the
cube V, it may far from being a slice or a union of slices, even in the case of
submanifold.

Definition 1.13. Let ϕ : M → N be a C∞ map between manifolds M,N.
(1) If (dϕ) is nonsingular everywhere, then ϕ is called an immersion.
(2) If ϕ is an injective immersion, then (M,ϕ) is called a submanifold of N.
(3) If (M,ϕ) is a submanifold of N, and ϕ : M → ϕ(M) is a homeomorphism

(the topology of ϕ(M) ⊂ N is the relative topology), then (M,ϕ) is called an
embedding.

In the case of embedding, the local geometry becomes very simple: U, V can
be chosen such that ϕ(M) ∩ V is the single slice ϕ(U). In fact, we have the
following result.

Theorem 1.6. Let (M,ϕ) be anm-dimensional submanifold of an n-dimensional
manifold N (m < n). Then (M,ϕ) is an embedding if and only if for any p ∈M,
there exists cubic coordinate charts U centered at p and V centered at q = ϕ(p)
with properties described in Theorem 1.5 and ϕ(U) = ϕ(M) ∩ V.

Proof. “⇒”. First of all, by Theorem 1.5, there exists cubic coordinate charts
U0 centered at p and V0 centered at q = F (p) with properties in the Theorem.
Since (M,ϕ) is an embedding, ϕ(U0) is an open set in ϕ(M), and hence there
exists some open set V1 ⊂ V0, such that

ϕ(U0) = ϕ(M) ∩ V1.

Now we can take some small cube V ⊂ V1 centered at q and take U to be the
slice ϕ(U0) ∩ V . U, V will satisfy the desired properties.

“⇐”. For any p ∈ M , by assumption we know that there exists some coor-
dinate chart (V0; yα) around q = ϕ(p), such that ϕ(M) ∩ V0 is characterized by
the equations

{y ∈ V0 : ym+1 = · · · = yn = 0}.

To see ϕ−1 : ϕ(M) → M is continuous, it suffices to show that for any co-
ordinate chart (U ;xi) of p, there exists some open neighborhood V of q, such
that

ϕ−1(ϕ(M) ∩ V ) ⊂ U. (1.3)

By the continuity of ϕ we may further assume ϕ(U) ⊂ V0. It follows that under
U and V0, ϕ is given by

yα =

{
ϕα(x1, · · · , xm), 1 6 α 6 m;

0, m+ 1 6 α 6 n.
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Since (dϕ)p is nonsingular,

(
∂yα

∂xi
(p))16α,i6m

is nonsingular. By the inverse function theorem,

yα = ϕα(x1, · · · , xm), α = 1, · · · ,m,

has a C∞ inverse near q on the hyperspace ϕ(M)∩V0, which is exactly the map
ϕ−1. In particular, we can choose some small cube V ⊂ V0 centered at q, such
that (1.3) holds.

So far we have discussed the local geometry of submanifolds, but haven’t
mentioned anything about the global topology.

Assume that (M,ϕ) is a submanifold of N, then ϕ(M) ⊂ N has a natural
differential structure induced by ϕ : M → ϕ(M), such that (ϕ(M), i) is a
submanifold of N , where i is the inclusion. However, the manifold topology of
ϕ(M) may not be the same as the relative topology. The case of embedding is
exactly the case when these two topologies coincide.

Now let A be a nonempty subset of a manifold M . The following is a
uniqueness theorem for the differential structure on A, related to its global
topology, such that (A, i) is a submanifold of M, where i is the inclusion. We
are not going to proof this result, one can refer to [5] for a sketch.

Theorem 1.7. (1) If there exists two differential structures on A, such that
(A, i) is a submanifold of M and they induce the same manifold topology on A,
then these two differential structures are the same.

(2) If there exists a differential structure on A, such that (A, i) is a subman-
ifold of M and the induced manifold topology is the relative topology, then this
is the unique manifold structure on A such that (A, i) is a submanifold of M.
In this case, (A, i) is an embedding.

Many important examples of manifolds arise from the implicit function the-
orem. Intuitively, if we solve n equations with m variables (m > n), then we
obtain a manifold of dimension m − n. But the solvability of these equations
requires some kind of nondegeneracy on the differential of the system.

Theorem 1.8. Let F : M → N be a C∞ map between manifolds M,N of
dimension m,n respectively (m > n). Let q ∈ N and assume that for any
p ∈ F−1(q) 6= ∅, (dF )p is surjective. Then P = F−1(q) has a unique differen-
tial structure such that (P, i) is a submanifold of M, where i is the inclusion.
Moreover, under this differential structure

dimP = m− n,

and (P, i) is an embedding.
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Proof. We are going to construct a differential structure on P of dimensionm−n,
such that (P, i) is a submanifold of M and the induced manifold topology is the
relative topology. It then follows from the second part of Theorem 1.7 that this
is the unique differential structure on P such that (P, i) is a submanifold of M,
and it is in fact an embedding.

The construction is again benefited from the inverse function theorem. Fix
a coordinate chart (V ; yα) around q. For any p ∈ P, choose a coordinate chart
(U ′p;x

i) around p such that F (U ′p) ⊂ V. Since (dF )p is surjective, by a permu-
tation of the x coordinates we may assume that

(
∂yα

∂xi
(p))16α,i6n

is nonsingular, where

yα = Fα(x1, · · · , xm), 1 6 α 6 n.

Define F : U ′p → V × Rm−n by

F (x1, · · · , xn, xn+1, · · · , xm) = (y1, · · · , yn, xn+1, · · · , xm).

It follows that the Jacobian of F is nonsingular at p. By the inverse func-
tion theorem, we can choose some cube (Up, ϕ) centered at F (x1, · · · , xm) to
parametrize p ∈ M locally. Moreover, under such parametrization, P ∩ Up is
exactly the (m− n)-dimensional slice

{(y1, · · · , yn, xn+1, · · · , xm) ∈ Up : yα = yα(q) for all 1 6 α 6 n}

of the cube Up. Since (Up, ϕ) is a coordinate chart around p in M, by restriction
it is obvious that under the relative topology on P, (P ∩ Up, ϕ|P∩Up) is also a
coordinate chart around p in P (in the sense of Remark 1.2). Moreover, since
{Up}p∈P is C∞ compatible on M, by restriction it follows immediately that
{P ∩Up}p∈P is an atlas on P. Therefore, from Remark 1.2 it defines a differential
structure on P of dimension m− n, whose induced manifold topology coincides
with the original topology, namely, the relative topology. Under such differential
structure, for any p ∈ P, under Up the inclusion i is just the inclusion of the
slice P ∩Up into the cube Up. Therefore, di is nonsingular at p, and hence (P, i)
is a submanifold of M.

Remark 1.7. From the proof of Theorem 1.8, it is not hard to see that for any
p ∈ P,

(di)p(TpP ) = Ker(dF )p ⊂ TpM.

Example 1.12. Consider F : Rn+1 → R defined by

F (x0, x1, · · · , xn) =

n∑
i=0

(xi)2,
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then for any x ∈ F−1(1), the Jacobian of F at x is

2(x0, · · · , xn)T ,

which is of rank 1. Therefore, (dF )x is surjective. By Theorem 1.8, (F−1(1) =
Sn, i) is a submanifold of Rn+1. By Theorem 1.7 this differential structure is the
same as the one introduced in Example 1.2, since they are both submanifolds
of Rn+1 with the same manifold topology–the relative topology.

Example 1.13. Let GL(n;R) be the group of n × n real invertible matrices.
This is an open subset of Mat(n;R) ∼= Rn2

, the space of n × n real matrices.
Therefore, GL(n;R) is an n2-dimensional manifold. Let O(n) be the group of
orthogonal matrices of order n, i.e.,

A ∈ O(n) ⇐⇒ ATA = I.

We are going to show that (O(n), i) is an n(n−1)
2 -dimensional submanifold of

GL(n;R). Define
F : GL(n;R)→ Sym(n)

by
F (A) = ATA,

where Sym(n) denotes the n(n+1)
2 -dimensional vector space of n × n real sym-

metric matrices. Then for any A ∈ F−1(I), by Example 1.11,

(dF )A : Mat(n;R)→ Sym(n)

is given by

(dF )A(K) =
d

dε
|ε=0F (A+ εK) = ATK +KTA.

For any S ∈ Sym(n), let K = AS
2 , then we have

(dF )A(K) = S.

Therefore, (dF )A is surjective. By Theorem 1.8, (O(n), i) is as submanifold of
GL(n;R) of dimension n(n−1)

2 .

1.4 Vector fields and the tangent bundle
We have defined tangent vector at one point. If for any point on the manifold,
we assign a tangent vector at this point, then we obtain a vector field.

Definition 1.14. Let M be a manifold. A vector field X on M is a collection
{Xp}p∈M of tangent vectors such that

Xp ∈ TpM, ∀p ∈M.
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Let X be a vector field. For any p ∈ M, Xp can be regarded as a linear
derivation on the space of C∞ germs at p. Therefore, for f ∈ C∞(M),

(Xf)(p) = Xp([f ]), p ∈M,

defines a real function on M.

Definition 1.15. If for any f ∈ C∞(M), Xf ∈ C∞(M), then X is called a
smooth vector field. The space of smooth vector fields on M is denoted by
X(M).

On the other hand, for any coordinate chart (U ;xi), X|U can be expressed
by

Xx =

n∑
i=1

ai(x)
∂

∂xi

for some real functions ai(x) defined on U .

Theorem 1.9. X is a smooth vector field onM if and only if for any coordinate
chart (U ;xi), ai(x) ∈ C∞(U) for all i = 1, · · · , n.

Proof. “⇒”. For any coordinate chart (U ;xi), the coordinate functions xi ∈
C∞(U). For fixed p ∈ U, we may use a bump function (see Example 1.6) to
extend xi from some open neighborhood of p to a C∞ function x̃i defined on
M. It follows that

ai(x) = Xxx̃
i

near p. Therefore, ai(x) is smooth at p.
“⇐”. Let f ∈ C∞(M). For any p ∈ M , choose a coordinate chart (U ;xi)

around p. It follow that under U, Xf is given by

(Xf)(x) =

n∑
i=1

ai(x)
∂f

∂xi
(x), x ∈ U.

By assumption, we know that Xf is smooth at p.

Let X be a smooth vector field on M. Then the induced linear operator
X : C∞(M)→ C∞(M) satisfies the derivation property:

X(fg) = fXg + gXf, ∀f, g ∈ C∞(M). (1.4)

We are going to show that, any such linear operator X arises from a smooth
vector field. To see that, we first show that X is a local operator, namely, if
f = 0 on some open set U , then Xf = 0 on U . Indeed, for any p ∈ U, choose
some open neighborhood W of p with W compact and W ⊂ U, let h ∈ C∞(M)
be such that

h(q) =

{
1, q ∈W
0, q /∈ U.
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It follows that hf ≡ 0 on M , and by (1.4) we have

0 = X(hf)(p) = h(p)(Xf)(p) + f(p)(Xh)(p) = (Xf)(p).

Therefore, Xf = 0 on U. Now for any p ∈M, and [f ] ∈ Fp, define

Xp([f ]) = (Xf̃)(p),

where f̃ ∈ C∞(M) is an extension of a representative f ∈ [f ] from an open
neighborhood of p to the manifold M. It follows from the previous discussion
that Xp is well-defined and Xp ∈ TpM (in the sense of Theorem 1.3). More-
over, {Xp}p∈M defines a smooth vector field on M such that the induced linear
operator on C∞(M) is X.

By using the language of (infinite dimensional) vector space, this correspon-
dence is a linear isomorphism.

The space X(M) of smooth vector fields on M carries a product structure
which turns X(M) into a Lie algebra.

Definition 1.16. LetX,Y be two smooth vector fields onM. Their Lie bracket
[X,Y ], is define to be the linear operator

[X,Y ] : C∞(M) → C∞(M),

f 7→ XY f − Y Xf.

From the definition it is immediate that [X,Y ] satisfies the derivation prop-
erty (1.4). Therefore, by the previous discussion we know that [X,Y ] is again a
smooth vector field.

Moreover, we have the following easy algebraic properties about the Lie
bracket. It indicates that (X(M),+, [·, ·]) is a Lie algebra.

Proposition 1.3. Let X,Y, Z ∈ X(M) and f, g ∈ C∞(M). Then
(1) [X,Y ] = −[Y,X];
(2) [X + Y,Z] = [X,Z] + [Y, Z];
(3) [fX, gY ] = f(Xg)Y − g(Y f)X + fg[X,Y ];
(4) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
Here fX is the smooth vector field {f(p)Xp}p∈M , or equivalently,

(fX)(ϕ) = f(Xϕ), ϕ ∈ C∞(M).

Proof. Straight forward by definition.

Under a coordinate chart (U ;xi), from the Definition 1.16 it is obvious that
the coordinate vector fields { ∂

∂x1 , · · · , ∂
∂xn } satisfy:

[
∂

∂xi
,
∂

∂xj
] = 0, ∀i, j = 1, · · · , n.

Therefore, for smooth vector fields X,Y on U, if

Xx =

n∑
i=1

ai(x)
∂

∂xi
, Yx =

n∑
j=1

bj(x)
∂

∂xj
, x ∈ U,
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by Proposition 1.3 [X,Y ] is given by

[X,Y ]x =

n∑
i=1

ci(x)
∂

∂xi
,

where

ci(x) =

n∑
j=1

(aj(x)
∂bi

∂xj
(x)− bj(x)

∂ai

∂xj
(x)), i = 1, · · · , n.

It is natural and convenient to look at vector fields from the view of the tan-
gent bundle. The notion of fibre bundles is very important for us to understand
global properties on the geometry and topology of a manifold. Later on we will
come to the study of fiber bundles in the context of de Rham cohomology.

Now we construct the tangent bundle TM over a manifoldM. The construc-
tion is geometrically intuitive.

Let
TM = ∪p∈MTpM

be the set of tangent vectors at any point on M. We are going to introduce a
canonical differential structure on TM induced by the one onM, such that TM
is a manifold of dimension 2n.

Fix an atlas {(Uα, ϕα) : α ∈ A} in the differential structure of M . For any
α ∈ A, we define the map

Φα : Eα = ∪p∈UαTpM → ϕα(Uα)× Rn

by
v 7→ (x1, · · · , xn, a1, · · · , an),

where (x1, · · · , xn) is the coordinates of p ∈ Uα such that v ∈ TpM , and
(a1, · · · , an) is the coordinates of v under the natural basis { ∂

∂x1 |p, · · · , ∂
∂xn |p} of

TpM. Φα is a bijection because ϕα is bijective and each TpM (p ∈ Uα) is canon-
ically isomorphic to Rn under the natural basis. Now we are going to show
that {(Eα,Φα) : α ∈ A} defines an atlas on TM. In fact, for any α, β ∈ A,
Φα(Eα ∩ Eβ) is the open set

ϕα(Uα ∩ Uβ)× Rn ⊂ R2n,

and the change of coordinates

Φβ ◦ Φ−1
α : ϕα(Uα ∩ Uβ)× Rn → ϕβ(Uα × Uβ)× Rn

is given by

yi = (ϕβ ◦ ϕ−1
α )i(x1, · · · , xn), bi =

n∑
j=1

aj
∂yi

∂xj
, i = 1, · · · , n.

This is obviously C∞ with C∞ inverse since {(Uα, ϕα) : α ∈ A} is an atlas
on M and ( ∂y

i

∂xj )16i,j6n is nonsingular everywhere in ϕα(Uα ∩ Uβ). Therefore,
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{(Eα,Φα) : α ∈ A} is an atlas on TM, which defines a differential structure
on TM of dimension 2n. It is not hard to see that this differential structure is
independent of the choice of {(Uα, ϕα) : α ∈ A} on M. Moreover, from the
construction we can show that the manifold topology of TM is Hausdorff and
has a countable base of open sets. This is left as an exercise.

Let π : TM → M be the natural projection, i.e., π(v) = p if v ∈ TpM.
It follows that π is a surjective C∞ map. For any p ∈ M , the vector space
π−1(p) = TpM is called the fiber of TM over p.

Definition 1.17. A section of TM is a C∞ map X : M → TM such that

π ◦X = idM .

By definition, a section of TM is just a smooth vector field on X. Since
each fiber of TM is a vector space (tangent space), the zero section is well-
defined. Moreover, by using bump functions we can construct nontrivial sections
of TM. However, TM does not necessarily have an everywhere nonzero section!
Equivalently, not every manifold M has a non-vanishing smooth vector field.
This issue is closely related to the topology of the manifold. For example, later
on we will prove that the n-sphere Sn has a non-vanishing smooth vector field
if and only if n is odd, (this is known as the Hairy Ball Theorem) while the
n-dimensional torus (or more generally, every Lie group) has a non-vanishing
smooth vector field.

In exactly the same way, we can construct the cotangent bundle T ∗M . For
any f ∈ C∞(M), since (df)p ∈ T ∗pM for every p, f induces a section of T ∗M.
This section, denoted by df, is called the differential of f. However, not every
section of T ∗M arises from a C∞ function in this way.

2 Differential forms and integration on manifolds

2.1 Tensor products
The analysis of tensor fields, in particular, of differential forms on a manifold is
fundamental in the study of differential geometry. To understand the concept
of tensor fields, we first need to study tensor products.

Definition 2.1. Let V and W be two real vector spaces. The tensor product
of V and W is a real vector space T together with a bilinear map (i.e., linear in
each component)

ϕ : V ×W → V ⊗W,

such that the following universal property holds: if Z is a real vector space
and f : V ×W → Z is a bilinear map, then there exists a unique linear map
g : T → Z, such that

f = g ◦ ϕ.

22



The tensor product is unique up to unique isomorphism. More precisely, if
(T ′, ϕ′) is another real vector space with a bilinear map satisfying the previous
universal property, then there exists a unique isomorphism i : T → T ′, such
that

ϕ′ = i ◦ ϕ.

We are not going to prove this algebraic result–it is just a manipulation of
the definition. We will use (V ⊗W,⊗) to denote the tensor product of V and
W with the bilinear map (up to unique isomorphism).

Remark 2.1. It is the properties of the tensor product which are more important
than what it is (as we use the properties of real numbers very naturally, we
seldom remind ourselves that they are equivalence classes of Cauchy sequences
of rationals).

We are going to construct the tensor product explicitly, in a relatively sim-
ple and conceivable way. From now on we assume that V and W are finite-
dimensional real vector spaces.

For convenience we first construct V ∗⊗W ∗, where V ∗ and W ∗ are the dual
space of V and W respectively.

Let L(V,W ) be the space of bilinear functionals f : V × W → R. For
v∗ ∈ V ∗ and w∗ ∈W ∗, define

v∗ ⊗ w∗ : V ×W → R

by
v∗ ⊗ w∗(v, w) = v∗(v)w∗(w), (v, w) ∈ V ×W.

It is easy to see that v∗⊗w∗ ∈ L(V,W ). Moreover, ⊗ is bilinear from V ∗×W ∗
to L(V,W ). V ∗ ⊗W ∗ is defined to be the subspace of L(V,W ) spanned by the
elements of the form v∗ ⊗ w∗, where v∗ ∈ V ∗, w∗ ∈W ∗.

It should be noticed that not all the elements in V ∗ ⊗W ∗ are of the form
v∗ ⊗ w∗. For example, v∗ ⊗ v∗ + w∗ ⊗ w∗ is usually not a monomial.

Fix a basis {ai : i = 1, · · · ,m} of V and {bα : α = 1, · · · , n} of W respec-
tively. Then for any v∗, w∗, under the corresponding dual basis {a∗i} and {b∗α},
we have the expression

v∗ =

m∑
i=1

v∗(ai)a
∗i, w∗ =

n∑
α=1

w∗(bα)b∗α.

Therefore, from the bilinearity of ⊗ we know that V ∗ ⊗ W ∗ is spanned by
{a∗i ⊗ b∗α : 1 6 i 6 m, 1 6 α 6 n}. Moreover, this is a basis of V ∗ ⊗W ∗ since
it is obvious that they are linearly independent.

Theorem 2.1. V ∗ ⊗ W ∗ = L(V,W ). Moreover, V ∗ ⊗ W ∗ together with the
bilinear map ⊗ : V ∗×W ∗ → V ∗⊗W ∗ satisfies the universal property introduced
before, and hence (V ∗ ⊗W ∗,⊗) is the tensor product of V ∗ and W ∗.
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Proof. For any f ∈ L(V,W ), we can write

f =
∑
i,α

f(ai, bα)a∗i ⊗ b∗α.

Therefore, V ∗ ⊗W ∗ = L(V,W ).
To prove the universal property, assume that Z is a real vector space and

f : V ∗ ×W ∗ → Z is a bilinear map. Define g by specifying its values on the
basis:

g(a∗i ⊗ b∗α) = f(a∗i, b∗α), for all i and α. (2.1)

Then for any v∗ ∈ V ∗, w∗ ∈W ∗, we have

g ◦ ⊗(v∗, w∗) = g(v∗ ⊗ w∗)
=

∑
i,α

v∗(ai)w
∗(bα)g(a∗i ⊗ b∗α)

=
∑
i,α

v∗(ai)w
∗(bα)f(a∗i, b∗α)

= f(v∗, w∗).

Moreover, g is uniquely determined by f since it is determined by (2.1) on the
basis {a∗i ⊗ b∗α}, if it satisfies

f = g ◦ ⊗.

Therefore, (V ∗ ⊗W ∗,⊗) satisfies the universal property of tensor product.

Since V can be regarded as the dual space of V ∗ (and the same for W ), we
can define V ⊗W in exactly the same way. It turns out that

V ⊗W = L(V ∗,W ∗)

with basis {ai ⊗ bα : 1 6 i 6 m, 1 6 α 6 n} and the dimension of V ⊗W is
again mn.

V ∗ ⊗W ∗ is the dual space of V ⊗W in a natural way, if we define

v∗ ⊗ w∗(v ⊗ w) = v∗(v)w∗(w). (2.2)

It follows that {a∗i ⊗ b∗α} is the dual basis of {ai ⊗ bα}.
Now assume that V,W,Z are finite-dimensional real vector spaces. Similarly,

we can define V ⊗W ⊗ Z as the linear subspace of L(V ∗,W ∗, Z∗) spanned by
the elements of the form v⊗w⊗z, where L(V ∗,W ∗, Z∗) is the space of trilinear
functionals f : V ∗ ×W ∗ × Z∗ → R. It is not hard to show that

V ⊗W ⊗ Z = L(V ∗,W ∗, Z∗),

and (V ⊗W )⊗Z, V ⊗(W ⊗Z) are both isomorphic to V ⊗W ⊗Z.We will leave
these algebraic details as an exercise. More generally, for finite-dimensional real
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vector spaces V1, · · · , Vn, we can define their tensor product V1 ⊗ · · · ⊗ Vn. It
turns out that (V1 ⊗ · · · ⊗ Vn,⊗ · · ·⊗) is the unique vector space and unique
n-linear map (up to unique isomorphism) satisfying the universal property: if
Z is a real vector space and f : V1 × · · · × Vn → Z is an n-linear map, then
there exists a unique linear map g : V1 ⊗ · · · ⊗ Vn → Z such that

f = g ◦ (⊗ · · ·⊗).

If {e(l)
i : 1 6 i 6 kl} is a basis of Vl, then {e(1)

i1
⊗ · · · ⊗ e(n)

in
: 1 6 il 6 kl, 1 6

l 6 n} is a basis of V1 ⊗ · · · ⊗ Vn.
Now let V be an n-dimensional real vector space.

Definition 2.2. Elements in the tensor product

V rs = V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

are called an (r, s)-type tensors. In particular, elements in V r0 are called
contravariant tensors of degree r, and elements in V 0

s are called covariant
tensors of degree s. Usually we use T r(V ) to denote V r0 , and use T s(V ∗) to
denote V 0

s . Conventionally, T 0(V ) = T 0(V ∗) = R.

From the previous explicit construction of tensor product, we know that

V rs = L(V ∗, · · · , V ∗, V, · · · , V ). (2.3)

Moreover, if {ei : i = 1, · · · , n} is a basis of V, then

{ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e∗js : 1 6 i1, · · · , ir, j1, · · · , js 6 n} (2.4)

is a basis of V rs . If x is an (r, s)-type tensor, then x can be uniquely expressed
as

x =
∑

16i1,··· ,ir6n
16j1,··· ,js6n

xi1···irj1···jsei1 ⊗ · · · ⊗ eir ⊗ e
∗j1 ⊗ · · · ⊗ e∗js , (2.5)

where by (2.3) and the duality (2.2),

xi1···irj1···js = x(e∗i1 , · · · , e∗ir , ej1 , · · · , ejs)
= e∗i1 ⊗ · · · ⊗ e∗ir ⊗ ej1 ⊗ · · · ⊗ ejs(x).

(xi1···irj1···js)16i1,··· ,ir6n
16j1,··· ,js6n

are called the coordinates of x under the basis (2.4).

It is usually convenient to introduce the Einstein summation convention.
More precisely, if some index appears as a superscript and a subscript at a single
expression, then they are automatically summed over the domain of the index.
For example, we can write (2.5) as

x = xi1···irj1···jsei1 ⊗ · · · ⊗ eir ⊗ e
∗j1 ⊗ · · · ⊗ e∗js .
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In the rest of the notes we will always use the Einstein summation convention,
unless we want to emphasize the domain of the index.

Now a natural question is what the change of coordinates formula looks
like for (r, s)-type tensors. This is not hard to derive from the multi-linearity
structure of tensors.

Proposition 2.1. Let {ei : i = 1, · · · , n} be another basis of V, and let (aji ) be
the transition matrix between the two basis, i.e.,

ei = ajiej .

Then for any (r, s)-type tensor x ∈ V rs , the change of coordinates formula be-
tween the corresponding two basis of V rs is given by

xi1···irj1···js = xk1···krl1···ls β
i1
k1
· · ·βirkra

l1
j1
· · · alsjs , (2.6)

where (βij) is the inverse of (aij).

Proof. By the multi-linearity of tensors we have

x = xk1···krl1···ls ek1 ⊗ · · · ⊗ ekr ⊗ e
∗l1 ⊗ · · · ⊗ e∗ls

= xk1···krl1···ls (βi1k1ei1)⊗ · · · ⊗ (βirkreir )⊗ (al1j1e
∗j1)⊗ · · · ⊗ (alsjse

∗js)

= xk1···krl1···ls β
i1
k1
· · ·βirkra

l1
j1
· · · alsjsei1 ⊗ · · · ⊗ eir ⊗ e

∗j1 ⊗ · · · ⊗ e∗js .

Therefore, the change of coordinates formula (2.6) follows immediately.

Remark 2.2. From the formula (2.6) we can see why we call the “V ” compo-
nents as contravariant and the “V ∗” components as covariant: the change of
coordinates for the “V ” part (the super indexes) is given by the inverse of the
transition matrix (aij), while the change of coordinates for the “V ∗” part (the
sub indexes) is given by the original transition matrix.

One can define the tensor product of tensors of different type. Let x ∈ V r1s1
and y ∈ V r2s2 , then x⊗ y is defined to be the (r1 + r2, s1 + s2)-type tensor given
by

x⊗ y(v∗1, · · · , v∗r1+r2 , v1, · · · , vs1+s2)

=x(v∗1, · · · , v∗r1 , v1, · · · , vs1)y(v∗r1+1, · · · , v∗r1+r2 , vs1+1, · · · , vs1+s2).

Under a basis the coordinates of x⊗ y is given by

(x⊗ y)
i1···ir1+r2
j1···js1+s2

= x
i1···ir1
j1···js1

y
ir1+1···ir1+r2
js1+1···js1+s2

.

It is easy to see that such tensor product operator is bilinear and associative.
Consider the direct sum of real vector spaces

T (V ) = ⊕r>0T
r(V ).
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Elements of T (V ) is of the form

x =
∑
r>0

xr,

where xr ∈ T r(V ) and there are all but finitely many nonzero terms in the
sum. Besides the linear structure, T (V ) carries a product structure naturally
induced by ⊗ : T r1(V ) × T r2(V ) → T r1+r2(V ), which is defined previously.
More precisely,

x⊗ y =
∑
r>0

∑
r1+r2=r

xr1 ⊗ yr2 . (2.7)

It turns out that T (V ) is an algebra over R, which is called the tensor algebra
over V.

Let Sr be the permutation group of order r (r > 1). Recall that the sign
of a permutation σ ∈ Sr, denoted by sgn(σ), is the parity of the number of
inversions for σ, i.e., of pairs (i, j) with i < j and σ(i) > σ(j). For any σ ∈ Sr,
we can define a linear transformation σ : T r(V )→ T r(V ) by

(σx)(v∗1, · · · , v∗r) = x(v∗σ(1), · · · , v∗σ(r)),

where x ∈ T r(V ) and (v∗1, · · · , v∗r) ∈ V ∗×· · ·×V ∗. It is easy to see that when
acting on a monomial v1 ⊗ · · · ⊗ vr,

σ(v1 ⊗ · · · ⊗ vr) = vσ−1(1) ⊗ · · · ⊗ vσ−1(r).

Definition 2.3. A contravariant tensor x ∈ T r(V ) is called symmetric if

σx = x, ∀σ ∈ Sr.

x is called antisymmetric if

σx = sgn(σ) · x, ∀σ ∈ Sr.

The space of symmetric (antisymmetric, respectively) tensors in T r(V ) is de-
noted by P r(V ) (Λr(V ), respectively).

By definition, it is easy to see that x is symmetric if and only if under some
basis {ei : i = 1, · · · , n} of V, the coordinates of x are symmetric:

xi1···ir = xiσ(1)···iσ(r) , for all i1, · · · , ir and for all σ ∈ Sr.

Similar result holds for the antisymmetric case.
The spaces P r(V ) and Λr(V ) can be obtained by using the symmetrization

and antisymmetrization operators.
Define the linear operators Sr, Ar : T r(V )→ T r(V ) by

Sr(x) =
1

r!

∑
σ∈Sr

σx, Ar(x) =
1

r!

∑
σ∈Sr

sgn(σ) · σx. (2.8)

Then we have the following result.
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Proposition 2.2. P r(V ) = Sr(T
r(V )) and Λr(V ) = Ar(T

r(V )).

Proof. We only consider the antisymmetric case. Λr(V ) ⊂ Ar(T r(V )) is trivial
since for any x ∈ Λr(V ),

Ar(x) = x.

Now assume that

y =
1

r!

∑
σ∈Sr

sgn(σ) · σx ∈ Ar(T r(V )),

then for any τ ∈ Sr,

τy =
1

r!

∑
σ∈Sr

sgn(σ) · τσx

= sgn(τ) · 1

r!

∑
σ∈Sr

sgn(τσ) · τσx

= sgn(τ) · y.

Therefore, y ∈ Λr(V ).

Another convenient way of looking at antisymmetric tensors in T r(V ) is to
see how it acts on V ∗. More precisely, we have the following result.

Proposition 2.3. Let x ∈ T r(V ) = L(V ∗, · · · , V ∗). Then x ∈ Λr(V ) if and
only if x is an alternating r-linear functional in L(V ∗, · · · , V ∗), i.e.,

x(v∗1, · · · , v∗r) = 0

whenever v∗i = v∗j for some i 6= j.

Proof. x is an alternating r-linear functional if and only if for any (v∗1, · · · , v∗r) ∈
V ∗ × · · · × V ∗ and 1 6 i < j 6 r,

x(v∗1, · · · , v∗i, · · · , v∗j , · · · , v∗n) = −x(v∗1, · · · , v∗j , · · · , v∗i, · · · , v∗n).

Since any permutation σ ∈ Sr can be written as a product of finitely many
transpositions (2-element exchanges), it is also equivalent to the fact that for
any σ ∈ Sr,

x(v∗σ(1), · · · , v∗σ(r)) = sgn(σ) · x(v∗1, · · · , v∗r), ∀(v∗1, · · · , v∗) ∈ V ∗ × · · · × V ∗.

Remark 2.3. We can also define symmetric and antisymmetric covariant tensors
in T r(V ∗) is a similar way. The previous results can be easily formulated and
proved in the covariant case as well.
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2.2 The exterior algebra
Here we study the space of antisymmetric contravariant tensors in detail. Its
algebraic structure is fundamental in the study of differential forms.

Let V be an n-dimensional real vector space.

Definition 2.4. Λr(V ) is called the r-th exterior power of V . Elements in
Λr(V ) are called (exterior) r-vectors. Conventionally Λ0(V ) = R.

Of course we can multiply exterior vectors of different degree simply by
viewing them as elements in the tensor algebra T (V ) and using the algebraic
structure of T (V ). However, such multiplication of exterior vectors does not
necessarily give us exterior vectors again. An essential point of introducing
exterior vectors is that we can define an exterior product on exterior vectors
intrinsically.

Recall that Ar is the antisymmetrization operator defined in (2.8).

Definition 2.5. Let ξ ∈ Λk(V ) and η ∈ Λl(V ). The exterior product ξ ∧ η of
ξ and η is defined to be

ξ ∧ η =
(k + l)!

k!l!
Ak+l(ξ ⊗ η) ∈ Λk+l(V ).

The exterior product has the following basic properties.

Proposition 2.4. The exterior product

∧ : Λk(V )× Λl(V )→ Λk+l(V )

is bilinear and associative. Moreover, for any ξ ∈ Λk(V ), η ∈ Λl(V ),

ξ ∧ η = (−1)klη ∧ ξ.

Proof. Bilinearity is an immediate consequence of the linearity of the antisym-
metrization operator and the bilinearity of the tensor product operator.

For associativity, by definition we have

(ξ ∧ η) ∧ ζ(v∗1, · · · , v∗k+l+h) (2.9)

=
1

(k + l)!h!

∑
σ∈Sk+l+h

sgn(σ) · (ξ ∧ η)(v∗σ(1), · · · , v∗σ(k+l))

· ζ(v∗σ(k+l+1), · · · , v∗σ(k+l+h)) (2.10)

=
1

(k + l)!h!

1

k!l!

∑
σ∈Sk+l+h

∑
τ∈Sk+l

sgn(σ)sgn(τ) · ξ(v∗στ(1), · · · , v∗στ(k))

· η(v∗στ(k+1), · · · , v∗στ(k+l)) · ζ(v∗σ(k+l+1), · · · , v∗σ(k+l+h)).

But for each τ ∈ Sk+l, τ can be regarded as a permutation in Sk+l+h where τ
leaves the last h factors invariant. Therefore, by exchanging the two sums we
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can write (2.9) as

(ξ ∧ η) ∧ ζ(v∗1, · · · , v∗k+l+h)

=
1

(k + l)!h!

1

k!l!

∑
τ∈Sk+l

∑
σ∈Sk+l+h

sgn(στ) · (ξ ⊗ η ⊗ ζ)(v∗στ(1), · · · , v∗στ(k+l+h)).

Now it is easy to see that for each τ ∈ Sk+l,∑
σ∈Sk+l+h

sgn(στ) · (ξ ⊗ η ⊗ ζ)(v∗στ(1), · · · , v∗στ(k+l+h))

=(k + l + h)!Ak+l+h(ξ ⊗ η ⊗ ζ)(v∗1, · · · , v∗k+l+h).

Therefore we have

(ξ∧η)∧ ζ(v∗1, · · · , v∗k+l+h) =
(k + l + h)!

k!l!h!
Ak+l+h(ξ⊗η⊗ ζ)(v∗1, · · · , v∗k+l+h).

Similarly,

ξ∧ (η∧ ζ)(v∗1, · · · , v∗k+l+h) =
(k + l + h)!

k!l!h!
Ak+l+h(ξ⊗η⊗ ζ)(v∗1, · · · , v∗k+l+h).

Finally, for the antisymmetry, first notice that

ξ ∧ η(v∗1, · · · , v∗k+l)

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)ξ(v∗σ(1), · · · , v∗σ(k))η(v∗σ(k+1), · · · , v∗σ(k+l)).

Let τ ∈ Sk+l be the permutation

τ(i) =

{
k + i, 1 6 i 6 l;

i− l, l + 1 6 i 6 k + l.

It follows that sgn(τ) = (−1)kl, and

ξ ∧ η(v∗1, · · · , v∗k+l) =
(−1)kl

k!l!

∑
σ∈Sk+l

sgn(στ)η(v∗στ(1), · · · , v∗στ(l))

·ξ(v∗στ(l+1), · · · , v∗στ(k+l))

=
(−1)kl

k!l!

∑
σ∈Sk+l

sgn(στ)η ⊗ ξ(v∗στ(1), · · · , v∗στ(k+l))

= (−1)klη ∧ ξ(v∗1, · · · , v∗k+l).
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From the proof of Proposition 2.4, for any v1, · · · , vr ∈ V , we have

v1 ∧ · · · ∧ vr = r!Ar(v1 ⊗ · · · ⊗ vr). (2.11)

Therefore, for any v∗1, · · · , v∗r ∈ V ∗, we have

v1 ∧ · · · ∧ vr(v∗1, · · · , v∗r) =
∑
σ∈Sr

sgn(σ)v∗σ(1)(v1) · · · v∗σ(r)(vr)

= det(v∗i(vj))16i,j6r. (2.12)

(2.12) is called the evaluation formula for v1 ∧ · · · ∧ vr.
Now assume that {ei : 1 6 i 6 n} is a basis of V. We are going to construct

a basis of Λr(V ) in terms of {ei}.
First of all, for any r > n, if x ∈ Λr(V ) ⊂ T r(V ), then

x = xi1···irei1 ⊗ · · · eir .

Applying Ar on both sides, we have

x = xi1···irAr(ei1 ⊗ · · · ⊗ eir )

=
xi1···ir

r!
ei1 ∧ · · · ∧ eir .

Since r > n, at least two of those eij on the R.H.S. are the same. By Proposition
2.4, we have x = 0. Therefore, Λr(V ) = 0.

On the other hand, for any 1 6 r 6 n, we are going to show that {ei1 ∧ · · · ∧
eir : 1 6 i1 < · · · < ir 6 n} form a basis of Λr(V ). In fact, the same reason as
before shows that Λr(V ) is spanned by {ei1 ∧ · · · ∧ eir : 1 6 i1 < · · · < ir 6 n}.
To see they are linearly independent, let∑

16i1<···<ir6n

ai1···irei1 ∧ · · · ∧ eir = 0. (2.13)

For each 1 6 j1 < · · · < jr 6 1, let k1 < · · · < kn−r be such that

{j1, · · · , jr, k1, · · · , kn−r} = {1, · · · , n}.

By taking exterior product with ek1 ∧· · ·∧ekn−r on both sides of (2.13), we have

±aj1···jre1 ∧ · · · ∧ en = 0.

By acting on (e∗1, · · · , e∗n) where {e∗i : 1 6 i 6 n} is the dual basis of {ei}, it
follows from (2.12) that

aj1···jr = 0.

Therefore, {ei1 ∧ · · · ∧ eir : 1 6 i1 < · · · < ir 6 n} are linearly independent,
and hence they form a basis of Λr(V ). It is easy to see that

dimΛr(V ) =

(
n
r

)
=

n!

r!(n− r)!
.
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Similar to the case of tensor algebra, we can define the exterior algebra over
V. Let Λ(V ) be the direct sum

Λ(V ) =
∑
r>0

Λr(V ).

This is in fact a finite direct sum from degree 0 to degree n = dimV. Λ(V ) carries
a canonical product defined in the same way as in (2.7), but replacing “⊗” by
the exterior product “∧”. Under the basis {ei} of V, Λ(V ) is a 2n-dimensional
algebra over R with basis

{1, ei1 ∧ · · · ∧ eir : 1 6 r 6 n, 1 6 i1 < · · · < ir 6 n}.

Λ(V ) is called the exterior algebra over V .
Since V ∗ is also a finite dimensional real vector space, we can also construct

the exterior algebra over V ∗ in the same way.
There is a natural pairing of Λr(V ∗) and Λr(V ) such that Λr(V ∗) is the dual

space of Λr(V ). On monomials such paring is defined to be

〈v∗1 ∧ · · · ∧ v∗r, v1 ∧ · · · ∧ vr〉 = det(v∗i(vj))16i,j6r. (2.14)

We leave it as an exercise to see that this pairing is well-defined. In particular,
under the basis {ei} of V, {e∗i1 ∧ · · · ∧ e∗ir : 1 6 i1 < · · · < ir 6 n} and
{ei1 ∧ · · · ∧ eir : 1 6 i1 < · · · < ir 6 n} are dual to each other. In this manner
Λ(V ∗) becomes the dual space of Λ(V ).

Remark 2.4. Since Λr(V ) ⊂ T r(V ) and Λr(V ∗) ⊂ T r(V ∗), by using the pairing
(2.2) of tensor products we have another pairing of Λr(V ∗) and Λr(V ). These
two pairings defer by a constant factor:

ϕ(ξ) = r!〈ϕ, ξ〉, ∀ϕ ∈ Λr(V ∗), ξ ∈ Λr(V ).

A linear map F : V →W between two finite-dimensional real vector spaces
V and W induces the pullback of exterior (covariant) vectors by F . More
precisely, for each r > 1, define

F ∗ : Λr(W ∗)→ Λr(V ∗)

by

(F ∗ϕ)(v1, · · · , vr) = ϕ(F (v1), · · · , F (vr)), ϕ ∈ Λr(W ∗), (v1, · · · , vr) ∈ V×· · ·×V.

When r = 0, we define F ∗ to be the identity map from R to R. In particular,
when r = 1, F ∗ is just the dual map of F. From Proposition 2.3, it is easy to
see that F ∗ϕ ∈ Λr(V ∗). Moreover, we have the following result.

Proposition 2.5. F ∗ : Λ(W ∗)→ Λ(V ∗) is an algebra homomorphism.
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Proof. The only less trivial part is to prove that for any ϕ ∈ Λk(W ∗), ψ ∈
Λl(W ∗),

F ∗(ϕ ∧ ψ) = F ∗ϕ ∧ F ∗ψ. (2.15)

In fact, by definition we have

F ∗(ϕ ∧ ψ)(v1, · · · , vk+l) = ϕ ∧ ψ(F (v1), · · · , F (vk+l))

=
1

k!l!

∑
σ∈Sk+l

sgn(σ) · ϕ(F (vσ(1)), · · · , F (vσ(k)))

·ψ(F (vσ(k+1)), · · · , F (vσ(k+l)))

=
1

k!l!

∑
σ∈Sk+l

sgn(σ) · (F ∗ϕ)(vσ(1), · · · , vσ(k))

·(F ∗ψ)(vσ(k+1), · · · , vσ(k+l))

= F ∗ϕ ∧ F ∗ψ(v1, · · · , vk+l).

Therefore (2.15) holds.

If F : V →W and G : W → Z are linear maps between finite dimensional
real vector spaces, then by definition we have

(G ◦ F )∗ = F ∗ ◦G∗. (2.16)

2.3 Differential forms and the exterior differentiation
The analysis of (r, s)-type tensor fields and differential forms is closely related
to global geometric and topological features of a manifold. (r, s)-type tensor
fields and differential forms are sections of the (r, s)-type tensor bundle and the
exterior algebra bundle over a manifold. The construction of these bundles are
very similar to the case of the tangent bundle.

Let M be a manifold of dimension n.
For p ∈M, let

T rs (p) = TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s

.

T rs (p) is a real vector space of dimension nr+s. Define

T rs (M) = ∪p∈MT rs (p).

Similar to the construction of the tangent bundle, T rs (M) has a canonical dif-
ferential structure induced by the one on M, such that it becomes a manifold
of dimension n + nr+s. More precisely, let {(Uα, ϕα)}α∈A be an atlas in the
differential structure on M. For each p ∈ Uα, T rs (p) has a canonical basis given
by

{ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ dxjs : 1 6 i1, · · · , ir, j1, · · · , js 6 n}
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evaluated at p. The associated coordinate chart

Φ(r,s)
α : E(r,s)

α = ∪p∈UαT rs (p)→ ϕα(Uα)× Rn
r+s

⊂ Rn × Rn
r+s

is given by
Φ(r,s)
α (ξ) = (xi, ai1···irj1···js)16i,i1,··· ,ir,j1,··· ,js6n,

where xi are the coordinates of the base point of ξ and ai1···irj1···js are the coordi-
nates of ξ under the natural basis of T rs (p). By Proposition 2.1 one can easily
write down the change of coordinates formula between two charts in terms of
the Jacobian of the change of coordinates on M. In particular, along the fiber
T rs (p) the change of coordinates is a linear isomorphism. It follows by the same
argument as in the case of the tangent bundle that T rs (M) is a manifold of
dimension n+ nr+s.

Definition 2.6. T rs (M) is called the (r, s)-type tensor bundle over M . An
(r, s)-type tensor field on M is a section of T rs (M), i.e., a C∞ map ξ : M →
T rs (M) such that π ◦ ξ = idM where π is the natural projection map.

When r = 1, s = 0, T rs (M) is simply the tangent bundle, and when r =
0, s = 1 this is the cotangent bundle. By using the tensor product defined in
(2.7) along each fiber, we are able to form the tensor product of an (r1, s1)-type
tensor field and an (r2, s2)-type tensor field, which yields an (r1+r2, s1+s2)-type
tensor field.

In exactly the same way, we can construct the exterior r-bundle

Λr(M) = ∪p∈MΛr(T ∗pM)

and the exterior algebra bundle

Λ(M) = ∪p∈MΛ(T ∗pM)

over M. Under a coordinate chart (U, xi) of M, the natural basis of Λr(T ∗pM)
for p ∈ U is given by

{dxi1 ∧ · · · ∧ dxir : 1 6 i1 < · · · < ir 6 n}

evaluated at p. It turns out that Λr(M) (Λ(M), respectively) is a manifold of

dimension n+

(
n
r

)
(n+ 2n, respectively).

Definition 2.7. A section of the exterior r-bundle Λr(M) is called a (smooth)
r-form on M. A differential form on M is a section of the exterior algebra
bundle Λ(M). The space of r-forms (differential forms, respectively) is denoted
by Ωr(M) (Ω(M), respectively).

By definition, Ω0(M) is simply the space C∞(M) of smooth functions on
M. Moreover, a differential form ω can be uniquely written as

ω = ω0 + ω1 + · · ·+ ωn,
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where each ωr is an r-form in Ωr(M). There is a canonical exterior product
structure on the real vector space Ω(M) induced by the exterior product “∧”
on each fiber pointwisely. It turns out that Ω(M) is an infinite dimensional
(graded) algebra over R.

By the definition of the exterior algebra, an r-form ω can be regarded as a
(0, r)-type (antisymmetric) tensor field. According to Proposition 2.3, ω acts
on the space X(M) of smooth vector fields on M pointwisely as an alternating
r-linear map

ω : X(M)× · · ·X(M)→ C∞(M).

It is not hard to see that this is also an equivalent characterization of r-forms on
M. This point is quite convenient and important in the calculation of differential
forms. Under a coordinate chart (U, xi), an r-form ω can be expressed as

ω =
∑

16i1<···<ir6n

ai1···irdx
i1 ∧ · · · ∧ dxir .

Like the case of functions, differential forms can be “differentiated” via the
exterior differentiation. This is a fundamental concept in the analysis on mani-
folds.

Theorem 2.2. There exists a unique linear operator

d : Ω(M)→ Ω(M)

which satisfies the following properties.
(1) For any r > 0,

d(Ωr(M)) ⊂ Ωr+1(M).

(2) If ω1 is an r-form, then for any ω2 ∈ Ω(M),

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)rω1 ∧ dω2.

(3) If f ∈ C∞(M), then df is differential of f.
(4) If f ∈ C∞(M), then

d2f = 0.

Proof. We prove the theorem by several steps.
(1) We show that if d exists, then it is a local operator. More precisely, for

any open subset U, if ω1, ω2 ∈ Ω(M) with

ω1|U = ω2|U ,

then
dω1|U = dω2|U .

By linearity, it suffices to show that: for any open subset U, if ω ∈ Ω(M)
vanishes on U, then dω vanishes on U as well. In fact, for any p ∈ U, choose
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a bump function h near x with respect to (V,U) where V ⊂ U is some open
neighborhood of p whose closure is compact. It follows from property (2) that

d(hω) = dh ∧ ω + h ∧ dω. (2.17)

But hω ≡ 0, by property evaluating (2.17) at p we obtain that dω(p) = 0. Since
p ∈ U is arbitrary, we see that dω = 0 on U .

(2) If d exists, then for any open subset U, d induces a linear operator
dU : Ω(U)→ Ω(U) satisfying (1) to (4). Explicitly, if ω ∈ Ω(U), then we define

(dUω)(p) = (dω̃)(p), p ∈ U,

where ω̃ ∈ Ω(M) is an extension of ω near p. If we have another such extension
ω, then ω̃ = ω in a neighborhood of p. By the locality of d, we know that

(dω̃)(p) = (dω)(p).

Therefore, dU is well-defined. Moreover, it is easy to see that dU satisfies prop-
erties (1) to (4). For example, to see (4) holds, notice that for any f ∈ C∞(U)
and p ∈ U,

(d2
Uf)(p) = d(d̃Uf)(p),

where d̃Uf ∈ Ω1(M) is an extension of dUf near p. But if we choose an extension
f̃ ∈ C∞(M) of f near p, then df̃ is an extension of dUf . It follows from property
(4) for f̃ that

(d2
Uf)(p) = 0.

Since p ∈ U is arbitrary, we know that d2
Uf = 0. We call dU the restriction of d

on U.
(3) Let (U, xi) be a coordinate chart on M. If ω ∈ Ω(U) is given by

ω =

n∑
r=0

∑
16i1<···<ir6n

ai1···irdx
i1 ∧ · · · ∧ dxir , (2.18)

then define

dUω =

n∑
r=0

∑
16i1<···<ir6n

dai1···ir ∧ dxi1 ∧ · · · ∧ dxir . (2.19)

It is easy to see that dU : Ω(U)→ Ω(U) is a linear operator satisfying properties
(1) to (4). By the previous step, we know that dU can be restricted to any open
subset of U , which is still given by (2.19). Now let (V, yj) be another coordinate
chart on M with U ∩ V 6= ∅ and define dV : Ω(V ) → Ω(V ) in the same way.
Then the restriction of dV on U ∩V, denoted by dV |U∩V , satisfies properties (1)
to (4). In particular, for ω ∈ Ω(U ∩ V ) given by (2.18), we have

dV |U∩V (ω) =

n∑
r=0

∑
16i1<···<ir6n

dai1···ir ∧ dxi1 ∧ · · · ∧ dxir = dU |U∩V (ω),
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since xil are coordinate functions on U ∩ V and hence dV |U∩V dxil = 0.
(4) For ω ∈ Ω(M), define dω by

(dω)(p) = (dUω|U )(p)

for any coordinate chart (U, xi) on M and any p ∈ U, where dU is the linear
operator defined in step (3). It follows from the discussion in step (3) that d is
a globally well-defined linear operator satisfying properties (1) to (4).

(5) Let d′ : Ω(M)→ Ω(M) be a linear operator satisfying properties (1) to
(4). Then for any ω ∈ Ω(M) and any coordinate chart (U, xi) on M, we have

(d′ω)(p) = (d′Uω|U )(p), p ∈ U,

where d′U is the restriction of d′ to U. Since d′U satisfies properties (1) to (4),
the same argument in step (3) shows that it is given exactly by (2.19), which is
the same as the restriction of d on U. Therefore, d′ = d.

Now the proof is complete.

By the locality of the exterior differential d, computation on coordinate
charts yields the following fact.

Proposition 2.6. d2 = 0.

Example 2.1. Consider M = R3, and use (x, y, z) to denote the canonical
coordinates of M .

(1) For a C∞ function f,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

The coefficients of df form the gradient of f.
(2) For a one form

ω = adx+ bdy + cdz,

we have

dω = (
∂a

∂x
dx+

∂a

∂y
dy +

∂a

∂z
dz) ∧ dx+ (

∂b

∂x
dx+

∂b

∂y
dy +

∂b

∂z
dz) ∧ dy

+(
∂c

∂x
dx+

∂c

∂y
dy +

∂c

∂z
dz) ∧ dz

= (
∂c

∂y
− ∂b

∂z
)dy ∧ dz + (

∂a

∂z
− ∂c

∂x
)dz ∧ dx+ (

∂b

∂x
− ∂a

∂y
)dx ∧ dy.

The coefficients of dω form the curl of the vector field (a, b, c).
(3) For a 2-form

ω = ady ∧ dz + bdz ∧ dx+ cdx ∧ dy,

we have
dω = (

∂a

∂x
+
∂b

∂y
+
∂c

∂z
)dx ∧ dy ∧ dz.
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The coefficient of dω is the divergence of the vector field (a, b, c).
From the previous computation, Proposition 2.6 in the case ofM = R3 takes

the following classical form: for any smooth function f and smooth vector field
X on R3, {

curl(gradf) = 0;

div(curlX) = 0.

In the study of exterior algebra, we’ve seen that a linear map induces the pull-
back of exterior vectors. Since differential forms are pointwise exterior vectors
over cotangent spaces, a C∞ map between manifolds will induce the pullback
of differential forms naturally.

More precisely, assume that F : M → N is a C∞ map between manifolds
M and N . We define the pullback of differential forms by F to be the linear
map F ∗ : Ω(N)→ Ω(M) given by

(F ∗ω)(p) = (dF )∗pω(F (p)), p ∈M,

where each (dF )∗p is the pullback by the linear map (dF )p : TpM → TF (p)N. If
ω is a zero form (i.e., a C∞ function), then by definition F ∗ω is the composition
of F and ω. If ω is a one form, (F ∗ω)(p) is just the pullback of ω(F (p)) by F
at p in the sense of Definition 1.10.

To see the smoothness of F ∗ω, we can simply work it out explicitly in co-
ordinate charts. Fix p ∈ M and let q = F (p). Choose some coordinate charts
(U, xα) around p and (V, yi) around q such that F (U) ⊂ V. Under V we may
write

ω|V =

n∑
r=0

∑
i1<···<ir

ai1···irdy
i1 ∧ · · · ∧ dyir .

It follows from Proposition 2.5 and the case for pulling back zero and one forms
that

(F ∗ω)|U

=
n∑
r=0

∑
i1<···<ir

(ai1···ir ◦ F )dF i1 ∧ · · · ∧ dF ir

=

n∑
r=0

∑
i1<···<ir

(ai1···ir ◦ F )

m∑
α1,··· ,αr=1

∂F i1

∂xα1
· · · ∂F

ir

∂xαr
dxα1 ∧ · · · ∧ dxαr , (2.20)

where under U and V, F is expressed as

yi = F i(x1, · · · , xm), i = 1, · · · , n.

From this we can easily see that F ∗ω is smooth in U, in particular, it is smooth
at p. Since p is arbitrary, we know that F ∗ω defines a differential form on M.

Equivalently, for an r-form ω onN and for any smooth vector fieldsX1, · · · , Xr

on M, as an alternating r-linear map

(F ∗ω)(X1, · · · , Xr) = ω(dF (X1), · · · , dF (Xr)) ∈ C∞(M).
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By pushing one step forward in the calculation in (2.20), we can easily show
the following very important result.

Proposition 2.7. F ∗ commutes with d. In other words, the following diagram
commutes:

Ω(N)

d

��

F∗ // Ω(M)

d

��
Ω(N)

F∗ // Ω(M).

Proof. Use the previous notation, we know that

(dω)|V =

n∑
r=0

∑
i1<···<ir

dai1···ir ∧ dyi1 ∧ · · · ∧ dyir ,

and therefore

(F ∗dω)|U =

n∑
r=0

∑
i1<···<ir

d(ai1···ir ◦ F ) ∧ dF i1 ∧ · · · ∧ dF ir .

But from the first equality in (2.20) and the properties of d, we have

(dF ∗ω)|U =

n∑
r=0

∑
i1<···<ir

d(ai1···ir ◦ F ) ∧ dF i1 ∧ · · · ∧ dF ir .

Therefore, F ∗dω = dF ∗ω in U and in particular at p. Since p is arbitrary, we
have F ∗d = dF ∗.

Since the pullback of differential forms is defined pointwisely, from (2.16) we
know immediately that if F : M → N and G : N → P are C∞ maps between
manifolds, then

(G ◦ F )∗ = F ∗ ◦G∗ : Ω(P )→ Ω(M). (2.21)

2.4 One-parameter groups of diffeomorphisms and the Lie
derivative

There is another natural way of thinking about smooth vector fields. If we know
the direction of the tangent vector at each point on the manifold, in principle
we should be able to follow a trajectory determined by the vector field to move
along the manifold starting from any initial position. First proceeding for time
t and then proceeding for time s is the same as proceeding for time t+s without
any stop. Moreover, as your starting position varies, the trajectory varies in a
smooth manner. Mathematically, this is the relation between a one-parameter
group of diffeomorphisms and its generating smooth vector field.

Let M be a manifold of dimension n.
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Definition 2.8. A one-parameter group of diffeomorphisms onM is a C∞ map

ϕ : M × R1 →M

such that:
(1) for each t ∈ R1, ϕt(·) = ϕ(·, t) : M →M is a diffeomorphism;
(2) ϕ0 = idM ;
(3) ϕs+t = ϕs ◦ ϕt.

A one-parameter group of diffeomorphisms on M specifies the global trajec-
tories explicitly about how to move on M . At any point p ∈ M , by following
the trajectory ϕt(p) infinitesimally, we are able to determine the direction at p
(a tangent vector). More precisely, let Xp ∈ TpM be the tangent vector of the
smooth curve ϕt(p) at t = 0. This defines a vector fieldX onM. The smoothness
of X follows easily from the smoothness of ϕ. For any f ∈ C∞, we have

(Xf)(p) =
d

dt
|t=0f(ϕt(p)).

X is called the generating vector field of ϕ.
An interesting and important point is the converse: if we have a smooth

vector field X, is there a one-parameter group of diffeomorphisms ϕ whose gen-
erating vector field is X?

In general, the answer is no. Just consider M = (−∞, 0) and the unit speed
vector field X = ∂

∂x . For a particle starting at any x ∈ M, the vector field X
will bring the particle to the boundary x = 0 and “blow” it out of M in finite
time (the trajectory is not defined globally).

However, a smooth vector field X can always be integrated to a local one-
parameter group of diffeomorphisms.

Definition 2.9. A smooth curve γ : (a, b) → M is called an integral curve
of X if for any t ∈ (a, b),

(dγ)t(
∂

∂t
|t) = Xγ(t).

In other words, the tangent vector of γ at t is Xγ(t).

Locally we can always find an integral curve of X starting at a point p.
Essentially this is just the problem of solving ordinary differential equations
(ODEs).

Proposition 2.8. For any p ∈M, there exists some ε > 0 and a smooth curve
γ : (−ε, ε)→M, such that γ(0) = p and γ is an integral curve of X.

Proof. Choose a coordinate chart (U, xi) around p. Under U an integral curve
γ(t) = (γ1(t), · · · , γn(t)) of X starting at p is determined by the ODE{

dγi

dt = Xi(γ(t)),

γ(0) = p,
(2.22)
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where
X(x) = Xi(x)

∂

∂xi
, x ∈ U.

According to ODE theory, there exists some ε > 0 and a unique solution γ :
(−ε, ε)→M to (2.22). This gives an integral curve ofX starting at p locally.

By the local uniqueness in ODE theory, an integral curve of Xstarting at
p can be uniquely extended to the maximal domain. Let I be the set of open
intervals (a, b) such that 0 ∈ (a, b) and there exists some integral curve γ :
(a, b) → M of X with γ(0) = p. The fact that I is non-empty follows from
Proposition 2.8. Moreover, let (a, b), (c, d) ∈ I and γ1, γ2 be integral curves of
X defined on (a, b) and (c, d) respectively, with γ1(0) = γ2(0) = p. Consider the
set

T = {t ∈ (a, b) ∩ (c, d) : γ1(t) = γ2(t)}.

By continuity it is obvious that T is closed in (a, b)∩(c, d). On the other hand, for
any t0 ∈ T, since γ1 and γ2 are both integral curves of X with γ1(t0) = γ2(t0),
under some coordinate chart around γ1(t0), by the uniqueness part in ODE
theory we know that γ1 and γ2 must coincide in some neighborhood (t0−ε, t0+ε)
of t0. Therefore, T is open in (a, b) ∩ (c, d). Since 0 ∈ T, by the connectedness
of (a, b) ∩ (c, d) we know that

T = (a, b) ∩ (c, d).

In other words, γ1 = γ2 on (a, b) ∩ (c, d). Therefore, if we let

(a(p), b(p)) = ∪(a,b)∈I(a, b),

then we can define an integral curve γp : (a(p), b(p))→M of X with γp(0) = p.
Obviously, (a(p), (b)) is the maximal interval containing 0 on which we can define
an integral curve of X starting at p. We shall call γp themaximal integral curve
of X starting at p.

For any t ∈ R1, define

Dt = {p ∈M : t ∈ (a(p), b(p))}.

Intuitively, Dt is the set of points on M starting from which along the maximal
integral curve one can proceed at least for time t. Obviously D0 = M.Moreover,
it is possible that Dt is empty for some t 6= 0. However, by Proposition 2.8 we
know that Dt 6= ∅ when t is small and

M = ∪t>0Dt = ∪t<0Dt.

For t ∈ R1 and p ∈ Dt, define

ϕt(p) = γp(t).

We are going to show that ϕ is a local one-parameter group of diffeomorphisms
whose generating vector field is X. But we need to make it more precise since
ϕ is not globally defined.
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The most important point is the group property. For t ∈ R1 and p ∈ Dt,
consider the curve

s 7→ γp(s+ t).

This is an integral curve of X starting at γp(t) defined for all s ∈ (a(p)−t, b(p)−
t). Therefore,

(a(p)− t, b(p)− t) ⊂ (a(γp(t)), b(γp(t))).

On the other hand, the curve

s 7→ γγp(t)(s− t)

is an integral curve ofX starting at p defined for all s ∈ (a(γp(t))+t, b(γp(t))+t),
and hence

(a(γp(t)) + t, b(γp(t)) + t) ⊂ (a(p), b(p)).

It follows that
(a(p)− t, b(p)− t) = (a(γp(t)), b(γp(t))). (2.23)

Consequently, the domain of ϕs ◦ ϕt , denoted by

D̃s,t = {p ∈M : t ∈ (a(p), b(p)) and s ∈ (a(γp(t)), b(γp(t)))},

is contained in the domain Ds+t of ϕs+t. Moreover, by (2.23) we know that
both ϕ· ◦ϕt(p) and ϕ·+t(p) can be regarded as the maximal integral curve of X
starting at γp(t). Therefore, we have

ϕs ◦ ϕt(p) = ϕs+t(p), ∀p ∈ D̃s,t. (2.24)

It should be pointed out that in general D̃s,t 6= Ds+t, but they are equal if s
and t have the same sign.

Now we show that each Dt (if not empty) is open and ϕt is a diffeomorphism
from Dt to D−t with inverse ϕ−t. From (2.24) with s = −t it is trivial to see
that ϕ is a bijection with inverse ϕ−t. The openness of Dt and the smoothness
of ϕt follow from the following key result.

Proposition 2.9. For any p ∈ M, there exists some ε > 0 and some open
neighborhood V of p, such that the map

(t, q) 7→ ϕt(q) (2.25)

is well-defined and C∞ from (−ε, ε)× V to M.

Proof. This is a direct consequence of the local smooth dependence of solutions
to ODEs on their initial values. More precisely, first take a coordinate chart U
around p, then standard results in ODE theory tell us that there exists ε > 0
and some open neighborhood V ⊂ U of p, such that for each q ∈ V, the ODE
(2.22) with initial condition at q has a unique solution on (−ε, ε) taking values
in U, and the solution map (2.25) is C∞ on (−ε, ε)× V.
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Now let t > 0 and p ∈ Dt (the case of t < 0 is similar). Since γp([0, t]) is a
compact set in M, by Proposition 2.9 and a standard covering argument, there
exists some ε > 0 and some open set W containing γp([0, t]), such that the map
(2.25) is well-defined and C∞ on (−ε, ε)×W . Choose a natural number n such
that t

n < ε and let W0 = W. For i = 1, · · · , n, define inductively that

αi = ϕ t
n
|Wi−1 and Wi = α−1

i (Wi−1) ⊂Wi−1.

It follows that Wn is an open neighborhood of p and Wn is contained in the
domain of α1 ◦ · · · ◦ αn. In particular, Wn is contained in the domain of ϕt/n ◦
· · · ◦ ϕt/n. Therefore, from the group property (2.24), we have

α1 ◦ · · · ◦ αn = ϕt (2.26)

on Wn. In particular, Wn ⊂ Dt and hence Dt is open, and the smoothness of ϕt
follows from (2.26) and the smoothness of each αi. Therefore, for each t ∈ R1,
ϕt is a diffeomorphism from Dt (if not empty) to D−t with inverse ϕ−t.

It is not hard to see that the domain of ϕ, denoted by

D = {(p, t) : p ∈ Dt} ⊂M × R1

is open and ϕ is C∞ on D.
In summary, we have now finished the proof that a smooth vector field X can

always be integrated to a local one-parameter group ϕ of diffeomorphisms on
M. From the proof we can see that the map ϕ is maximal, unique and canonical.

Definition 2.10. A smooth vector field X is complete if D = M ×R1. In other
words, for each p ∈ M, the integral curve of X starting at p is well-defined for
all t ∈ R1.

If a smooth vector field X is complete, then it integrates to a one-parameter
group of diffeomorphisms on M in the sense of Definition 2.8. As we’ve seen
before (M = (−∞, 0) and X = ∂

∂x ), X is not necessarily complete. However,
we have the following important result in the compact case. The proof is left as
an exercise.

Theorem 2.3. If M is compact, then every smooth vector field X on M is
complete.

By using the local one-parameter group of diffeomorphisms generated by a
smooth vector field X, we are not only able to differential C∞ functions along X
(the directional derivative), but also able to make sense of differentiating vector
fields and even tensor fields along X. This is know as the Lie derivative, which
is a fundamental and very useful notion in differential geometry.

Let ξ be an (r, s)-type tensor field on M . For each p ∈M, ϕt is well-defined
when t is small. A natural idea of differentiating ξ along the direction Xp at
p is to pull back the tensor field ξ to the fiber T rs (p) along the integral curve
γp, and differentiate in the classical sense on the vector space T rs (p). Before
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giving the precise definition, let’s first illustrate how to pull back ξ along γp. By
using a coordinate chart around p and linearity, we may assume without loss of
generality that

ξ = X1 ⊗ · · · ⊗Xr ⊗ α1 ⊗ · · · ⊗ αs

near p. The pullback Φ∗t ξ ∈ T rs (p) is then defined to be

(Φ∗t ξ)(p) = (dϕ−t)ϕt(p)((X1)ϕt(p))⊗ · · · ⊗ (dϕ−t)ϕt(p)((Xr)ϕt(p))

⊗ϕ∗t (α1
ϕt(p)

)⊗ · · · ⊗ ϕ∗t (αsϕt(p)),

where (dϕ−t)ϕt(p) is the differential of ϕ−t at ϕt(p) and ϕ∗t is the pullback of
cotangent vectors by ϕt at p. Note that Φ∗t ξ is defined for any p ∈M and small
t (depending on p).

Definition 2.11. The Lie derivative of ξ with respect to X, denoted by LXξ,
is defined to be the (r, s)-type tensor field

(LXξ)(p) = lim
t→0

(Φ∗t ξ)(p)− ξ(p)
t

∈ T rs (p), p ∈M. (2.27)

We haven’t proved that the limit in (2.27) exists and LXξ is smooth in p.
But this will become clear soon as we move on.

Since the pullback of a C∞ function is just composition, by definition, when
acting on f ∈ C∞(M),

(LXf)(p) = lim
t→0

f(ϕt(p))− f(p)

p
=

d

dt
|t=0f(ϕt(p)) = (Xf)(p).

Therefore, LXf is well-defined and

LXf = Xf ∈ C∞(M). (2.28)

Now consider the most important situation: the Lie derivative LXY of a
smooth vector field Y . Let ψ be the local one-parameter group of diffeomor-
phisms generated by Y. By definition, for any f ∈ C∞(M),

(LXY )(f)(p) = lim
t→0

(dϕ−t)ϕt(p)(Yϕt(p))− Yp
t

f

= lim
t→0

Yϕt(p)(f ◦ ϕ−t)− Ypf
t

=
d

dt
|t=0Yϕt(p)(f ◦ ϕ−t).

Define a function
H(t, u) = f(ϕ−t(ψu(ϕt(p)))),

this is well-defined and C∞ in some open neighborhood of (0, 0). Moreover, it
is easy to see that

Yϕt(p)(f ◦ ϕ−t) =
∂H

∂u
|u=0.
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Therefore,

(LXY )(f)(p) =
∂2H

∂t∂u
|(t,u)=(0,0).

If we let
K(s, u, t) = f(ϕs(ψu(ϕt(p)))),

then from the chain rule of calculus we have

∂2H

∂t∂u
|(t,u)=(0,0) = − ∂

2K

∂s∂u
|(s,u,t)=(0,0,0) +

∂2K

∂u∂t
|(s,u,t)=(0,0,0).

But

∂2K

∂s∂u
|(s,u,t)=(0,0,0) =

∂2

∂s∂u
|(s,u)=(0,0)f(ϕsψu(p))

=
d

du
|u=0Xψu(p)f

= Yp(Xf),

and similarly

∂2K

∂u∂t
|(s,u,t)=(0,0,0) =

∂2

∂u∂t
|(u,t)=(0,0)f(ψu(ϕt(p)))

=
d

dt
|t=0Yϕt(p)f

= Xp(Y f).

Consequently, the limit in (2.27) exists and we have

(LXY )(f)(p) = Xp(Y f)− Yp(Xf) = ([X,Y ]f)(p).

This further shows that LXY is smooth in p and in fact we have proved the
following important result.

Proposition 2.10. For any smooth vector fields X and Y, LXY = [X,Y ].

Now let’s consider the Lie derivative of a (0, 1)-type tensor field α (i.e., a
one-form). For any smooth vector field Y, by definition we have

(LXα)(Y )(p) = lim
t→0

ϕ∗tαϕt(p) − αp
t

(Yp)

= lim
t→0

αϕt(p)((dϕt)p(Yp))− αp(Yp)
t

= lim
t→0

αϕt(p)((dϕt)p(Yp))− αϕt(p)(Yϕt(p))
t

+ lim
t→0

αϕt(p)(Yϕt(p))− αp(Yp)
t

. (2.29)
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The first term on the R.H.S. of (2.29) equals

lim
t→0

αϕt(p)(
(dϕt)p(Yp)− Yϕt(p)

t
) = lim

t→0
αϕt(p)((dϕt)p(

Yp − (dϕ−t)ϕt(p)Yϕt(p)

t
))

= lim
t→0

(ϕ∗tαϕt(p))
Yp − (dϕ−t)ϕt(p)Yϕt(p)

t
= −α(LXY )(p).

The second term on the R.H.S. of (2.29) equals

d

dt
|t=0αϕt(p)(Yϕt(p)) = Xp(α(Y )).

Therefore, we have

(LXα)(Y ) = X(α(Y ))− α(LXY ).

This immediately shows that LXα is well-defined and smooth in p.
In general, if ξ is an (r, s)-type tensor field on M, locally it is a linear combi-

nation of monomials of the form X1⊗· · ·⊗Xr⊗α1⊗· · ·⊗αs. By the definition
of Lie derivatives, it is easy to see that

LX(X1 ⊗ · · · ⊗Xr ⊗ α1 ⊗ · · · ⊗ αs)

=

r∑
i=1

X1 ⊗ · · · ⊗ LXXi ⊗ · · · ⊗Xr ⊗ α1 ⊗ · · · ⊗ αs

+

s∑
j=1

X1 ⊗ · · · ⊗Xr ⊗ α1 ⊗ · · ·LXαj ⊗ · · · ⊗ αs, (2.30)

which is well-defined and smooth locally by the previous discussion. Therefore,
LXξ is a well-defined (r, s)-type tensor field on M. Moreover, from (2.30) it is
not hard to see that we’ve in fact proved the following result.

Proposition 2.11. Let ξ, η be two tensor fields on M . Then
(1) LX(ξ ⊗ η) = LXξ ⊗ η + ξ ⊗ LXη.
(2) If ξ is of (r, s)-type, then for any (0, 1)-type tensor fields α1, · · · , αr and

any smooth vector fields Y1, · · · , Ys,

(LXξ)(α
1, · · · , αr, Y1, · · · , Ys)

=X(ξ(α1, · · · , αr, Y1, · · · , Ys))−
r∑
i=1

ξ(α1, · · · , LXαi, · · · , αr, Y1, · · · , Ys)

−
s∑
j=1

ξ(α1, · · · , αr, Y1, · · · , LXYj , · · · , Ys). (2.31)

It is easy to see that the second result in the proposition is just a reformu-
lation of the first one (the Leibniz rule) in the dual setting.
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The importance of the Lie derivative lies in the case when acting on differen-
tial forms. Since each r-form ω can be regarded as a (0, r)-type (antisymmetric)
tensor field, LXω makes sense and by (2.11) it is not hard to see that

LX(ω1 ∧ ω2) = LXω1 ∧ ω2 + ω1 ∧ LXω2 (2.32)

holds. Equivalently, (2.31) also holds for differential forms.
Moreover, LX commutes with the exterior differential d. This is because

locally we have
ϕ∗t dω = dϕ∗tω

according to Proposition 2.7. Therefore,

LXdω = lim
t→0

ϕ∗t dω − dω
t

= lim
t→0

dϕ∗tω − dω
t

= dLXω. (2.33)

Conversely, we can easily show that (2.28), (2.32) and (2.33) together char-
acterize the Lie derivative LX on differential forms uniquely. The reason is
that these three rules tell us explicitly how to compute LXω locally for any
differential form ω.

Before going further, we first introduce the interior product on differential
forms.

Proposition 2.12. Given a smooth vector field X on M, there exists a unique
linear map iX : Ω(M)→ Ω(M) with the following properties.

(1) For any r > 0,
iX(Ωr(M)) ⊂ Ωr−1(M),

where Ω−1(M) = {0}.
(2) If ω1 is an r-form, then for any ω2 ∈ Ω(M),

iX(ω1 ∧ ω2) = iXω1 ∧ ω2 + (−1)rω1 ∧ iXω2.

(3) For any one form ω ∈ Ω1(M),

iX(ω) = ω(X).

Proof. Like the exterior differential d, the three properties in the proposition tell
us explicitly how to compute iX locally. Therefore, the existence and uniqueness
can be proved easily in the same spirit as proving the existence and uniqueness
of d.

Definition 2.12. iX is called the interior product.
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Example 2.2. Consider α = dx ∧ dy and X = x ∂
∂x + y ∂

∂y on R2. Then

iXα = iXdx ∧ dy − dx ∧ iXdy

= (x
∂

∂x
+ y

∂

∂y
)xdy − (x

∂

∂x
+ y

∂

∂y
)ydx

= xdy − ydx.

It should be pointed out that iX is not a differential operator, and it does
not commute with d. Instead, it acts on differential forms pointwisely. More
precisely, we can show that iX is given explicitly in the following global way.
For any r-form ω and smooth vector fields Y1, · · · , Yr−1,

(iXω)(Y1, · · · , Yr−1) = ω(X,Y1, · · · , Yr−1). (2.34)

(2.34) yields immediately that i2X = 0.
Finally, we have the following important result. This is know as the Cartan

formula.

Theorem 2.4. LX = d ◦ iX + iX ◦ d.

Proof. It suffices to show that d ◦ iX + iX ◦ d satisfies (2.28), (2.32) and (2.33),
which can all be verified by definition easily.

2.5 Integration on manifolds and Stokes’ theorem
Now we are going to study integration of compactly supported n-forms over
a regular domain on an oriented manifold. The most fundamental theorem in
integration theory is Stokes’ theorem, which unifies and generalizes the funda-
mental theorem of calculus in R1, Green’s theorem in R2, Gauss’s theorem in
R3, and Stokes’ theorem for 2-dimensional surfaces in R3 in a simple and elegant
form.

Let M be an n-dimensional manifold.
Since we only consider integration on oriented manifolds, we first introduce

the notion of orientation.

Definition 2.13. M is called orientable if there exists a non-vanishing n-form
ω onM. An orientaion onM is an ∼-equivalence class of non-vanishing n-forms
on M, where ω′ ∼ ω if and only if ω′ = fω with f > 0. M is called oriented if
it is assigned by an orientation.

Example 2.3. M = Rn is orientable with the orientation given by dx1 ∧ · · · ∧
dxn. For Euclidean space we will always use this canonical orientation.

If M is oriented, let ω be an n-form defining its orientation. Then for each
p ∈ M, since ω(p) ∈ Λn(T ∗pM), we can define an orientation on TpM in the
sense of finite dimensional real vector spaces: a basis {v1, · · · , vn} of TpM is
positive oriented if and only if

ω(p)(v1, · · · , vn) > 0.
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An orientation onM is then equivalent to a smooth choice of orientation (equiv-
alence class of basis) on each tangent space. A coordinate chart (U, xi) is called
oriented if

ω = adx1 ∧ · · · ∧ dxn

with a > 0 everywhere in U . An atlas {Uα}α∈A is oriented if each Uα is oriented.
It is easy to see that the determinant of the Jacobian of change of coordinates
in an oriented atlas is always positive. Conversely, we have the following useful
result.

Proposition 2.13. Let {Uα}α∈A be an atlas on M. If the determinant of the
Jacobian of change of coordinates in this atlas is always positive (an atlas with
this property is called orientation compatible), then M is orientable. Moreover,
we can assign an orientation on M , such that {Uα}α∈A is an oriented atlas
under this orientation.

Proof. Choose a partition of unity {ϕα}α∈A subordinate to the atlas {Uα}α∈A
with the same index. For each α ∈ A, let xiα be the coordinates in Uα. Define

ω =
∑
α∈A

ϕαdx
1
α ∧ · · · ∧ dxnα.

This is obviously well-defined by local finiteness. To see that ω is smooth, for
p ∈ M, there exists some open neighborhood V of p, such that V intersections
finitely many suppϕα, say suppϕα1 ,· · · ,suppϕαm . Since each suppϕαi is closed,
without loss of generality we may assume that for each

p ∈ suppϕαi ⊂ Uαi , ∀i = 1, · · · ,m.

It follows that in an open neighborhood W of p,

ω =

m∑
i=1

ϕαidx
1
αi ∧ · · · ∧ dx

n
αi ,

and W ⊂ Uαi for all i = 1, · · · ,m. Therefore, ω is smooth at p. This at the
same time shows that ω(p) is nonzero since if p ∈ Uα, then

ω(p) = (

m∑
i=1

ϕαidet(
∂xkαi
∂xlα

(p))16k,l6n)dx1
α ∧ · · · ∧ dxnα

with
∑m
i=1 ϕαi(p) = 1 and the determinants on the R.H.S. are all positive.

Therefore, ω is a non-vanishing n-form and hence defines an orientation on M.
The same reason shows that {Uα}α∈A is oriented under this orientation.

Definition 2.14. A subset D ⊂M is called a regular domain if each point of
M falls into one of the following three mutually exclusive types:

(A) there exists some open neighborhood U of p such that U ⊂M\D;
(B) there exists some open neighborhood U of p such that U ⊂ D;
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(C) there exists some coordinate chart (U,ϕ) around p such that ϕ(p) = 0
and

ϕ(U ∩D) = ϕ(U) ∩Hn,
where Hn is the upper half space in Rn defined by {(x1, · · · , xn) : xn > 0}.

It is an easy exercise to see that a regular domain D must be a closed subset
of M . The set of type (B) points is denoted by Int(D), which is exactly the
interior of D. The set of type (C) points is denoted by ∂D, which is exactly the
boundary of D.

A trivial example of a regular domain is D = M, in which all points of M
are of type (B). Moreover, for a regular domain D, ∂D = ∅ if and only in D is
a union of connected components of M.

If the boundary ∂D of a regular domain D is nonempty, then it carries a
canonical differential structure of dimension n − 1 induced from M, such that
(∂D, i) is an embedded submanifold ofM, where i is the inclusion map. In fact,
for any p ∈ ∂D, take a coordinate chart (U,ϕ) around p given in (C). It follows
that

ϕ|U∩∂D : U ∩ ∂D → ϕ(U ∩ ∂D) = ϕ(U) ∩ ∂Hn

is a homeomorphism. If we regard ϕ(U) ∩ ∂Hn as an open set in Rn−1 via
∂Hn ∼= Rn−1, then (U ∩ ∂D,ϕ|U∩∂D) defines a coordinate chart around p ∈ ∂D
in the sense of Remark 1.2. By letting p vary, we obtain an atlas on ∂D since the
change of coordinates between two coordinate charts arising from (C) restricts
to a diffeomorphism between two open sets in ∂Hn. It follows that ∂D is an
(n− 1)-dimensional manifold whose manifold topology is the relative topology.
Moreover, it is trivial to see that (∂D, i) is a submanifold of M , and hence by
Theorem 1.7 we know that (∂D, i) is an embedding.

From now on, assume that M is oriented, and let D be a regular domain on
M.

Let ω be a compactly supported n-form on M . We are going to define the
integration of ω over D. The idea is to localize to the Euclidean case by using
the partition of unity.

First consider the case when suppω is contained in some oriented coordinate
chart (U, xi). Write

ω = adx1 ∧ · · · ∧ dxn

under U . If suppω ∩D = ∅, defineˆ
D

ω = 0;

otherwise define ˆ
D

ω =

ˆ
ϕ(U∩D)

adx1 · · · dxn, (2.35)

where ϕ is the coordinate map and the R.H.S. of 2.35 is the Lebesgue integral.
This is well-defined since a is compactly supported in ϕ(U). Now assume that
(V, yi) is another oriented coordinate chart containing the support of ω, and

ω = bdy1 ∧ · · · ∧ dyn.
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Since suppω ∩ D ⊂ U ∩ V , by the change of variables formula for Lebesgue
integrals, we have

ˆ
ψ(V ∩D)

bdy1 · · · dyn =

ˆ
ψ(U∩V ∩D)

bdy1 · · · dyn

=

ˆ
ϕ(U∩V ∩D)

adx1 · · · dxn

=

ˆ
ϕ(U∩D)

adx1 · · · dxn.

Therefore, the definition of
´
D
ω is independent of such coordinate charts. It is

easy to see that if ω1, ω2 are both compactly supported in an oriented coordinate
chart U , then ˆ

D

(ω1 + ω2) =

ˆ
D

ω1 +

ˆ
D

ω2. (2.36)

Now consider the general case. Let {Uα}α∈A be an oriented atlas onM , and
choose a partition of unity {ϕα}α∈A subordinate to the open cover {Uα}α∈A
with the same index. Define ˆ

D

ω =
∑
α∈A

ˆ
D

ϕαω. (2.37)

First of all, it is a finite sum since ω is compactly supported. Moreover, since
ϕαω is compactly supported in Uα, each term is well-defined as before. Finally, if
we have another such atlas {Vi}i∈I and a partition of unity {ψi}i∈I subordinate
to this atlas with the same index, then by the previous linearity (2.36),∑

i∈I

ˆ
D

ψiω =
∑
i∈I

ˆ
D

(
∑
α∈A

ϕα)ψiω

=
∑
i,α

ˆ
D

ϕαψiω

=
∑
α∈A

ˆ
D

(
∑
i∈I

ψi)ϕαω

=
∑
α∈A

ˆ
D

ϕαω,

where each sum is a finite sum by compactness. Therefore,
´
D
ω is well-defined.

Definition 2.15. The real number defined by (2.37) is called the integral of
ω over D.

It follows immediately that
´
D
· is linear on the space of compactly supported

n-forms.
Now we are going to prove Stokes’ theorem.
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Let D be a regular domain on M. Informally, Stokes’ theorem says that for
a compactly supported (n− 1)-form ω, the integral of dω over D is the same as
the integral of ω over ∂D.

To formulate the result more precisely, we first need an induced orientation
on ∂D. For each p ∈ ∂D, choose an oriented coordinate chart (Up, x

i) according
to (C) of Definition 2.14. The Jacobian of change of coordinates restricted on
∂D takes the form

J =

(
( ∂y

i

∂xj (x1, · · · , xn−1, 0))16i,j6n−1 ∗
0 ∂yn

∂xn (x1, · · · , xn−1, 0)

)
.

Since the coordinate charts are both oriented, we know that the determinant of
J is positive. It follows again from (C) that

∂yn

∂xn
(x1, · · · , xn−1, 0) > 0,

and therefore

det((
∂yi

∂xj
(x1, · · · , xn−1, 0))16i,j6n−1) > 0.

This shows that the atlas {Up ∩ ∂D}p∈∂D on ∂D is orientation compatible.
Therefore, by Proposition 2.13 it defines an orientation [ω] on ∂D. However,
for the consideration of the sign consistency in Stokes’ theorem, in the following
we will use the orientation −[ω] instead of [ω] on ∂D. On the coordinate chart
(Up, x

i), this orientation is equivalent to

(−1)ndx1 ∧ · · · ∧ dxn−1.

Now we are in a position to state and prove Stokes’ theorem. Recall that
(∂D, i) is an embedded submanifold of M. If ω is a compactly supported dif-
ferential form on M, then it is easy to see that the pullback i∗ω is compactly
supported on ∂D.

Theorem 2.5. Let ω be a compactly supported (n− 1)-form on M. Then
ˆ
D

dω =

ˆ
∂D

i∗ω. (2.38)

Proof. Choose an oriented atlas {(Uα, ϕα)}α∈A on M, where each Uα arises
from (A), (B) or (C) of Definition 2.14. Let {hα}α∈A be a partition of unity
subordinate to this atlas with the same index. From the definition of integration,
we have ˆ

D

dω =
∑
α∈A

ˆ
D

hαdω,

and ˆ
∂D

i∗ω =
∑
α∈A

ˆ
∂D

i∗(hαω).
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Since
∑
α hα = 1, we know that∑

α∈A
hαdω =

∑
α∈A

d(hαω).

Therefore, ˆ
D

dω =
∑
α∈A

ˆ
D

d(hαω).

Now to prove (2.38), it suffices to show that
ˆ
D

d(hαω) =

ˆ
∂D

i∗(hαω).

Hence we only need to consider the special case when ω is compactly supported
in some Uα.

If Uα arises from (A), then (2.38) is trivial.
If Uα arises from (B), write

ω =

n∑
i=1

aidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

under Uα. Then

dω = (

n∑
i=1

(−1)i−1 ∂ai
∂xi

)dx1 ∧ · · · ∧ dxn.

Since suppω ⊂ Uα ⊂ D, it follows from Fubini’s theorem and the fundamental
theorem of calculus

ˆ
D

dω =

n∑
i=1

(−1)i−1

ˆ
ϕα(Uα)

∂ai
∂xi

dx1 · · · dxn = 0.

On the other hand, it is easy to see that i∗ω = 0. Therefore, (2.38) holds.
If Uα arises from (C), then by the same argument as before we have
ˆ
D

dω

=

n∑
i=1

(−1)i−1

ˆ
ϕα(Uα∩D)=ϕα(Uα)∩Hn

∂ai
∂xi

dx1 · · · dxn

=(−1)n
ˆ
ϕα(Uα∩∂D)=ϕα(Uα)∩∂Hn

an(x1, · · · , xn−1, 0)dx1 · · · dxn−1. (2.39)

On the other hand, if we use

(W, (u1, · · · , un−1) = ((−1)nx1, x2, · · · , xn−1))
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to parametrize ∂D locally, then i∗ω is compactly supported in this single coor-
dinate chart which is compatible with our choice of orientation on ∂D, and it is
given by

i∗ω = an((−1)nu1, u2, · · · , un−1)du1 ∧ · · · ∧ dun−1.

Therefore, the R.H.S. of (2.39) is the same as
ˆ
W

an((−1)nu1, u2, · · · , un−1)du1 · · · dun−1,

which by definition is
´
∂D

i∗ω.

Remark 2.5. By using a cut off argument, if the regular domain D is compact,
then we don’t need to assume that the n-form ω is compactly supported and
the integral of ω over D is well-defined. Moreover, in this case ∂D is a compact
manifold of dimension n − 1, and Stokes’ theorem holds for any (n − 1)-forms
on M.

Now let’s see how Stokes’ theorem unifies the classical results in Riemann’s
integration theory in low dimensions. We first give a remark on the orientation
on ∂D. For any p ∈ ∂D, we call a vector v ∈ TpM an outer vector to D if
v is the tangent vector of some curve γ : (−δ, δ) → M through p such that
γ(t) /∈ D for 0 < t < δ. A basis {v1, · · · , vn−1} of Tp∂D is define to be positive
oriented if {v, v1, · · · , vn} is positive oriented with respect to the orientation on
M. This definition is independent of the choice of outer vectors to D, and as p
varies on ∂D this is a smooth specification of orientation on tangent spaces of
∂D. Therefore, it defines an orientation on ∂D. This is equivalent to the one
we introduced before. We leave it as an exercise for the readers to work out the
details.

Example 2.4. (1) D = [a, b] ⊂ R1.
The fundamental theorem of calculus takes the formˆ

[a,b]

f ′(x)dx = f(b)− f(a). (2.40)

If we denote ∂D = {a} ∪ {b}, then (2.40) is just Stokes’ formula (2.38) where
ω = f .

(2) D is a regular bounded domain in R2.
The Green’s theorem takes the formˆ

D

(
∂Q

∂x
− ∂P

∂y
)dxdy =

ˆ
∂D

(Pdx+Qdy).

This is Stokes’ formula if we let ω = Pdx+Qdy.
(3) D is a regular bounded domain in R3.
Gauss’s theorem takes the formˆ

D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
)dxdydz =

ˆ
∂D

(Pdydz +Qdzdx+Rdxdy).
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This is again Stokes’ formula if we let ω = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.
(4) D is a regular compact domain in a 2-dimensional surface M ⊂ R3.
Stokes’ theorem for surfaces takes the formˆ

D

((
∂R

∂y
−∂Q
∂z

)dydz+(
∂P

∂z
−∂R
∂x

)dzdx+(
∂Q

∂x
−∂P
∂y

)dxdy) =

ˆ
∂D

(Pdx+Qdy+Rdz).

This is also Stokes’ formula if we let ω = Pdx+Qdy +Rdz.
The orientation on ∂D in each of the previous four cases is induced from the

standard orientation on the corresponding Euclidean space, defined in the sense
of the remark before this example.

Remark 2.6. It is possible to define integration of p-forms on singular p-chains
(p-dimensional triangles on M), and Stokes’ theorem also holds for this case.
Moreover, Stokes’ theorem gives a duality relation

〈∂c, ω〉 = 〈c, dω〉,

where c is a singular p-chain. This point of view is fundamental in the famous
de Rham theorem, which asserts that the de Rham cohomology is isomorphic
to the singular cohomology via integration.

3 The de Rham cohomology

3.1 The de Rham complex and the de Rham cohomology
groups

In the rest of the course, we will be mainly focused on the study of a very impor-
tant algebraic topological invariant over differentiable manifolds: the de Rham
cohomology. This is a fundamental object carrying rich topological information
of the manifold. Here we shall see how algebraic structures comes into the story
and interacts with differential calculus in the study of topological issues.

To motivate our study, let’s first look at a simple but nontrivial example.
For a C∞ function f on R2, we know how to compute its gradient (∂f∂x ,

∂f
∂y ).

One might ask the following natural question: if we are given a pair f1, f2 of C∞
functions on R2, is there some f ∈ C∞(R2) such that (f1, f2) is the gradient of
f? Let’s assume the existence of f for the moment, which means that

∂f

∂x
= f1,

∂f

∂y
= f2.

Therefore, by differentiating again we have

∂f1

∂y
=
∂f2

∂x
. (3.1)

In other words, (3.1) is a necessary condition of the existence of such f. Con-
versely, if f1, f2 satisfies (3.1), then the function

f(x, y) =

ˆ 1

0

(xf1(tx, ty) + yf2(tx, ty))dt ∈ C∞(R2)
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has gradient (f1, f2). In fact, we have

∂f

∂x
=

ˆ 1

0

(f1(tx, ty) + tx
∂f1

∂x
(tx, ty) + ty

∂f2

∂x
(tx, ty))dt.

On the other hand,

d

dt
(tf1(tx, ty)) = f1(tx, ty) + tx

∂f1

∂x
(tx, ty) + ty

∂f1

∂y
(tx, ty).

It follows from (3.1)

∂f

∂x
=

ˆ 1

0

d

dt
(tf1(tx, ty))dt = f1(x, y).

Similarly, ∂f∂y = f2(x, y).
However, the situation becomes completely different if we are working on

the punctured plane R2\{0}. Of course (3.1) is still necessary of the existence
of f, but it may not be sufficient any more! Consider a pair of C∞ functions on
R2\{0} defined by

(f1, f2) = (− y

x2 + y2
,

x

x2 + y2
).

It is easy to see that (3.1) holds. If (f1, f2) is the gradient of some f ∈
C∞(R2\{0}), then we have

ˆ 2π

0

d

dθ
f(cos θ, sin θ)dθ = f(1, 0)− f(1, 0) = 0. (3.2)

But

d

dθ
f(cos θ, sin θ) = −∂f

∂x
(cos θ, sin θ) sin θ +

∂f

∂y
(cos θ, sin θ) cos θ

= −f1(cos θ, sin θ) sin θ + f2(cos θ, sin θ) cos θ

= 1,

which certainly yields a contradiction to (3.2). In other words, such f does not
exist.

Let’s summarize these two situations in the language of differential forms.
The pair (f1, f2) is equivalent to a 1-form

ω = f1dx+ f2dy,

and (3.1) is equivalent to saying that dω = 0. The existence of f such that
(f1, f2) is the gradient of f is equivalent to saying that df = ω. If such f exists,
since d2 = 0, it certainly implies that dω = 0 and hence (3.1) holds. This
is true on R2 or R2\{0} (in fact on any open subsets of R2). However, the
converse problem behaves very differently in the previous two situations. The
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fundamental reason is the difference between the topology of R2 and R2\{0}:
one does not have holes while the other have one hole.

Once we’ve reformulated the problem by using differential forms, of course
we can ask the same question on R3 and for differential forms of each degree.
For example, one can ask: if a smooth vector field Y on R3 is divergence free, is
it the curl of some smooth vector field X (this correspondence to the question
for 2-forms on R3)? In general, this leads us to the following definition.

Definition 3.1. Let M be a manifold. An r-form ω on M is called closed if
dω = 0; it is called exact if dτ = ω for some (r− 1)-form τ . The space of closed
(exact, respectively) r-forms onM is denoted by Zr(M) (Br(M), respectively).

Since there is no (−1)-forms, each 0-form is exact. Moreover, it is easy to
see that Zr(M) and Br(M) are (usually infinite dimensional) real vector spaces.
Since d2 = 0, it is immediate that Br(M) is a subspace of Zr(M) for all r > 0.

The two examples we gave previously are essentially about studying how far
is a closed r-form from being exact. More precisely, it is about the study of the
quotient space Zr(M)/Br(M).

Definition 3.2. The sequence Ω∗(M) = (Ωr(M))r>0 of differential forms to-
gether with the exterior derivative d is called the de Rham complex over M.
The quotient space

Zr(M)

Br(M)
=

Ker(d : Ωr(M)→ Ωr+1(M))

Im(d : Ωr−1 → Ωr(M))

as a real vector space is called the r-th de Rham cohomology group of M, and
it is denoted by Hr(M). Elements in Hr(M) are called cohomology classes of
degree r.

Remark 3.1. Although we call Hr(M) a group, it is just a real vector space
(usually of finite dimension). In the context of algebraic topology, we will en-
counter more general cohomology groups and homology groups, which are free
abelian groups with coefficients not just R.

By definition, under the quotient map a closed r-form ω defines a cohomology
class [ω] of degree r. If [ω] = [ω′], then there exists some (r − 1)-form τ such
that ω′ − ω = dτ.

H0(M) is just the space of C∞ functions f with df = 0, which is equivalent
to the fact that f is locally constant. Therefore, if M is connected, H0(M) is
naturally isomorphic to R. In general, H0(M) is isomorphic to RN , where N is
the cardinality of the set of connected components ofM (at most countable since
the topology ofM is second countable). In particular, ifM is compact (so there
will be only finitely many connected components ofM since the set of connected
components form an open cover ofM), then H0(M) is finite dimensional. Later
on we will prove that for a compact manifold M, Hr(M) is finite dimensional
for all r > 0.

If r > n = dimM , by definition we have Hr(M) = 0.
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By using the wedge product, we are able to multiply cohomology classes of
different degrees. Let a ∈ Hr(M) and b ∈ Hs(M). We define

a · b = [ω ∧ τ ],

where ω (τ , respectively) is a representative in the cohomology class a (b, re-
spectively). This is well-defined since ω ∧ τ is closed and if

ω′ − ω = dα, τ ′ − τ = dβ

for some α, β, then

ω′ ∧ τ ′ = (ω + dα) ∧ (τ + dβ)

= ω ∧ τ + d((−1)rω ∧ β + α ∧ τ + (−1)rdα ∧ β),

where r is the degree of ω. Therefore, “ ·” defines a bilinear product on

H(M) = ⊕r>0H
r(M)

which makes H(M) a graded algebra over R1. H(M) is usually called the de
Rham cohomology. Note that due to the antisymmetry of the wedge product,
we have

a · b = (−1)rsb · a, ∀a ∈ Hr(M), b ∈ Hs(M).

A crucial point on the de Rham cohomology is that a C∞ map F : M →
N between manifolds induces a pullback on cohomology classes by acting on
representatives, which is indeed an algebra homomorphism. More precisely,
defined F ∗ : Hr(N)→ Hr(M) by

F ∗[ω] = [F ∗ω].

This is well-defined since F ∗ commutes with d (see Proposition 2.7). Moreover,
if [ω] ∈ Hr(N), [τ ] ∈ Hs(N),then

F ∗([ω] · [τ ]) = F ∗[ω ∧ τ ] = [F ∗(ω ∧ τ)] = [F ∗ω ∧ F ∗τ ]

= [F ∗ω] · [F ∗τ ] = F ∗[ω] · F ∗[τ ].

Therefore, F ∗ : H(N)→ H(M) is an algebra homomorphism.
From (2.21) we can see immediately that if F : M → N and G : N → P

are C∞ maps between manifolds, then

(G ◦ F )∗ = F ∗ ◦G∗ : H(P )→ H(M). (3.3)

As we shall see later on, the de Rham cohomology reveals the global topology
of the manifold to some extend. Therefore, the computation of the de Rham
cohomology groups is a significant problem. At the moment we only have very
limited tools in computing these groups of a general manifold. But for some
special examples, it doesn’t take too much efforts.
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First consider the simplest case: M = R1. Since R1 is connected, we know
that H0(R1) = R. Now we only need to compute H1(R1). In this case every one
form ω = fdx is closed. If we let

F (x) =

ˆ x

0

f(t)dt ∈ C∞(R1),

then it is immediate that dF = ω. In other words, every closed form on R1 is
exact, and hence H1(R1) = 0. Therefore, we have

Hr(R1) =

{
R, r = 0;

0, otherwise.

Now we want to consider higher dimensional Euclidean spaces. Let U be
some open subset of Rn, and use

s0, s1 : U → U × R1

to denote the inclusions (the 0-section and the 1-section)

s0(x) = (x, 0), s1(x) = (x, 1), x ∈ U.

The key to the computation is the following result.

Proposition 3.1. For each r > 0, there exists a linear operator Ŝr : Ωr(U ×
R1)→ Ωr−1(U) (Ω−1(U) := 0), such that

d ◦ Ŝr + Ŝr+1 ◦ d = s∗1 − s∗0 : Ωr(U × R1)→ Ωr(U), (3.4)

where s∗0, s∗1 are the induced pullbacks of differential forms by s0, s1, respectively.
In particular, when acting on the de Rham cohomology groups,

s∗0 = s∗1 : Hr(U × R1)→ Hr(U). (3.5)

Proof. Let’s first see how (3.4) implies (3.5). In fact, when r > 1, for any closed
r-form ω on U × R1 , (3.4) implies that

s∗1ω − s∗0ω = dŜr(ω),

and hence s∗0ω and s∗1ω defines the same cohomology class. When r = 0, if f is
a C∞ function on U × R1 with df = 0, then (3.4) implies that s∗1f = s∗0f.

Now we show the existence of the linear operator Ŝr such that (3.4) holds.
Intuitively, Ŝr is just the “integration along each fiber”.

Let

ω =
∑

i1<···<ir

ai1···ir (x, t)dx
i1···ir

+
∑

j1<···<jr−1

bj1···jr−1
(x, t)dt ∧ dxj1 ∧ · · · ∧ dxjr−1 ∈ Ωr(U × R1),
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and define

Ŝr(ω) =
∑

j1<···<jr−1

(

ˆ 1

0

bj1···jr−1
(x, t)dt)dxj1 ∧ · · · ∧ dxjr−1 .

If r = 0 simply define Ŝr = 0. It follows that

dŜr(ω) =
∑

j1<···<jr−1

(

ˆ 1

0

∂bj1···jr−1
(x, t)

∂xk
dt)dxk ∧ dxj1 ∧ · · · ∧ dxjr−1 .

On the other hand,

dω =
∑

i1<···<ir

∂ai1···ir (x, t)

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxir

+
∑

i1<···<ir

∂ai1···ir (x, t)

∂t
dt ∧ dxi1 ∧ · · · ∧ dxir

+
∑

j1<···<jr−1

∂bj1···jr−1
(x, t)

∂xk
dxk ∧ dt ∧ dxj1 ∧ · · · ∧ dxjr−1 .

By the definition of Ŝr, we have

Ŝr+1(dω) =
∑

i1<···<ir

ai1···ir (x, 1)dxi1 ∧ · · · ∧ dxir

−
∑

i1<···<ir

ai1···ir (x, 0)dxi1 ∧ · · · ∧ dxir

−
∑

j1<···<jr−1

(

ˆ 1

0

∂bj1···jr−1
(x, t)

∂xk
dt)dxk ∧ dxj1 ∧ · · · ∧ dxjr−1 .

Therefore,

dŜr(ω) + Ŝr+1d(ω) =
∑

i1<···<ir

ai1···ir (x, 1)dxi1 ∧ · · · ∧ dxir

−
∑

i1<···<ir

ai1···ir (x, 0)dxi1 ∧ · · · ∧ dxir .

But it is easy to see that the R.H.S. of the above identity is just s∗1ω − s∗0ω,
hence (3.4) holds. Note that (3.4) also holds for r = 0.

By using coordinate charts and showing invariance under change of coordi-
nates, one can prove the following result in the same way. We leave the proof
as an exercise.

Proposition 3.2. Proposition 3.1 holds when U is replaced by a manifold M.
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Proposition 3.2 yields immediately the homotopy invariance for the de Rham
cohomology. This is perhaps the most important property for the de Rham
cohomology.

Definition 3.3. Let f, g : M → N be two C∞ maps between manifolds M
and N . A smooth homotopy from f to g is a C∞ map

F : M × R1 → N

such that
F (p, 0) = f(p), F (p, 1) = g(p), ∀p ∈M.

f and g are called smoothly homotopic (denoted by f ' g) if there exists a
smooth homotopy from f to g.

Now we have the following result.

Theorem 3.1. Let f, g : M → N be two C∞ maps between manifolds M and
N . If f and g are smoothly homotopic, then f∗ = g∗ : Hr(N) → Hr(M) for
all r > 0.

Proof. Let F be a smooth homotopy from f to g, and use s0, s1 : M →M ×R1

to denote the inclusions as before. Then we have

f = F ◦ s0, g = F ◦ s1,

and hence
f∗ = s∗0 ◦ F ∗, g∗ = s∗1 ◦ F ∗.

By Proposition 3.2, we have f∗ = g∗ when acting on the de Rham cohomology
groups.

As a corollary, we obtain the so-called Poincáre lemma.

Proposition 3.3. Let U be a star-shaped open subset of Rn (i.e., there exists
some x0 ∈ U such that for any x ∈ U, the line segment {tx0+(1−t)x : t ∈ [0, 1]}
is contained in U). Then

Hr(U) =

{
R, r = 0;

0, otherwise.
(3.6)

In particular, (3.6) holds when U = Rn.

Proof. Obviously U is connected and hence H0(U) = R.
Now consider Hr(U) with r > 1. Let h(t) ∈ C∞(R1) be such that

h(t) =

{
1, t > 1;

0, t 6 0,

and 0 6 h(t) 6 1 for t ∈ [0, 1]. It follows that

F (x, t) = (1− h(t))x0 + h(t)x, (x, t) ∈ U × R1
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defines a smooth homotopy from the constant map

ex0
(x) = x0, x ∈ U,

to the identity map idU . Therefore, by Theorem 3.1 we have e∗x0
= id∗U . But it

is easy to see that for any a ∈ Hr(U),

e∗x0
a = 0, id∗Ua = a.

It follows that a = 0 and hence Hr(U) = 0.

By taking U = Rn in Proposition 3.3, we obtain immediately that

Hr(Rn) =

{
R, r = 0;

0, otherwise.

In particular, the problem proposed at the very beginning for R2 is solved com-
pletely. However, the case of R2\{0} is still unclear, and we will come to this
point later on.

Definition 3.4. Two manifolds M and N are said to be homotopy equivalent
(in the smooth sense) if there exists C∞ maps f : M → N and g : N → M
such that

g ◦ f ' idM , f ◦ g ' idN .

Another important consequence of Theorem 3.1 is the following.

Theorem 3.2. If manifolds M and N are homotopy equivalent, then Hr(M) ∼=
Hr(N) for all r > 0.

Proof. Let f, g be C∞ maps given in Definition 3.4, then by Theorem 3.1 we
have

f∗ ◦ g∗ = id : Hr(M)→ Hr(M),

and
g∗ ◦ f∗ = id : Hr(N)→ Hr(N).

Therefore, f∗ is an isomorphism from Hr(N) to Hr(M) with inverse g∗.

Example 3.1. Let M be a manifold. It is easy to see that M ×Rn and M are
homotopy equivalent, under the maps

π : M × Rn →M, π(p, x) = p,

and
i : M →M × Rn, i(p) = (p, 0).

More generally, one can show that for any real vector bundle, the total space E
and the base space B are homotopy equivalent, and hence they have the same
de Rham cohomology (up to isomorphism).
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Example 3.2. Rn+1\{0} and Sn are homotopy equivalent under the maps

r : Rn+1\{0} → Sn, r(x) =
x

‖x‖
,

and the inclusion i : Sn → Rn+1\{0}. Therefore, they have the same de Rham
cohomology.

Example 3.3. A manifoldM is called contractible if it is homotopy equivalent
to the single point space {x0} which is regarded as a 0-dimensional manifold
(equivalently, if the identity map is smoothly homotopic to a constant map on
M). If M is contractible, then

Hr(M) =

{
R, r = 0;

0, otherwise.

In particular, a contractible manifold is always connected.

An interesting geometric application of the homotopy invariance of de Rham
cohomology is the so-called Hairy Ball Theorem.

Theorem 3.3. There exists a smooth non-vanishing vector field on the n-sphere
Sn if and only if n is odd.

Proof. Assume that X is a smooth non-vanishing vector field on Sn. Note that
for each x ∈ Sn, we can think of Xx as a vector in Rn+1 canonically. In this
manner, we can regard X as a smooth non-vanishing map v : Sn → Rn+1, and
we may further assume that v is normalized so that

‖v(x)‖ = 1, ∀x ∈ Sn, (3.7)

where ‖ · ‖ is the Euclidean norm.
Define a C∞ map F : Sn × R1 → Rn+1 by

F (x, t) = (cosπt)x+ (sinπt)v(x), (x, t) ∈ Sn × R1.

Since 〈x, v(x)〉 = 0 for all x ∈ Sn (here 〈·, ·〉 is the Euclidean inner product), by
(3.7) we can easily see that F takes value in Sn. Moreover,

F (x, 0) = x, F (x, 1) = −x, ∀x ∈ Sn.

Therefore, F defines a smooth homotopy from the identity map to the antipodal
map

a(x) = −x, x ∈ Sn,

on Sn. It follows from Theorem 3.1 that

id∗Sn = a∗ : Hn(Sn)→ Hn(Sn). (3.8)
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On the other hand, if we take the standard orientation form ω on Sn, which
can be defined by the pullback of the form

n∑
i=0

(−1)ixidx
1 ∧ · · · · · · ∧ d̂xi ∧ · · · · · · dxn

on Rn+1 by the inclusion map i : Sn → Rn+1, then it is easy to see that (one
may probably encounter this in the Problem Sheet 2)

a∗ω = (−1)n+1ω.

In particular, if n is even, then a∗ω = −ω. By (3.8) we conclude that [ω] =
0 ∈ Hn(Sn), which means ω = dα for some α ∈ Ωn−1(Sn). It then follows from
Stokes’ theorem that ˆ

Sn
ω =

ˆ
Sn
dα = 0.

But this is a contradiction since the integration of any orientation form on Sn
is strictly positive by definition (in fact, for our choice of ω here,

´
Sn
ω gives the

volume of Sn).
Therefore, if n is even, any smooth vector field on Sn must vanish at some

point.
If n is odd, write n = 2k−1, and for any x = (a1, b1, · · · , ak, bk) ∈ Sn ⊂ R2k,

define
v(x) = (−b1, a1, · · · ,−bk, ak) ∈ Sn.

It is easy to see that 〈x, v(x)〉 = 0 for all x ∈ Sn and hence v defines a smooth
non-vanishing vector field on Sn.

3.2 The top de Rham cohomology group and the degree
of a C∞ map

The integration theory developed in Section 2.5 is a very useful tool in studying
the de Rham cohomology of a manifold and related topological problems. In
particular, for a compact, connected and oriented manifold M of dimension n,
the integral operator induces an isomorphism from the top de Rham cohomology
group Hn(M) to R, so that Hn(M) is always one dimensional.

Since integration is defined on the space of compactly supported top forms,
there is no point to assume compactness of the manifold in the first place.
Therefore, we start with the more general situation.

Let M be an n-dimensional connected and oriented manifold.
For r > 0, let Ωrc(M) be the real vector space of compactly supported r-

forms. By the locality of d, it is easy to see that d(Ωr−1
c (M)) ⊂ Ωrc(M). Define

the quotient space
Hn
c (M) = Ωnc (M)/d(Ωn−1

c (M)).

This is called the n-th (or top) de Rham cohomology group of M with compact
supports. In general (except the case whenM is compact), Hn

c (M) and Hn(M)
are not isomorphic.
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Now we are going to show that, the integral operator
ˆ
M

: Ωnc (M)→ R,

which is well-defined in Section 2.5 with respect to the given orientation on M,
induces a linear isomorphism

ˆ
M

: Hn
c (M)→ R

defined by ˆ
M

[ω] =

ˆ
M

ω, [ω] ∈ Hn
c (M). (3.9)

Note that
´
M

is well-defined by Stokes’ theorem.
By using a bump function in an oriented coordinate chart, we can always

construct a compactly supported n-form ω such that
ˆ
M

ω = 1.

Therefore
´
M

given by (3.9) is surjective. Now it suffices to show that: if
ω ∈ Ωnc (M) with ˆ

M

ω = 0,

then ω = dα for some α ∈ Ωn−1
c (M).

We first look that the simplest example: M = Rn. Essentially this is equiv-
alent to the following result.

Proposition 3.4. If f ∈ C∞c (Rn) satisfies
ˆ
Rn
f(x)dx1 · · · dxn = 0,

then there exists f1, · · · , fn ∈ C∞c (Rn) such that

f =

n∑
i=1

∂fi
∂xi

.

Proof. We prove the result by induction on the dimension n.
If n = 1, f ∈ C∞c (R1) with

ˆ
R1

f(x)dx = 0, (3.10)

let
f1(x) =

ˆ x

−∞
f(t)dt, x ∈ R1.
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From (3.10) it is easy to see that f1 ∈ C∞c (R1), and obviously we have

f =
df1

dx
.

Now assume that the result is true for dimension n. Let f ∈ C∞c (Rn+1) with
ˆ
Rn+1

f(x)dx1 · · · dxn+1 = 0.

Define

g(x1, · · · , xn) =

ˆ ∞
−∞

f(x1, · · · , xn, xn+1)dxn+1, (x1, · · · , xn) ∈ Rn.

It follows that g ∈ C∞c (Rn) and by Fubini’s theorem we have
ˆ
Rn
g(x)dx1 · · · dxn = 0.

By induction hypothesis, there exists g1, · · · , gn ∈ C∞c (Rn), such that

g =

n∑
i=1

∂gi
∂xi

.

Choose a bump function ρ ∈ C∞c (R1) with
ˆ ∞
−∞

ρ(x)dx = 1.

For 1 6 i 6 n, define

fi(x
1, · · · , xn, xn+1) = gi(x

1, · · · , xn)ρ(xn+1) ∈ C∞c (Rn+1),

and let

fn+1(x1, · · · , xn+1) =

ˆ xn+1

−∞
(f(x1, · · · , xn, t)−

n∑
i=1

∂fi
∂xi

(x1, · · · , xn, t))dt.

One may easily verify that fn+1 ∈ C∞c (Rn+1). Therefore, we have

f =

n+1∑
i=1

∂fi
∂xi

.

So far we have proved that Hn
c (Rn) ∼= R via the integral operator (note that

this already shows Hn
c (Rn) is not isomorphic to Hn(Rn) = 0). The idea of

proving the isomorphism for a general connected and oriented manifold M is to
reduce to coordinate charts which are diffeomorphic to Rn and use connectedness
to go from one coordinate chart to another.

First we need to following lemma.
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Lemma 3.1. Let {Ui}i∈I be an atlas on M. Then for any p, q ∈M, there exists
a finite sequence of indices i0, · · · , ik ∈ A, such that

p ∈ Ui0 , q ∈ Uik ,

and
Uil−1

∩ Uil 6= ∅, ∀l = 1, · · · , k. (3.11)

Proof. Fix p ∈M and some Ui0 containing p. Define V to be the set of q ∈M
such that there exists a finite sequence i1, · · · , ik ∈ A with q ∈ Uik and (3.11)
holds. Obviously V 6= ∅ as Ui0 ⊂ V. If q ∈ V with i1, · · · , ik being the associated
finite sequence, then Uik ⊂ V, and hence V is open. Moreover, let q /∈ V and
assume that q ∈ Ui for some i ∈ I. It follows from the definition of V that
Ui ⊂ V c. Therefore, V is closed. By the connectedness of M, we know that
V = M.

Now we are able to prove the following result.

Theorem 3.4. The integral operator
´
M

: Hn
c (M) → R is a linear isomor-

phism.

Proof. As we’ve discussed before, it suffices to show that: if ω ∈ Ωnc (M) with
zero integral, then ω = dα for some α ∈ Ωn−1

c (M).
Choose an oriented atlas {Ui}i∈I onM such that each Ui is diffeomorphic to

Rn under the coordinate map, and take a partition of unity {ϕi}i∈I subordinate
to {Ui}i∈I with the same index. It follows that

ω =
∑
i∈I

ϕiω, (3.12)

which is in fact a finite sum by local finiteness. Fix i0 ∈ I and use a bump
function to define an n-form ω0 supported in Ui0 with

ˆ
M

ω0 = 1.

For each fixed i ∈ I in the (finite) sum (3.12), we know that suppϕiω ⊂ Ui.
From Lemma 3.11, it is not hard to see that there exists a finite sequence of
indices i1, · · · , ik−1 ∈ I, such that

Uil−1
∩ Uil 6= ∅, l = 1, · · · , k,

where ik := i. By using bump functions, for each 1 6 l 6 k, we can construct
an n-form τl supported in Uil−1

∩ Uil such that
ˆ
M

τl = 1.
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It follows from the choice of the atlas and Proposition 3.4 that for each 1 6 l 6 k,
there exists an n-form βl supported in Uil−1

, such that

ω0 − τ1 = dβ1,

τl−1 − τl = dβl, ∀2 6 l 6 k.

Therefore,

ω0 − τk = d(

k∑
l=1

βl). (3.13)

Now let
ci =

ˆ
M

ϕiω,

it follows that ˆ
M

(ϕiω − ciτk) = 0,

and ϕiω− ciτk is supported in Uik = Ui. Again by Proposition 3.4, there exists
an n-form γ supported in Ui, such that

ϕiω − ciτk = dγ.

Combining with (3.13), we have

ϕiω = ciω0 + d(γ − ci
k∑
l=1

βl).

We use αi to denote γ − ci
∑k
l=1 βl.

Finally, let α =
∑
i αi ∈ Ωn−1

c (M) (note that this is a finite sum). Since´
M
ω = 0, we have ∑

i

ci = 0.

Therefore,
ω =

∑
i

ϕiω = dα,

and the proof is complete.

One immediate corollary of Theorem 3.4 is the following.

Corollary 3.1. If M is a compact, connected and oriented manifold of dimen-
sion n, then the integral operator

´
M

induces a linear isomorphism from Hn(M)
to R. In particular,

dimHn(M) = 1,

and any n-form ω onM with nonzero integral induces a generator [ω] of Hn(M).

Remark 3.2. By Corollary 3.1 and using a bump function, we can always choose
a generator of Hn(M) represented by some n-form ω supported in any given
open subset U ⊂M whose integral is nonzero.
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An interesting application of Corollary 3.1 is the so-called Brouwer F ixed
Point Theorem. Let Dn be the closed n-dimensional unit ball, so ∂Dn = Sn−1.

Theorem 3.5. Let F : Dn → Dn be a C∞ map. Then there exists some
x ∈ Dn such that F (x) = x.

Proof. The case of n = 1 can be proved easily by using properties of continuous
functions on a closed interval. Let’s consider n > 2.

Assume on the contrary that F does not have a fixed point. For any x ∈ Dn,
extend the straight line segment F (x)x until it meets the boundary ∂Dn = Sn−1

at the point g(x). This defines a C∞ map

g : Dn → Sn−1

such that g|Sn−1 = idSn−1 .
Let h ∈ C∞c (R1) be defined as in the proof of Proposition 3.3. It follows

that
g(h(t)x), (x, t) ∈ Sn−1 × R1,

defines a smooth homotopy from the identity map on Sn−1 to a constant map
which maps the whole sphere Sn−1 to the point g(0). The same reason as in
the proof of Proposition 3.3 shows that the r-th de Rham cohomology group of
Sn−1 is trivial for r > 1. But this contradicts Corollary 3.1 since we know that
Hn−1(Sn−1) ∼= R.

Therefore, F has a fixed point on Dn.

Corollary 3.1 allows us to introduce the concept of degree of a C∞ map
between two compact, connected and oriented manifolds M,N of the same di-
mension n.

More precisely, let F : M → N be a C∞ map. Since the integral operator
induces a natural isomorphism from the top de Rham cohomology group to R,
there exists a unique real number k such that the following diagram commutes:

Hn(N)

´
N

��

F∗ // Hn(M)

´
M

��
R k· // R.

Here the bottom row means multiplication by k.

Definition 3.5. This real number k is called the degree of F, and it is denoted
by degF.

By definition, for any ω ∈ Ωn(N),

ˆ
M

F ∗ω = degF ·
ˆ
N

ω. (3.14)
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Since there exists unique cohomology classes [ωM ] on M and [ωN ] on N whose
integrals are both equal to 1, we can equivalently define degF to be the number
such that

F ∗[ωN ] = degF · [ωM ].

It follows from Theorem 3.1 that if F and G are smoothly homotopic, then
degF = degG. Moreover, if

F : M → N, G : N → P,

are C∞ maps between compact, connected and oriented manifolds of the same
dimension, then by (3.3) we have

deg(G ◦ F ) = deg(F ) · deg(G).

We now prove a surprising and crucial fact: the degree of a C∞ map is
always an integer. Let F : M → N be as before.

Definition 3.6. A point q ∈ N is called a regular value of F if either F−1(q) =
∅, or for each p ∈ F−1(q), the differential (dF )p is surjective.

If q is a regular value of F, then for any p ∈ F−1(q) (if not empty), by
definition we know that (dF )p is a linear isomorphism from TpM to TqN.

Let T : V → W be a linear isomorphism between two real oriented vector
spaces of the same dimension. We define the sign of T to be

sgnT =

{
1, if T preserves orientation;
−1, otherwise.

Now we have the following result.

Theorem 3.6. Let q be a regular value of F. Then

degF =
∑

p∈F−1(q)

sgn(dF )p.

Proof. If F−1(q) = ∅, since F (M) is compact in N, there exists some open
neighborhood V of q, such that V ∩ F (M) = ∅. Use a bump function to choose
some ω ∈ Ωn(N) supported in V with

ˆ
N

ω = 1.

It follows that F ∗ω = 0 and by (3.14) we have

degF = 0.

If F−1(q) 6= ∅, for any p ∈ F−1(q), by the inverse function theorem there
exists some open neighborhoods Up of p and Vp of q such that F |Up : Up → Vp
is a diffeomorphism. In particular,

Up ∩ F−1(q) = {p}.
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By a compactness argument and shrinking those open neighborhoods if neces-
sary, we can see that

F−1(q) = {p1, · · · , pk}
is a finite set and there exists disjoint open neighborhoods Ui of pi and an open
neighborhood V of q, such that

F−1(V ) = ∪ki=1Ui

and
F |Ui : Ui → V

is a diffeomorphism. We may further assume that Ui, V are connected oriented
coordinate charts (i = 1, · · · , k).

Now choose ω ∈ Ωn(N) supported in V with
ˆ
N

ω = 1.

It follows that ˆ
M

F ∗ω =

k∑
i=1

ˆ
Ui

F |∗Uiω.

Write
ω = f(y)dy1 ∧ · · · ∧ dyn

under V. For each 1 6 i 6 k, under Ui we have

F |∗Uiω = f(F (x))det(
∂yα

∂xβ
)16α,β6ndx

1 ∧ · · · ∧ dxn,

where
yα = Fα(x1, · · · , xn), α = 1, · · · , n.

Therefore, ˆ
Ui

F |∗Uiω =

ˆ
Ui

f(F (x))det(
∂yα

∂xβ
)16α,β6ndx

1 · · · dxn.

On the other hand, we can regard F |Ui as a change of variables for Lebesgue
integrals from V to Ui, therefore we haveˆ

N

ω =

ˆ
V

f(y)dy1 · · · dyn

=

ˆ
Ui

f(F (x))|det(∂y
α

∂xβ
)16α,β6n|dx1 · · · dxn

= 1.

By the connectedness of Ui, the sign of det(∂y
α

∂xβ
)16α,β6n is constant on Ui, and

it equals the sign of (dF )pi . It follows thatˆ
Ui

F |∗Uiω = sgn(dF )pi .
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Therefore, ˆ
M

F ∗ω =

k∑
i=1

sgn(dF )pi .

Now the proof is complete.

An immediate corollary of Theorem 3.6 is the following.

Corollary 3.2. If F is not surjective, then degF = 0.

One may wonder whether F always has a regular value. In fact, a much
stronger result holds in a very general setting, known as Sard′s theorem. Here
we state a special case of Sard’s theorem without proof, which asserts that there
are lots of points as regular values of F . A subset S of a manifold M is called
a null set in M if there exists a countable atlas {(Un, ϕn)}n>1 on M such that
for each n > 1, ϕn(S ∩ Un) is a Lebesgue null set.

Theorem 3.7. Let F : M → N be a C∞ map between manifolds M and N of
the same dimension. Let S be the set of p ∈M such that (dF )p is not surjective.
Then F (S) is a null set in N.

Example 3.4. Consider the antipodal map a on the n-sphere Sn. Obviously
every point on Sn is a regular value of a. Fix q ∈ Sn, there is exactly one pre-
image p of q under a, namely, p = −q. If we visualize the orientation on Sn

in terms of a normal vector field, it is not hard to see {v1, · · · , vn} on TpS
n,

{(da)p(v1), · · · , (da)p(vn)} is a positively oriented basis on TqSn if and only if
n is odd (we leave it as an exercise). Therefore, dega = (−1)n+1.

In particular, this gives another proof of the Hairy Ball Theorem. In fact,
if there exists a smooth non-vanishing vector field X on Sn, from the proof
of Theorem 3.3 we know that the identity map is smoothly homotopic to the
antipodal map. Therefore,

1 = degidSn = dega = (−1)n+1,

which implies that n is odd.

By using the degree of a C∞ map, one can give a geometric proof of the
fundamental theorem of algebra.

Theorem 3.8. Let p(z) = zn + a1z
n−1 + · · ·+ an−1z+ an be a polynomial with

complex coefficients of degree n > 1, then there exists some z0 ∈ C, such that
p(z0) = 0.

Proof. Let M = C∪ {∞} be the Riemann sphere, which is diffeomorphic to S2

(see Problem 1 in Problem Sheet 1). We can think of p as a C∞ map from C
to itself, which can be extended to a C∞ map (still denoted by p) from M to
itself by defining p(∞) =∞. Moreover,

F (z, t) =

{
zn + t(a1z

n−1 + · · ·+ an−1z + an), z ∈ C;

∞, z =∞,
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defines a smooth homotopy from C∞ map

p0(z) =

{
zn, z ∈ C;

∞, z =∞,

to the map p. Therefore, the degree of p is the same as the degree of p0.
Now consider the oriented chart C ⊂ M with coordinates (x, y). Choose a

bump function f with compact support in C which depends only on ‖z‖ and
does not contain the origin, and consider the 2-form

ω = f(x, y)dx ∧ dy.

By using polar coordinates (r, θ), we may write

ω = f(r)rdr ∧ dθ

and
p∗0ω = f(rn)rnd(rn) ∧ d(nθ).

It follows from (3.14) that

degp0 ·
ˆ
R2

f(r)rdrdθ = n ·
ˆ
R2

f(rn)rnd(rn)dθ = n ·
ˆ
R2

f(r)rdrdθ.

Therefore, degp = degp0 = n > 1. By Corollary 3.2, we know that p is surjective.
In particular, p−1(0) 6= ∅ and hence there exists some z0 ∈ C such that p(z0) =
0.

3.3 The cohomology of cochain complexes
We need to develop more tools to study the de Rham cohomology of a mani-
fold. One natural idea, which is quite fundamental in algebraic topology, is to
decompose the manifold into open subsets and to study the relation between
the de Rham cohomology of these subsets and of the original manifold. This
technique is formally known as the Mayer-Vietoris argument.

Before going into the geometric setting, we shall first develop some algebraic
tools.

Definition 3.7. A cochain complex A∗ = (A·, d·) is a sequence {Ar} of real
vector spaces (not necessarily finite dimensional) connected by a sequence {dr :
Ar → Ar+1} of linear maps, called coboundary maps, such that dr+1 ◦ dr = 0
for all r.

We can use the diagram

· · · // Ar−1 dr−1
// Ar

dr // Ar+1 dr+1
// Ar+2 // · · ·

to describe a cochain complex A∗.
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For each r, elements in Ar are called r-cochains, elements in Kerdr are called
r-cocycles, and elements in Imdr−1 are called r-coboundaries. Since dr−1 ◦dr =
0, similar to the de Rham cohomology, we can also form the quotient space

Hr(A∗) =
Kerdr

Imdr−1
.

Definition 3.8. Hr(A∗) is called the r-th cohomology group of the cochain
complex A∗.

Definition 3.9. A cochain complex A∗ is called exact if Imdr−1 = Kerdr
(equivalently, Hr(A∗) = 0) for all r.

We may talk about maps between cochain complexes.

Definition 3.10. A cochain map f : A∗ → B∗ between two cochain complexes
consists of a sequence {fr : Ar → Br} of linear maps, such that fr+1 ◦ drA =
drB ◦ fr for all r. In other words, the following diagram commutes:

· · · // Ar−1

fr−1

��

dr−1
A // Ar

fr

��

drA // Ar+1

fr+1

��

// · · ·

· · · // Br−1
dr−1
B // Br

drB // Br+1 // · · · .

By the commutativity of the previous diagram, it is easy to see that a cochain
map induces a linear map

f∗ : Hr(A∗)→ Hr(B∗)

for each r, by acting on representatives.

Example 3.5. The de Rham complex together with the exterior derivative, and
the pullback of differential forms by a C∞ map between manifolds is a standard
example of these algebraic concepts.

Now we introduce a particularly important concept: a short exact sequence.

Definition 3.11. A short exact sequence is an exact cochain complex of the
form

0 // A
f // B

g // C // 0. (3.15)

A short exact sequence of cochain complexes

0 // A∗
f // B∗

g // C∗ // 0 (3.16)

consists of chain maps f and g such that

0 // Ar
fr // Br

gr // Cr // 0.

is a short exact sequence for all r.
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It is easy to see that a cochain complex of the form (3.15) is a short exact
sequence if and only if f is injective, g is surjective, and Kerg = Imf.

The main result we are going to present here is that a short exact sequence
of cochain complexes induces a long exact sequence on cohomology, and the
construction is canonical.

Assume that we have a short exact sequence of cochain complexes of the
form (3.16). To simplify the notation, we will always use the same d to denote
coboundary maps even in different cochain complexes and use the same f and g
to denote cochain maps acting on each degree, although the domain of definition
for d, f, g may depend on the context.

Now we have the following commutative diagram:

0

��

0

��

0

��
· · · // Ar−1 d //

f
��

Ar
d //

f

��

Ar+1 //

f
��

· · ·

· · · // Br−1 d //

g

��

Br
d //

g

��

Br+1 //

g

��

· · ·

· · · // Cr−1 d //

��

Cr
d //

��

Cr+1 //

��

· · ·

0 0 0,

(3.17)

where each row represents a cochain complex and each column is a short exact
sequence.

We are going to construct a linear map ∂∗ : Hr(C∗) → Hr+1(A∗) which
connects the whole diagram (3.17) up and down on the level of cohomology.

Let [c] ∈ Hr(C∗) be represented by an r-cocycle c ∈ Cr. By short exactness,
we know that g is surjective, hence there exists b ∈ Br such that c = g(b). From
the commutativity of the diagram, we have

g(d(b)) = d(g(b)) = d(c) = 0,

which means that d(b) ∈ Kerg. Again by short exactness, we have d(b) ∈ Imf ,
and hence there exists some a ∈ Ar+1 with d(b) = f(a). From commutativity
again, we have

f(d(a)) = d(f(a)) = d2(b) = 0,

which implies that d(a) = 0 since f is injective. Therefore, a is an (r+1)-cocycle
which determines a cohomology class [a] ∈ Hr+1(A∗). We define ∂∗([c]) = [a].
This procedure of defining ∂∗ is usually known as diagram chasing.

Of course we need to prove the following fact.

Lemma 3.2. ∂∗ : Hr(C∗)→ Hr+1(A∗) is a well-defined linear map.
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Proof. Assume that we start with another r-cocycle c′ ∈ Cr in the cohomology
class [c], and define

c′ 7→ b′ 7→ d(b′) 7→ a′

by the previous diagram chasing procedure. We need to show that a′ − a is an
(r+ 1)-coboundary, namely, there exists some a0 ∈ Ar such that d(a0) = a′−a.

First notice that c′, c represent the same cohomology class, and hence there
exists c0 ∈ Cr−1 with dc0 = c′ − c. By the surjectivity of g, we can find some
b0 ∈ Br−1 with g(b0) = c0. It follows from commutativity that

g(b′ − b− d(b0)) = c′ − c− g(d(b0))

= c′ − c− d(g(b0))

= 0.

Therefore, by short exactness we have b′ − b− d(b0) ∈ Imf , which implies that
there exists some a0 ∈ Ar such that

b′ − b− d(b0) = f(a0).

Now again by commutativity we have

f(d(a0)) = d(f(a0))

= d(b′ − b− d(b0))

= f(a′)− f(a).

It follows from the injectivity of f that d(a0) = a′ − a, which concludes the
proof.

Now we have the following important result.

Theorem 3.9. A short exact sequence of cochain complexes of the form (3.16)
induces the following long exact sequence:

· · · ∂∗ // Hr(A∗)
f∗ // Hr(B∗)

g∗ // Hr(C∗)
∂∗ // Hr+1(A∗)

f∗ // · · · ,
(3.18)

where ∂∗ is the linear map defined previously.

Proof. It is straight forward from definition that the sequence (3.18) satisfies

g∗ ◦ f∗ = 0, ∂∗ ◦ g∗ = 0, f∗ ◦ ∂∗ = 0,

and hence it is a cochain complex. Now we show exactness at each part.
(1) Kerg∗ = Imf∗.
Let [b] ∈ Kerg∗, then g(b) is a coboundary, so g(b) = d(c1) for some cochain

c1. By the surjectivity of g, there exists some cochain b1 such that g(b1) = c1.
It follows that

g(d(b1)) = d(g(b1)) = d(c1) = g(b),
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and thus b− d(b1) ∈ Imf, which implies

b− d(b1) = f(a)

for some cochain a. Since b is a cocycle, it is easy to see that a is also a cocycle,
which implies that [b] = f∗[a] ∈ Imf∗.

(2) Ker∂∗ = Img∗.
Let [c] ∈ Ker∂∗, and take a, b as in the construction of ∂∗. It follows that

there exists some cochain a1 such that d(a1) = a. Let b1 = f(a1), then we have

g(b− b1) = c− g(f(a1)) = c.

On the other hand,

d(b− b1) = f(a)− df(a1) = f(d(a1))− d(f(a1)) = 0,

which means that b − b1 is a cocycle. It follows from the definition of g∗ that
[c] = g∗([b− b1]) ∈ Img∗.

(3) Kerf∗ = Im∂∗.
Let [a] ∈ Kerf∗, then f(a) = d(b) for some cochain b. Let c = g(b). It follows

that
d(c) = d(g(b)) = g(d(b)) = g(f(a)) = 0,

which implies that c is a cocycle. By the definition of ∂∗, it is obvious that
[a] = ∂∗([c]) ∈ Im∂∗.

Now the proof is complete.

Another very useful algebraic result about exact sequences is the following
so-called the Five Lemma, which will be used later on.

Theorem 3.10. Let f be a cochain map between two exact cochain complexes
A∗ and B∗ of the form

A1
d1A //

f1

��

A2
d2A //

f2

��

A3
d3A //

f3

��

A4
d4A //

f4

��

A5

f5

��
B1

d1B // B2
d2B // B3

d3B // B4
d4B // B5.

Assume further that f1, f2, f4, f5 are isomorphisms. Then f3 is also an iso-
morphism.

Proof. Exercise.

Finally, by using the notions of cochain complexes and cochain maps, we may
recapture what we’ve essentially done when proving the homotopy invariance
for de Rham cohomology from an algebraic point of view.
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Definition 3.12. Two chain maps f, g : A∗ → B∗ between cochain complexes
A∗ and B∗ are said to be cochain-homotopic, if for each r, there exists a linear
map sr : Ar → Br−1 such that

dr−1
B ◦ sr + sr+1 ◦ drA = gr − fr : Ar −Br.

This sequence s = (s·) of linear maps is called a homotopy operator from f to
g.

It is immediate from definition that if f and g are cochain-homotopic, then
f∗ = g∗ : Hr(A∗)→ Hr(B∗) for all r.

If we look back into the proofs Proposition 3.1 and Proposition 3.2, actually
what we are doing is to construct a homotopy operator Ŝ from the cochain maps
s∗0 to s∗1 on de Rham complexes. This implies immediately that s∗0 = s∗1 on the
de Rham cohomology, which is the key to proving the homotopy invariance for
the de Rham cohomology. More directly, from the proof of Theorem 3.1, it
is easy to see that Ŝ ◦ F ∗ defines a homotopy operator from f∗ to g∗, which
concludes that f∗ = g∗ on the de Rham cohomology.

3.4 The Mayer-Vietoris sequence
Perhaps the most important application of Theorem 3.9 in the context of de
Rham cohomology is the so-called Mayer-Vietoris sequence, which provides us
with a fundamental tool of computing the de Rham cohomology groups in gen-
eral. The basic idea is that the de Rham cohomology of the union U1∪U2 of open
subsets of a manifold can be computed via H∗(U1), H∗(U2), and H∗(U1 ∩ U2).
By induction, this approach generalizes to the case where we have finitely many
open subsets.

Let M be a manifold, and let U1, U2 be non-empty open subsets of M. For
α = 1, 2, we use iα : Uα → U1 ∪ U2 and jα : U1 ∩ U2 → Uα to denote the
inclusions.

Now we have the following result.

Proposition 3.5. For each r > 0, define I∗ : Ωr(U1 ∪U2)→ Ωr(U1)⊕Ωr(U2)
by

I∗(ω) = (i∗1ω, i
∗
2ω),

and define J∗ : Ωr(U1)⊕ Ωr(U2)→ Ωr(U1 ∩ U2) by

J∗(ω, τ) = j∗1ω − j∗2τ.

Then

0 // Ω∗(U1 ∪ U2)
I∗ // Ω∗(U1)⊕ Ω∗(U2)

J∗ // Ω∗(U1 ∩ U2) // 0

(3.19)
is a short exact sequence of cochain complexes (de Rham complexes).

Remark 3.3. When U1∩U2 = ∅, we define J∗ to be the zero map, and obviously
I∗ is an isomorphism.
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Proof. Let r > 0.
(1) I∗ Ωr(U1 ∪ U2)→ Ωr(U1)⊕ Ωr(U2) is injective.
This is trivial by using local coordinate charts.
(2) J : Ωr(U1)⊕ Ωr(U2)→ Ωr(U1 ∩ U2) is surjective.
Let α ∈ Ωr(U1 ∩ U2), and choose a partition of unity {ϕ1, ϕ2} subordinate

to the open cover {U1, U2} of U1 ∪ U2 with the same index. Define

ω(p) =

{
ϕ2(p) · α(p), p ∈ suppϕ2 ∩ U1;

0, p ∈ (suppϕ2)c ∩ U1,
(3.20)

and

τ(p) =

{
−ϕ1(p) · α(p), p ∈ suppϕ1 ∩ U2;

0, p ∈ (suppϕ1)c ∩ U2.
(3.21)

It follows from the properties of {ϕ1, ϕ2} that ω ∈ Ωr(U1), τ ∈ Ωr(U2) and

J∗(ω, τ) = j∗1 (ω)− j∗2 (τ) = α.

(3) KerJ∗ = ImI∗.
It is trivial to see that ImI∗ ⊂ KerJ∗. Conversely, if (ω, τ) ∈ KerJ∗, we can

simply define

ξ(p) =

{
ω(p), p ∈ U1;

τ(p), p ∈ U2.

This is well-defined and it is an r-form on M such that I∗(ξ) = (ω, τ).
Now the proof is complete.

Note that for two cochain complexes A∗ and B∗, we have a canonical isomor-
phism between Hr(A∗⊕B∗) and Hr(A∗)⊕Hr(B∗) defined by [(a, b)] 7→ ([a], [b])
(see Problem 2 of Problem Sheet 3). By Theorem 3.9, we have the following
important result. This is known as the Mayer-V ietoris sequence.

Theorem 3.11. The short exact sequence (3.19) of cochain complexes induces
a long exact sequence

· · · ∂∗ // Hr(U1 ∪ U2)
I∗ // Hr(U1)⊕Hr(U2)

J∗ // Hr(U1 ∩ U2)

∂∗ // Hr+1(U1 ∪ U2)
I∗ // Hr+1(U1)⊕Hr+1(U2)

J∗ // · · ·
(3.22)

on the level of cohomology, where the coboundary map ∂∗ is defined explicitly
via diagram chasing as before.

It is better to describe ∂∗ in our context here. According to its construction
and the proof of Proposition 3.5, for any [α] ∈ Hr(U1∩U2), we can find (ω, τ) ∈
Ωr(U1)⊕ Ωr(U2) (defined by (3.20) and (3.21)) such that

j∗1ω − j∗2τ = α.
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Since dα = 0, we know that dω coincides with dτ on U1 ∩U2. It follows that dω
and dτ glue to a closed (r + 1)-form ξ on U1 ∪ U2, and we have [ξ] = ∂∗([α]).

An important application of the Mayer-Vietoris sequence is the computation
of the de Rham cohomology of the n-sphere Sn.

First of all, we have seen in Section 3.2 that

Hr(S1) =

{
R, r = 0, 1;

0, otherwise.
(3.23)

Now suppose n > 2. Let

U1 = {(x0, x1, · · · , xn) ∈ Sn : xn > −1

2
},

U2 = {(x0, x1, · · · , xn) ∈ Sn : xn <
1

2
}.

It follows that U1 and U2 are both contractible. Moreover, U1 ∪ U2 = Sn and
U1 ∩ U2 is diffeomorphic to Sn−1 × (− 1

2 ,
1
2 ).

For r > 1, from the Mayer-Vietoris sequence we know that the sequence

0 = Hr(U1)⊕Hr(U2)
J∗ // Hr(U1 ∩ U2)

∂∗ // Hr+1(U1 ∪ U2)
I∗ // Hr+1(U1)⊕Hr+1(U2) = 0

is exact. This implies that ∂∗ is an isomorphism and hence we have

Hr(Sn−1 × (−1

2
,

1

2
)) ∼= Hr(U1 ∩ U2) ∼= Hr+1(U1 ∪ U2) = Hr+1(Sn).

On the other hand, since Sn−1× (− 1
2 ,

1
2 ) and Sn−1 are homotopy equivalent, it

follows that
Hr(Sn−1) ∼= Hr+1(Sn). (3.24)

For r = 0, we consider the exact sequence

0 // R I∗ // R⊕ R J∗ // R ∂∗ // H1(Sn) // 0, (3.25)

where we identify each de Rham cohomology group of degree 0 with R by con-
nectedness. Then we have

H1(Sn) = Im(∂∗), Ker(∂∗) = Im(J∗), Ker(J∗) = Im(I∗).

Since I∗ is injective, it follows that

dimIm(I∗) = dimKer(J∗) = 1,

and hence
dimKer(∂∗) = dimIm(J∗) = 2− dimKer(J∗) = 1.
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This implies that ∂∗ is a zero map and therefore

H1(Sn) = 0. (3.26)

Combining with (3.23), (3.24) and (3.26), by induction we obtain the follow-
ing result.

Proposition 3.6. For n > 1,

Hr(Sn) =

{
R, r = 0, n;

0, otherwise.
(3.27)

Remark 3.4. If we examine the proof more carefully, the only place we’ve used
the result on the top cohomology of a compact, connected and oriented mani-
fold (namely, Corollary 3.1) is for the circle S1. The use of the Mayer-Vietoris
sequence and the induction argument are purely algebraic.

One might ask if we can compute the de Rham cohomology of S1 directly
from the Mayer-Vietoris sequence without using Corollary 3.1. This is of course
possible. In fact, we can use the same exact sequence as (3.25), but here

H0(U1 ∩ U2) ∼= R⊕ R

since U1 ∩ U2 has two connected components. The same argument as before
yields that

dimH1(S1) = dimIm∂∗ = 1,

and therefore H1(S1) = 1.
From Remark 3.2 we know how to construct a generator of the top de Rham

cohomology groupHn(Sn) via integration. Alternatively, we can use the Mayer-
Vietoris seqeunce to do this. Firstly, for the circle S1, let

α(p) =

{
1, p ∈ U1 ∩ U2 ∩ {(x0, x1) ∈ S1 : x0 > 0};
0, p ∈ U1 ∩ U2 ∩ {(x0, x1) ∈ S1 : x0 < 0}.

This is a closed 0-form on U1 ∩ U2. From the construction of the coboundary
map ∂∗, we can define a closed 1-form ξ1 on S1 via diagram chasing, which
represents the de Rham cohomology class ∂∗([α]). We leave it as an exercise to
show that ξ1 is not exact so [ξ1] is a generator of H1(S1). Moreover, by using
partition of unity (see (3.20) and (3.21)) we can choose ξ1 to be supported in
(in fact, any open subset of) U1 ∩ U2. For n > 2, notice that the pullback of
differential forms by the projection π : Sn−1 × (− 1

2 ,
1
2 ) → Sn−1 induces an

isomorphism

π∗ : Hn−1(Sn−1)→ Hn−1(Sn−1 × (−1

2
,

1

2
)).

Therefore, by using induction on the exact sequence

0
J∗ // Hn−1(Sn−1 × (− 1

2 ,
1
2 ))

∂∗ // Hn(Sn)
I∗ // 0,
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we can construct a generator [ξn] of Hn(Sn) which comes from a generator
of Hn−1(U1 ∩ U2) ∼= Hn−1(Sn−1) via the isomorphism ∂∗, and by the same
reason as before ξn can be chosen to be supported in U1 ∩U2. If we look at the
construction more consistently, we can see that all these ξn’s are obtained by

α→ ξ1 → π∗ξ1 → ξ2 → π∗ξ2 → ξ3 → π∗ξ3 → · · ·

by propagating along the coboundary operator ∂∗ in the Mayer-Vietoris se-
quence for each n.

Now we use (3.27) to compute the de Rham cohomology of the real projective
space RPn.

Let q : Sn → RPn be the projection map and a : Sn → Sn be the antipodal
map. We leave it as an exercise to show that for each r > 0, q∗ : RPn → Sn is
injective and

q∗(Ωr(RPn)) = {ω ∈ Ωr(Sn) : a∗ω = ω}.

On the other hand, since a2 = idSn , from standard linear algebra we have the
eigen-space decomposition

Ωr(Sn) = Ωr+(Sn)⊕ Ωr−(Sn),

where
Ωr±(Sn) = {ω ∈ Ωr(Sn) : a∗ω = ±ω}.

From Problem 2 (1) in Problem Sheet 3, we know that

H∗(Sn) ∼= H∗+(Sn)⊕H∗−(Sn),

where H∗±(Sn) is the cohomology of the cochain complex (Ω∗±(Sn), d).
Now we see that

H∗(RPn) ∼= H∗+(Sn),

which already implies by (3.27) that

Hr(RPn) = 0, ∀1 6 r 6 n− 1.

Moreover, if we take the standard orientation form ω on Sn, then [ω] is a
generator of Hn(Sn) ∼= R and we’ve seen before that

a∗ω = (−1)n+1ω.

Therefore, if n is even, then

Hn(RPn) ∼= Hn
+(Sn) = 0

and if n is odd,
Hn(RPn) ∼= Hn

+(Sn) ∼= Hn(Sn) = R.

Finally, combining with the fact that RPn is connected, we obtain the following
result.
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Proposition 3.7. For n > 1,

Hr(RPn) =

{
R, r = 0 or r = n if n is odd;

0, otherwise.

This method does not work for computing the de Rham cohomology of
the complex projective space CPn. Instead, let’s try to use the Mayer-Vietoris
sequence directly to do this.

Let U = {[(z0, · · · , zn)] ∈ CPn : zn 6= 0}, and V = {[(0, · · · , 0, 1)]}c.
It follows that U ∪ V = CPn. Moreover, it is easy to see that U is diffeo-
morphic to Cn, and U ∩ V is diffeomorphic to Cn\{0}. Now we are going to
show that V is homotopy equivalent to CPn−1. To see this, first notice that
CPn−1 is canonically embedded into CPn by identifying CPn−1 with the space
{[(z0, · · · , zn)] ∈ CPn : zn = 0} ⊂ V. Under such identification, if we let
i : CPn−1 → V be the inclusion and r : V → CPn−1 be the projection map
defined by

r([(z0, · · · , zn)]) = [(z0, · · · , zn−1, 0)],

then r ◦ i = idCPn−1 . Furthermore, the C∞ map

F : V × [0, 1] → V,

([(z0, · · · , zn)], t) 7→ [(z0, · · · , zn−1, tzn)],

defines a smooth homotopy from i ◦ r to idV . Therefore, V and CPn−1 are
homotopy equivalent, and hence they have isomorphic de Rham cohomology.

Now we have the Mayer-Vietoris sequence for U, V on CPn. To compute
H∗(CPn) inductively based on this sequence, we need to know H∗(CP 1). How-
ever, from the differential structure of CP 1, it is not hard to see that CP 1 is
diffeomorphic to S2 (one may use the stereographic projection to see this), and
hence H∗(CP 1) ∼= H∗(S2).

Now we have enough data to compute H∗(CPn). We state the result in the
following and leave the algebraic computation as an exercise.

Proposition 3.8. For n > 1;

Hr(CPn) =

{
R, r is even and 0 6 r 6 2n;

0, otherwise.

The power of Mayer-Vietoris sequence is much more than just computing
the de Rham cohomology of some special manifolds. In the rest of the notes,
we will use the Mayer-Vietoris sequence to prove three important results on
de Rham cohomology: the Poincaré duality, the Künneth formula, and the
Thom isomorphism. They are all very useful in understanding the de Rham
cohomology quantitatively.
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3.5 The Poicaré duality
Firstly, we prove an important result on the relation between the de Rham
cohomology and the one with compact supports for an orientable manifold: the
Poincaré duality. Here we will again see the power of integration.

First we introduce the concept of de Rham cohomology with compact sup-
ports (we have seen this for the top degree before).

Let M be a manifold, and let (Ω∗c(M), d) be the cochain complex of com-
pactly supported differential forms on M , and consider the associated cohomol-
ogy

Hr
c (M) =

Ker(d : Ωrc(M)→ Ωr+1
c (M))

Im(d : Ωr−1
c (M)→ Ωrc(M))

, r > 0.

This is called the de Rham cohomology of M with compact supports, and it
is denoted by H∗c (M).

To get some feeling about this cohomology, let’s compute H∗c (Rn).
It is obvious that H0

c (Rn) = 0. Furthermore, by Theorem 3.4 we know that
Hn
c (Rn) ∼= R. The key of computing H∗c (Rn) is induction based on the following

fact.

Proposition 3.9. Let π∗ : Ωrc(Rn ×R1)→ Ωr−1
c (Rn) be the linear map which

sends ω ∈ Ωrc(Rn × R1) of the form

(I) : a(x, t)dxi1 ∧ · · · ∧ dxir

to zero and sends ω ∈ Ωrc(Rn × R1) of the form

(II) : b(x, t)dxi1 ∧ · · · ∧ dxir−1 ∧ dt

to (
´
R1 b(x, t)dt)dx

i1 ∧· · ·∧dxir−1 ∈ Ωr−1
c (Rn), where a(x, t) and b(x, t) are C∞

functions on Rn ×R1 with compact supports. Then π∗ commutes with d, and it
induces a linear isomorphism on cohomology.

Proof. The commutativity of π∗ and d follows from straight forward calculation
if we express ω ∈ Ωrc(Rn ×R1) in terms of the natural basis {dx1, · · · , dxn, dt}.
Therefore, π∗ induces a linear homomorphism on cohomology.

To show that π∗ : Hr
c (Rn × R1) → Hr−1

c (Rn) is an isomorphism, we con-
struct the inverse of π∗ explicitly. Let e(t) ∈ C∞c (R1) be such that

´
R1 e(t)dt = 1.

Define the linear map e∗ : Ωr−1
c (Rn)→ Ωrc(Rn × R1) by

e∗(ω) = π∗ω ∧ e(t)dt,

where π : Rn × R1 → Rn is the natural projection. It is easy to see that e∗
commutes with d and hence it induces a linear homomorphism on cohomology.
Moreover, it is trivial that π∗ ◦e∗ = idΩr−1

c (Rn). Therefore, e∗ is the right inverse
of π∗ on cohomology.

In order to show that e∗ is also the left inverse of π∗ on cohomology, we need
to construct a homotopy operator Kr : Ωrc(Rn × R1) → Ωr−1

c (Rn × R1) from
the cochain maps e∗ ◦ π∗ to id. It is constructed explicitly in the following way.

84



For ω ∈ Ωrc(Rn × R1) of type (I), we define K(ω) = 0. For ω ∈ Ωrc(Rn × R1) of
type (II), we define

K(ω) = (−1)r+1((

ˆ t

−∞
b(x, s)ds)− (

ˆ ∞
−∞

b(x, s)ds) · (
ˆ t

−∞
e(s)ds))

·dxi1 ∧ · · · ∧ dxir−1 .

If ω is of type (I), then

(idΩrc(Rn×R1) − e∗ ◦ π∗)(ω) = ω,

and

(dK +Kd)(ω) = Kdω

= K(
∂a

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxir

+(−1)r
∂a

∂t
dxi1 ∧ · · · ∧ dxir ∧ dt)

= a(x, t)dxi1 ∧ · · · ∧ dxir

= ω.

If ω is of type (II), then

(idΩrc(Rn×R1) − e∗ ◦ π∗)(ω)

=(b(x, t)− (

ˆ ∞
−∞

b(x, s)ds) · e(t))dxi1 ∧ · · · ∧ dxir−1 ∧ dt.

On the other hand,

K(ω) = (−1)r+1((

ˆ t

−∞
b(x, s)ds)− (

ˆ ∞
−∞

b(x, s)ds) · (
ˆ t

−∞
e(s)ds))

·dxi1 ∧ · · · ∧ dxir−1 ,

dω =
∂b

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxir−1 ∧ dt,

and

dK(ω) = (b(x, t)− (

ˆ ∞
−∞

b(x, s)ds) · e(t))dxi1 ∧ · · · ∧ dxir−1 ∧ dt

+(−1)r+1(

ˆ t

−∞

∂b

∂xk
ds− (

ˆ ∞
−∞

∂b

∂xk
ds) ·

ˆ t

−∞
e(s)ds)

·dxk ∧ dxi1 ∧ · · · ∧ dxir−1 ,

Kd(ω) = (−1)r(

ˆ t

−∞

∂b

∂xk
ds− (

ˆ ∞
−∞

∂b

∂xk
ds) ·

ˆ t

−∞
e(s)ds)

·dxk ∧ dxi1 ∧ · · · ∧ dxir−1 .
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It follows that

(idΩrc(Rn×R1) − e∗ ◦ π∗)(ω) = (dK +Kd)(ω).

Therefore, K is a homotopy operator from the cochain maps e∗ ◦ π∗ to id,
and the proof is complete.

By induction we can easily obtain the following result.

Proposition 3.10. For n > 1,

Hr
c (Rn) =

{
R, r = n;

0, otherwise.

From this we can see that the de Rham cohomology with compact supports
is not homotopy invariant. However, it is obvious that it is invariant under
diffeomorphism.

For the usual de Rham complex, we have the short exact sequence (3.19)
which induces the long exact sequence (the Mayer-Vietoris sequence) on the
de Rham cohomology. Similarly, we are going to show that, for the de Rham
complex with compact supports, we also have a short exact sequence which of
course induces a long exact sequence on cohomology. But here the direction is
reversed: instead of pulling back forms by the inclusions, we use push-forwards.

Let U1, U2 be open subsets of M and define the inclusions i1, i2, j1, j2 as
before. A r-form ω with compact support in U1 can be regarded as a differential
form i1∗ω with compact support in U1 ∪U2 by trivial extension. Therefore, the
push-forward i1∗ : Ω∗c(U1)→ Ω∗c(U1∪U2), and similarly i2∗, j1∗, j2∗ are all well-
defined. Moreover, they all commutes with the exterior derivative and hence
they are cochain maps.

Now we have the following result.

Proposition 3.11. For each r > 0, define J∗ : Ωrc(U1∩U2)→ Ωrc(U1)⊕Ωrc(U2)
by

J∗(α) = (j1∗α,−j2∗α),

and define I∗ : Ωrc(U1)⊕ Ωrc(U2)→ Ωrc(U1 ∪ U2) by

I∗(ω, τ) = i1∗ω + i2∗τ.

Then

0 // Ω∗c(U1 ∩ U2)
J∗ // Ω∗c(U1)⊕ Ω∗c(U2)

I∗ // Ω∗c(U1 ∪ U2) // 0

(3.28)
is a short exact sequence of cochain complexes.

Proof. Obviously this is a cochain complex. Let r > 0. It is trivial to see that
J∗ is injective. Moreover, let ξ ∈ Ωrc(U1 ∪ U2) and choose a partition of unity
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{ϕ1, ϕ2} subordinate to {U1, U2} on U1 ∪ U2 with the same index. Then ϕiξ
has compact support in Ui (i = 1, 2), and

I∗((ϕ1ξ)|U1 , (ϕ2ξ)|U2) = ξ.

Therefore, I∗ is surjective. Finally, let (ω, τ) ∈ KerI∗. This implies that ω has
to be compactly supported in U1 ∩ U2, and certainly we have

J∗(ω|U1∩U2) = (ω, τ).

Therefore, KerI∗ = ImJ∗.

By Theorem 3.9, the short exact sequence (3.11) induces a long exact se-
quence

· · · ∂∗ // Hr
c (U1 ∩ U2)

J∗ // Hr
c (U1)⊕Hr

c (U2)
I∗ // Hr

c (U1 ∪ U2)

∂∗ // Hr+1
c (U1 ∩ U2)

J∗ // Hr+1
c (U1)⊕Hr+1

c (U2)
I∗ // · · ·

(3.29)
on cohomology, where ∂∗ is the coboundary map defined via diagram chasing.
This is known as the Mayer-V ietoris sequence with compact supports.

In our context here, we can describe the coboundary map ∂∗ explicitly. Take
a closed r-form ξ on U1 ∪ U2 with compact support, and define a pre-image

(ω, τ) = ((ϕ1ξ)|U1
, (ϕ2ξ)|U2

)

of ξ under I∗ by using a partition of unity as in the proof of Proposition 3.11.
It follows that dω is compactly supported in U1 ∩ U2 and

J∗((dω)|U1∩U2
) = (dω, dτ).

The cohomology class determined by (dω)|U1∩U2
is the image of [ξ] under ∂∗.

The Poincaré duality is about the relation between H∗(M) and H∗c (M) on
an orientable manifold M .

Assume that M is an oriented manifold of dimension n. Since we are able to
integrate n-forms with compact supports on M , integration defines a bilinear
functional ˆ

M

: Ωr(M)× Ωn−rc (M)→ R

by ˆ
M

(ω, τ) =

ˆ
M

ω ∧ τ.

By Stokes’ theorem, it induces a homomorphism
ˆ
M

: Hr(M)→ Hn−r
c (M)∗
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by

〈
ˆ
M

[ω], [τ ]〉 =

ˆ
M

ω ∧ τ, [τ ] ∈ Hn−r
c (M),

where Hn−r
c (M)∗ is the dual space of Hn−r

c (M).
The Poincaré duality says that

´
M

is an isomorphism for all 0 6 r 6 n.
For simplicity, we only prove this result for the case whenM has a finite good

cover. It holds for the general case by more careful analysis on the topology of
the manifold (see [3] for the details).

Definition 3.13. An open cover {Uα}α∈A of M is called a good cover if any
non-empty finite intersection Uα1

∩ · · · ∩Uαk is diffeomorphic to Rn. It is called
a finite good cover if A is a finite set.

It can be proved that each manifold has a good cover, and each compact
manifold has a finite good cover. The proof is to introduce a Riemannian metric
on the manifold and use geodesically convex neighborhoods as a good cover. We
are not going to present the details here.

If a manifold has a finite good cover, then its de Rham cohomology is rela-
tively simple.

Proposition 3.12. Let M be a manifold with a finite good cover. Then Hr(M)
and Hr

c (M) are finite dimensional for all r.

Proof. We prove by induction. If M is diffeomorphic to Rn, then the result is
trivial. Assume that the de Rham cohomology groups for any manifold with a
finite good cover containing at most k open subsets are all finite dimensional.
Let M be a manifold with a finite good cover {U1, · · · , Uk+1}, and let N =
U1 ∪ · · · ∪ Uk. It follows from induction hypothesis that Hr(N), Hr(Uk+1) and

Hr(N ∩ Uk+1) = Hr((U1 ∩ Uk+1) ∪ · · · ∪ (Uk ∩ Uk+1))

are all finite dimensional for all r. The finite dimensionality of Hr(M) then
follows easily from the Mayer-Vietoris sequence for N and Uk+1.

Similarly, by using the Mayer-Vietoris sequence with compact supports, we
can show by induction that Hr

c (M) is finite dimensional for all r.

From now on, we always assume that M has a finite good cover. As we’ve
seen in the proof of Proposition 3.12, this is for the reason of applying induction
arguments on the cardinality of a finite good cover.

To initiate the induction for proving the Poincaré duality, let’s first look at
two open subsets U1, U2 of M such that U1, U2, U1 ∩ U2 (if non-empty) are all
diffeomorphic to Rn. The idea of proving the Poincaré duality for U1 ∪U2 (i.e.,

ˆ
U1∪U2

: Hr(U1 ∪ U2)→ Hn−r
c (U1 ∪ U2)∗

is an isomorphism for all r) is to apply the Five Lemma (see Problem 2 in
Problem Sheet 3) to two long exact sequences: the classical Mayer-Vietoris
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sequence and the dual of the Mayer-Vietoris sequence with compact supports,
which are connected by the homomorphisms defined via integration. But we
need to prove several preliminary results to make the Five Lemma work.

The first one is about the exactness of the dual of (3.29).

Lemma 3.3. Let

V
f // W

g // Z

be an exact cochain complex of finite dimensional real vector spaces, then its
dual

Z∗
g∗ // W ∗

f∗ // V ∗

is also an exact cochain complex, where ·∗ means taking dual in the sense of real
vector spaces and linear maps.

Proof. It is obvious that Img∗ ⊂ Kerf∗. Conversely, if w∗ ∈ Kerf∗, we have

〈f∗w∗, v〉 = w∗(f(v)) = 0, ∀v ∈ V.

Since (3.3) is exact, we know that w∗ annihilates Kerg. It follows that

z∗0(g(w)) = w∗(w), w ∈W,

is a well-defined linear functional on Img ⊂ Z. Now take any linear extension
z∗ of z∗0 to the whole space Z, it follows that

〈g∗z∗, w〉 = z∗(g(w)) = z∗0(g(w)) = w∗(w), ∀w ∈W.

Therefore, g∗z∗ = w∗ ∈ Img∗.

Remark 3.5. Lemma 3.3 holds for infinite dimensional real vector spaces. The
proof then relies on Zorn’s lemma which guarantees a linear extension of a linear
map defined on a subspace to the whole space.

The second one is about the commutativity of the diagram.

Lemma 3.4. The following three diagram commutes:
(1)

Hr(U1 ∪ U2)
I∗ //

´
U1∪U2

��

Hr(U1)⊕Hr(U2)

´
U1
⊕
´
U2

��
Hn−r
c (U1 ∪ U2)∗

I′∗ // Hn−r
c (U1)∗ ⊕Hn−r

c (U2)∗;

(2)

Hr(U1)⊕Hr(U2)
J∗ //

´
U1
⊕
´
U2

��

Hr(U1 ∩ U2)

´
U1∩U2

��
Hn−r
c (U1)∗ ⊕Hn−r

c (U2)∗
J′∗ // Hn−r

c (U1 ∩ U2)∗;

89



(3)

Hr(U1 ∩ U2)
∂∗ //

´
U1∩U2

��

Hr+1(U1 ∪ U2)

´
U1∪U2

��
Hn−r
c (U1 ∩ U2)∗

(−1)r+1·∂′∗// Hn−r−1
c (U1 ∪ U2)∗.

Here ·′ denotes the dual maps, and
´
U1
⊕
´
U2

is defined by

〈
ˆ
U1

⊕
ˆ
U2

([ω], [τ ]), ([α], [β])〉 =

ˆ
U1

ω ∧ α+

ˆ
U2

τ ∧ β,

where [ω] ∈ Hr(U1), [τ ] ∈ Hr(U2), [α] ∈ Hn−r
c (U1) and [β] ∈ Hn−r

c (U2).

Remark 3.6. In the third diagram, there is a sign (−1)r+1 on ∂
′

∗, but this won’t
affect the exactness of the whole sequence.

Proof. (1) Let [ξ] ∈ Hr(U1 ∪ U2) and [ω] ∈ Hn−r
c (U1), [τ ] ∈ Hn−r

c (U2). It
follows that

〈
ˆ
U1

⊕
ˆ
U2

(I∗[ξ]), ([ω], [τ ])〉 =

ˆ
U1

i∗1ξ ∧ ω +

ˆ
U2

i∗2ξ ∧ τ.

On the other hand, we have

〈I ′∗
ˆ
U1∪U2

([ξ]), ([ω], [τ ])〉 = 〈
ˆ
U1∪U2

([ξ]), I∗([ω], [τ ])〉

=

ˆ
U1∪U2

ξ ∧ (i1∗ω + i2∗τ)

=

ˆ
U1

i∗1ξ ∧ ω +

ˆ
U2

i∗2ξ ∧ τ,

since ω is compactly supported in U1 and τ is compactly supported in U2.
Therefore, the first diagram commutes.

(2) The commutativity of the second diagram follows from a similar argu-
ment.

(3) Let [α] ∈ Hr(U1 ∩ U2) and [ξ] ∈ Hn−r−1
c (U1 ∪ U2). It follows that

〈
ˆ
U1∪U2

(∂∗[α]), [ξ]〉 =

ˆ
U1∪U2

∂∗α ∧ ξ. (3.30)

where by diagram chasing, ∂∗α is defined by

∂∗α =

{
d(ϕ2α), on U1;

−d(ϕ1α), on U2,
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in which {ϕ1, ϕ2} is a partition of unity subordinate to {U1, U2} with the same
index on U1 ∪ U2. Therefore, (3.30) is equal toˆ

U1∪U2

∂∗α ∧ (ϕ1ξ + ϕ2ξ)

=

ˆ
U1

∂∗α ∧ (ϕ1ξ) +

ˆ
U2

∂∗α ∧ (ϕ2ξ)

=

ˆ
U1

d(ϕ2α) ∧ (ϕ1ξ)−
ˆ
U2

d(ϕ1α) ∧ (ϕ2ξ), (3.31)

since ϕiξ is compactly supported in Ui (i = 1, 2). It follows from Stokes’ theorem
that ˆ

U1

d(ϕ2α) ∧ (ϕ1ξ) = (−1)r+1

ˆ
U1

(ϕ2α) ∧ d(ϕ1ξ),

and ˆ
U2

d(ϕ1α) ∧ (ϕ2ξ) = (−1)r+1

ˆ
U2

(ϕ1α) ∧ d(ϕ2ξ).

Therefore, (3.31) is equal to

(−1)r+1(

ˆ
U1

(ϕ2α) ∧ d(ϕ1ξ)−
ˆ
U2

(ϕ1α) ∧ d(ϕ2ξ)).

On the other hand, by the description of ∂∗ we know that d(ϕ1ξ) = −d(ϕ2ξ) is
compactly supported in U1 ∩ U2. It follows that (3.31) is equal to

(−1)r+1

ˆ
U1∩U2

α ∧ d(ϕ1ξ),

which is exactly the same as

〈(−1)r+1∂′∗

ˆ
U1∩U2

([α]), [ξ]〉 = (−1)r+1

ˆ
U1∩U2

α ∧ ∂∗ξ.

Consequently, the third diagram commutes.

The third one is the about isomorphisms on the vertical direction.

Lemma 3.5. The Poincaré duality holds for U1, U2 and U1 ∩ U2.

Proof. We first compute the de Rham cohomology of Rn with compact supports.
We know from the Poincaré lemma and Problem 1 in Problem Sheet 3 that

Hr(Rn) ∼= Hn−r
c (Rn)∗ =

{
R, r = 0;

0, otherwise.

Since U1, U2 and U1 ∩ U2 are all diffeomorphic to Rn, it suffices to show that´
U1
,
´
U2

and
´
U1∩U2

are all non-trivial homomorphisms when acting on the 0-
th de Rham cohomology groups. But this is obvious since by using a bump
function we can always construct an n-form with compact support inside any
given open set whose integral is nonzero.
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As we’ve pointed out in Remark 3.6, a sign change on the map ∂′∗ does not
affect the exactness of the dual of the Mayer-Vietoris sequence with compact
supports. Therefore, the previous three lemmas enable us to apply the Five
Lemma to conclude that:

Proposition 3.13. If U1, U2 and U1 ∩U2 are all diffeomorphic to Rn, then the
Poincaré duality holds for U1 ∪ U2.

Of course the previous argument is just a special case of a general induction
which is used to prove the Poincaré duality for an oriented manifold with a finite
good cover.

Theorem 3.12. If M is an oriented manifold of dimension n with a finite good
cover, then Poincaré duality holds for M .

Proof. We prove by induction on the number of open subsets in a finite good
cover of M .

If M is diffeomorphic to Rn, then the result follows from Lemma 3.5.
Assume that the Poincaré duality holds for any oriented manifold of di-

mension n with a finite good cover containing at most k open subsets. Let
{U1, · · · , Uk+1} be a finite good cover of M containing k + 1 open subsets.
Then by induction hypothesis, the Poincaré duality holds for U = U1 ∪ · · · ∪Uk,
V = Uk+1, and

U ∩ V = (U1 ∩ Uk+1) ∪ · · · ∪ (Uk ∩ Uk+1).

By applying the Five Lemma as before for the two long exact sequences for
U, V , we conclude that the Poincaré duality holds for M .

Now the proof is complete.

In particular, when M is compact, then the Poincaré duality takes the form

´
M

: Hr(M)
∼= // Hn−r(M)∗ , ∀0 6 r 6 n.

Remark 3.7. The Poincaré duality implies Theorem 3.4 and Corollary 3.1. In
fact, ifM is connected, thenH0(M) ∼= R. By the Poincaré duality, Hn

c (M)∗ ∼= R
and hence Hn

c (M) is 1-dimensional. Moreover,
´
M

(1) is a non-trivial element in
Hn
c (M)∗ where ”1” is the constant function with value 1. But

´
M

(1) is exactly
the linear map given by (3.9). Therefore,

ˆ
M

: Hn
c (M)→ R

is a non-trivial linear map and by comparing dimensions it has to be an isomor-
phism.
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3.6 The Künneth formula
Secondly, we are going to establish a way of computing the de Rham cohomology
of product manifolds. This is known as the Künneth formula.

Let M,F be two manifolds. Here we also assume that M has a finite good
cover. This is necessary in applying the induction argument based on the Mayer-
Vietoris sequence as before.

Consider the natural projections π : M ×F →M and ρ : M ×F → F . For
differential forms ω ∈ Ω(M), θ ∈ Ω(F ), define

ψ(ω ⊗ θ) = π∗(ω) ∧ ρ∗(ω) ∈ Ω(M × F ).

It is easy to see that ψ induces a linear map

ψ : ⊕nr=0H
r(M)⊗Hn−r(F )→ Hn(M × F )

for all n > 0.
The Künneth formula is the following.

Theorem 3.13. For manifolds M and F , where M has a finite good cover, ψ
is a linear isomorphism for all n > 0.

Proof. Similar to the proof of the Poincaré duality, we try to use induction based
on the Mayer-Vietoris sequence.

If M is diffeomorphic to Rn, it follows directly from Theorem 3.2 and Ex-
ample 3.1 that ψ is an isomorphism.

Now assume that the theorem holds for all manifolds with a finite good cover
consisting of at most k open subsets, and letM be a manifold with a finite good
cover {U1, · · · , Uk, Uk+1}.

Let
U = ∪ki=1Ui, V = Uk+1.

Based on the Mayer-Vietoris sequence (3.22) for U, V , we have the following
cochain complex

· · · ∂̃∗ // ⊕nr=0H
r(U ∪ V )⊗Hn−r(F )

Ĩ∗ // ⊕nr=0(Hr(U)⊗Hn−r(F )⊕Hr(V )⊗Hn−r(F ))

J̃∗ // ⊕nr=0H
r(U ∩ V )⊗Hn−r(F )

∂̃∗ // ⊕n+1
r=0H

r(U ∪ V )⊗Hn+1−r(F )
Ĩ∗ // · · · .

(3.32)

Here the coboundary maps Ĩ∗, J̃∗ and ∂̃∗ are defined canonically by tensoring
I∗, J∗ and ∂∗ in (3.22) with the identity map onHn−r(F ) and then taking direct
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sum. But we should be careful that when defining ∂̃∗, ⊕n+1
r=0H

r(U∪V )⊗Hn−r(F )
should be viewed as

H0(U ∪ V )⊗Hn+1(F )⊕ (⊕nr=0H
r+1(U ∪ V )⊗Hn−r(F ))

and ⊕nr=0∂
∗⊗ idHn−r(F ) takes value in the second component. It is not hard to

see that (3.32) is a long exact sequence.
The linear map ψ, induces a chain of linear maps between the long exact

sequence (3.32) and the Mayer-Vietoris sequence for U × F, V × F on M × F .
Since we can write

U ∩ V = (U1 ∩ Uk+1) ∪ · · · ∪ (Uk ∩ Uk+1),

by the induction hypothesis, we know that

ψ : ⊗nr=0H
r(U ∩ V )⊗Hn−r(F )→ Hn((U ∩ V )× F )

and

ψ : ⊕nr=0(Hr(U)⊗Hn−r(F )⊕Hr(V )⊗Hn−r(F ))→ Hn(U ×F )⊕Hn(V ×F )

are isomorphisms. The induction step will be completed by the Five lemma
once we show the commutativity of the whole diagram.

The only non-trivial part is the commutativity of the diagram:

⊕nr=0H
r(U ∩ V )⊗Hn−r(F )

∂̃∗ //

ψ

��

⊕nr=0H
r(U ∩ V )⊗Hn−r(F )

ψ

��
Hn((U ∩ V )× F )

∂∗ // Hn((U ∪ V )× F ).

(3.33)

In fact, let {ϕ1, ϕ2} be a partition of unity subordinate to {U, V } on U ∪V . For
[α] ∈ Hr(U ∩ V ) and [θ] ∈ Hn−r(F ), by the description of ∂∗, we know that
∂̃∗([α]⊗ [θ]) is the cohomology class on (U ∪V )×F determined by π∗∂∗ξ∧ρ∗θ,
where

ξ =

{
d(ρV α), on U ;
−d(ρUα), on V,

which is well-defined on U ∪ V. On the other hand, we have

∂∗ψ(α⊗ θ) = ∂∗(π∗α ∧ ρ∗θ)

=

{
π∗d(ρV α) ∧ ρ∗θ, on U × F ;
−π∗d(ρUα) ∧ ρ∗θ, on V × F .

= π∗ξ ∧ ρ∗θ.

Note that here we’ve used the fact that {π∗ϕU , π∗ϕV } is a partition of unity
subordinate to {U × F, V × F} on (U ∪ V )× F , and θ is closed. Therefore, the
diagram (3.33) commutes, which concludes the proof of the theorem.
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Remark 3.8. The Künneth formula may not hold for arbitrary manifolds, and
we do need some kind of finiteness assumption. In fact, it holds under the
assumption that the de Rham cohomology groups of M are finite dimensional.

By using similar Mayer-Vietoris arguments, it is possible to establish the
Künneth formula for de Rham cohomology with compact supports. More pre-
cisely, if M,N are manifolds with finite good cover, then

ψ : ⊕nr=0H
r
c (M)⊗Hn−r

c (N)→ Hn
c (M ×N)

is a linear isomorphism for all n > 0. We left the proof as an exercise.
Remark 3.9. It should be pointed out that, unlike the case of the de Rham
cohomology, the Künneth formula for de Rham cohomology with compact sup-
ports is true for all manifolds. We need to strengthen the induction arguments
to prove this, as we should for proving the Poincaré duality without assuming
that the manifold has a finite good cover.

We can think of H∗(M)⊗H∗(F ) as a graded real vector space by setting

(H∗(M)⊗H∗(F ))n = ⊕nr=0H
r(M)⊗Hn−r(F ), n > 0,

and introduce an algebra structure on H∗(M)⊗H∗(F ) by setting

(a⊗ b) · (c⊗ d) = (−1)rs(a · c)⊗ (b · d)

for b ∈ Hr(F ) and c ∈ Hs(M). In this way, H∗(M)⊗H∗(F ) becomes a graded
algebra and

ψ : H∗(M)⊗H∗(F )→ H∗(M × F )

becomes an algebra isomorphism. The same conclusion applies to the de Rham
cohomology with compact supports.

Example 3.6. LetM be the n-torus Tn = S1×· · ·×S1. The Künneth formula
shows that

dimHr(M) =

(
n
r

)
, ∀0 6 r 6 n.

3.7 The Thom isomorphism
The last part of the present notes will be devoted to the study of the cohomology
of real vector bundles. As in the Poincaré duality and the Künneth formula, it
is also based on the Mayer-Vietoris argument.

We first introduce some basic notions about real vector bundles.

Definition 3.14. Let π : E →M be a surjective C∞ map between manifolds
such that π−1(p) is a real vector space for all p ∈ M . We call (E,M, π) a
real vector bundle of rank n if there exists an open cover {Uα}α∈A of M
together with diffeomorphisms {φα : π−1(Uα)→ Uα × Rn}α∈A such that each
φα restricts to a linear isomorphism

φα|π−1(p) : π−1(p)→ {(p, t) : t ∈ Rn}
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for each p ∈ Uα. {(Uα, φα)}α∈A is called a local trivialization of (E,M, π).
For a real vector bundle (E,M, π), E is called the total space, M is called

the base space. For each p ∈M, the real vector space π−1(p) is called the fiber
at p. A section of (E,M, π) is a C∞ map s : M → E such that π ◦ s = idM .

Example 3.7. The simplest example of real vector bundles is the product
manifold M × Rn. For each non-zero vector in Rn,

sv(p) = (p, v), p ∈M,

defines a non-vanishing section of the bundle.

Example 3.8. A non-trivial example we’ve met before is the tangent bundle
TM . We can take an atlas as the open cover and define φα in a natural way
under the natural basis in a coordinate chart Uα. A section of TM is just a
smooth vector field onM. As we’ve seen in the Hairy Ball Theorem, the tangent
bundle over the n-sphere has a non-vanishing section if and only if n is odd.

More generally, tensor bundles and exterior bundles are common examples
of real vector bundles.

A fundamental concept about real vector bundles is transition functions.

Definition 3.15. Let (E,M, π) be a real vector bundle of rank n equipped with
a local trivialization {(Uα, φα)}α∈A. Then for any α, β ∈ A, the map

φβ ◦ φ−1
α : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

restricts to a linear automorphism on {(p, t) : t ∈ Rn} ∼= Rn for each p ∈ Uα∩Uβ
(if not empty). It gives rise to a C∞ map

gαβ : Uα ∩ Uβ → GL(n;R)

if we identify the linear automorphism group on Rn as the general linear group
GL(n;R) of order n. The family {gαβ}α,β∈A of C∞ maps is called transition
functions of (E,M, π).

Example 3.9. For the tangent bundle TM , when we fix a local trivialization
{(Uα, φα)} using an atlas, the transition functions are given by the Jacobians
of change of coordinates.

The transition functions {gα,β}α,β∈A of a real vector bundle (E,M, π) of
rank n satisfy the following compatibility conditions:

(1) gαα(p) = I for all p ∈ Uα;
(2) gαβ(p) · gβγ(p) = gαγ(p) for all p ∈ Uα ∩ Uβ ∩ Uγ (if not empty).
It is a fundamental result that if we are given an open cover {Uα}α∈A of M

together with a family {gαβ}α,β∈A of C∞ functions satisfying (1) and (2), then
we can always construct a real vector bundle (E,M, π) with transition functions
{gαβ}α,β∈A. We are not going to prove this result here.
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Lemma 3.6. Let {(Uα, φ′α)}α∈A be another local trivialization of (E,M, π) with
the same open cover, and {g′αβ}α,β∈A be the associated transition functions.
Then for each α ∈ A, there exists some C∞ map λα : Uα → GL(n;R), such
that

g′αβ = λβ · gαβ · λ−1
α , on Uα ∩ Uβ .

Proof. For each α ∈ A, let λα : Uα → GL(n;R) defined by φ′α ◦ φ−1
α . It follows

that

g′αβ = φ′β ◦ (φ′α)−1

= λβ · φβ ◦ φ−1
α ◦ λ−1

α

= λβ · gαβ · λ−1
α .

Definition 3.16. Two family of transition functions related in the way of
Lemma 3.6 are said to be equivalent.

Definition 3.17. Let (E,M, π) be a vector bundle of rank n with transition
functions {gαβ}. If we can find an equivalent family of transition functions {g′αβ}
which take values in a subgroup H of GL(n;R), then we say that the structure
group of (E,M, π) may be reduced to H. A vector bundle is orientable if its
structure group can be reduced to GL+(n;R), the group of invertible matrices
with positive determinant.

By using the partition of unity, it is not hard to show that (left as exercise)
the structure group any vector bundle can always be reduced to the orthogonal
group. Therefore, a vector bundle is orientable if and only if its structure group
can be reduced to the special orthogonal group, the group of orthogonal matrices
with positive determinant.

The notion of orientability as a vector bundle is different from the notion of
orientability as a manifold. However, we have the following result.

Proposition 3.14. Let (E,M, π) be an orientable vector bundle of rank n over
an m-dimensional orientable manifold. Then the total space E is orientable as
a manifold.

Proof. Let {(Uα, φα)} be a local trivialization with transition functions {gαβ}
valued in GL+(n;R) such that {Uα} is an orientation compatible atlas on M
with associated chart maps {ϕα}. It follows that the collection of

Φα : ϕα(Uα)× Rn → π−1(Uα),

(x, t) 7→ φ−1
α (ϕ−1

α (x), t),

defines an atlas on E. Moreover, the change of coordinates for this atlas is given
by

(x, s) 7→ (ϕβ ◦ ϕ−1
α (x), gαβ(ϕ−1

α (x)) · s),
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which has Jacobian (
∂ϕβ◦ϕ−1

α

∂x ∗
0 gαβ(ϕ−1

α (x))

)
.

By our choice we know that the determinant of this matrix is positive. There-
fore, {(π−1(Uα),Φα)} is an orientation compatible atlas on E, and thus E is
orientable as a manifold.

Example 3.10. From the computation in the proof of Proposition 3.14, it is
not hard to see that the tangent bundle TM over any manifold M is always
orientable as a manifold. However, TM is orientable as a vector bundle if and
only if M is orientable.

If we have specified the transition functions of an orientable vector bundle
taking values in GL+(n;R), we say that the vector bundle is oriented.

We can talk about maps between real vector bundles.

Definition 3.18. A homomorphism between two vector bundles (E1,M1, π1)
and (E2,M2, π2) is a pair (F, f) of C∞ maps

F : E1 → E2, f : M1 →M2

such that the diagram

E1
F //

π1

��

E2

π2

��
M1

f // M2,

and F restricts to a linear map between fibers π−1
1 (p) and π−1

2 (f(p)) for all
p ∈M1. A vector bundle homomorphism is an isomorphism if it has an inverse
also being a vector bundle homomorphism.

Note that for a vector bundle homomorphism (F, f), by the surjectivity of
the covering map, f is uniquely determined by F.

More frequently we shall consider vector bundle homomorphisms over a fixed
base space.

Definition 3.19. A homomorphism between two vector bundles (E1,M, π1)
and (E2,M, π2) over the base space M is a vector bundle homomorphism
(F, idM ). It is an isomorphism if it has an inverse also being a vector bun-
dle homomorphism over the base space M .

Definition 3.20. A vector bundle (E,M, π) is said to be trivial if it is isomor-
phic to the trivial bundle (M × Rn,M, π′) over the base space M .

It is easy to see that a vector bundle is trivial if and only if it has transition
functions taking values only at the identity matrix.

In general it is hard to see whether a vector bundle is trivial or not.
The following characterization of triviality is very useful. The proof of this

result is beyond the scope of the notes.
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Proposition 3.15. If M is contractible, then any vector bundle over M is
trivial.

On the other hand, to show that a vector bundle is non-trivial, it suffices to
show that it does not have a non-vanishing section, since a trivial vector bundle
always does.

For example, the tangent bundle of the n-sphere is non-trivial when n is
even.

Another example is called the canonical line bundle over RPn. For each
[x] ∈ RPn, let L[x] be the one dimensional vector space in Rn+1 determined by
the straight line [x]. Then the set of all L[x] forms a vector bundle over RPn
of rank 1 in a natural way (one may use the projection map q : Sn → RPn,
which is a local diffeomorphism, to construct a local trivialization). We use γ1

n

to denote this vector bundle.
Assume that s : RPn → γ1

n is a section of γ1
n and consider

s ◦ q : Sn → γ1
n.

By definition, for each x ∈ Sn, there exists a unique real number t(x) such that
s([x]) = t(x) ·x. It is easy to see that t defines a continuous function on Sn such
that

t(−x) = −t(x), ∀x ∈ Sn.
By the connectedness of Sn, t vanishes at some point. In other words, γ1

n does
not have a non-vanishing section. Therefore, γ1

n is non-trivial.
Now we come to the study of cohomology of a vector bundle. Let (E,M, π)

be a vector bundle of rank n.
From homotopy invariance it is trivial to see that the de Rham cohomology

of the total space E is isomorphic to the de Rham cohomology of the base space
M .

For the de Rham cohomology with compact supports, we have the following
simple result.

Proposition 3.16. If E and M are orientable manifolds with finite good cover,
then

Hr
c (E) ∼= Hr−n

c (M)

for all r.

Proof. It follows from Proposition 3.12 and the Poincaré duality that

Hr
c (E) ∼= (Hm+n−r(E))∗

∼= (Hm+n−r(M))∗

∼= Hr−n
c (M),

for all r, where m = dimM.

Remark 3.10. Proposition 3.16 may fail in general. One can think about the
example of the open Möbius band, which is a non-orientable vector bundle over
S1 of rank 1.
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Now we are going to introduce a third type of cohomology which is more
natural than the previous two in the study of vector bundles.

Let (Ω∗cv(E), d) be the cochain complex of differential forms ω on E such that
for any compact set K onM, π−1(K)∩suppω is compact in E. The cohomology
of (Ω∗cv(E), d) is called the de Rham cohomology with compact supports in the
vertical direction, and it is denoted by H∗cv(E). Obviously H∗cv(E) is invariant
under vector bundle isomorphism.

From now on, assume further that (E,M, π) is orientable.
Similar to the case of de Rham cohomology with compact supports, we define

a linear operator π∗ called integration along fiber in the following way.
Take a local trivialization {(Uα, φα)} with transition functions {gαβ} valued

in GL+(n;R), such that {Uα} is an atlas on M . Let ω be a differential form
with compact support in the vertical direction. On Uα × Rn it can be written
as

ω =
∑

I,|J|<n

aI,J(x, s)dxI ∧ dsJ +
∑
I

aI,J=(1,··· ,n)(x, s)dx
I ∧ ds1 ∧ · · · ∧ dsn,

where the summation is over all multi-indices I = (i1 < · · · < ip) and J = (j1 <
· · · < jq), |J | is the cardinality of the multi-index J , and

dxI = dxi1 ∧ · · · ∧ dxip , dsJ = dsj1 ∧ · · · ∧ dsjq .

We then define

πα∗ (ω) =
∑
I

(

ˆ
Rn
aI,J=(1,··· ,n)(x, s)ds

1 · · · dsn)dxI , (3.34)

which is a differential form on Uα ⊂M with degree decreased by n. On another
chart Uβ × Rn, write

ω =
∑

I,|J|<n

bI,J(y, t)dyI ∧ dtJ +
∑
I

bI,J=(1,··· ,n)(y, t)dy
I ∧ dt1 ∧ · · · ∧ dtn,

then by definition

πβ∗ (ω) =
∑
I

(

ˆ
Rn
bI,J=(1,··· ,n)(y, t)dt

1 · · · dtn)dyI .

If we let y = y(x) and t = gαβ(x) · s (change of coordinates from π−1(Uα)
to π−1(Uβ)), since gαβ(x) ∈ GL+(n;R), the change of variables formula for
Lebesgue integrals implies that

πβ∗ (ω) =
∑
I

(

ˆ
Rn
bI,J=(1,··· ,n)(y(x), gαβ(x) · s) · detgαβ(x) · ds1 · · · dsn)dyI(x).

On the other hand, it is not hard to see that∑
I

aI,J=(1,··· ,n)(x, s)dx
I =

∑
I

bI,J=(1,··· ,n)(y(x), gαβ(x) · s) · detgαβ(x) · dyI(x).
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Therefore,
πα∗ (ω) = πβ∗ (ω)

on Uα∩Uβ . In other words, (3.34) defines a global linear operator π∗ : Ωrcv(E)→
Ωr−n(M) for each r.

Remark 3.11. π∗ depends on how the vector bundle is oriented (i.e., the choice of
local trivialization whose transition functions take values in GL+(n;R)). Here
we always fix an orientation.

The linear operator π∗ satisfies the following important property called the
projection formula.

Proposition 3.17. Let τ be a differential form on M and ω be a differential
form on E with compact supports in the vertical direction. Then

π∗(π
∗τ ∧ ω) = τ ∧ π∗ω. (3.35)

Proof. It suffices to prove the result locally. Take {(Uα, φα)} as before. Without
loss of generality, we can assume

τ = a(x)dxI , ω = b(x, t)dxJ ∧ dtK ,

where I, J,K are multi-indices and b is compactly supported in the vertical
direction.

If |K| < n, then
π∗(π

∗τ ∧ ω) = τ ∧ π∗ω = 0.

If K = (1, · · · , n), then

π∗(π
∗τ ∧ ω) = (

ˆ
Rn
a(x)b(x, t)dt1 · · · dtn)dxI ∧ dxJ

= a(x)dxI ∧ (

ˆ
Rn
b(x, t)dt1 · · · dtn)dxJ

= τ ∧ π∗ω.

Therefore, (3.35) holds.

Moreover, by definition and straight forward calculation it is easy to see that
π∗ commutes with d. Therefore, π∗ induces a linear map on cohomology. The
Thom isomorphism asserts the following.

Theorem 3.14. Let (E,M, π) be an oriented vector bundle of rank n and M
has a finite good cover. Then the induced map π∗ : Hr

cv(E) → Hr−n(M) on
cohomology is a linear isomorphism for all r.

Proof. As before, we prove by induction on the cardinality of the finite good
cover.

First assume thatM is diffeomorphic to Rm. By Proposition 3.15, the vector
bundle is trivial, and hence we may assume that E = Rm × Rn. In this case,
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it follows from the same proof as Proposition 3.9 that π∗ can be written as the
composition of isomorphisms

Hr
cv(Rm×Rn)→ Hr−1

cv (Rm×Rn−1)→ · · · → Hr−n+1
cv (Rm×R1)→ Hr−n(Rm).

Therefore π∗ is an isomorphism.
Now assume that the theorem holds for all manifolds with a finite good cover

containing at most k open sets, and letM be a manifold with a finite good cover
{U1, · · · , Uk, Uk+1}. Let

U = U1 ∪ · · · ∪ Uk, V = Uk+1.

Then we have the Mayer-Vietoris sequence for U, V on M . On the other hand,
since the restriction of a differential form on E with compact support in the
vertical direction on any open subset π−1(U) also has compact support in the
vertical direction, it follows from the same argument as in the case of the de
Rham complex that we have the short exact sequence

0 // Ω∗cv(π
−1(U ∪ V ))

I∗ // Ω∗cv(π
−1(U))⊕ Ω∗cv(π

−1(V ))

J∗ // Ω∗cv(π
−1(U ∩ V ) // 0

of cochain complexes, which induces a long exact sequence on the de Rham
cohomology with compact supports in the vertical direction.

The linear map π∗, induces a chain of linear maps between this long exact
sequence and the Mayer-Vietoris sequence for U, V on M. To conclude the in-
duction by using the Five Lemma, it suffices to show the commutativity of the
whole diagram.

The only non-trivial part is the commutativity of

Hr
cv(π

−1(U ∩ V ))
∂∗ //

π∗

��

Hr+1
cv (π−1(U ∪ V ))

π∗

��
Hr−n(U ∩ V )

∂∗ // Hr+1−n(U ∪ V ).

(3.36)

Let {ϕ1, ϕ2} be a partition of unity subordinate to {U, V } on U ∪ V . It follows
that {π∗ϕ1, π

∗ϕ2} is a partition of unity subordinate to {π−1(U), π−1(V )} on
π−1(U ∪ V ). Let [α] ∈ Hr

cv(π
−1(U ∩ V )), then on U we have

π∗∂
∗α = π∗d(π∗ϕ2 · α)

= π∗(π
∗(dϕ2) ∧ α).

By the projection formula (3.35), on U we have

π∗∂
∗α = (dϕ2) ∧ π∗α

= d(ϕ2 · π∗α)

= ∂∗π∗α.
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Similar result holds on V. Therefore, the diagram 3.36 commutes, which com-
pletes the proof of the theorem.

Remark 3.12. The Thom isomorphism holds without the assumption that the
base manifold has a finite good cover.

Let T : H∗(M) → H∗+ncv (E) be the inverse of π∗. Since constant functions
are closed forms, Φ = T ([1]) is a cohomology class of degree n in H∗cv(E).
This is called the Thom class. Once we’ve known the Thom class, the Thom
isomorphism T is given explicitly by

T ([ω]) = [π∗ω] · Φ. (3.37)

In fact, if we take a representative φ ∈ Φ, then by the projection formula (3.35),
we have

π∗(π
∗ω ∧ φ) = ω ∧ π∗φ = ω,

and (3.37) follows.
The computation of the Thom class is a fundamental problem in the theory

of vector bundles, and we refer the readers to [1] for more stories and related
topics.
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