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Abstract

The main contribution of the present thesis is in two aspects.

The first one, which is the heart of the thesis, is to explore the fundamental
relation between rough paths and their signatures. Our main goal is to give
a geometric characterization of the kernel of the signature map in different
situations. In Chapter Two, we start by establishing a general fact that
a continuous Jordan curve on a Riemannian manifold can be arbitrarily
well approximated by piecewise minimizing geodesic interpolations which
are again Jordan. This result enables us to prove a generalized version
of Green’s theorem for planar Jordan curves with finite p-variation for
1 6 p < 2, and to prove that two such Jordan curves have the same
signature if and only if they are equal up to reparametrization. In Chapter
Three, we investigate the problem for general weakly geometric rough
paths. In particular, we show that a weakly geometric rough path has
trivial signature if and only if it is tree-like in the sense we will define
later on. In Chapter Four, we study the problem in the probabilistic
setting. In particular, we show that for a class of stochastic processes,
with probability one the sample paths are determined by their signatures
up to reparametrization. A fundamental example is Gaussian processes
including fractional Brownian motion with Hurst parameter H > 1/4, the
Ornstein-Uhlenbeck process and the Brownian bridge.

The second one is an application of rough path theory to the study of
nonlinear diffusions on manifolds under the framework of nonlinear ex-
pectations. In Chapter Five, we begin by studying the geometric rough
path nature of G-Brownian motion. This enables us to introduce rough
differential equations driven by G-Brownian motion from a pathwise point
of view. Next we establish the fundamental relation between rough (path-
wise theory) and stochastic (L2-theory) differential equations driven by
G-Brownian motion. This is a crucial point of understanding nonlinear
diffusions and their generating heat flows on manifolds from an intrinsic



point of view. Finally, from the pathwise point of view we construct G-
Brownian motion on a compact Riemannian manifold and establish its
generating heat flow for a class of G-functions under orthogonal invari-
ance. As an independent interest, we also develop the Euler-Maruyama
scheme for stochastic differential equations driven by G-Brownian motion.
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Chapter 1

Introduction

1.1 Motivation and Main Results of the Thesis

The set of continuous paths in Rd forms a semigroup with involution, with the
group operation and involution given by concatenation and reversal of paths. As early
as 1954, K.T. Chen [8] observed that the map sending a continuous path x : [0, 1]→
Rd with bounded total variation to the formal series

1 +

ˆ 1

0

dxisEi +

ˆ 1

0

ˆ s2

0

dxis1dx
j
s2
EiEj + · · · , (1.1.1)

where E1, · · · , Ed are indeterminates and xi denotes the i-th coordinate component of
x, is a homomorphism from the semigroup of continuous paths to the algebra of non-
commutative formal power series. In general, this map is not injective; it is apparent
that any path concatenated with its reversal is mapped to the trivial formal series.
It seems however that the map is essentially injective if we restrict our attention to
paths that “do not track back along themselvs”. Indeed, in 1958 K.T. Chen himself
[9] already proved that the map is injective on the space of regular, irreducible paths.
In 2010, B.M. Hambly and T. Lyons [35] extended K.T. Chen’s result to the space
of continuous paths with bounded total variation and first introduced the notion of
tree-like paths to describe paths that track back along themselves. In particular, they
proved that the formal series corresponding to a path, which they called the signature
of the path, is trivial if and only if the path is tree-like.

Aside from its interesting algebraic properties, the map also gained attention
through the fundamental role it plays in the theory of path integration. In 1936, L.C.
Young [69] defined the Stieltjes type integral

´ 1

0
ytdxt in terms of a Riemann sum when

x and y have finite p- and q-variation respectively, where 1/p+1/q > 1. In particular,

1



INTRODUCTION

this allows us to define, for a Lipschitz one form φ, the path integral
´ 1

0
φ (xt) dxt when

x is a multidimensional path with finite p-variation for 1 6 p < 2. In the same paper,
L.C. Young gave an example where the integral

´ 1

0
φ (xt) dxt defined using a Riemann

sum diverges if x has only finite 2-variation. In other words, the Stieltjes integration
map x →

´ 1

0
φ (xt) dxt does not have a closable graph under the p-variation metric

if p > 2. The seemingly insurmountable p = 2 barrier, at least in the deterministic
setting, was to remain for another sixty years. In 1998, T. Lyons [45] showed that
the Stieltjes integration map has a closable graph under the p-variation metric if the
path x takes values in the step-bpc free nilpotent Lie group. He called these paths
weakly geometric p-rough paths. The first step in the construction of such integrals
is to define the signature for weakly geometric rough paths, which can be viewed as a
generalization of the formal series (1.1.1) of iterated path integrals. The integration
of one forms against such paths is then defined via Taylor’s expansion and by using
the multiplicative structure of the signature in an essential way. Later on, there
have been extensions of T. Lyons’ integration theory to more general settings, see for
example M. Gubinelli [30] for controlling rough paths, T. Lyons and D. Yang [49] for
integrating time-varying cocyclic one forms against rough paths.

From a theoretical point of view, it is a fundamental question about whether
we could further extend B.M. Hambly and T. Lyons’ result to the case of weakly
geometric rough paths; namely whether the signature of a weakly geometric rough
path determines the path uniquely up to tree-like equivalence. From a practical point
of view, there has also been work done, for example by D. Levin, T. Lyons and H. Ni
[44], on analyzing time series data using the signature map. The justification of their
method implicitly uses the fact that the map from a path to its signature is injective
in a certain sense.

Before any answer to the question in the deterministic setting, there has already
been exciting progress on the problem in the probabilistic setting. In 2012, Y. Le
Jan and Z. Qian [43] proved that with probability one, the Stratonovich signatures
of Brownian motion determine Brownian sample paths. Later on, their result was
extended to hypoelliptic diffusions by X. Geng and Z. Qian [28], and to Chordal SLEκ
curves with κ 6 4 by H. Boedihardjo, H. Ni and Z. Qian [6]. It should be pointed
out that in [6], the authors already gave a complete answer to the question for planar
simple (i.e. non-self-intersecting) curves with finite p-variation for 1 6 p < 2. In this
case tree-like equivalence reduces to the equivalence of reparametrization. This is the
first result in the deterministic setting beyond the bounded total variation case.

The main contribution of the present thesis is to investigate this problem in general
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INTRODUCTION

in both deterministic and probabilistic settings. From now on, we call this problem
the uniqueness of signature problem.

In Chapter 2, we first consider the special case of planar Jordan curves. In fact,
we begin by establishing a general result regarding simple piecewise geodesic approx-
imation of simple and Jordan curves on an arbitrary Riemannian manifold. As two
important consequences, we prove a generalized Green’s theorem for planar Jordan
curves with finite p-variation for 1 6 p < 2 and solve the uniqueness of signature
problem for this case (more precisely, we show that the curve is uniquely determined
by its signature up to reparametrization). The contents of this chapter are based on
joint work with H. Boedihardjo in the paper [3] in 2013.

In Chapter 3, we solve the general uniqueness of signature problem for weakly
geometric rough paths. More precisely, we prove that the signature of a weakly
geometric rough path is trivial if and only if it is tree-like. The contents of this
chapter are based on joint work with H. Boedihardjo, T. Lyons and D. Yang in the
paper [5] in 2014.

In Chapter 4, we study the problem in the probabilistic setting by further ex-
tending the results and techniques in [28],[43]. In particular, we prove that for a
certain class of non-Markov processes, with probability one the signatures of the pro-
cess determine the sample paths uniquely up to reparametrization. As a fundamental
example, we show that our method applies to a class of Gaussian processes including
fractional Brownian motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck
process and the Brownian bridge. The contents of this chapter are based on joint
work with H. Boedihardjo in the paper [4] in 2014.

From T. Lyons’ point of view, the path integration theory is essential for the study
of differential equations driven by rough paths. In fact, in the same paper [45], T.
Lyons proved the existence and uniqueness of solutions to differential equations driven
by rough paths by regarding the equation as a rough integral equation and then by
using Picard iteration. Moreover, he established the continuity of the solution map
with respect to the driving path under the p-variation metric, which is usually known
as the universal limit theorem. Later on, reformulations and extensions of T. Lyons’
theory of rough differential equations appeared, for example in A.M. Davie [16], P.
Friz and N. Victoir [25] via discrete approximation.

The theory of rough paths leads to an enormous number of applications among
different fields, in particular in probability theory. As the sample paths of many inter-
esting stochastic processes are irregular, pathwise solutions to stochastic differential
equations driven by such processes were not well understood before the appearance
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INTRODUCTION

of rough path theory. Once we have established the rough path nature for sample
paths of stochastic processes, the pathwise theory of stochastic differential equations
is a direct consequence of the deterministic results. A fundamental example is Brow-
nian motion. It was shown by E.M. Sipiläinen [60], T. Lyons and Z. Qian [47] that
with probability one, sample paths of Brownian motion can be lifted as geometric
(2 + ε)-rough paths in a canonical way. Moreover, pathwise solutions to stochastic
differential equations driven by Brownian motion coincide with Stratonovich’s solu-
tions, which relates to Itô’s solutions in terms of the famous result of E. Wong and
M. Zakai [66]. The rough path regularity of other important stochastic processes and
related applications are well summarized in the monograph by P. Friz and N. Victoir
[26]. Other important applications of rough path theory in probability include, for
example to the Malliavin calculus for Gaussian rough differential equations by T.
Cass and P. Friz [7], to support theorem and large deviations by M. Ledoux, Z. Qian
and T. Zhang [42], and to stochastic partial differential equations by M. Hairer [31],
[32].

In the last chapter of the present thesis, we explore another application of rough
path theory in studying nonlinear diffusions on manifolds under the framework of
nonlinear expectations, originally introduced by S. Peng [56] in 2007. The theory
of nonlinear expectations, or more precisely, of G-expections, is motivated from the
study of probability model uncertainty. In contrast to classical stochastic analysis,
the fundamental feature of G-diffusions is that the generating heat flows are nonlin-
ear. Starting with a G-function which captures the underlying nonlinearity, it is an
interesting question to ask what the associated intrinsic nonlinear heat flow looks like
on a Riemannian manifold.

The last chapter of the thesis is devoted to an answer to this question based on the
theory of rough paths. As a crucial point, we first show that quasi-surely, sample paths
of G-Brownian motion can be lifted canonically to geometric p-rough paths for 2 <

p < 3. This enables us to introduce the notion of rough differential equations driven by
G-Brownian motion in the pathwise sense. Next we establish the fundamental relation
between stochastic (in the L2-sense of S. Peng) and rough differential equations driven
by G-Brownian motion. It follows that we are able to construct G-diffusions on a
differentiable manifold easily from a pathwise point of view. This is the starting
point of constructing G-Brownian motion on a compact Riemannian manifold via J.
Eells, K.D. Elworthy and P. Malliavin’s approach. The last part of the chapter is
devoted to such construction for a wide and interesting class of G-functions under
orthogonal invariance. In particular, we establish the generating nonlinear heat flow
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INTRODUCTION

for such G-Brownian motion and construct the canonical G-expectation on the path
space over the manifold. As a result of independent interest, we also develop the
Euler-Maruyama scheme for stochastic differential equations driven by G-Brownian
motion. The contents of this chapter are based on joint work with Z. Qian and D.
Yang in the paper [29] in 2013.

1.2 Background on Rough Path Theory

In this section, we recall the basic notions of rough path theory. The contents of
this section are based on the monographs by T. Lyons and Z. Qian [47], T. Lyons,
M. Caruana and T. Lévy [46], and P. Friz and N. Victoir [26]. These are excellent
references for a systematic introduction to rough path theory and its applications.

In the present thesis, we only consider finite dimensional paths and hence we
restrict ourselves to the finite dimensional setting. However, it should be pointed out
that the original rough path theory of T. Lyons was developed for general Banach
space-valued paths.

Let T
(
Rd
)
denote the infinite dimensional tensor algebra over Rd. Let πN denote

the projection map from T
(
Rd
)
to
(
Rd
)⊗N and π(N) denote the projection map from

T
(
Rd
)
to the truncated N -th tensor algebra

TN
(
Rd
)

:= ⊕Ni=0

(
Rd
)⊗i

.

Here we equip
(
Rd
)⊗N with the Euclidean norm by identifying it with RdN . Let

4 = {(s, t) : 0 6 s 6 t 6 1} be the standard 2-simplex. Throughout the rest of this
section, p > 1 is a fixed constant.

Definition 1.2.1. A multiplicative functional of degree N ∈ N is a continuous map
X =

(
1, X1

·,·, · · · , XN
·,·
)

: 4→ TN
(
Rd
)
satisfying the following so-called Chen’s iden-

tity:
Xs,u ⊗Xu,t = Xs,t, ∀0 6 s 6 u 6 t 6 1.

Let X,Y be two multiplicative functionals of degree N. Define

dp (X,Y) = max
16i6N

sup
P[0,1]

(∑
l

∣∣∣X i
tl−1,tl

− Y i
tl−1,tl

∣∣∣ pi) i
p

,

where P[0,1] denotes all finite partitions of [0, 1]. dp is called the p-variation metric. If
dp (X,1) < ∞ where 1 = (1, 0, · · · , 0), we say that X has finite total p-variation. A
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multiplicative functional of degree bpc with finite total p-variation is called a p-rough
path. The space of p-rough paths is denoted by Ωp(Rd).

It can be proved that
(
Ωp(Rd), dp

)
is a complete metric space.

The p-variation metric dp is in general hard to use. Equivalently, when describing
convergence and continuity for rough paths, we usually use the notion of control.

Definition 1.2.2. A control over [0, 1] is a continuous function ω : ∆→ [0,∞) such
that

ω(s, t) + ω(t, u) 6 ω(s, u)

for any 0 6 s 6 t 6 u 6 1.

Definition 1.2.3. A multiplicative functional X of degree N (1 6 N 6 ∞) is said
to have finite p-variation if there exists a control ω such that

∣∣X i
s,t

∣∣ 6 ω(s, t)
i
p , for all 1 6 i 6 N.

It can be shown (see [47]) that a multiplicative functional X of degree N (N ∈ N)
has finite total p-variation if and only if it has finite p-variation. The key point lies in
the fact that according to the multiplicative structure, ifX has finite total p-variation,
then

ω(s, t) :=
N∑
i=1

sup
P[s,t]

∑
l

∣∣∣X i
tl−1,tl

∣∣∣ pi , (s, t) ∈ ∆,

is a control. In many situations, to emphasize the control of a p-rough path X, we
usually say that X is controlled by ω.

The following so-called Lyons’ extension theorem asserts that the signature of a
p-rough path is well defined and is locally Lipschitz continuous with respect to the
p-rough path in some sense. We refer the reader to [47] for the proof.

Theorem 1.2.1. (1) Let X be a p-rough path. Then for any i > bpc+ 1, there exists
a unique continuous map X i : ∆→

(
Rd
)⊗i such that

S(X) :=
(
1, X1, · · · , Xbpc, · · ·X i, · · ·

)
is a multiplicative functional in T

(
Rd
)
with finite p-variation. Moreover, if ω is a

control such that

∣∣X i
s,t

∣∣ 6 ω(s, t)
i
p

β
(
i
p

)
!
, ∀1 6 i 6 bpc and ∀(s, t) ∈ ∆, (1.2.1)
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where β is some constant satisfying

β > p2

(
1 +

∞∑
r=3

(
2

r − 2

) bpc+1
p

)
,

then (1.2.1) holds for all i > bpc+ 1.

(2) Let X,Y be two p-rough paths, and let β be a constant satisfying

β > 2p2

(
1 +

∞∑
r=3

(
2

r − 2

) bpc+1
p

)
.

Suppose that there exists a control ω such that

∣∣X i
s,t

∣∣ , ∣∣Y i
s,t

∣∣ 6 ω(s, t)
i
p

β
(
i
p

)
!
, ∀1 6 i 6 bpc and ∀(s, t) ∈ ∆,

and ∣∣X i
s,t − Y i

s,t

∣∣ 6 ε
ω(s, t)

i
p

β
(
i
p

)
!
, ∀1 6 i 6 bpc and ∀(s, t) ∈ ∆, (1.2.2)

then (1.2.2) holds for all i > bpc+ 1.

Definition 1.2.4. S (X)0,1 ∈ T
((
Rd
))

defined in Theorem 1.2.1 is called the signa-
ture of the p-rough path X.

If x : [0, 1] → Rd is a path with finite p-variation for some 1 6 p < 2, then as a
p-rough path no higher levels of x are needed and we can express the signature of x
explicitly as (see (1.1.1))

S (x)0,1 =

(
1,

ˆ
0<s1<1

dxs1 , . . . ,

ˆ
0<s1<···<sn<1

dxs1 ⊗ . . .⊗ dxsn , . . .
)
,

where the iterated integrals are defined in the sense of L.C. Young.
There is a special class of rough paths called geometric rough paths. They play a

fundamental role in rough path theory and its applications.

Definition 1.2.5. Given p > 1. Let GΩp

(
Rd
)
denote the completion of the set

Ω∞p
(
Rd
)

:=
{
Sbpc(x) := π(bpc) (S(x)) : x has bounded total variation

}
under the p-variation metric dp. GΩp(Rd) is called the space of geometric p-rough
paths.
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INTRODUCTION

The importance of geometric rough paths lies in the fact that it is canonical
from an analytic point of view, as the construction of the signature naturally arises
as iterated path integrals for paths with bounded total variation. Moreover, from
a probabilistic point of view, almost surely the sample paths of many interesting
stochastic processes (e.g. Brownian motion, Markov processes, martingales, Gaussian
processes, under certain conditions), can be regarded as geometric rough paths in a
canonical way, or more precisely via piecewise linear approximation. See [26] for a
detailed discussion.

The following so-called shuffle product formula implies that polynomial functionals
of the signature are essentially linear, which is a crucial feature of the signature.
Therefore, by an approximation argument we can see that the structure of certain
regular functionals of the signature is rather simple. We refer the reader to [46] for
the proof.

Proposition 1.2.1. Let X be a geometric p-rough path for some p > 1. For multi-
indices I = (i1, · · · , ir) and J = (j1, · · · , js), set

(k1, · · · , kr+s) = (i1, · · · , ir, j1, · · · , js).

Then we have
XIXJ =

∑
σ∈Shuffle(r,s)

X(kσ−1(1),··· ,kσ−1(r+s)),

where Shuffle(r, s) denotes the set of permutations σ of order r + s such that σ(1) <

· · · < σ(r) and σ(r + 1) < · · · < σ(r + s).

The fundamental results in rough path theory are continuity theorems for rough
path integrals and rough differential equations (written RDEs hereafter) under the
p-variation metric. As we pointed out in the last section, from T. Lyons’ original
point of view the study of RDEs is based on the theory of path integration; an RDE
is equivalently regarded as a rough integral equation (a fixed point problem) and the
solution is constructed via Picard iteration.

Instead of presenting T. Lyons’ original approach, here we follow [26] to adopt
a relatively simpler and equivalent formulation which does not rely on the theory of
path integration . In fact, path integration is a direct consequence of the theory of
RDEs in this respect. The key idea is using the Wong-Zakai type approximation.

The following result, known as the universal limit theorem, asserts the existence,
uniqueness and local Lipschitz continuity of solutions to RDEs driven by geometric
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rough paths in some sense. The definition of solutions to RDEs is contained in the
statement of the theorem itself. We refer the reader to [26] for the proof.

Theorem 1.2.2. (1) Let V = (V1, · · · , Vd) be a family of Lipγ-vector fields on Re for
some γ > p (a Lipγ-vector field is a vector field with bounded continuous derivatives
of orders up to bγc and its bγc-th derivative is (γ−bγc)-Hölder continuous). For any
given y0 ∈ Re, define the map

F (y0, ·) : Ω∞p
(
Rd
)
→ GΩp (Re)

in the following way. For any X ∈ Ω∞p
(
Rd
)
which is the lifting of some path x with

bounded total variation, let y be the unique path in Re with bounded total variation
which is the solution to the ordinary differential equation

dyt =
d∑
i=1

Vi(yt)dx
i
t, t ∈ [0, 1],

with initial value y0. F (y0,X) is defined to be the lifting of y in Ω∞p (Re) ⊂ GΩp (Re) .

Then the map F (y0, ·) is uniformly continuous on bounded subsets under the p-
variation metric. Therefore, it extends uniquely to a continuous map on GΩp(Rd).
For given X ∈ GΩp

(
Rd
)
, the corresponding Y = F (y0,X) is defined to be the unique

solution to the RDE
dY = V (Y)dX

with initial condition y0.

(2) Let V (1), V (2) be two families of Lipγ-vector fields on Re for some γ > p, let
X(1),X(2) be two geometric p-rough paths over Rd, and let y(1)

0 , y
(2)
0 ∈ Re. According

to (1), define Y(1) = F
(
y

(1)
0 ,X(1)

)
and Y(2) = F

(
y

(2)
0 ,X(2)

)
respectively. Suppose

that for some control ω we have∣∣∣X(1),i
s,t

∣∣∣ , ∣∣∣X(2),i
s,t

∣∣∣ 6 ω(s, t)
i
p , ∀1 6 i 6 bpc and (s, t) ∈ ∆,

and ∣∣∣X(1),i
s,t −X

(2),i
s,t

∣∣∣ 6 εω(s, t)
i
p , ∀1 6 i 6 bpc and (s, t) ∈ ∆,

then ∣∣∣Y (1),i
s,t − Y

(2),i
s,t

∣∣∣ 6 C(
∣∣∣y(1)

0 − y
(2)
0

∣∣∣+
∥∥V (1) − V (2)

∥∥
Lipγ−1 + ε)ω(s, t)

i
p ,

for all 1 6 i 6 bpc and (s, t) ∈ ∆, where C is some positive constant depending only
on p, γ, ω(0, T ),

∥∥V (1)
∥∥

Lipγ
,
∥∥V (2)

∥∥
Lipγ

.

9
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Remark 1.2.1. In general, the definition of solutions itself does not require such regu-
larity assumptions on the generating vector fields as in Theorem 1.2.2, in which case
the first result of Theorem 1.2.2 does not hold any more. However, the underlying
key idea of the general formulation is the same as in Theorem 1.2.2, namely the
Wong-Zakai type approximation. Here we are not going to present the most general
formulation. A detailed presentation can be found in [26].

As mentioned before, rough path integrals can be regarded as a special case of
solutions to RDEs.

Let φ be an Re-valued one form on Rd, which can be formally written as

φ =
d∑
i=1

φi(x)dxi,

where φi are Re-valued functions on Rd (i = 1, · · · , d). Given a geometric p-rough
pathX over Rd, we want to define the rough path integralY =

´
φ(dX) as a geometric

p-rough path in Re. The idea is to consider the following RDE:

d(Z,Y) = V (Z,Y)dX (1.2.3)

with initial condition (z0, y0) = (x0, 0), where x0 is some given point in Rd being un-
derstood as the starting point ofX. Here the generating vector fields V = (V1, · · · , Vd)
are given by

Vi(z, y) =

(
ei

φi(z)

)
, i = 1, · · · , d,

where {e1, · · · , ed} is the standard basis of Rd. The RDE (1.2.3) is defined for the cou-
pled geometric rough path (Z,Y) in Rd⊕Re, and its projection onto the Re-component
is then defined to be the rough path integral

´
φ(dX). Under Lipγ-regularity on the

one form φ, the existence, uniqueness and local Lipschitz continuity of the integral is
a direct consequence of Theorem 1.2.2. We refer the reader to [26] for the details.

Unlike general rough paths, geometric rough paths in fact take values in a much
smaller subspace which is a Lie group with very nice analytic structure. It is this
special structure that provides powerful tools in the study of geometric rough paths.

We first introduce some algebraic notions.

10
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Given N ∈ N, let

tN
(
Rd
)

=
{
g ∈ TN

(
Rd
)

: π0(g) = 0
}

;

1 + tN
(
Rd
)

=
{
g ∈ TN

(
Rd
)

: π0 (g) = 1
}
.

We equip tN
(
Rd
)
with the multiplication defined by

[g, h] = g ⊗ h− h⊗ g, g, h ∈ tN
(
Rd
)
.

Respectively, the multiplication on 1 + tN
(
Rd
)
is induced by the tensor product ⊗

on TN
(
Rd
)
. Then we can prove the following result. We refer the reader to [26] for

the proof.

Proposition 1.2.2. The space
(
1 + tN

(
Rd
)
,⊗
)
is a Lie group with manifold topology

induced by the Euclidean topology, and the space
(
tN
(
Rd
)
,+, [·, ·]

)
is a Lie algebra.

Moreover, tN
(
Rd
)
is identified with the Lie algebra of the Lie group 1+tN

(
Rd
)
under

the exponential map exp : tN
(
Rd
)
→ 1 + tN

(
Rd
)
given by

a 7→ 1 +
N∑
k=1

a⊗k

k!
, a ∈ tN

(
Rd
)
.

Now let gN
(
Rd
)
be the Lie subalgebra of tN

(
Rd
)
generated by π1

(
tN
(
Rd
)) ∼= Rd.

It is an important result that the Lie group with Lie algebra gN
(
Rd
)
is exactly the

group of truncated signatures. More precisely, let

GN
(
Rd
)

= {SN(x)0,1 : x has bounded variation} .

Then we have the following result. We refer the reader to [26] for the proof.

Proposition 1.2.3. GN
(
Rd
)

= exp
(
gN
(
Rd
))
, and GN

(
Rd
)
is a closed subgroup of

1 + tN
(
Rd
)
.

It follows from the theory of Lie groups (see for example the monograph by F.W.
Warner [63]) that there exists a unique manifold structure on GN

(
Rd
)
under which it

is a Lie subgroup of 1 + tN
(
Rd
)
. The corresponding manifold topology is the relative

topology.

Definition 1.2.6. GN
(
Rd
)
is called the free nilpotent group of step N over Rd.

It is a remarkable feature of GN
(
Rd
)
that it carries a natural norm structure

under which it becomes a geodesic space. Recall that a geodesic space is a metric

11
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space (E, d) such that for any two points a, b ∈ E, there exists a continuous path
γ : [0, 1]→ X such that γ(0) = a, γ(1) = b and

d(γs, γt) = |t− s| · d(a, b), ∀0 6 s < t 6 1. (1.2.4)

By an obvious rescaling, the geodesic γ can actually be defined on any closed interval
[s, t].

For g ∈ GN
(
Rd
)
, define

‖g‖ = inf

{ˆ 1

0

|dx| : x has bounded total variation and SN(x) = g

}
.

Then we have the following result. We refer the reader to [26] for the proof.

Proposition 1.2.4. (1) For any g ∈ GN
(
Rd
)
, there exists some minimizing path x∗

with bounded total variation such that SN(x∗) = g and ‖g‖ =
´ 1

0
|dx∗| . Moreover, x∗

can be (and will be from now on) parametrized to be Lipschitz and of constant velocity.
(2) The norm ‖ · ‖ induces a left-invariant metric d on GN

(
Rd
)
by letting

d(g, h) = ‖g−1 ⊗ h‖, g, h ∈ GN
(
Rd
)

Under this metric, GN
(
Rd
)
becomes a geodesic space, and for g, h ∈ GN

(
Rd
)
, a

geodesic X joining g and h is given by

Xt = g ⊗ SN(x∗)0,t, t ∈ [0, 1],

where x∗ is a minimizing path associated with g−1 ⊗ h given by (1).
(3) Let ρ be the induced Euclidean metric on GN

(
Rd
)
. Then

Id :
(
GN

(
Rd
)
, d
)
�
(
GN

(
Rd
)
, ρ
)

is Lipschitz continuous on bounded sets in the “→” direction and is 1/N-Hölder con-
tinuous on bounded sets in the “←” direction. In particular, the topology induced by
d coincides with the manifold topology.

Definition 1.2.7. The metric d on GN
(
Rd
)
is called the Carnot–Carathéodory met-

ric.

Given p > 1, it is nature to regard the group Gbpc
(
Rd
)
as the state space of

geometric rough paths which captures nonlinear higher level increments. This leads
to the study of Gbpc(Rd)-valued continuous paths.

12



INTRODUCTION

Definition 1.2.8. A continuous path X : [0, 1] → Gbpc
(
Rd
)
starting at the unit 1

with finite p-variation under the Carnot–Carathéodory metric, i.e.

‖X‖p := sup
P[0,1]

(∑
l

d
(
Xtl−1

,Xtl

)p) 1
p

<∞,

is called a weakly geometric p-rough path. The space of weakly geometric p-rough
paths is denoted by WGΩp

(
Rd
)
.

Similarly we can introduce the p-variation metric on WGΩp

(
Rd
)
based on the

Carnot–Carathéodory metric. For X,Y ∈ WGΩp

(
Rd
)
, define

dp(X,Y) =

(
sup
P[0,1]

∑
l

d
(
Xtl−1,tl ,Ytl−1,tl

)p) 1
p

,

where Xtl−1,tl := X−1
tl−1
⊗Xtl and similarly for Y. It can also be proved (see [26]) that(

WGΩp

(
Rd
)
, dp
)
is a complete metric space.

Given X ∈ WGΩp

(
Rd
)
, by setting Xs,t = X−1

s ⊗Xt for (s, t) ∈ ∆, we can regard
X as a multiplicative functional of degree bpc. Therefore, the p-variation metric dp
defined at the beginning can be applied to the space WGΩp

(
Rd
)
. It is an important

consequence of Proposition 1.2.4 (3) that dp and dp are comparable on bounded sets.
More precisely, we have the following result. We refer the reader to [26] for the proof.

Proposition 1.2.5. A continuous path X : [0, 1]→ Gbpc
(
Rd
)
starting at the unit 1

is a weakly geometric p-rough path if and only if it is a p-rough path. Moreover, the
identity map

Id :
(
WGΩp

(
Rd
)
, dp
)
�
(
WGΩp

(
Rd
)
, dp
)

is Lipschitz continuous on bounded sets in the “→” direction and is 1/bpc-Hölder con-
tinuous on bounded sets in the “←” direction. In particular, the notion of convergence
in WGΩp

(
Rd
)
under dp and dp are equivalent.

From Proposition 1.2.5, it is obvious that a geometric p-rough path X actually
takes values in Gbpc

(
Rd
)
if we set Xt = X0,t for t ∈ [0, 1]. Therefore, GΩp

(
Rd
)
can

be equivalently regarded as a subspace of WGΩp

(
Rd
)
. A nontrivial and important

fact is that weakly geometric rough paths are almost indistinguishable from geometric
rough paths. In fact, we have the following result. We refer the reader to [26] for the
proof.
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Proposition 1.2.6. Let X be a weakly geometric p-rough path.
(1) When regarded as a multiplicative functional of degree bpc, X is a geometric

q-rough path for any p < q < bpc+ 1.

(2) X is a geometric p-rough path if and only if

lim
‖P‖→0

dp
(
XP ,X

)
= 0,

where XP denotes a piecewise geodesic interpolation of X over the partition points in
P .

Let us point out that the finite dimensional rough path theory can be equivalently
formulated under the framework of weakly geometric rough paths, and many impor-
tant results such as Lyons’ extension theorem and the universal limit theorem can
be proved in an equivalent way in this setting. See [26] for a systematic presentation
using this approach.

To end this section, we remark that in the previous formulations, it is of no impor-
tance whether we require all paths to be defined on the unit interval [0, 1] or on any
arbitrary interval [s, t]. In fact, the whole theory is invariant under reparametriza-
tion in the general sense (for example, the signature is invariant). As we will use
the concept of reparametrization several times, we give its formal definition in the
following.

Definition 1.2.9. A reparametrization in the strict sense from [a, b] to [c, d] is a
continuous, strictly increasing map σ : [a, b] → [c, d] with σ(a) = c and σ(b) = d. If
σ is just increasing (i.e. non-decreasing), we call σ a reparametrization in the general
sense.

For the study of the uniqueness of signature problem, we restrict ourselves to
reparametrizations in the strict sense. In this thesis, unless otherwise stated, a
reparametrization is understood in this sense.
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Chapter 2

Simple Piecewise Geodesic
Interpolation of Simple and Jordan
Curves with Applications

2.1 Introduction

The classical proofs of many properties of Jordan curves (e.g. the Jordan curve
theorem) or functions on Jordan curves (e.g. Cauchy’s theorem) begin with consid-
eration of the case of polygonal Jordan curves. As part of the proof of the Jordan
curve theorem in H. Tverberg [62], it was shown that for every planar Jordan curve,
there is a polygonal Jordan curve that approximates the original Jordan curve arbi-
trarily well. We begin this chapter by proving a stronger and more general fact that
given a Jordan curve on a connected Riemannian manifold M and n points on the
curve, there exists a simple, piecewise minimizing geodesic, arbitrarily fine interpola-
tion which includes these n points as interpolation points. Its proof relies on another
main result of this chapter for non-closed simple curves. This case was first treated by
Werness [64], in which the author used an inductive proof which is not constructive.
Here we provide another proof of this result which has the advantage of being explicit
and constructive.

We would like to emphasize that our approximation, unlike that of [62] (which is
then a direct consequence of our result), does not rely on the flatness of the Euclidean
metric or the regularity of the curve. Moreover it respects the parametrization of the
curve, i.e. it is an interpolation rather than merely an approximation in the uniform
norm. This is particularly important for applications in the context of rough path
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theory, where we approximate continuous paths by bounded total variation ones in the
p-variation metric. Such an idea is fundamental to study the roughness of continuous
paths, and particularly of sample paths of continuous stochastic processes. We will
come back to this point in the last two chapters.

We then give two applications of our main result for Jordan curves.
By taking advantage of the result that the p-variation of the piecewise linear inter-

polation of a path is bounded by the p-variation of the path itself, our approximation
theorem yields immediately a generalized Green’s theorem for planar Jordan curves
with finite p-variation, where 1 6 p < 2. To the best of our knowledge, in the rough
path literature, the only other attempt so far in extending Green’s theorem to non-
rectifiable curves appeared in P. Yam [67], where Green’s theorem was proved for the
boundaries of α-Hölder domains for 1

3
< α < 1. Our result is a partial generalization

of P. Yam’s because P. Yam’s result requires the curve to be α-Hölder under the
conformal parametrization whereas our result only requires the curve to be α-Hölder
under some parametrization. This difference lies in the fact that P. Yam used the
conformal map from the unit disk to the interior of the Jordan curve to construct the
approximation.

Another application of our main result is a solution to the uniqueness of signature
problem for planar Jordan curves with finite p-variation for 1 6 p < 2. Since Jordan
curves are highly non-degenerate, it is natural to expect that the curve is determined
by its signature up to reparametrization in this case. In fact, we will see that with
the aid of our main result, this can be proved by using the same technique as in [6] for
planar simple curves (with the same regularity). It should be pointed out that under
such regularity, the path is actually “smooth” from the view of rough path theory
as no higher level increments are needed in this case and the signature is uniquely
defined in the sense of L.C. Young as iterated path integrals. Of course the uniqueness
of signature problem is nontrivial, even for the case when the path is really smooth.

Throughout the rest of this chapter, all curves are assumed to be continuous.

2.2 Simple Piecewise Geodesic Interpolation of Sim-

ple and Jordan Curves

In this section, we prove our main results about simple piecewise geodesic approx-
imation of simple and Jordan curves in Riemannian manifolds. Although the most
interesting and nontrivial case lies in the Euclidean plane, we formulate the problems
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in a Riemannian geometric setting of arbitrary dimension since our proofs do not rely
on Euclidean geometry (i.e. the ”flatness” of the Euclidean metric) at all.

Throughout this section, let M be a d-dimensional connected Riemannian mani-
fold (d > 2).

The following lemma, which is an easy fact from Riemannian geometry, is essential
for us to formulate our main results.

Lemma 2.2.1. For any compact set K ⊂ M , there exists some ε = εK > 0, such
that for any x, y ∈ K with

d (x, y) < ε,

there exists a unique minimizing geodesic in M joining x and y, where d (·, ·) denotes
the Riemannian distance function.

Proof. For any x ∈ K, choose δx small enough such that B (x, δx) is a geodesically
convex normal ball (see the monograph by M.P. do Carmo [21], Chapter 3, Proposition
4.2). By compactness, we have a finite covering of K :

K ⊂
k⋃
i=1

B

(
xi,

δxi
2

)
,

where x1, · · · , xk ∈ K. Let ε = 1
2

min {δx1 , · · · , δxk} . It follows that for any x, y ∈ K
with d (x, y) < ε, there exists some 1 6 i 6 k, such that x, y ∈ B (xi, δxi). Therefore,
by geodesic convexity we know that x and y can be joined by a unique minimizing
geodesic in M which lies in B (xi, δxi) .

Now we are in a position to state our main results.
The first main result is a simple piecewise geodesic approximation theorem for

non-closed simple curves in M .

Theorem 2.2.1. Let γ be a non-closed simple curve in M . Then for all ε > 0, there
exists a finite partition

Pε : 0 = t0 < t1 < · · · < tn−1 < tn = 1

of [0, 1], such that
(1) the mesh size of the partition ‖Pε‖ = maxi=1,··· ,n (ti − ti−1) < ε;
(2) for any i = 1, · · · , n, γti−1

and γti can be joined by a unique minimizing geodesic
in M , and the piecewise geodesic interpolation (more precisely, piecewise minimizing
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Figure 2.2.1: This figure illustrates the relative positions of the points in Lemma 2.2.2
in the Euclidean case. The lengths of the line segments xy and zw are less than or
equal to r. Here the length of zx is strictly less than r.

geodesic interpolation, and the same thereafter) γPε of γ over the partition points in
Pε is a simple curve.

The proof of Theorem 2.2.1 relies on the following crucial lemma, which depends
heavily on properties of minimizing geodesics. In the Euclidean case, we illustrate
the lemma in Figure 2.2.1, which says that if the length of the straight line segments
xy and zw are both less than or equal to r, then at least one of the four line segments
xv, xw, yv, yw has length strictly less than r.

Lemma 2.2.2. Let x, y, z, w ∈ M and α : [0, 1] → M (respectively, β : [0, 1] →
M) be a minimizing geodesic joining x and y (respectively, z and w). Assume that
α ([0, 1])

⋂
β ([0, 1]) 6= ∅ and for some r > 0, d (x, y) 6 r, d (z, w) 6 r. Then at least

one of d (x, z) , d (y, z) , d (x,w) , d (y, w) is strictly less than r.

Proof. Let α (u) = β (v) = p for some u, v ∈ [0, 1] . Since α and β are minimizing
geodesics, we know that

d (x, y) = d (x, p) + d (p, y) 6 r,

d (z, w) = d (z, p) + d (p, w) 6 r.

Therefore, at least one of the following four cases happens:
(1) d (x, p) 6 r

2
, d (z, p) 6 r

2
;

(2) d (x, p) 6 r
2
, d (p, w) 6 r

2
;

(3) d (p, y) 6 r
2
, d (z, p) 6 r

2
;
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(4) d (p, y) 6 r
2
; d (p, w) 6 r

2
.

First assume that Case (1) holds. It follows that

d (x, z) 6 d (x, p) + d (z, p) 6 r.

If d (x, z) = r, then
d(x, p) = d(z, p) =

r

2
,

and hence Case (4) holds, which implies

d (y, w) 6 d (p, y) + d (p, w) 6 r.

If d (y, w) = r, then
d (p, y) = d (p, w) =

r

2
.

Consequently, we have u = v = 1
2
.

Now define

α̃ (t) =

α (t) , t ∈
[
0, 1

2

]
;

β (1− t) , t ∈
[

1
2
, 1
]
.

Since
Length (α̃) = r = d (x, z) ,

α̃ is minimizing. Moreover, since any geodesic has constant speed, by definition we
know that α̃ is parametrized proportionally to arc length. It follows from the first
variation formula (see [21], Chapter 9, Proposition 2.4) that α̃ must be a geodesic.
However, since α̃

∣∣∣[0, 12 ] = α
∣∣∣[0, 12 ] , by the uniqueness of geodesics we have α̃ = α and

hence y = z. Similarly we have x = w.

The other cases can be treated in the same way, which completes the proof of the
lemma.

With the help of Lemma 2.2.2, we can now prove Theorem 2.2.1. The key idea
is to construct a sequence of times t1, t2, . . . so that ti+1 is the last exit time of γ for
a small geodesic ball around γti after time ti. The uniform continuity of the inverse
of the map t → γt guarantees that ti and ti+1 are close. We then need to argue
that adjacent geodesic segments as well as non-adjacent geodesic segments in the
approximation curve do not intersect. The latter uses Lemma 2.2.2. We illustrate
the first step of the construction in Figure 2.2.2.

Proof of Theorem 2.2.1. Fix ε > 0. Since γ is a continuous and injective map from
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Figure 2.2.2: This figure illustrates the first step in the construction given in the proof
of Theorem 2.2.1. The dotted line represents the simple curve γ. The solid geodesic
segment joining the point γ0 and γt1 represents the first step in the construction of
the piecewise geodesic interpolation of γ. Note that we take t1 to be the last exit
time of γ in a δε

2
-geodesic ball centered at γ0.

the compact space [0, 1] to the Hausdorff space M, it is a homeomorphism from [0, 1]

to its image. By compactness and hence uniform continuity of γ−1 we know that
there exists δε > 0 such that for any s, t ∈ [0, 1] ,

d (γs, γt) < δε =⇒ |t− s| < ε.

We further assume that δε < εγ([0,1]), where εγ([0,1]) is the positive number in Lemma
2.2.1 depending on the compact set γ ([0, 1]) ⊂M. It follows from Lemma 2.2.1 that
for any s, t ∈ [0, 1] with d (γs, γt) < δε, γs and γt can be joined by a unique minimizing
geodesic inM . Now define an increasing sequence of points {ti}∞i=0 in [0, 1] inductively
by setting t0 = 0 and

ti = sup

{
t ∈ [ti−1, 1] : γt ∈ B

(
γti−1

,
δε
2

)}
, i > 1.

We claim that there exists some l > 1, such that for all i > l, ti = 1. In fact, if it
is not the case, then for any i > 1, we have

ti−1 < ti < 1 and d
(
γti−1

, γti
)

=
δε
2
.

On the other hand, by the uniform continuity of γ, there exists some ηε > 0, such
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that for any s, t ∈ [0, 1] ,

|t− s| < ηε =⇒ d (γs, γt) <
δε
2
.

Therefore, for any i > 1, |ti − ti−1| > ηε, which is an obvious contradiction. Now set

l = min {i > 1 : ti = 1} ,

and define
Pε : 0 = t0 < t1 < · · · < tl−1 < tl = 1

to be a finite partition of [0, 1] . Then it is easy to see that ‖Pε‖ < ε, where ‖Pε‖
denote the mesh size of the partition Pε.

It remains to show that the piecewise geodesic interpolation γPε of γ over the
points of Pε is a simple curve.

To see this, first notice that for adjacent intervals [ti−1, ti] , [ti, ti+1] , we have

γPε|[ti−1,ti]

⋂
γPε|[ti,ti+1] = {γti} .

In fact, if it is not the case, then there exist s1 ∈ [ti−1, ti) and s2 ∈ (ti, ti+1] such that

γPεs1 = γPεs2 6= γti .

If i < l−1, then by applying Lemma 2.2.1 with x = γti and y = γPεs1 = γPεs2 , γ
Pε|[s1,ti]

is a reparametrization of the reversal of γPε|[ti,s2], which we denote as
←−
γPε|[ti,s2]. In

particular, γPε|[ti,ti+1] and
←−
γPε|[ti−1,ti] are geodesics that start at the same position

with the same initial velocity. By the uniqueness of geodesics, either γPε ([ti, ti+1]) ⊆←−
γPε ([ti−1, ti]) or

←−
γPε ([ti−1, ti]) ⊆ γPε ([ti, ti+1]). In particular we have either γPε|[ti−1,ti]

passes through γti+1
or γPε|[ti,ti+1] passes through γti−1

. As
←−
γPε|[ti−1,ti] and γPε|[ti,ti+1]

are minimizing geodesics and we have d
(
γti , γti−1

)
= d

(
γti , γti+1

)
, we conclude that

γti−1
= γti+1

which contradicts that γ is simple. Figure 2.2.3 illustrates this argument.
If i = l − 1, then arguing as in the case i < l − 1, we have either γPε ([ti, ti+1]) ⊆←−

γPε ([ti−1, ti]) or
←−
γPε ([ti−1, ti]) ⊆ γPε ([ti, ti+1]). However, as i = l − 1, we have

d
(
γti , γti+1

)
6 δε

2
= d

(
γti−1

, γti
)
and hence γPε ([ti, ti+1]) ⊆

←−
γPε ([ti−1, ti]). In partic-

ular, γPε|[ti−1,ti] passes through γti+1
. Therefore, d

(
γti−1

, γti+1

)
6 d

(
γti−1

, γti
)
which

contradicts the construction of {ti}li=0.
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Figure 2.2.3: This figure illustrates the argument in the proof of Theorem 2.2.1 that
two adjacent line segment of the approximation curve we constructed cannot inter-
sect. The straight line represents the geodesic segments in the piecewise geodesic
interpolation of γ. γti−1

, γti , γti+1
are subdivision points of the curve. If the two adja-

cent line segments do intersect as in the figure, then γti+1
is closer to γti−1

than to γti
which contradicts our construction.

On the other hand, if [ti−1, ti] and [tj−1, tj] (i < j) are non-adjacent intervals and

γPε|[ti−1,ti]

⋂
γPε|[tj−1,tj ] 6= ∅,

then by Lemma 2.2.2 we know that at least one of

d
(
γti−1

, γtj−1

)
, d
(
γti , γtj−1

)
, d
(
γti−1

, γtj
)
, d
(
γti , γtj

)
is strictly less than δε

2
. However, this again contradicts the construction of {ti} li=0.

Now the proof is complete.

The previous technique is crucial for us to prove our second main result, which
is concerned with simple piecewise geodesic approximation of Jordan curves. This
result significantly strengthens Theorem 2.2.1.

Theorem 2.2.2. Let γ : [0, 1]→M be a Jordan curve. Assume that 0 < τ1 < · · · <
τk < 1 are k fixed points in [0, 1] . Then for any ε > 0, there exists a finite partition

Pε : 0 = t0 < t1 < · · · < tn−1 < tn = 1

of [0, 1], such that
(1) τ1, · · · , τk are partition points of Pε;
(2) ‖Pε‖ < ε;
(3) for i = 1, · · · , n, γti−1

and γti can be joined by a unique minimizing geodesic
in M , and the piecewise geodesic interpolation γPε of γ over the partition points in
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Figure 2.2.4: This figure illustrates the relative positions of the points involved in
Lemma 2.2.3.

Pε is a Jordan curve.

The proof of Theorem 2.2.2 relies on the following geometric fact. It is illustrated
by Figure 2.2.4.

Lemma 2.2.3. Let B (p,R) be a geodesically convex normal ball centered at p ∈ M ,
and let q ∈ ∂B (p,R) . Assume that x, y ∈ B (p,R) c and there exists a minimizing
geodesic α : [0, 1] → M joining x and y. If α ([0, 1])

⋂
pq 6= ∅ and d (x, y) 6 r for

some 0 < r < R, where pq denotes the image of the unique minimizing geodesic in M
joining p and q, then

d (x, q) < r, d (y, q) < r.

Proof. The conclusion is obvious if q ∈ α ([0, 1]) . Otherwise, let t ∈ (0, 1) be the
unique time such that e := α (t) ∈ B (p,R) is the intersection point of α ([0, 1]) and
pq. By using the fact that B (p,R) is a geodesically convex normal ball, it is easy
to show that there exists a unique u ∈ (0, t) and a unique v ∈ (t, 1) , such that
z := α (u) and w := α (v) lie on ∂B (p,R) . Observe that e and p are distinct, since
their equality contradicts the fact that r < R. Now it follows from properties of
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Figure 2.2.5: This figure illustrates the idea of proving of Theorem 2.2 when k = 2.
The dotted line represents the curve γ. The solid line represents the piecewise geodesic
interpolation of γ.

minimizing geodesics that

d (x, q) 6 d (x, e) + d (e, q)

= d (x, e) + d (p, q)− d (p, e)

= d (x, e) + d (p, w)− d (p, e)

6 d (x, e) + d (e, w)

= d (x,w)

< d (x, y)

6 r.

Similarly, we have d (y, q) < r.

Now we can prove Theorem 2.2.2. Our proof is constructive and the idea is as
follows. Recall that the times τ1, . . . , τk should to included in our partition. Firstly,
We find small disjoint geodesic balls around the points γτi , . . . , γτk , γ1. Secondly, we
connect each point γτi by two radial minimizing geodesics to the point where γ first
enters the geodesic ball around γτi before time τi and to the point where γ last exists
the geodesic ball. Finally, we construct a simple piecewise geodesic interpolation
for each piece of simple curve outside those geodesic balls inductively, by using the
algorithm in Theorem 2.2.1. To make sure that those approximation curves do not
intersect the geodesic segments inside those geodesic balls, we need to use Lemma
2.2.3. Figure 2.2.5 illustrates the idea when k = 2.
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Proof of Theorem 2.2.2. Take an arbitrary τ ∈ (0, τ1) . Since γ is a Jordan curve, we
know that γτ , γτ1 , · · · , γτk , γτk+1

∈ M are all distinct, where we set τk+1 = 1. By
the Hausdorff property, there exists some δ > 0 such that the closed metric balls
B (γτ1 , δ) , · · · , B

(
γτk+1

, δ
)
are all disjoint and γτ /∈

⋃k+1
i=1 B (γτi , δ).

For the moment, by periodic extension and restriction we regard γ as defined on
[τ, τ + 1] with starting and end points being γ (τ) .

Now fix ε > 0. Without loss of generality we assume that

ε < min
{
τ, τ1 − τ,

τ2 − τ1

2
, · · · , τk+1 − τk

2

}
.

First of all, by the uniform continuity of γ|−1
[τ,τi]

and γ|−1
[τi,τ+1], there exists some

δε > 0, such that for all i = 1, · · · , k + 1, any s, t ∈ [τ, τi] or s, t ∈ [τi, τ + 1] ,

d (γs, γt) < δε =⇒ |t− s| < ε.

Now set Ui = B (γτi , δε). Here we assume that δε is small enough so that each Ui

is a geodesically convex normal ball and Lemma 2.2.1 holds for those γs, γt with
d (γs, γt) < 2δε. Define

ui = inf
{
t ∈ [τ, τi] : γt ∈ Ui

}
,

vi = sup
{
t ∈ [τi, τ + 1] : γt ∈ Ui

}
.

To return to the original time interval [0, 1] , let v0 = vk+1 − 1. We have |v0| < ε,
|τi − ui| < ε, |vi − τi| < ε and

0 < v0 < u1 < τ1 < v1 < · · · < uk < τk < vk < uk+1 < 1,

and
γui 6= γvi , d (γτi , γui) = d (γτi , γvi) = δε.

Moreover, we have

γ|(v0,u1)
⋃

(v1,u2)
⋃
···

⋃
(vk−1,uk)

⋃
(vk,uk+1)

⋂(
k+1⋃
i=1

Ui

)
= ∅.

We take v0, u1, τ1, v1, · · · , uk, τk, vk, uk+1 as part of the partition points in Pε. In
particular, v0 is the first point, uk+1 is the last point (except 0 and 1), and ui, τi, vi
are successive points in Pε, so the piecewise geodesic interpolation of γ over those
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small intervals is a finite sequence of radial geodesics of the balls centered at γτi with
radius δε for i = 1, · · · , k + 1.

For the next step, notice that γ|[v0,u1], γ|[v1,u2], · · · , γ|[vk,uk+1] are k + 1 non-closed
simple curves with disjoint images. We use the constructive procedure in the proof of
Theorem 2.2.1 to define a simple piecewise geodesic approximation of each γ|[vi−1,ui]

(i = 1, · · · , k+1) with partition size smaller than ε inductively, such that the resulting
piecewise geodesic closed curve over [0, 1] is Jordan.

Let γ(0) be the Jordan curve such that

γ(0) = γ, on [v0, u1]
⋃

[v1, u2]
⋃
· · ·
⋃

[vk−1, uk]
⋃

[vk, uk+1] ,

and it is the minimizing geodesic (radial segment of the corresponding normal ball)
on each small interval of

[0, v0] , [u1, τ1] , [τ1, v1] , · · · , [uk, τk] , [τk, vk] , [uk+1, 1] .

By the construction in the proof of Theorem 2.2.1, we may find a partition

P(1)
[v0,u1] : v0 = w

(1)
0 < w

(1)
1 < · · · < w

(1)
l1−1 < w

(1)
l1

= u1

so that
∥∥∥P(1)

[v0,u1]

∥∥∥ < ε, the geodesic interpolation γP
(1)
[v0,u1] of γ|[v0,u1] over the partition

points in P(1)
[v0,u1] is simple and

d
(
γ
w

(1)
i−1
, γ

w
(1)
i

)
= δ(1)

ε , i = 1, · · · l1 − 1,

d

(
γ
w

(1)
l1−1

, γu1

)
6 δ(1)

ε ,

for some δ(1)
ε > 0.

Moreover, we may choose δ(1)
ε small enough so that dist

(
γ
P(1)
[v0u1] , γ(0)|[τ1,1]

)
> 0

and δ(1)
ε < δε.

Now we show that
γ
P(1)
[v0,u1]

⋂
γ(0)|[0,v0)

⋃
(u1,τ1] = ∅.

In fact, if γP
(1)
[v0,u1]

⋂
γ(0)|[0,v0) 6= ∅, then from the construction of

{
w

(1)
i

}
, there exists
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some i > 2, such that γ
w

(1)
i−1
, γ

w
(1)
i
∈ Uk+1

c and

γ
w

(1)
i−1
γ
w

(1)
i

⋂
γ(0)|[0,v0) 6= ∅,

where γ
w

(1)
i−1
γ
w

(1)
i

denotes the image of the unique minimizing geodesic joining γ
w

(1)
i−1

and γ
w

(1)
i
. However, since d

(
γ
w

(1)
i−1
, γ

w
(1)
i

)
6 δ

(1)
ε < δε, we know from Lemma 2.2.3

that
d
(
γv0 , γw(1)

i−1

)
< δ(1)

ε , d
(
γv0 , γw(1)

i

)
< δ(1)

ε ,

which is an obvious contradiction to the construction of
{
w

(1)
i

}
l1
i=0.

On the other hand, if γP
(1)
[v0,u1]

⋂
γ(0)|(u1,τ1] 6= ∅, then there exists some i 6 l1 − 1,

such that γ
w

(1)
i−1
γ
w

(1)
i

⋂
γ(0)|(u1,τ1] 6= ∅. Since γw(1)

i−1
, γ

w
(1)
i
∈ U1

c and d
(
γ
w

(1)
i−1
, γ

w
(1)
i

)
=

δ
(1)
ε < δε, we know again from Lemma 2.2.3 that

d
(
γu1 , γw(1)

i−1

)
< δ(1)

ε , d
(
γu1 , γw(1)

i

)
< δ(1)

ε .

But this is also a contradiction to the construction of
{
w

(1)
i

}
l1
i=0.

Therefore, the closed curve γ(1) over [0, 1] defined by

γ
(1)
t =

γ
P(1)
[v0,u1]

t , t ∈ [v0, u1] ;

γ
(0)
t , t ∈ [0, 1] \ [v0, u1] ,

is a Jordan curve.
Now consider γ|[v1,u2]. The previous argument can be carried through easily with

respect to the Jordan curve γ(1), and we obtain a finite partition

P(2)
[v1,u2] : v1 = w

(2)
0 < w

(2)
1 < · · · < w

(2)
l2−1 < w

(2)
l2

= u2,

such that
∥∥∥P(2)

[v1,u2]

∥∥∥ < ε, and the closed curve γ(2) over [0, 1] defined by

γ
(2)
t =

γ
P(2)
[v1,u2]

t , t ∈ [v1, u2] ;

γ
(1)
t , t ∈ [0, 1] \ [v1, u2] ,

is a Jordan curve, where γP
(2)
[v1,u2] is the geodesic interpolation of γ|[v1,u2] over the

partition points in P(2)
[v1,u2]. By induction, we are able to construct simple piecewise
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geodesic approximation of each piece of γ outside
⋃k+1
i=1 Ui and finally obtain a finite

partition Pε of [0, 1] with partition points

{0}
⋃(

k+1⋃
i=1

{
vi−1, w

(i)
1 , · · · , w(i)

li−1, ui, τi

})
,

such that ‖Pε‖ < ε, and the geodesic interpolation γPε (which is γ(k+1) by induction)
of γ over the points of Pε is a Jordan curve.

Now the proof is complete.

Remark 2.2.1. By slight modifying the proof, it is not hard to see that Theorem 2.2.2
also holds for non-closed simple curves. In this respect, it strengthens the result of
Theorem 2.2.1.

Remark 2.2.2. It is possible to generalize our main results to infinite dimensional
spaces with suitable geodesic properties. For technical simplicity we are not going to
present the details.

2.3 Applications

In this section, we demonstrate two applications of Theorem 2.2.2. Here we assume
that M = R2.

2.3.1 Green’s Theorem for Jordan Curves with Finite

p-variation for 1 6 p < 2

We first prove a generalized version of Green’s theorem for planar Jordan curves
with finite p-variation, where 1 6 p < 2.

The following continuity result on Young’s integrals is crucial for us. We refer the
reader to [46] for the proof.

Theorem 2.3.1. Let p, q > 1 be such that 1
p

+ 1
q
> 1. Let x, y : [0, 1] → Rd be two

continuous paths with finite p- and q-variation respectively. Then the following limit
exists: ˆ 1

0

x⊗ dy := lim
‖P‖→0

∑
P: 0=t0<...<tn=1

xti ⊗
(
yti+1

− yti
)
.
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Moreover, the path
´ ·

0
x⊗ dy has finite q-variation and∥∥∥∥ˆ ·

0

x⊗ dy
∥∥∥∥
q

6 2ζ

(
1

p
+

1

q

)
‖x‖p‖y‖q,

where ζ (·) is the classical Riemann zeta function.

The following lemma demonstrates the importance of piecewise linear approxima-
tion under the p-variation metric. We refer the reader to [46] for the proof.

Lemma 2.3.1. Let x : [0, 1]→ Rd be a path with finite p-variation, where p > 1. Let
f : Rd → Re be a Lipschitz function with Lipschitz constant C. Then

(1) ‖f (x) ‖p 6 C‖x‖p.
(2) For any q > p,

lim
‖P‖→0

∥∥f (x)− f
(
xP
)∥∥

q
→ 0,

where xP denotes the piecewise linear interpolation of x over the partition points in
P .

We now prove a generalized version of Green’s theorem for non-rectifiable Jordan
curves.

Theorem 2.3.2. Let f, g : R2 → R be functions with continuous first order deriva-
tives, and let γ : [0, 1] → R2 be a positively oriented Jordan curve with finite p-
variation, where 1 6 p < 2. Let x, y denote the first and second coordinate components
of γ respectively. Then we have

ˆ 1

0

(f (γs) dys − g (γs) dxs) =

ˆ
Int(γ)

(
∂f

∂x
+
∂g

∂y

)
dxdy,

where the integral on the L.H.S. is understood as Young’s integral, and Int (γ) denotes
the interior of γ.

Proof. Fix ε > 0. According to Theorem 2.2.2, let Pε be a finite partition of [0, 1]

such that ‖Pε‖ < ε, and the piecewise linear interpolation γPε of γ over the partition
points in Pε is a Jordan curve. Let xPε , yPε be the first and second components of
γPε respectively. It follows from the classical Green’s theorem for piecewise smooth
Jordan curves that

ˆ 1

0

(
f
(
γPεs
)
dyPεs − g

(
γPεs
)
dxPεs

)
=

ˆ
Int(γPε )

(
∂f

∂x
+
∂g

∂y

)
dxdy.
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For any q ∈ (p, 2), we know that∣∣∣∣ˆ 1

0

(
f
(
γPεs
)
dyPεs −

ˆ 1

0

f (γs) dys

)∣∣∣∣
=

∣∣∣∣ˆ 1

0

(
f
(
γPεs
)
− f (γs)

)
dyPεs +

ˆ 1

0

f (γs) d
(
yPεs − ys

)∣∣∣∣
6

∣∣∣∣ˆ 1

0

(
f
(
γPεs
)
− f (γs)

)
dyPεs

∣∣∣∣+

∣∣∣∣ˆ 1

0

f (γs) d
(
yPεs − ys

)∣∣∣∣
6 2ζ

(
2

q

)(∥∥f (γPε· )− f (γ·)
∥∥
q
‖γ‖q + ‖f (γ·)‖q

∥∥γPε· − γ·∥∥q) ,
where the final inequality follows from Theorem 2.3.1 and Lemma 2.3.1. Therefore,
by Lemma 2.3.1, ˆ 1

0

f
(
γPεs
)
dyPεs →

ˆ 1

0

f (γs) dys

as ε→ 0. Similarly, ˆ 1

0

g
(
γPεs
)
dyPεs →

ˆ 1

0

g (γs) dys

as ε→ 0.
On the other hand, as γ has finite p variation, it has a 1/p-Hölder parametrization.

Therefore, γ has Hausdorff dimension less than 2. In particular, this means that
γ([0, 1]) has zero Lebesgue measure. By applying the bounded convergence theorem
to the integrand

(
∂f
∂x

+ ∂g
∂y

)
1Int(γPε ), we have

ˆ
Int(γPε )

(
∂f

∂x
+
∂g

∂y

)
dxdy →

ˆ
Int(γ)

(
∂f

∂x
+
∂g

∂y

)
dxdy

as ε→ 0.
Now the proof is complete.

Remark 2.3.1. For paths with bounded total variation, there is a version of Green’s
theorem which works for non-simple closed curves, involving the winding number
of a path. An interesting inequality in this respect is the Banchoff-Pohl inequality,
which generalizes the isoperimetric inequality and asserts that the winding number of
a rectifiable curve is square-integrable. The reason for the “simple closed” condition
in our version of Green’s theorem is that in general the winding number of a non-
simple non-rectifiable curve is not integrable. The fact that we can approximate the
rough Jordan curves by piecewise linear interpolations which are still Jordan means
that the winding number of each approximation is an indicator function, which is
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bounded by the indicator function of a neighborhood of Int(γ). This point is crucial
in our situation.

Remark 2.3.2. A direct consequence of Theorem 2.3.2 is Cauchy’s theorem for Jordan
curves with finite p-variation where 1 6 p < 2, according to the Cauchy-Riemann
equation for holomorphic functions.

2.3.2 The Uniqueness of Signature Problem for Planar Jordan

Curves with Finite p-variation for 1 6 p < 2

As the second application of Theorem 2.2.2, we prove that up to reparametrization,
a planar Jordan curve with finite p-variation for 1 6 p < 2 is uniquely determined by
its signature.

For notational simplicity, assume that {e1, . . . , ed} is the standard basis of Rd,
and {e∗1, . . . , e∗d} is the corresponding dual basis of Rd∗. We embed T

((
Rd
)∗) into

T
(
Rd
)∗ by extending the relation

e∗i1 ⊗ . . .⊗ e∗in (ej1 ⊗ . . .⊗ ejk) =

1 if n = k and i1 = j1, · · · , ik = jk,

0 otherwise,

linearly. Throughout the rest of this section 1 6 p < 2 is some fixed constant.
The following basic properties of the signature follow easily from the definition

and Lyons’ extension theorem.

Proposition 2.3.1. Let x : [0, 1] → Rd be a continuous path with finite p-variation.
Then the following holds.

(1) Let σ : [0, 1]→ [0, 1] be a continuous increasing surjection, then

S (x·)0,1 = S
(
xσ(·)

)
0,1
.

(2) For all v ∈ Rd,
S (v + x·)0,1 = S (x·)0,1 .

(3) Let xn be a sequence of continuous paths with finite p-variation and

lim
n→∞

‖xn − x‖p → 0,
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Then for each i ∈ N,

lim
n→∞

∣∣∣πi (S (xn)0,1

)
− πi (S (x))

∣∣∣→ 0.

It turns out that some terms in the signature of a curve can be reduced to single
line integrals. This is the key idea for proving our uniqueness of signature result.

Proposition 2.3.2. Let γ : [0, 1] → R2 be a positively oriented Jordan curve with
finite p-variation. Let x·, y· be the first and second coordinate components of γ respec-
tively. Then for k, n > 0, we have

e∗⊗k+1
1 ⊗ e∗⊗n+1

2

(
S (γ)0,1

)
=

ˆ 1

0

ˆ sn+k+2

0

. . .

ˆ s2

0

dxs1 · · · dxsk+1
dysk+2

· · · dysn+k+2

=
1

k!n!

ˆ
Int(γ)

(x− x0)k (y1 − y)n dxdy.

Proof. Note that

ˆ 1

0

ˆ sn+k+2

0

· · ·
ˆ s2

0

dxPεs1 · · · dx
Pε
sk+1

dyPεsk+2
· · · dyPεsn+k+2

=
1

(k + 1)!n!

ˆ 1

0

(
xPεsk+2

− xPε0

)k+1 (
yPε1 − yPεsk+2

)n
dyPεsk+2

=
1

k!n!

ˆ
Int(γPε )

(x− x0)k (y1 − y)n dxdy,

where Pε is the partition given by Theorem 2.2.2, so that γPε is a Jordan curve.
By Proposition 2.3.1,

ˆ 1

0

ˆ sn+k+2

0

· · ·
ˆ s2

0

dxPεs1 · · · dx
Pε
sk+1

dyPεsk+2
· · · dyPεsn+k+2

→
ˆ 1

0

ˆ sn+k+2

0

· · ·
ˆ s2

0

dxs1 · · · dxsk+1
dysk+2

· · · dysn+k+2

as ε → 0. On the other hand, as in the proof of Theorem 2.3.2 it is not hard to see
that ˆ

Int(γPε )

(x− x0)k (y1 − y)n dxdy →
ˆ

Int(γ)

(x− x0)k (y1 − y)n dxdy

as ε→ 0.
Therefore, the result follows.
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Remark 2.3.3. The case of n = 1, k = 0 for Proposition 2.3.2 has already been proved
by Werness [64]. The main difficulty in extending to the general case involves the
interchange of iterated path integrals.

The following lemma is the main reason why our result only works for Jordan
curves.

Lemma 2.3.2. Let γ, γ̃ : [0, 1] → R2 be two positively oriented Jordan curves such
that Im(γ) = Im(γ̃) and γ0 = γ̃0. There exists a continuous and strictly increasing
map σ : [0, 1] → [0, 1] with σ(0) = 0, σ(1) = 1, such that γσ(t) = γ̃. In other words,
γ and γ̃ are equal up to reparametrization.

Proof. As γ and γ̃ are Jordan curves, Im(γ)\{γ0} and Im(γ̃)\ {γ̃0} are both home-
omorphic to (0, 1). Therefore, the function σ : (0, 1) → (0, 1) defined by σ (t) =

γ−1 ◦ γ̃ (t) is a homeomorphism (0, 1) → (0, 1). Hence, it is strictly monotone. This
implies that limt→0 σ (t) exists. Moreover, it is easy to see that limt→0 σ (t) ∈ {0, 1}.

If limt→0 σ (t) = 0, then σ can be extended to the desired map on [0, 1]. As
γσ(t) = γ̃t, we know that γ and γ̃ are equal up to reparametrization. If limt→0 σ (t) =

1, then limt→1 σ (t) = 0 and σ (t) is decreasing. This implies that σ (1− t) is a
continuous increasing function. Therefore, γ and γ̃ have opposite orientations, which
is a contradiction.

Now we are in a position to provide a solution to the uniqueness of signature
problem for planar Jordan curves.

Theorem 2.3.3. Let γ, γ̃ : [0, 1] → R2 be two Jordan curves with finite p-variation
starting at the origin. Then S (γ)0,1 = S (γ̃)0,1 if and only if γ and γ̃ are equal up to
reparametrization.

Proof. Sufficiency follows from Proposition 2.3.1. We now consider the necessity part.
As e∗1 ⊗ e∗2

(
S (γ)0,1

)
= e∗1 ⊗ e∗2

(
S (γ̃)0,1

)
, by Proposition 2.3.2 we have

(−1)ε(γ)

ˆ
Int(γ)

dxdy = (−1)ε(γ̃)

ˆ
Int(γ̃)

dxdy,

where ε (γ) is 0 if γ is positively oriented and 1 otherwise. As
´

Int(γ)
dxdy and´

Int(γ̃)
dxdy are both positive, we must have γ and γ̃ oriented in the same direction.

Without loss of generality, assume both γ and γ̃ are positively oriented. By
Proposition 2.3.2 and that S (γ)0,1 = S (γ̃)0,1, we have

ˆ
Int(γ)

(x− x0)k (y1 − y)n dxdy =

ˆ
Int(γ̃)

(x− x̃0)k (ỹ1 − y)n dxdy
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for all n, k > 0. Therefore,
ˆ

Int(γ)

ei(λ1x+λ2y)dxdy =

ˆ
Int(γ̃)

ei(λ1x+λ2y)dxdy

for all λ1, λ2 ∈ R.
Both 1Int(γ) and 1Int(γ̃) are in L1 and by the injectivity of the Fourier transform

on L1, we have
1Int(γ) (x, y) = 1Int(γ̃) (x, y)

for almost every (x, y) ∈ R2. In particular, this implies that both Int (γ) \Int (γ̃) ⊂
Int (γ) \Int (γ̃) and Int (γ̃) \Int (γ) ⊂ Int (γ) \Int (γ̃) are null sets in R2. However,
since both Int (γ̃) \Int (γ) and Int (γ) \Int (γ̃) are open, they must be empty. There-
fore,

Int (γ̃) = Int (γ).

By the Jordan curve theorem, we have

R2\Int (γ̃) = R2\Int (γ̃) .

Therefore, Int (γ̃) = Int (γ) and so Im(γ) = Im(γ̃) and by Lemma 2.3.2, γ and γ̃ are
equal up to reparametrization.

Remark 2.3.4. The proof of Theorem 2.3.3 gives an explicit way of computing the
moments of the finite measure 1Int(γ) (x, y) dxdy from the signature of γ. In particular,
by applying Fourier inversion it gives us a way of reconstructing the path from its
signature. However, this is not explicit due to the possible difficulty of inverting the
Fourier transform.
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Chapter 3

The Uniqueness of Signature Problem
for Weakly Geometric Rough Paths

3.1 Introduction

In this chapter, we give a complete solution to the uniqueness of signature problem
for weakly geometric rough paths.

In [35], B.M. Hambly and T. Lyons introduced the notion of tree-like paths and
proved that the signature of a continuous path with bounded total variation is trivial
if and only if the path is tree-like. According to their formulation, a continuous
path x : [0, 1] → Rd with bounded total variation is called tree-like if there exists a
continuous function h : [0, 1] → [0,∞) (called a height function) such that h(0) =

h(1) = 0 and
|xt − xs| 6 h(t) + h(s)− 2 inf

u∈[s,t]
h(u) (3.1.1)

for all 0 6 s 6 t 6 1. This notion is to describe paths that track back along themselves
completely. Since the signature of x represents the aggregation of its global higher
order increments, it is heuristically not obvious that the trajectory of X could be
determined from its signature in any sense. In this respect, the result of B.M. Hambly
and T. Lyons is profound and it reveals the fundamental relationship between the
geometry of the path and its signature, which is a deep exploration of the connection
between geometric and algebraic features of the path.

The fundamental idea of their proof is via approximation. More precisely, for the
“if” part, they first showed that if a piecewise linear path is tree-like, then it has trivial
signature. The proof is based on induction on the number of edges. Then they showed
that a tree-like path with bounded total variation can be approximated by a sequence
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of piecewise linear tree-like paths under the 1-variation metric. The conclusion of the
“if” part is then an easy consequence of the continuity of the signature map under
the 1-variation metric. The logic of proving the “only if” part is similar, but the
development is much more involved. First of all, again by induction they showed that
if a weakly piecewise linear path (i.e. a path with bounded total variation whose image
lies in a polygonal curve) has trivial signature, then it must be tree-like. The next step
is to represent the original path by the indefinite path integral of a rank 1 one form
along the path. It then follows from standard compactness results in measure theory
that this one form can be approximated by a sequence of locally constant rank 1 one
forms in L1-norm (this is sufficient in the case of paths with bounded total variation).
It is both the local constancy and rank 1 features which guarantee that the indefinite
path integrals of this sequence of approximating one forms yield a sequence of weakly
piecewise linear paths, which converges to the original path under the 1-variation
metric. Moreover, according to the shuffle product formula the signatures of this
integral sequence are functionals of the signature of the original path and hence they
have trivial signatures. It follows that this sequence of approximating paths must
be tree-like. Finally the conclusion of the “only if” part follows from a compactness
result for tree-like paths.

The main contribution of this chapter is the extension of B.M. Hambly and T.
Lyons’ result to the case of weakly geometric rough paths. Before developing the
complete mathematical proof, we first illustrate the underlying idea informally.

Let’s look at B.M. Hambly and T. Lyons’ proof of the “if” part more closely.
Although their proof relies on the assumption of bounded total variation in a crucial
way, the underlying idea is robust. From a more geometric point of view, a tree-like
path is nothing but just a continuous loop in some real tree. If we start with a finite
set of points on the path, the key to producing a piecewise linear tree-like path with
this set as end points (but not necessarily all the end points) is simply to identify all
nodes associated with this set. The piecewise linear tree-like path is then constructed
almost immediately from the basic structure of a real tree. This argument certainly
does not rely on the regularity of the path and can be developed rigorously in the
language of real trees (or equivalently in terms of “height functions” as in [35]). Our
proof of the “if” part for weakly geometric rough paths is based on this idea.

On the other hand, if we look into B.M. Hambly and T. Lyons’ proof of the “only if”
part more carefully, it is not hard to capture the fundamental difficulties in extending
the technique to weakly geometric rough paths. First of all, the representation of
the path by the indefinite path integral of a rank 1 one form along the path depends
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crucially on the fact that the path has bounded total variation, since the rank 1

feature comes from projections onto the tangent lines of the path. In general, such
a representation is possible if we relax the rank 1 condition. However, this condition
is necessary to guarantee that the approximating sequence is weakly piecewise linear,
a point which is again crucial in the development. Even if such a one form can be
constructed, the corresponding approximation is also highly nontrivial beyond the
bounded total variation case since the L1-norm on the space of one forms is not
strong enough to yield the corresponding convergence for the approximating paths
under the p-variation metric.

Therefore, in developing the “only if” part of the assertion for weakly geometric
rough paths, we do need a substantially new idea to get around the difficulties we
mentioned before. The fundamental point is to prove that for any weakly geomet-
ric p-rough path X, there exists a unique weakly geometric p-rough path X̃ up to
reparametrization such that S

(
X̃
)

0,1
= S (X)0,1 and the signature path S

(
X̃
)

0,·
of

X̃ is a simple curve. This almost indicates, at least in a very intuitive way (it would
be clear in the context of Definition 3.2.1 below), that the signature group Sp over
the space of weakly geometric p-rough paths is a real tree under some tree metric.
This tree metric is actually not hard to construct in terms of the p-variation of the
“reduced” path X̃. With the observation that the signature path S(X)0,· of a weakly
geometric p-rough path X with trivial signature is just a continuous loop in Sp under
the tree metric, it follows easily that the path X is tree-like.

3.2 Preliminaries on Real Trees and Formulation of

the Main Result

In the formulation and proof of our main result, we use the basic language of real
trees instead of height functions, which is technically simpler and geometrically more
intuitive. It can be seen from the following discussion that these two settings are
equivalent. In this section, we recall the basic notions of real trees. The contents of
this section are based on the monographs by I. Chiswell [11], and C. Favre and M.
Jonsson [23].

Definition 3.2.1. A metric space (τ, d) is called a real tree if for any two distinct
points g, h ∈ τ , there exists a unique continuous simple curve γ : [0, 1] → τ up
to reparametrization such that γ(0) = g, γ(1) = h. Moreover, this simple curve is a
geodesic (i.e. it satisfies (1.2.4)).
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For two points g, h in a real tree τ, we use [g, h] to denote the image of the unique
continuous simple curve joining g to h (it degenerates to a single point when g = h).
[g, h] is usually called the segment with end points g, h.

We list some simple geometric properties of segments in the following proposition.
We refer the reader to [11] for the proof.

Proposition 3.2.1. (1) For g, h ∈ τ and any continuous curve α : [0, 1] → τ with
α(0) = g, α(1) = h, we have [g, h] ⊂ α ([0, 1]) .

(2) For r, g, h ∈ τ, there exists some unique w ∈ τ such that [r, g]
⋂

[r, h] = [r, w].

Moreover, [w, g]
⋂

[w, h] = {w} and [g, h] = [g, w]
⋃

[w, h].

The notion of partial order is important in the study of real trees. Let r ∈ τ be
a fixed point, which is called a root (the choice of roots is of no importance). Define
the relation “.” on τ by

g . h iff [r, g] ⊂ [r, h].

It is easy to show that “.” defines a partial order on τ. Moreover, for g, h ∈ τ , the
unique element w ∈ τ given by Proposition 3.2.1 (2) is the infimum of g and h under
the partial order “.”. We denote w by g ∧ h.

The following result gives a geometric characterization of general real trees. We
refer the reader to [11] for the proof.

Proposition 3.2.2. A metric space (τ, d) is a real tree if and only if it is a geodesic
space and contains no subspace which is homeomorphic to the unit circle S1.

For compact real trees, we have a more explicit and constructive characterization
based on height functions.

Let h : [0, 1] → [0,∞) be a continuous function. Introduce the equivalence
relation “∼” on [0, 1] by

s ∼ t iff h(s) = h(t) = inf
u∈[s,t]

h(u), (3.2.1)

and define the functional d on the quotient space [0, 1]/∼ by

d ([s], [t]) = h(s) + h(t)− 2 inf
u∈[s,t] or [t,s]

h(u). (3.2.2)

It is shown by B.M. Hambly and T. Lyons [34] that d is well-defined and it defines a
metric on [0, 1]/∼ which makes it into a real tree. Moreover, the canonical projection
π : [0, 1] → [0, 1]/∼, where [0, 1] is equipped with the Euclidean topology, is a
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continuous map. Therefore, ([0, 1]/∼, d) is a compact real tree. This tree is called the
contour tree associated with the height function h.

Conversely, we have the following characterization. We refer the reader to [34] for
the proof.

Proposition 3.2.3. Every compact real tree τ is isometric to the contour tree asso-
ciated with some height function.

It is worth sketching the proof of Proposition 3.2.3 in a few words as it is then
clear how the tree is realized as a contour tree. Firstly, by a topological argument we
can always find a continuous loop α : [0, 1] → τ onto the whole tree. Let h be the
height function given by

h(t) = d (α(t), α(0)) , t ∈ [0, 1].

Then the contour tree associated with h is isometric to τ, and the isometry is given
by i([t]) = α(t).

For a general partially ordered set, it is a natural question to ask if it can be
equipped with a real tree metric. The following result gives an affirmative answer to
this question for a class of partially ordered sets. This is important for us since our
signature group turns out to be a special example.

Let (P ,.) be a partially ordered set. A subset S ⊂ P is said to be full if s1, s2 ∈ S,
t ∈ P with s1 . t . s2 implies that t ∈ S.

Now we have the following result. We refer the reader to [23] for the proof.

Proposition 3.2.4. Let (P ,.) be a partially ordered set satisfying the following
conditions:

(1) P has a unique minimal element;
(2) any two elements s, t ∈ P have an infimum s ∧ t (and hence unique by the

definition of infimum);
(3) for any t ∈ P, the set {s ∈ P : s . t} is totally ordered;
(4) There exists an increasing function L : P → [0,∞), such that the restriction

of L on any full, totally ordered subset is a bijection onto a real interval (i.e. a
connected subset of R).

Then the functional d defined by

d(s, t) = L(s) + L(t)− 2L(s ∧ t), s, t ∈ P ,

is a metric which makes P into a real tree.
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Now we are in a position to formulate our main result. We first define tree-like
paths in the setting of real trees.

Definition 3.2.2. Let V be a topological space. A continuous path β : [0, 1] → V

is called tree-like if there exists a real tree τ, a continuous map α : [0, 1] → τ with
α(0) = α(1) and a map ψ : τ → V such that β = ψ ◦ α. We also say that β is a
tree-like path realized on the tree τ.

It is easy to see that being tree-like is invariant under reparametrization.
The following is the main result of this chapter.

Theorem 3.2.1. Let X : [0, 1] → Gbpc
(
Rd
)
be a weakly geometric p-rough path.

Then S(X)0,1 = 1 if and only if X is tree-like.

3.3 Proof of the Sufficiency Part

In this section, we prove the sufficiency of Theorem 3.2.1. The proof essentially
consists of two parts: showing that a “piecewise linear” tree-like path has trivial
signature, and constructing a “piecewise linear” tree-like approximation of the original
tree-like path.

First of all, we have the following result.

Proposition 3.3.1. Let X = ψ ◦ α be a tree-like weakly geometric p-rough path
realized on some real tree τ. If there exists a finite partition

P : 0 = t0 < t2 < · · · < tk−1 < tk = 1

of [0, 1] such that α is monotone with respect to the root r := α(0) on each sub-interval
[ti−1, ti], then the signature of X is trivial.

Proof. We prove this by induction on the number |P| of partition points in P .
If |P| = 2, then α ≡ r since α(0) = α(1) = r, and the claim is trivial.
Suppose that the claim is true for the case when |P| < n, and that X satisfies

the assumptions with a partition P consisting of n points. Since α(P) is a finite
set in τ, it has a maximal element in itself, say, g = α(ti) for some ti ∈ P . Since
α(ti−1), α(ti+1) 6 g, from the definition of the partial order it is easy to see that
either α(ti−1) 6 α(ti+1) or α(ti+1) 6 α(ti−1).

Let us assume the first case. Set

t′ = inf {t ∈ [ti−1, ti] : α(t) = α(ti+1)} .
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It follows that X
∣∣
[ti,ti+1] is a reparametrization of X

∣∣
[t′,ti] in the general sense and

hence
S
(
X
∣∣
[t′,ti+1]

)
= S

(
X
∣∣
[t′,ti]

)
⊗ S

(
X
∣∣
[ti,ti+1]

)
= 1.

Now let α′ be the continuous loop in τ such that

α′(t) = α(t), t ∈ [0, ti−1]
⋃

[ti+1, 1],

and α′
∣∣
[ti−1,ti+1] is the unique continuous simple curve (choose some parametrization)

joining α(ti−1) to α(ti+1). It is then easy to see that X′ := ψ ◦α′ has finite p-variation
(controlled by the p-variation of X), and we have

S
(
X′
∣∣
[ti−1,ti+1]

)
= S

(
X
∣∣
[ti−1,t′]

)
since X′

∣∣
[ti−1,ti+1] is a reparametrization of X

∣∣
[ti−1,t′] . Therefore,

S (X)0,1 = S
(
X
∣∣
[0,ti−1]

)
⊗ S

(
X
∣∣
[ti−1,t′]

)
⊗ S

(
X
∣∣
[t′,ti+1]

)
⊗ S

(
X
∣∣
[ti+1,1]

)
= S

(
X′
∣∣
[0,ti−1]

)
⊗ S

(
X′
∣∣
[ti−1,ti+1]

)
⊗ S

(
X′
∣∣
[ti+1,1]

)
= S (X′)0,1 .

On the other hand, it is obvious that X′ satisfies the assumptions with the partition
P\{ti}. Therefore, by the induction hypothesis we know that X′ has trivial signature
and so does X. The second case can be treated in the same way.

Now the proof is complete.

The second part of the proof is to show that a tree-like weakly geometric p-
rough path can be approximated by the ones in Proposition 3.3.1 in a sense that the
continuity of the signature map should follow.

Let X = ψ ◦ α be a tree-like weakly geometric p-rough path realized on some real
tree τ , and choose α(0) = α(1) to be the root of τ. Given a finite partition P of [0, 1],

define
B = {α(ti1) ∧ · · · ∧ α(til) : l > 1, ti1 , · · · , til ∈ P} .

Heuristically, B contains all nodes associated with the finite point set α(P) in τ. Note
that if g, h ∈ B, then g ∧ h ∈ B. Moreover, by the definition of the partial order and
Proposition 3.2.1 (1), every point in the set B is reachable by α.

Set s0 = 0, and define inductively

si = inf {s ∈ [si−1, 1] : α(s) ∈ B\ {α(si−1)}}
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for i > 1.Since B is a finite set in τ, by the continuity of α it is easy to see that there
exists some k > 1 such that

0 = s0 < s1 < · · · < sk 6 1,

α(sk) = α(0) and α([sk, 1])
⋂

(B\{α(0)}) = ∅. We denote this partition of [0, 1]

(including the end points {0, 1}) by P ′. Note that P may not be a subset of P ′, but
apparently we have α (P ′) = B. The next key observation is that for each si, either
α(si−1) 6 α(si) or α(si) 6 α(si−1). In fact, if α(si−1) ∧ α(si) /∈ {α(si−1), α(si)} , then
by Proposition 3.2.1 we know that α(s) = α(si−1) ∧ α(si) for some s ∈ (si−1, si),

which is a contradiction to the definition of si. Moreover, again by the definition we
can see that for any si, sj ∈ P ′, there are only three possibilities: [α(si−1), α(si)] =

[α(sj−1), α(sj)] or [α(si−1), α(si)]
⋂

[α(sj−1), α(sj)] = ∅ or their intersection is a single
point which is an end point of these two segments.

Now define a continuous loop α′ such that on each sub-interval [si−1, si] in P ′, α′

is the unique geodesic (parametrized on [si−1, si]) joining α(si−1) to α(si). It follows
that α′(0) = α′(1) = α(0) and α′ is monotone on each sub-interval [si−1, si].Moreover,
by Proposition 3.2.1 it is easy to see that τ ′ := α′ ([0, 1]) ⊂ τ is a real tree under the
induced tree metric. Define a map ψ′ : τ ′ → Gbpc

(
Rd
)
in the following way. For

each si, choose a geodesic γ in Gbpc
(
Rd
)
joining Xsi−1

to Xsi in such a way that
if [α(si−1), α(si)] = [α(sj−1), α(sj)] then the corresponding geodesics are either the
same or are reversals of each other. For g ∈ [α(si−1), α(si)], define ψ′(g) to be the
unique point on the geodesic γ such that

d(α(si−1), g)

d(α(si−1), α(si))
=
d
(
Xsi−1

, ψ′(g)
)

d
(
Xsi−1

,Xsi

) .
Then ψ′ is a well defined map from τ ′ to Gbpc

(
Rd
)
. Let X′ = ψ′ ◦ α′. From the

construction of α′ and ψ′, we know that X′ is a piecewise geodesic interpolation of X
over the partition points in P ′. It follows from [26], Proposition 5.20 that

‖X′‖p 6 31− 1
p‖X‖p. (3.3.1)

In particular, X′ is a weakly geometric p-rough path. Moreover, it is obvious that X′

is tree-like and satisfies the assumption in Proposition 3.3.1. Therefore, X′ has trivial
signature.

To complete the proof of the sufficiency of Theorem 3.2.1, it suffices to show
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that X′ converges uniformly to the original path X as ‖P‖ → 0. In fact, by [26],
Proposition 8.15 and Lemma 8.16, we have

dq (X′,X)

6 C · (‖X′‖p + ‖X‖p)
p
q ·max {d∞ (X′,X) ,

d∞(X′,X)
1
bpc · (‖X′‖∞ + ‖X‖∞)

1− 1
bpc
}

for any q ∈ (p, bpc+1), where the subscript “∞” denotes the uniform norm or uniform
metric under the Carnot–Carathéodory metric. It follows from (3.3.1) and the uniform
convergence that X′ converges to X under the q-variation metric as ‖P‖ → 0. This
argument is based on the generalization of Lemma 2.3.1 to weakly geometric rough
paths. By the continuity of the signature map under the q-variation metric (which
follows immediately from Lyons’ extension theorem), we conclude that S(X)0,1 = 1.

Now it remains to establish the following result.

Lemma 3.3.1. X′ converges to X uniformly as ‖P‖ → 0.

Proof. By the continuity of X, for any ε > 0, there exists some δ > 0 such that

|t− s| < δ =⇒ d (Xs,Xt) <
ε

2
.

Given any finite partition P of [0, 1] such that ‖P‖ < δ
2
, construct P ′ as before.

We claim that for any si ∈ P ′ and s ∈ [si−1, si], d(Xs,Xsi−1
) < ε. In fact, if this

is not the case, then we have s− si−1 > δ. On the other hand, let

t∗ = sup {t ∈ [0, s) : t ∈ P} .

It follows that t∗ ∈ (si−1, s) and s − t∗ < δ/2. Therefore, we have d(Xt∗ ,Xs) <
ε
2

which implies that α(t∗) ∈ B\ {α(si−1)} . However, this contradicts the definition of
si.

Consequently, for any s ∈ [si−1, si] with si ∈ P , we have

d (X′s,Xs) 6 d(X′s,Xsi−1
) + d(Xsi−1

,Xs)

= d(X′s,X
′
si−1

) + d(Xsi−1
,Xs)

6 d(X′si ,X
′
si−1

) + d(Xsi−1
,Xs)

= d(Xsi ,Xsi−1
) + d(Xsi−1

,Xs)

< 2ε.
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Now the proof is complete.

Remark 3.3.1. The use of piecewise geodesic interpolation for X is not necessary; the
whole point is that the piecewise geodesic interpolation is realized on the tree τ by
α′. In fact, we can simply take X′′ = ψ ◦ α′, and argue along a similar way as before.
However, the continuity of X′′ is not obvious and requires more careful analysis.

3.4 Proof of the Necessity Part

Now we prove the necessity of Theorem 3.2.1. Let

Sp =
{
S(X)0,1 : X ∈ WGΩp

(
Rd
)}

be the signature group over the space of weakly geometric p-rough paths. As we
have pointed out before, the key point is to show that for each g ∈ Sp, there exists a
unique X ∈ WGΩp

(
Rd
)
up to reparametrization such that S(X)0,1 = g and S(X)0,·

is a simple curve. Such an X is called the reduced path associated with g.
First of all, the existence of a reduced path is purely topological and requires only

the Hausdorff property. Such a path is obtained by a topological procedure of erasing
all possible loops of the original path in a maximal way. More precisely, we have the
following result.

Proposition 3.4.1. Let T be a Hausdorff topological space, and α : [0, 1] → T be a
continuous path. Then there exist disjoint open intervals {Ii : 1 6 i 6 ∞} in (0, 1)

such that the continuous path α̃ defined by

α̃t =

 αt,

αinf Ii ,

t ∈ (
⋃∞
i=1 Ii)

c
;

t ∈ Ii,
(3.4.1)

satisfies the property that if s 6= t and α̃s = α̃t, then s, t ∈ Ii for some i.

Proof. The construction relies on Zorn’s lemma.
Let

P =

{
∞⋃
i=1

Ii : Ii are disjoint open intervals in (0, 1) with αinf Ii = αsup Ii

}
.

Define a partial order “.” on P by inclusion. We claim that (P ,.) is inductively
ordered, i.e. every totally ordered subset of P has an upper bound.
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Let J ⊂ P be a totally ordered subset, and define J =
⋃
J∈J J. Then J is an open

subset of (0, 1). It suffices to show that J ∈ P . According to the structure of open sets
in R1, J can be written as the countable disjoint union of open intervals Ii ⊂ (0, 1)

uniquely up to permutation. Fix any such Ii and ε > 0. Since [inf Ii + ε, sup Ii − ε]
is covered by J ∈ J , by compactness there exists J1, · · · , Jk ∈ J such that

[inf Ii + ε, sup Ii − ε] ⊂
k⋃
i=1

Ji.

Since J is totally ordered, there exists a greatest element among {J1, · · · , Jk} and
assume it to be J1. It follows that

[inf Ii + ε, sup Ii − ε] ⊂ J1.

By connectedness, [inf Ii + ε, sup Ii− ε] is contained in some connected component C
of J1. On the other hand, we know that C ⊂ J and C

⋂
Ii 6= ∅. Therefore, C ⊂ Ii.

Since J1 ∈ P we have αinf C = αsupC . By letting ε→ 0, it follows from the continuity
of α and the Hausdorff property that αinf Ii = αsup Ii . Therefore, J ∈ P .

According to Zorn’s lemma, P contains a maximal element, say I =
⋃∞
i=1 Ii. Define

α̃ by (3.4.1). From this construction and the continuity of α, it is easy to see that for
any t ∈ [0, 1] and any open neighborhood U of α̃t, there exists some δ > 0 such that

s ∈ (t− δ, t+ δ)
⋂

[0, 1] =⇒ α̃s ∈ U.

The continuity of α̃ then follows easily. Now it remains to show that if s 6= t and
α̃s = α̃t, then s, t ∈ Ii for some i.

In fact, assume that α̃s = α̃t for some s < t, and suppose on the contrary that s, t
do not belong to the same Ii for all i. There are four cases corresponding to whether
α̃s, α̃t belong to I. If s ∈ Ii, t ∈ Ij for some i 6= j, then

αinf Ii = α̃s = α̃t = αsup Ij .

Therefore, I ′ := I
⋃

(inf Ii, sup Ij) is an element in P strictly containing I, which
contradicts the maximality of I. If s ∈ Ii for some i and t /∈ I, then

αinf Ii = α̃s = α̃t = αt

Therefore, I ′ := I
⋃

(inf Ii, t) is an element in P strictly containing I (note that
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t cannot be equal to sup Ii, otherwise s, t ∈ Ii). The remaining two cases can be
treated in a similar way.

Now the proof is complete.

Although the path α̃ does not contain loops, it is not simple as it stays constant
on each Ii. It is another standard topological procedure of obtaining a simple curve
from α̃.

Let α : [0, 1]→ T be a continuous path in some Hausdorff space T , and let α̃ be the
path constructed in Proposition 3.4.1. It follows that α̃([0, 1]) is a compact connected
Hausdorff subspace of T. From a general fact in topology (see the monograph by
S. Willard [65]) that a compact connected Hausdorff space is arcwise-connected (i.e.
any two distinct points can be joined by a continuous simple curve), there exists a
continuous simple curve α̂ joining α̃0 to α̃1 with image lying in Im (α̃) . Moreover, we
have the following result.

Lemma 3.4.1. α̂([0, 1]) = α̃([0, 1]), and σ := α̂−1 ◦ α̃ : [0, 1]→ [0, 1] is increasing.

Proof. We first show that if α̂ ([0, 1]) = α̃ ([0, 1]), then σ is increasing. Since α̂ :

[0, 1] → α̂ ([0, 1]) is a homeomorphism, we know that σ (s) = σ (t) if and only if
α̃s = α̃t, and by the construction of α̃ this is equivalent to s, t ∈ I i for some i. If
σ is not increasing, since σ (0) = 0 and σ (1) = 1, by continuity there exists some
s < u < t such that

σ (u) < σ (s) = σ (t) . (3.4.2)

Therefore s, t ∈ I i for some i and by the construction of α̃ we know that α̃u = α̃s = α̃t,
contradicting (3.4.2).

Now we show that α̂ ([0, 1]) = α̃ ([0, 1]) .

We first prove that for any 0 < t < 1, α̃ ([0, 1]) \ {α̃t} is disconnected. In fact, if
t /∈

⋃
i I i, then α̃ ([0, 1]) \ {α̃t} can be written as the disjoint union of α̃ ([0, t)) and

α̃ ((t, 1]) which are both non-empty. By continuity and Hausdorff property, α̃ ([t, 1]) c

is open in T . Since
α̃ ([0, t)) = α̃ ([t, 1]) c

⋂
α̃ ([0, 1]) ,

we know that α̃ ([0, t)) is open in α̃ ([0, 1]). Similarly, α̃ ((t, 1]) is open in α̃ ([0, 1]). If
t ∈ I i for some i, then α̃ ([0, 1]) \ {α̃t} can be written as the disjoint union α̃ ([0, inf Ii))

and α̃ ((sup Ii, 1]) which are both non-empty. Since

α̃ ([0, inf Ii)) = α̃ ([inf Ii, 1]) c
⋂

α̃ ([0, 1]) ,

46



UNIQUENESS OF SIGNATURE FOR ROUGH PATHS

Figure 3.4.1: This figure illustrates the non-uniqueness of the simplified path α̂.

we know that α̃ ([0, inf Ii)) is open in α̃ ([0, 1]) , and similarly for α̃ ((sup Ii, 1]) . There-
fore, α̃ ([0, 1]) \ {α̃t} is disconnected.

Suppose on the contrary that there exists some 0 < t < 1 such that α̃t /∈ α̂ ([0, 1]) ,

then α̂ ([0, 1]) ⊂ α̃ ([0, 1]) \ {α̃t} . But this contradicts connectedness since α̂ (0) and
α̂ (1) lie in different components of α̃ ([0, 1]) \ {α̃t} . Therefore α̂ ([0, 1]) = α̃ ([0, 1]) .

Now the proof is complete.

Remark 3.4.1. In the case when α0 = α1, α̃ degenerates to a constant point. In this
case, the simplified path α̂ should be understood as the constant path.

Remark 3.4.2. The simplified path α̂ associated with α is in general not unique. For
example, consider α as in Figure 3.4.1. Apparently there are two ways of erasing the
loops of α : either erasing the loop from time s1 to s3 or the loop from s2 to s4; the
resulting simple curves have different images.

Now we apply the previous discussion to signature paths.
Recall that Sp is the space of signatures for weakly geometric p-rough paths, which

can be regarded as a subspace of the infinite tensor algebra T
(
Rd
)
. For any element

X ∈ T
(
Rd
)
and multi-index I = (i1, · · · , in) ∈ {1, · · · , d}n, we use XI to denote the

I-th component of X (we have omitted the constant term of X). We also use X(N) to
denote the truncation of X up to degree N . Now define

L2
d =

X =
(
XI
)
I: multi−index

∈ T
(
Rd
)

:
∑

I: multi-index

(
XI
)2
<∞

 .

From Lyons’ extension theorem (the factorial decay of signature), it is easy to see
that Sp is a subspace of L2

d. Moreover, for any X ∈ WGΩp

(
Rd
)
, the signature path
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S(X)0,· is continuous under the L2-metric. From now on, we always equip Sp with
the L2-metric.

Given g = S(X)0,1 ∈ Sp for some X ∈ WGΩp

(
Rd
)
, define a simplified continuous

path X̂· associated with the signature path S(X)0,· as before. From the construction
it is not hard to see that ∥∥∥π(N)

(
X̂
)∥∥∥

p
6
∥∥∥SN (X)0,·

∥∥∥
p

for every N ∈ N. Therefore, X̂ := π(bpc)
(
X̂
)
is a weakly geometric p-rough path, and

by Lyons’ extension theorem X̂ is the signature path of X̂.
In contrast to Remark 3.4.2, the uniqueness of the simplified signature path for

weakly geometric rough paths is a special and crucial feature of the signature. It is
a consequence of the shuffle product formula. Such uniqueness is the key to proving
that the signature group can be equipped with a real tree metric and to conclude the
necessity of Theorem 3.2.1.

Now our main goal is to establish the following result.

Proposition 3.4.2. Let X,Y be two weakly geometric p-rough paths such that

S(X)0,1 = S(Y)0,1.

If their corresponding signature paths S(X)0,·, S(Y)0,· are both simple, then they differ
by a reparametrization. In particular, X and Y differ by a reparametrization.

The main idea of proving Proposition 3.4.2 is to show that S(X)0,· and S(Y)0,·

have the same image, which can be proved by contradiction. If not, we are then able
to construct a finite dimensional one form such that the path integrals of this one
form along the truncated signatures of X,Y are different. This certainly leads to
a contradiction since the two integrals are functionals of the signature, according to
polynomial approximation and the shuffle product formula, provided the one form is
smooth enough, and hence they should be identical.

To start with, we first establish the following approximation result.

Lemma 3.4.2. Let X,Y ∈ WGΩp

(
Rd
)
with the same signature. Then for any

N ∈ N and any Cm-one form (continuously differentiable up to order m) φ on R(N)

with m > p, we have ˆ 1

0

φ
(
dX(N)

u

)
=

ˆ 1

0

φ
(
dY (N)

u

)
. (3.4.3)
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Proof. From Proposition 1.2.6 (1), we know that X,Y are geometric q-rough paths
for all q ∈ (p, bpc + 1), and hence the shuffle product formula (Proposition 1.2.1)
applies to them. Fix any q ∈ (p, bpc+ 1).

Write φ =
∑
|I|6N φIdX

I , where φI are Cm
c -functions on R(N). Let K be a compact

neighborhood of X(N)([0, 1])
⋃
Y (N)([0, 1]). According to T. Bagby, L. Bos and N.

Levenberg [2], Theorem 1, for each multi-index I, there exists a polynomial sequence
φ

(n)
I such that ∥∥∥φ(n)

I − φI
∥∥∥
CmK

:= sup
|α|6m

sup
K

∣∣∣Dα
(
φ

(n)
I − φI

)∣∣∣→ 0

as n → ∞. Let φ(n) =
∑
|I6N | φ

(n)
I dXI . From the shuffle product formula it is easy

to see that (3.4.3) holds for the polynomial one forms φ(n).

By regardingX,Y as geometric q-rough paths, the result follows from the continu-
ity of the integration maps φ 7→

´ 1

0
φ
(
dX

(N)
u

)
,
´ 1

0
φ
(
dY

(N)
u

)
under the Lipm−1-norm

(on K) when m > p (see [26], Theorem 10.47) and the fact that the Lipm−1-norm on
K is dominated by the Cm

K -norm.

The crucial point of proving Proposition 3.4.2 is to find a way to reduce the
problem to finite dimensions via truncating the signature. For N ∈ N, we use R(N)

to denote the Euclidean space of truncated tensor elements up to degree N, and such
a truncation of X ∈ T

((
Rd
))

is denoted by X(N). We also use B(X, R) (B
(
X(N), R

)
,

respectively) to denote the open ball in L2
d (in R(N),respectively) with radius R.

Firstly, we need the following lemma.

Lemma 3.4.3. Let X ∈ WGΩp

(
Rd
)
and X· := S(X)0,· be a simple curve. Then for

any ε > 0, there exists N(ε) ∈ N, such that X(N)
s 6= X

(N)
t for every N > N(ε) and

(s, t) ∈ ∆ with |t− s| > ε.

Proof. Let ∆ε = {(s, t) ∈ ∆ : t − s > ε}. For each (s, t) ∈ ∆ε, since Xs 6= Xt, there
exists some Ns,t ∈ N such that

X(Ns,t)
s 6= X

(Ns,t)
t . (3.4.4)

By continuity, (3.4.4) holds in a neighborhood of (s, t). The result then follows easily
from a compactness argument on ∆ε.

The following result is the key to constructing the finite dimensional one form
mentioned before.
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Lemma 3.4.4. Let X ∈ WGΩp

(
Rd
)
and X be the corresponding signature path.

Suppose for some s < τ < t that X|[s,t] is simple, ‖Xs − Xτ‖ = ‖Xt − Xτ‖ = R, and
X|(s,t) ⊂ B(Xτ , R) where 0 < R < 1. Then there exists some N0 ∈ N, such that for
any N > N0, there exists some h ∈ Cm

c

(
R(N)

)
(m > p) supported on the closed ball

B(N)
(
X

(N)
τ , R

)
with ˆ t

s

φ
(
dX(N)

u

)
6= 0,

where the Cm
c -one form φ on R(N) is defined by

φ
(
X(N)

)
=
∑
|I|6N

h
(
X(N)

)
XIdXI .

The construction of the one form φ in Lemma 3.4.4 is local. The underlying idea is
that φ is “almost” supported near X(N)

s and X(N)
t , and more importantly it is locally

radial near these two points with respect to X(N)
τ but globally not. This breaks the

symmetry of φ and prevents the exact cancellation of the path integral, so that it
should be nonzero. The global construction of φ relies on the following general result
from differential geometry, which is usually known as the partition of unity. We refer
the reader to the monograph by S.S. Chern, W. Chen and K.S. Lam [10] for the proof.

Lemma 3.4.5. (Partition of Unity) Let {Ui}ki=1 be an open cover of a differentiable
manifold M . Then there exists C∞-functions {ϕi}ki=1 on M such that

(1) 0 6 ϕi 6 1;
(2) suppϕi ⊂ Ui;
(3)

∑k
i=1 ϕi = 1.

Proof of Lemma 3.4.4. Let ε > 0 be such that B(Xs, ε)
⋂
B(Xt, ε) = ∅, and define

s1 = inf {u ∈ [s, τ ] : Xu ∈ B(Xs, ε)
c} ,

t1 = sup {u ∈ [τ, t] : Xu ∈ B(Xt, ε)
c} .

It follows that X([s, s1)) ⊂ B(Xs, ε), X((t1, t]) ⊂ B(Xt, ε). Moreover, by assumption
and continuity, there exists some 0 < ρ < R, such that X([s1, t1]) ⊂ B(Xτ , ρ). Let

Aρ,R =
{
X ∈ L2

d : ρ < ‖X− Xτ‖ < R
}
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Figure 3.4.2: This figure illustrates the corresponding infinite dimensional configura-
tion in the proof of Lemma 3.4.4.

be the open annulus, and define

s2 = sup
{
u ∈ [s, τ ] : Xu ∈ Aρ,R

}
,

t2 = inf
{
u ∈ [τ, t] : Xu ∈ Aρ,R

}
. (3.4.5)

It follows that s < s2 < s1, t1 < t2 < t and X((s2, t2)) ⊂ B(Xτ , ρ). Figure 3.4.2
illustrates the corresponding infinite dimensional configuration.

Let

ε1 = max

{
sup

u∈[s,s2]

‖Xu − Xs‖, sup
u∈[t2,t]

‖Xu − Xt‖

}
< ε. (3.4.6)

Then there exists some N1 ∈ N, such that for each N > N1,√∑
|I|>N

|XI
s |2 <

ε− ε1

2
,

√∑
|I|>N

|XI
t |2 <

ε− ε1

2
.

It follows that for each N > N1,

B(N)

(
X(N)
s ,

ε+ ε1

2

)⋂
B(N)

(
X

(N)
t ,

ε+ ε1

2

)
= ∅ (3.4.7)

and

X(N)([s, s2]) ⊂ B(N)

(
X(N)
s ,

ε+ ε1

2

)
, X(N)([t2, t]) ⊂ B(N)

(
X

(N)
t ,

ε+ ε1

2

)
.
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Of course we also have X(N)([s2, t2]) ⊂ B(N)
(
X

(N)
τ , ρ

)
. On the other hand, since

‖Xs −Xτ‖ = ‖Xt −Xτ‖ = R,

for any fixed R1 ∈ (ρ,R), there exists N2 ∈ N, such that for each N > N2,

R1 <
∥∥X(N)

s −X(N)
τ

∥∥ , ∥∥∥X(N)
t −X(N)

τ

∥∥∥ 6 R.

We take N0 = N1 ∨N2 and fix any N > N0.
Let

A
(N)
ρ,R =

{
X(N) ∈ R(N) : ρ <

∥∥X(N) −X(N)
τ

∥∥ < R
}

be the finite dimensional open annulus, and define

s3 = sup
{
u ∈ [s, τ ] : X(N)

u ∈ A(N)
ρ,R

}
,

t3 = inf
{
u ∈ [τ, t] : X(N)

u ∈ A(N)
ρ,R

}
.

Then s < s3 6 s2, t2 6 t3 < t,

∥∥X(N)
s3
−X(N)

τ

∥∥ =
∥∥∥X(N)

t3 −X
(N)
τ

∥∥∥ = ρ,

and
X(N)((s3, t3)) ⊂ B(N)

(
X(N)
τ , ρ

)
. (3.4.8)

Consider a small open neighborhood A(N)
ρ−η,R+η of A(N)

ρ,R, and let U, V be two open
subsets of A(N)

ρ−η,R+η such that A(N)
ρ−η,R+η = U

⋃
V , and

B(N)

(
X(N)
s ,

ε+ ε1

2

)⋂
A

(N)
ρ−η,R+η ⊂ U

⋂
V c,

B(N)

(
X

(N)
t ,

ε+ ε1

2

)⋂
A

(N)
ρ−η,R+η ⊂ V

⋂
U c. (3.4.9)

This is possible because of (3.4.7). Figure 3.4.3 illustrates the corresponding finite
dimensional configuration .

Let hi(r) ∈ Cm
c (R1) (i = 1, 2) be such that hi are supported on [ρ,R]. Take

{ϕ1, ϕ2} to be a partition of unity on A(N)
ρ−η,R+η subordinate to the open cover {U, V }
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Figure 3.4.3: This figure illustrates the corresponding finite dimensional configuration
in the proof of Lemma 3.4.4.

according to Lemma 3.4.5. Define h ∈ Cm
c

(
R(N)

)
by

h
(
X(N)

)
=


0, X(N) ∈ B(N)

(
X

(N)
τ , ρ

)
;∑2

i=1 ϕi
(
X(N)

)
hi

(∥∥∥X(N) −X(N)
τ

∥∥∥) , X(N) ∈ A(N)
ρ,R ;

0, X(N) ∈ B(N)
(
X

(N)
τ , R

)c
.

It is not hard to see that h is well-defined, of class Cm and compactly supported on
B(N)

(
X

(N)
τ , R

)
. Consider the Cm

c -one form ϕ on R(N) defined by

φ =
∑
|I|6N

h
(
X(N)

)
XIdXI .

It is crucial point to notice that φ is radial in both of B(N)
(
X(N), (ε+ ε1)/2

)
and

B(N)
(
X(N), (ε+ ε1)/2

)
, although globally it is not. It follows from (3.4.8), (3.4.9)

and the definition of h that
ˆ t

s

φ
(
dX(N)

u

)
=

ˆ s3

s

φ
(
dX(N)

u

)
+

ˆ t3

s3

φ
(
dX(N)

u

)
+

ˆ t

t3

φ
(
dX(N)

u

)
=

1

2

(ˆ s3

s

h1

(
r(N)
u

)
d
(
r(N)
u

)2
+

ˆ t

t3

h2

(
r(N)
u

)
d
(
r(N)
u

)2
)

=
1

2

(ˆ ρ

r
(N)
s

h1(r)dr2 +

ˆ r
(N)
t

ρ

h2(r)dr2

)
. (3.4.10)
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where r(N)
u :=

∥∥∥X(N)
u −X(N)

τ

∥∥∥ denotes the radial vector.
Obviously we can find h1, h2 such that (3.4.10) is nonzero. For instance, we can

take

hi(r) =

(r2 − ρ2)
ki (R2 − r2)

ki , ρ 6 r 6 R;

0, otherwise,
(3.4.11)

where k1, k2 > K are large positive integers to be taken later on. It follows that

ˆ t

s

φ
(
dX(N)

u

)
=

1

2

(ˆ r
(N)
t

ρ

h2(r)dr2 −
ˆ r

(N)
s

ρ

h1(r)dr2

)

>
1

2

(ˆ R1

ρ

(
r2 − ρ2

)k2 (R2 − r2
)k2 dr2 −

ˆ R

ρ

(
r2 − ρ2

)k1 (R2 − r2
)k1 dr2

)
.

Since 0 < R < 1, when fixing k2 we can choose k1 large enough so that the R.H.S. is
strictly positive.

Now the proof is complete.

Now we are in a position to prove Proposition 3.4.2.

Proof of Proposition 3.4.2. It suffices to show that X· := S(X)0,· and Y := S(Y)0,·

have the same image.
Assume on the contrary that Xτ /∈ Y([0, 1]) for some τ ∈ (0, 1). Then there exists

some 0 < R0 < 1 and some N3 ∈ N, such that for each N > N3 and u ∈ [0, 1], we
have

‖Y (N)
u −X(N)

τ ‖ > R0. (3.4.12)

Define

s0 = sup{u ∈ [0, τ ] : Xu ∈ B(Xτ , R0)c},

t0 = inf{u ∈ [τ, 1] : Xu ∈ B(Xτ , R0)c}.

Choose ε > 0 so that B(Xs0 , 2ε)
⋂
B(Xt0 , 2ε) = ∅. For such ε, there exists some δ > 0,

such that
|u− v| < δ =⇒ ‖Xu − Xv‖ < ε.
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By the uniform continuity of X−1, there exists ε0 << ε, such that

‖Xu − Xv‖ < ε0 =⇒ |u− v| < δ.

Consider the balls B(Xs0 , ε0) and B(Xt0 , ε0). By arguing in the same way as in the
beginning of the proof of Lemma 3.4.4, we can find some s ∈ (s0, τ), t ∈ (τ, t0) and
some 0 < R < R0, such that

X([s0, s]) ⊂ B(Xs0 , ε0), X([t, t0]) ⊂ B(Xt0 , ε0),

and
‖Xs − Xτ‖ = ‖Xt − Xτ‖ = R, X((s, t)) ⊂ B(Xτ , R).

Also note that
X([s0, s]) ⊂ B(Xs, ε), X([t, t0]) ⊂ B(Xt, ε).

By applying Lemma 3.4.4 to X|[s,t] and B(Xτ , R), we know that there exists some
N0 ∈ N, such that for each N > N0, there exists some h ∈ Cm

c

(
R(N)

)
(m > p)

supported on B(N)
(
X

(N)
τ , R

)
with

ˆ t

s

φ
(
dX(N)

u

)
6= 0,

where
φ =

∑
|I|6N

h
(
X(N)

)
XIdXI .

Here when applying the proof of Lemma 3.4.4 we should start with the disjoint balls
B(Xs, ε) and B(Xt, ε). Moreover, in order to take the pieces X|[s0,s] and X|[t,t0] into
account, the “ε1” defined by (3.4.6) should be

ε′1 := max

{
sup

u∈[s0,s2]

‖Xu − Xs‖, sup
u∈[t2,t0]

‖Xu − Xt‖

}
< ε

here, where s2, t2 are the last exit and first entry times for the closed annulus Aρ,R
defined by (3.4.5). It then follows from our explicit construction of h that φ is radial
along X(N)|[s0,s] and X(N)|[t,t0], since they lie inside the balls B(N)

(
X

(N)
s , (ε+ ε′1)/2

)
and B(N)

(
X

(N)
t , (ε+ ε′1)/2

)
respectively.
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Fix R2 ∈ (R,R0). Choose N4 ∈ N such that for each N > N4,

R2 <
∥∥X(N)

s0
−X(N)

τ

∥∥ , ∥∥∥X(N)
t0 −X

(N)
τ

∥∥∥ 6 R0.

Moreover, for the positive number R2 −R, there exists some η > 0, such that

|u− v| < η =⇒ ‖Xu − Xv‖ < R2 −R.

We then apply Lemma 3.4.3 for η to get some N5 ∈ N, such that X(N)
s 6= X

(N)
t for

every N > N5 and (s, t) ∈ ∆ with t− s > η.

Now take N > max {N0, N3, N4, N5} , and define

s4 = inf
{
u ∈ [s0, τ ] : X(N)

u ∈ B(N)
(
X(N)
τ , R

)}
,

t4 = sup
{
u ∈ [τ, t0] : X(N)

u ∈ B(N)
(
X(N)
τ , R

)}
.

It follows that
‖Xs0 − Xs4‖ >

∥∥X(N)
s0
−X(N)

s4

∥∥ > R2 −R,

and hence s4 − s0 > η. Similarly we have t0 − t4 > η. Therefore, we know that

X(N)([s4, t4])
⋂

X(N)([0, s0]
⋃

[t0, 1]) = ∅.

By continuity, there exists open sets U ⊂⊂ V in R(N) such that

X(N)([s4, t4]) ⊂ U, X(N)([0, s0]
⋃

[t0, 1])
⋃

Im
(
Y (N)

)
⊂ V c.

Figure 3.4.4 illustrates the corresponding finite dimensional configuration.
Let ζ ∈ C∞c

(
R(N)

)
be a bump function with respect to {U, V }, i.e. 0 6 ζ 6 1,

ζ = 1 on U and ζ = 0 on V c (see [10] for the construction of bump functions). Define
the Cm

c -one form Φ on R(N) by Φ = ζ · φ. It follows that

ˆ 1

0

Φ
(
dX(N)

u

)
=

ˆ s0

0

Φ
(
dX(N)

u

)
+

ˆ t0

s0

Φ
(
dX(N)

u

)
+

ˆ 1

t0

Φ
(
dX(N)

u

)
=

ˆ t0

s0

ζ
(
X(N)
u

)
φ
(
dX(N)

u

)
.

Since φ is supported on B(N)
(
X

(N)
τ , R

)
, we know from the definition of s4, t4 and ζ
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Figure 3.4.4: This figure illustrates the corresponding finite dimensional configuration
in the proof of Proposition 3.4.2.

that ˆ 1

0

Φ
(
dX(N)

u

)
=

ˆ t4

s4

φ
(
dX(N)

u

)
.

Based on the explicit construction of φ, it follows from the local radial property of φ
and (3.4.10) that

ˆ t4

s4

φ
(
dX(N)

u

)
=

1

2

((ˆ r
(N)
s

R

+

ˆ ρ

r
(N)
s

)
h1(r)dr2 +

(ˆ r
(N)
t

ρ

+

ˆ R

r
(N)
t

)
h2(r)dr2

)

=
1

2

(ˆ R

ρ

(h2(r)− h1(r))dr2

)
.

This is nonzero if for instance we take h1 and h2 as given by (3.4.11) with k1 >> k2 >

K. Therefore we arrive at ˆ 1

0

Φ
(
dX(N)

u

)
6= 0.

On the other hand, since Φ is supported on B(N)
(
X

(N)
τ , R

)
⊂ B(N)

(
X

(N)
τ , R0

)
,

we know from (3.4.12) that ˆ 1

0

Φ
(
dY (N)

u

)
= 0.

This is a contradiction to Lemma 3.4.2.
Now the proof is complete.

Remark 3.4.3. In the proofs of Lemma 3.4.4 and Proposition 3.4.2, we have implicitly
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used the following fact: the truncated signature path X(N) of X, regarded as a con-
tinuous path taking values in the truncated tensor algebra W = T (N)

(
Rd
)
, admits

a canonical lifting as a weakly geometric p-rough path over W whose signature is
uniquely determined (and can be explicitly computed) by the signature of X. The
proof of this fact can be obtained by first looking at the case of p = 1 and then using
approximation based on the geometric rough path nature of X.

Remark 3.4.4. Proposition 3.4.2 itself already gives the uniqueness of signature for
simple weakly geometric rough paths: if X,Y ∈ WGΩp

(
Rd
)
are both simple and

have the same signature, then they differ by a reparametrization.

To conclude the necessity of Theorem 3.2.1, we now show that the signature group
Sp can be equipped with a tree metric d, and if X ∈ WGΩp

(
Rd
)
has trivial signature,

then it is a tree-like path realized on the real tree (Sp, d).
For g ∈ Sp, let Xg and Xg denote the unique simplified signature path and reduced

weakly geometric path (choose some parametrization) associated with g respectively.
Introduce the relation “.” on Sp by

g . h iff Im (Xg) ⊂ Im
(
Xh
)
.

It is easy to see that “.” defines a partial order on Sp. Now define a functional
L : Sp → [0,∞) by

L(g) = ‖Xg‖pp , g ∈ Sp.

Then we have the following result.

Proposition 3.4.3. The partially ordered set (Sp,.) together with the functional L
satisfies the four conditions in Proposition 3.2.4. In particular, the metric given by

d(g, h) = L(g) + L(h)− 2L(g ∧ h), g, h ∈ Sp,

defines a real tree metric on Sp.

Proof. (1) Obviously, the unit element “1” is the unique minimal element under the
partial order “.”.

(2) Let g, h ∈ Sp. Set

t∗ = inf
{
t ∈ [0, 1] : Xh

t /∈ Im (Xg)
}
,

and define g ∧ h = Xh
t∗ . We now show that g ∧ h is an infimum of {g, h}. In fact, it is

obvious that g ∧ h . h since Xg∧h = Xh|[0,t∗]. Moreover, by continuity we know that
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Xh
t∗ = Xg

s∗ for some s∗ ∈ [0, 1], and by the uniqueness of simplified signature path
(Proposition 3.4.2) we have

Xg∧h = Xh|[0,t∗] = Xg|[0,s∗],

which implies that g ∧ h . g. Now assume that w ∈ Sp with w . g, h. It follows that

Xw([0, 1]) = Xh([0, t′]) ⊂ Im (Xg)

for some t′ ∈ [0, 1]. Apparently t∗ > t′ and hence w . g ∧ h. Therefore, g ∧ h is an
infimum of {g, h}. By the uniqueness of infimum, this already implies that g∧h = h∧g
is the unique infimum of {g, h}.

(3) Let g ∈ Sp and h,w . g. Then there exists unique s∗, t∗ such that h = Xg
s∗ and

w = Xg
t∗ (unless g = 1 which is a trivial case). Apparently h . w or w . h according

to whether s∗ 6 t∗ or t∗ 6 s∗.

(4) It is obvious that L is increasing. Moreover, let g, h ∈ Sp with g strictly
less than h. It follows that there exists some 0 6 t∗ < 1 such that Xg = Xh|[0,t∗].
Apparently Xh|[t∗,1] cannot be a constant path otherwise g = h. It follows that

L(g) = ‖Xg‖pp =
∥∥Xh|[0,t∗]

∥∥p
p
<
∥∥Xh

∥∥p
p

= L(h),

and hence L is strictly increasing. Now let A be a full, totally ordered subset of Sp.
It follows that L : A → L(A) is a bijection. To complete the proof, it remains to
show that L(A) is a real interval. Indeed, let

θ = inf L(A), Θ = supL(A),

and c ∈ (θ,Θ). It follows that for some g, h ∈ A, we have

L(g) < c < L(h).

Since A is totally ordered, g must be strictly less than h, and there exists a unique
0 6 t∗ < 1 such that Xg = Xh|[0,t∗]. If we define

ϕ(t) =
∥∥Xh|[0,t]

∥∥p
p
, t ∈ [t∗, 1],

by [26], Proposition 5.8 we know that ϕ is continuous. Therefore, there exists some
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(unique) t∗ < t′ < 1 such that

ϕ(t′) =
∥∥Xh|[0,t′]

∥∥p
p

= c.

Let w = Xh
t′ ∈ Sp. It follows that g 6 w 6 h and hence w ∈ A. In particular, c ∈ L(A).

Now we have
(θ,Θ) ⊂ L(A) ⊂ [θ,Θ],

which of course implies that L(A) is a real interval.
Now the proof is complete.

Corollary 3.4.1. For g ∈ Sp, the reduced path Xg is p-variation minimizing among
all weakly geometric p-rough paths with signature g.

Proof. For any X ∈ WGΩp

(
Rd
)
with S(X)0,1 = g, we apply Proposition 3.4.1 and

Lemma 3.4.1 to the signature path S(X)0,· to obtain a continuous simple curve X̂
joining 1 to g. From the previous discussion we know that∥∥∥π(bpc)

(
X̂
)∥∥∥

p
6 ‖X‖p.

On the other hand, by the uniqueness of simplified signature path and reduced path,
Xg and π(bpc)

(
X̂
)
differ by a reparametrization, and hence have the same p-variation.

Therefore,
‖Xg‖p 6 ‖X‖p,

and Xg is a p-variation minimizer.

Remark 3.4.5. In general, Xg is not the unique p-variation minimizer (up to reparame-
trization in the general sense).

To see this, consider the following example for d = 2 and 1 < p < 2. Let ĀB be
an arc of the unit circle centered at O ∈ R2 with central angle θ0, and let C be the
midpoint of ĀB. Let D be a point on the extension of the radius vector

−→
OC and let

|CD| = ε. Consider the paths x, y : [0, 1]→ R2 defined by the trajectories

x = ĀC t
−−→
CD t

−−→
DC t C̄B, y = ĀB,

respectively, where “t” means concatenation. It is easy to see that x, y have the
same signature g and y is the reduced path of x (obviously they are not equal up
to reparametrization in the general sense). Now we show that ‖x‖p = ‖y‖p =

∣∣∣−→AB∣∣∣
provided θ0 and ε are small enough.
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In fact, let E ∈ ĀB and denote the central angle ∠EOB by θ. Consider the
function

f(θ) =
∣∣∣−→AE∣∣∣p +

∣∣∣−−→EB∣∣∣p , θ ∈ [0, θ0],

which can be written as

f(θ) = 2p
(

sinp
θ

2
+ sinp

θ0 − θ
2

)
according to Euclidean geometry. Computing the second derivative of f , we obtain
that

f ′′(θ) =
p

22−p

(
(p− 1)

(
cos2 θ

2

sin2−p θ
2

+
cos2 θ0−θ

2

sin2−p θ0−θ
2

)
−
(

sinp
θ

2
+ sinp

θ0 − θ
2

))
.

Since 1 < p < 2, we konw that when θ0 is small, f ′′(θ) is uniformly positive and hence
f is convex on [0, θ]. Also note that f(0) = f(θ0) =

∣∣∣−→AB∣∣∣p. Therefore, for θ0 small
enough f obtains its maximum on the end points and we have∣∣∣−→AE∣∣∣p +

∣∣∣−−→EB∣∣∣p 6 ∣∣∣−→AB∣∣∣p , ∀E ∈ ĀB.
Now we fix such a θ0. This already implies that ‖y‖p =

∣∣∣−→AB∣∣∣. Moreover, by consid-
ering the symmetry of f(θ) it is easy to see that f obtains its minimum at θ = θ0/2.

Set
λ =

∣∣∣−→AB∣∣∣p − ∣∣∣−→AC∣∣∣p − ∣∣∣−−→CB∣∣∣p > 0.

It remains to show that when ε is small enough, ‖x‖p =
∣∣∣−→AB∣∣∣. To this end, let

P : 0 = t0 < t1 < · · · < tn = 1

be a finite partition of [0, 1], and let tk, tl be the first and last partition points at
which x is in CD respectively. If such points don’t exist, then obviously we have

n∑
i=1

∣∣xti − xti−1

∣∣p 6 ∣∣∣−→AB∣∣∣p .
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Otherwise, we have

n∑
i=1

∣∣xti − xti−1

∣∣p =
k−1∑
i=1

∣∣xti − xti−1

∣∣p +
∣∣xtk − xtk−1

∣∣p
+

l∑
i=k+1

∣∣xti − xti−1

∣∣p +
∣∣xtl+1

− xtl
∣∣p +

n∑
i=l+2

∣∣xti − xti−1

∣∣p
6

∣∣xtk−1
− A

∣∣p +
∣∣B − xtl+1

∣∣p +
∣∣xtk − xtk−1

∣∣p
+
∣∣xtl+1

− xtl
∣∣p + 2εp,

where we have used the previous discussion and the fact that
−−→
CD is a geodesic. It

follows that

n∑
i=1

∣∣xti − xti−1

∣∣p
6
∣∣∣−→AC∣∣∣p +

∣∣∣−−→CB∣∣∣p +
(∣∣xtk − xtk−1

∣∣p − ∣∣C − xtk−1

∣∣p)
+
(∣∣xtl+1

− xtl
∣∣p − ∣∣xtl+1

− C
∣∣p)+ 2εp

=
∣∣∣−→AB∣∣∣p − (∣∣∣−→AB∣∣∣p − ∣∣∣−→AC∣∣∣p − ∣∣∣−−→CB∣∣∣p − (∣∣xtk − xtk−1

∣∣p − ∣∣C − xtk−1

∣∣p)
−
(∣∣xtl+1

− xtl
∣∣p − ∣∣xtl+1

− C
∣∣p)− 2εp

)
.

On the other hand, we have

∣∣xtk − xtk−1

∣∣p − ∣∣C − xtk−1

∣∣p 6 (∣∣C − xtk−1

∣∣+ ε
)p − ∣∣C − xtk−1

∣∣p
6 max

{(√
ε+ ε

)p
, θp0
((

1 +
√
ε
)p − 1

)}
=: µ(ε),

where the “max” comes from considering the cases whether
∣∣C − xtk−1

∣∣ 6 √ε or not.
The same inequality holds for

∣∣xtl+1
− xtl

∣∣p − ∣∣xtl+1
− C

∣∣p . Therefore, we have

n∑
i=1

∣∣xti − xti−1

∣∣p 6 ∣∣∣−→AB∣∣∣p − (λ− 2µ(ε)− 2εp) 6
∣∣∣−→AB∣∣∣p ,

provided ε is small enough so that

2µ(ε) + 2εp < λ.
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Now by taking supremum over all finite partitions of [0, 1], we conclude that

‖x‖p 6
∣∣∣−→AB∣∣∣ = ‖y‖p 6 ‖x‖p.

Therefore, x is also a p-variation minimizer with signature g.
However, it should be pointed out that when p = 1, Xg is always the unique

1-variation (length) minimizer (up to reparametrization in the general sense) with
signature g ∈ S1 . This follows easily from the triangle inequality. See [35] for a
discussion as well.

Finally, the necessity of Theorem 3.2.1 is a consequence of Proposition 3.4.3. In
fact, given X ∈ WGΩp

(
Rd
)
with trivial signature, define a loop α : [0, 1]→ Sp by

α(t) = S(X)0,t, t ∈ [0, 1],

and define ψ : Sp → Gbpc
(
Rd
)
by projection π(bpc) (ψ is well-defined according to

the definition of Sp). It is obvious that X = ψ ◦ α. Now it remains to establish the
following nontrivial fact.

Lemma 3.4.6. α is continuous under the tree metric d.

Proof. Define
h(t) =

∥∥Xt
∥∥p
p
, t ∈ [0, 1],

where Xt is the reduced path associated with S(X)0,t. We also use Xt to denote the
corresponding simplified signature path.We first show that h is a continuous function.

Fix t ∈ [0, 1]. By the continuity of the p-variation norm, for any ε > 0, there exists
some δ > 0 such that

s ∈ (t− δ, t) =⇒ ‖X‖pp;[s,t] < ε2p,

where ‖ · ‖p;[s,t] denotes the p-variation of X|[s,t]. Let X′ be the concatenation of Xs

and X|[s,t], where we parametrize Xs on [0, s] so that X′ is defined on [0, t]. For any
finite partition

P : 0 = u0 < u1 < · · · < uk 6 s 6 uk+1 < · · · < uk+l−1 < uk+l = t
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of [0, t], we have

k+l∑
i=1

d
(
X′ui−1

,X′ui

)p
=

(
k∑
i=1

d
(
X′ui−1

,X′ui

)p
+ d

(
X′uk ,X

′
s

)p)

+

(
d
(
X′s,X

′
uk+1

)p
+

k+l∑
i=k+2

d
(
X′ui−1

,X′ui

)p)
+d
(
X′uk ,X

′
uk+1

)p
− d

(
X′uk ,X

′
s

)p − d(X′s,X′uk+1

)p
6 ‖Xs‖pp + ‖X‖pp;[s,t] + d

(
Xs
uk
,Xuk+1

)p − d (Xs
uk
,Xs

)p
6 ‖Xs‖pp + ε2p +

(
d
(
Xs
uk
,Xs

)
+ d

(
Xs,Xuk+1

))p − d (Xs
uk
,Xs

)p
.

It follows that

k+l∑
i=1

d
(
X′ui−1

,X′ui

)p
6 ‖Xs‖pp + max

{
(2p + 1) εp, ε2p + ‖X‖pp ((1 + ε)p − 1)

}
,

where the “max” comes from considering the cases whether d
(
Xs
uk
,Xs

)
6 ε or not,

and we have also used the fact that ‖Xs‖p 6 ‖X‖p (see Corollary 3.4.1). Therefore,
by taking supremum over all possible partitions of [0, t] and by the definition of Xt,

we have

h(t)− h(s)

6 ‖X′‖pp − ‖Xs‖pp
6 max

{
(2p + 1) εp, ε2p + ‖X‖pp ((1 + ε)p − 1)

}
.

By taking s ↑ t and then ε→ 0, we have

lim sup
s↑t

(h(t)− h(s)) 6 0.

On the other hand, let

X′′u =

Xt
u, u ∈ [0, t];

X2t−u, u ∈ [t, 2t].
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It follows that
h(t)− h(s) >

∥∥Xt
∥∥p
p
− ‖X′′‖pp;[0,2t−s].

Again by the continuity of the p-variation norm, we have

lim inf
s↑t

(h(t)− h(s)) > 0.

Therefore, we conclude that h is left continuous. By a similar argument we can
show that h is also right continuous.

Now we establish the continuity of α(t) = S(X)0,t under the tree metric. Again
fix t. From the continuity of height function, apparently we only need to show that

lim
s→t

∥∥Xα(s)∧α(t)
∥∥
p

=
∥∥Xt

∥∥
p
.

Note that for each s, there exists a unique σ(s) ∈ [0, 1], such that Xt
σ(s) = α(s)∧α(t) ∈

Xt([0, 1]). We now show that σ(s)→ 1 as s→ t.

In fact, from the construction we know that the concatenation of the reversal of
Xs from α(s) to α(s) ∧ α(t) with Xt from α(s) ∧ α(t) to α(t) is a continuous simple
curve under the L2-metric, unless α(s) = α(t) which is a trivial case. We denote this
path by Ys and its projection onto Gbpc

(
Rd
)
by Ys. Then Ys has finite p-variation.

By uniqueness α(s)−1 ⊗Ys must be the reduced path associated with α(s)−1 ⊗ α(t)

and ‖Ys‖p 6 ‖X‖p;[s,t]. Therefore, ‖Ys‖p → 0 as s→ t, and thus ‖Xt‖p;[σ(s),1] → 0 as
s→ t.

For any subsequence sn → t such that σ(sn) converges to some u ∈ [0, 1], by
the continuity of the p-variation norm we have ‖Xt‖pp;[σ(sn),1] → ‖Xt‖p;[u,1]. There-
fore, ‖Xt‖pp;[u,1] = 0, which implies u = 1 since Xt is the simplified signature path.
Consequently, σ(s)→ 1 as s→ t.

Now the result follows from the fact that Xα(s)∧α(t) = Xt|[0,σ(s)] and the continuity
of p-variation.

Combining all the previous results, now the proof of Theorem 3.2.1 is complete.

3.5 Final Remarks

As we have seen before, our proof of Theorem 3.2.1 is developed under the setting
of real trees. Alternatively, it is also possible to develop the proof by using height
functions as in the original work by B.M. Hambly and T. Lyons for continuous paths
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with bounded total variation. Namely, it is possible to prove the following result
without realizing the path on any real tree.

Theorem 3.5.1. A weakly geometric p-rough path X has trivial signature if and only
if there exists some continuous function h : [0, 1] → [0,∞) with h(0) = h(1) = 0,

such that for any s, t ∈ [0, 1], if

h(s) = h(t) = inf
u∈[s,t]

h(u),

then Xs = Xt.

The proof of this result is of course essentially the same as the proof of Theorem
3.2.1 under the setting of real trees. Instead of developing the technical details again,
let us just give a proof of the following result.

Proposition 3.5.1. A continuous path β : [0, 1]→ V in some topological space V is
tree-like if and only if there exists some continuous function h : [0, 1]→ [0,∞) with
h(0) = h(1) = 0, such that for any 0 6 s 6 t 6 1, if

h(s) = h(t) = inf
u∈[s,t]

h(u), (3.5.1)

then β(s) = β(t).

Proof. Necessity. Assume that β is a tree-like path in V realized on some real tree
(τ, d), so we have β = ψ ◦ α for some continuous loop α and some map ψ. Choose
α(0) to be the root of τ and define the partial order accordingly. Set

h(t) = d (α(t), α(0)) , t ∈ [0, 1].

It is obvious that h is non-negative, continuous and h(0) = h(1) = 0. Now assume
that s, t ∈ [0, 1] satisfies (3.5.1). If α(s) 6= α(t), then either α(s), α(t) are comparable
which contradicts the fact that h(s) = h(t), or α(s), α(t) are not comparable which
contradicts the fact that h attains its minimum at s, t since in this case α(u) =

α(s) ∧ α(t) at some u ∈ [s, t] and

h(u) = d (α(s) ∧ α(t), α(0)) < h(s) = h(t).

Therefore, α(s) = α(t) and hence β(s) = β(t).

Sufficiency. Assume that there exists a continuous function h satisfying the condi-
tions in the Proposition. From the discussion in Section 3.2, we know that ([0, 1]/∼, d)
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is a real tree where the equivalence relation is defined by (3.2.1) and the tree metric
is defined by (3.2.2), and the canonical projection α : [0, 1]→ [0, 1]/∼ is continuous.
Now define a map ψ : [0, 1]/∼ → V by ψ([t]) = β(t), which is well defined since s ∼ t

if and only if (3.5.1) holds which implies that β(s) = β(t) by the assumption. From
the construction it is obvious that β = ψ ◦ α. Therefore, β is tree-like.

Remark 3.5.1. It should be pointed out that the notion of tree-like paths in the
sense of B.M. Hambly and T. Lyons (see 3.1.1) is equivalent to our formulation. Let
x : [0, 1] → Rd be a continuous path with bounded total variation. We only need
to show that if it is tree-like in our sense (we use the height function formulation in
Proposition 3.5.1), then it is tree-like in the sense of B.M. Hambly and T. Lyons. In
fact, since x is tree-like, it has trivial signature and from the previous discussion it
can be realized on the real tree S1 via the signature path and projection. From the
proof of Proposition 3.5.1, we know that the height function of x is defined by

h(t) = d (S(x)0,t,1)

= L (S(x)0,t)

=
∥∥xt∥∥

1
,

where xt denotes the reduced path associated with S(x)0,t. For given 0 6 s 6 t 6 1,
it follows that

|xt − xs| 6
∥∥xs,t∥∥

1

= L(S(x)0,s) + L(S(x)0,t)− 2L(S(x)0,s ∧ S(x)0,t),

where xs,t denotes the reduced path from xs to xt, and we have also used the additivity
of the 1-variation norm over adjacent intervals. Moreover, by Proposition 3.2.1 we
have

S(x)0,s ∧ S(x)0,t ∈ S(x)([s, t]),

and hence
inf
u∈[s,t]

h(u) 6 L(S(x)0,s ∧ S(x)0,t).

This implies that
|xt − xs| 6 h(s) + h(t)− 2 inf

u∈[s,t]
h(u),

and x is tree-like in the sense of B.M. Hambly and T. Lyons.

A immediate consequence of Theorem 3.2.1 is the fact that being a tree-like defor-
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mation of each other is an equivalence relation, which is nontrivial from the definition.
More precisely, if we introduce the relation “∼” on WGΩp

(
Rd
)
by

X ∼ Y iff
−→
X t

←−
Y is tree− like,

where
←−
Y means the reversal of Y, then Theorem 3.2.1 implies that “∼” is an equiv-

alence relation on WGΩp

(
Rd
)
.

On the other hand, consider the RDE

dY = V (Y)dX

on Re with initial condition y0. When X has bounded total variation, we have the
following Taylor expansion:

Yt '
∑
N>0

16i1,··· ,iN6d

(Vi1 · · ·ViN I) (y0) ·X(i1,··· ,iN )
t , t ∈ [0, 1], (3.5.2)

where V = {V1, · · · , Vd} is a given family of vector fields on Re, I is the identity map
on Re, and

X
(i1,··· ,iN )
t :=

ˆ
0<t1<···<tN<t

dX i1
t1 · · · dX

iN
tN

are the signature terms associated with X. From the formula 3.5.2 and the shuffle
product formula, it is not hard to see that the signature of the solution path is uniquely
determined by the signature of X, and by a limiting argument it holds when X is
a weakly geometric rough path. This point can be made mathematically rigorous,
at least in the case when the generating vector fields are regular enough. Therefore,
Theorem 3.2.1 implies that the tree-like equivalence class of the solution path Y is
determined by the tree-like equivalence class of the driving path X; or equivalently
the signature of Y is determined by the signature of X.

Finally, so far we have seen that the signature map X ∈ WGΩp

(
Rd
)
7→ S(X)0,1

defines an isomorphism from the space of weakly geometric p-rough paths modulo
tree-like equivalence onto its image Sp. To have a fundamental understanding of the
signature map, which is an interesting and important mathematical problem on its
own, we should at least be able to answer two more questions.

(1) Given a tensor element g ∈ T
(
Rd
)
, when can it be identified as the signature

of some weakly geometric rough path? Or equivalently, can we characterize the
signature group Sp intrinsically?
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(2) Given a tensor element g in the signature group Sp, how can we reconstruct
the reduced weakly geometric p-rough path whose signature is g? In other words,
can we describe the inverse of the signature map (modulo tree-like equivalence) in an
analytic way? Another related interesting question is: how does the tensor element
g reveal the geometry of the reduced path?

These questions are the main motivation of my ongoing research, and at this stage
they are still far from being well understood. We will come back to the second one
partially in the probabilistic setting in the next chapter.
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Chapter 4

The Uniqueness of Signature Problem
in the Probabilistic Setting:
Non-Markov Processes

4.1 Introduction

In this chapter, we deviate from the deterministic setting and investigate the
probabilistic situation for sample paths of stochastic processes.

As mentioned in the first chapter, in the probabilistic setting Y. Le Jan and Z.
Qian [43] proved that with probability one, the Stratonovich signatures of Brown-
ian motion determine the Brownian sample paths. Their strategy, in particular the
approximation scheme constructed in the proof, came from the study of cyclic co-
homology in algebraic topology. Moreover, their proof relies heavily on the explicit
distribution of Brownian motion, the strong Markov property and the potential theory
for the Laplace operator. Later on this result was extended to hypoelliptic diffusions
by X. Geng and Z. Qian [28], in which the technique of Y. Le Jan and Z. Qian is
strengthened but the proof still relies on the strong Markov property and potential
theory in a crucial way. A similar result for Chordal SLEκ curves with κ 6 4 was
obtained by H. Boedihardjo, H. Ni and Z. Qian [6], as a direct application of the de-
terministic result for planar simple curves together with the sample path properties
for SLE curves.

It should be pointed out that the result of Le Jan and Qian is stronger than the
general deterministic results we have seen so far, as it not only gives the injectivity but
also gives an explicit way of how a sample path can be constructed from its signature
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outside a null set in the path space. In the deterministic setting, such reconstruction
was studied by T. Lyons and W. Xu [48] for C1-paths via symmetrization, and also
implicitly contained in the work in Chapter 2 (see Remark [3]) via Fourier transform.
A general inversion scheme for the signature of weakly geometric rough paths remains
a significant open problem in rough path theory.

The main purpose of this chapter is to further simplify and strengthen the method
of Y. Le Jan and Z. Qian to include a class of non-Markov processes. In particular,
we establish the almost-sure uniqueness of signature (up to reparametrization) for
a class of Gaussian processes including fractional Brownian motion with Hurst pa-
rameter H > 1/4, the Ornstein-Uhlenbeck process and the Brownian bridge. More
importantly, our technique also yields an explicit inversion scheme for the signature
of sample paths.The fundamental difficulty in exploiting the idea of Y. Le Jan and
Z. Qian of course lies in the unavailability of those probabilistic and analytic tools
arising from the strong Markov property and potential theory which are both crucial
in their proof. The key of getting around this difficulty is to find methods which
enable us to analyze pathwisely.

The well-definedness of the signature when the sample paths of the process have
finite p-variation for p > 1 are well studied in the probability literature (see for
example [26] for a detailed presentation). For instance, it was shown by L. Coutin
and Z. Qian [14] that with probability one, the sample paths of fractional Brownian
motion with Hurst parameter H > 1

4
can be lifted canonically as geometric rough

paths, while it is believed that no such canonical lifting exists for H 6 1
4
. More

generally, L. Coutin and Z. Qian [13] showed that under certain conditions on the
decorrelation of the increments of a Gaussian process, with probability one the lifting
of the dyadic piecewise linear interpolation of the Gaussian sample paths in GΩp

(
Rd
)

is a Cauchy sequence under the p-variation metric. In [26], P. Friz and N. Victoir
extended this result to a larger class of Gaussian processes under certain regularity
condition on the covariance function. Moreover, they showed that the lifting of any
sequence of piecewise linear interpolations of the Gaussian sample paths in GΩp(Rd)

converges to the same limit. This limit is usually known as the canonical lifting of
the Gaussian process in GΩp

(
Rd
)
.

In establishing our main result, we state explicitly under what conditions on the
law of the process the almost-sure uniqueness of signature holds. We hope that
this provides a general framework for solving the almost-sure uniqueness of signature
problem for other interesting processes. Note that our result is not a direct corollary
of the result in Chapter 3, since it is highly nontrivial to prove the existence of a null
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set outside which no two paths can be tree-like deformations of each other.

4.2 Main Results

In this section we state the main results of this chapter and illustrate the idea of
the proofs.

Let X = {Xt : t ∈ [0, 1]} be a d-dimensional continuous stochastic process
starting at the origin, where d > 2. We always assume that X is realized on the path
space (W,B(W ),P),where W is the space of Rd-valued continuous paths over [0, 1]

starting at the origin, B(W ) is the Borel σ-algebra over W, and P is the law of X.
In the rest of this chapter, we make the following assumptions on the law P.
Assumption (A): There exists a P-null set N0 and a map

S : W\N0 → C
(
4;T

(
Rd
))
,

such that for each x ∈ W\N0 and (s, t) ∈ ∆, π1

(
S (x)s,t

)
= xt − xs and S (x) is the

multiplicative extension of some geometric rough path X in terms of Lyons’ extension
theorem. We call such a map S a P-almost sure lifting. The integral against x is then
defined as integrating against the geometric rough path X.

Assumption (B): For any 0 < t < 1, the law of xt is absolutely continuous with
respect to the Lebesgue measure.

Assumption (C): For any open cube H ⊂ Rd, there exists a differential one form
(i.e. a C∞-one form) φ =

∑d
i=1 φidx

i supported on the closure of H, such that for
any 0 6 s < t 6 1, if we let

AHs,t = {x ∈ W : there exists some u ∈ (s, t) such that xu ∈ H} , (4.2.1)

then

P
({

x ∈ W :

ˆ t

s

φ(dxu) = 0

}⋂
AHs,t

)
= 0.

Here
´ t
s
φ(dxu) =

∑d
i=1

´ t
s
φi(xu)dx

i
u is defined in the sense of rough paths according

to Assumption (A).

Remark 4.2.1. As we have mentioned before, Assumption (A) is quite natural for a
large class of stochastic processes. Assumption (B) is also verified for most of these
processes, e.g. hypoelliptic diffusions, Gaussian processes, solutions to hypoelliptic
rough differential equations driven by Gaussian processes. These examples are well
studied in [26]. Assumption (C) suggests a certain kind of non-degeneracy for sample
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paths of the process, which is essential for the recovery of a path from its signature in
our setting. By a closer look at Assumption (C), it actually excludes the possibility of
the sample paths having tree-like pieces. Therefore, with probability one the sample
paths are already “reduced” paths in the tree-like equivalence classes and it is natural
to expect an inversion scheme for the signature in our setting. This is the main goal
of this chapter.

In the last section of this chapter, as a fundamental example we show that these
assumptions are all verified for a class of Gaussian processes including fractional
Brownian motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process
and the Brownian bridge.

Now we are in a position to state our main results. Let R be the group of
reparametrizations from [0, 1] to itself.

Theorem 4.2.1. Assume that the law P of the stochastic process satisfies Assumption
(A), (B) and (C). Let S be the P-almost sure lifting as in Assumption (A). Then there
exists a P-null set N , such that for any x, x′ ∈ N c, if S(x)0,1 = S(x′)0,1, then there
exists some σ ∈ R, such that

xt = x′σ(t), ∀t ∈ [0, 1].

As a fundamental example, we prove the following result for a class of Gaussian
processes satisfying conditions to be specified later on in the final section.

Theorem 4.2.2. Let P be the law of a Gaussian process satisfying conditions specified
in Section 4.5. Then P satisfies Assumption (A), (B), (C). In particular, the result
holds for fractional Brownian motion with Hurst parameter H > 1/4, the Ornstein-
Uhlenbeck process and the Brownian bridge.

Before going into the mathematical proofs, we first describe the strategy infor-
mally. The approximation scheme we develop is an adaptation from the work of Y.
Le Jan and Z. Qian [43]. However, the main difficulties are in the development of
each step in the non-Markov setting, which will be clear in the detailed proofs.

Step One. Prove that if two paths have the same signature, then the iterated
integrals of the paths along any finite sequence of differential one forms are the same.
Following [43], these iterated integrals along one forms are called extended signatures.

Step Two. Decompose the Euclidean space Rd into disjoint identical open cubes
with small tunnels between them. For each such cube, we define a differential one
form supported on the closure of the cube according to Assumption (C).
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Step Three. Show that, for each path x outside a P-null set, the ordered sequence
of cubes visited by x corresponds to the unique maximal sequence of differential one
forms along which the extended signature of x is nonzero. This together with step
one allows us to recover the ordered sequence of cubes visited by x from its signature.

Step Four. Construct a polygonal approximation of x by joining the centers of
cubes visited by x in order. This polygonal path is parametrized so that it is at the
center of the cube at the time when the cube is first visited by x. Show that with
probability one, as the size of cubes tends to zero, the polygonal path converges to
the original path x under the uniform topology.

Step Five. Since the signature is invariant under reparametrizations of the path,
it is not possible to recover the exact visit times of the cubes. If two paths have
the same signature, then the corresponding polygonal paths constructed in (3) are
only equal up to reparametrization. Therefore, we need to introduce a variant of the
Fréchet distance on W measuring the distance of two paths modulo parametrization.
We should also prove that outside a P-null set this is indeed a metric. It then follow
from step four that if two paths x and x′ have the same signature, their corresponding
approximation paths converge to the same limit under this metric, which implies that
x and x′ are equal up to reparametrization.

For the Gaussian case, Assumption (A) is verified from [26] and Assumption (B)
is trivial by definition. By using the Malliavin calculus, for each open cube H we
explicitly construct a differential one form φ supported on H such that the functional
x →

´ t
s
φ(dxu) has a density conditioned on the set AHs,t. This certainly verifies

Assumption (C).

4.3 Signature Determines Extended Signatures

Starting from this section, we develop the detailed proofs of our main results.
As the first step, we prove that if two sample paths as geometric rough paths

have the same signature, then they have the same extended signature. Note that
the signatures and extended signatures are well-defined P-almost surely according to
Assumption (A).

From now on, for a geometric rough path X and a finite sequence (φ1, · · · , φn)

of differential one forms φ1, . . . , φn, we use [φ1, · · · , φn]0,1 (x) to denote the iterated
path integral

´ 1

0
· · ·
´ s2

0
φ1 (dXs1) · · ·φn (dXsn), where x· := π1(S(X)0,·) is the first
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level path of X. A simple way of understanding this integral is by

ˆ 1

0

. . .

ˆ s2

0

φ1 (dXs1) . . . φ
n (dXsn) = lim

k→∞

ˆ 1

0

· · ·
ˆ s2

0

φ1
(
dx(k)

s1

)
· · ·φn

(
dx(k)

sn

)
,

where by the definition of geometric rough paths x(k) is a sequence of paths with
bounded total variation whose lifting converges to X under the p-variation metric.
Sometimes we also use the notation

´ 1

0
. . .
´ s2

0
φ1 (dxs1) . . . φ

n (dxsn) to denote the path
integral. Note that the ordering of (φ1, · · · , φn) is non-commutative in this notation.

Now we have the following result. The proof is almost identical to the one of
Lemma 3.4.2.

Proposition 4.3.1. Given p > 1, let X,X′ be two geometric p-rough paths. Suppose
that φ1, . . . , φn are Cα-one forms for α > p. If S (X)0,1 = S (X′)0,1, then[

φ1, . . . , φn
]

0,1
(x) =

[
φ1, . . . , φn

]
0,1

(x′) , (4.3.1)

where x and x′ are the first level paths of X and X′ respectively.

Proof. We write φi as φi =
∑d

j=1 φ
i
j (x) dxj. Let K be a compact neighborhood of

x([0, 1])
⋃
x′([0, 1]). As in the proof of Lemma 3.4.2, according to [2], Theorem 1, for

each α > 0 and each j, there exists a polynomial sequence φi(m)
j such that∥∥∥φi(m)

j − φij
∥∥∥
CαK

→ 0

as m → ∞. Let φi(m) (x) =
∑d

j=1 φ
i(m)
j (x) dxj. We know from the shuffle product

formula (see also [43], p. 4) that (4.3.1) holds for the finite sequence
(
φ1(m), · · · , φn(m)

)
for all m. Now the result follows from the continuity of the integration map

(φ1, · · · , φn) 7→
[
φ1, · · · , φn

]
0,1

(x),
[
φ1, · · · , φn

]
0,1

(x′)

under the Lipα-norm when α > p together with the fact that the Lipα-norm is con-
trolled by the Cα

K-norm.

4.4 The Strengthened Le Jan-Qian Approximation

Scheme and the Uniqueness of Signature

Now fix ε, δ > 0 with δ << ε.
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For any integer point z = (z1, z2, . . . , zd) ∈ Zd, let Hε,δ
z be the open cube centered

at εz with edges of length ε− δ. In other words,

Hε,δ
z =

{
x ∈ Rd :

∣∣xi − εzi∣∣ < ε− δ
2

, ∀i = 1, · · · , d
}
.

Geometrically, the space Rd is divided into disjoint identical open cubes and small
closed tunnels.

For any x ∈ W and k > 1, define recursively

τ ε,δk = inf

t ∈
[
τ ε,δk−1, 1

]
: xt ∈

⋃
z 6=mε,δ

k−1

Hε,δ
z

 ,

and mε,δ
k to be the integer point z ∈ Zd such that

xτε,δk
∈ Hε,δ

z ,

where τ ε,δ0 = 0, mε,δ
0 = 0 ∈ Zd. Let

N ε,δ = sup
{
k > 1 : τ ε,δk < 1

}
,

where sup ∅ := 0. The sequence
{
τ ε,δk

}
records the successive visit times of the open

cubes by the path, the sequence
{
mε,δ

k

}
records the cubes visited in order, and N ε,δ

records the total number of cubes visited. Note that revisiting the same cube after
visiting some other cubes counts, but revisiting before visiting any other cubes does
not count. By continuity and compactness, it is easy to see that for any x ∈ W,

0 6 N ε,δ <∞.
Here and thereafter, for notational simplicity we drop the dependence on x for

these random variables on W.

Remark 4.4.1. It is important to use the open cubes instead of the closed ones, as we
are only interested in the case when a path x travels through the interior of a cube.
Note that these τ ε,δk are not stopping times with respect to the natural filtration.

For each cube Hε,δ
z , let φε,δz be the differential one form given in Assumption (C).

In particular, φε,δz is supported on the closure of Hε,δ
z , and φε,δz = 0 on ∂Hε,δ

z .
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4.4.1 Recovery of Cubes Visited in Order by Using the Ex-

tended Signature

Let Wm (m > 0) be the set of words (z0 = 0, z1, · · · , zm) with zi 6= zi+1, zi ∈ Zd,
and let W =

⋃
m>0Wm. Elements of W are called admissible words.

For w = (z0, z1, · · · , zm) ∈ W , define

Eε,δ
w =

{
x ∈ W : N ε,δ = m, mε,δ

k = zk, k = 0, · · · ,m
}
.

It follows that W can be written as the disjoint union W =
⋃
w∈W E

ε,δ
w .

Now we have the following result.

Lemma 4.4.1. For any m > 0, if w = (z0 = 0, · · · , zm) ∈ Wm and x ∈ Eε,δ
w , then

(1) [
φε,δz0 , · · · , φ

ε,δ
zm

]
0,1

(x) =
m+1∏
i=1

ˆ τε,δi

τε,δi−1

φε,δzi−1
(dxt), (4.4.1)

where τ ε,δm+1 = 1 by definition since x ∈ Eε,δ
w .

(2) For any w′ = (z0, z
′
1, · · · , z′n) ∈ Wn with n > m,[

φε,δz0 , · · · , φ
ε,δ
z′n

]
0,1

(x) = 0.

(3) For any w′ = (z0, z
′
1, · · · , z′m) with w′ 6= w,[

φε,δz0 , · · · , φ
ε,δ
z′m

]
0,1

(x) = 0.

Proof. We prove this result by induction on m.
If m = 0, assume that x ∈ Eε,δ

(z0). Then (1) and (3) are trivial. To see (2), let w′ =
(z0, z

′
1, · · · , z′n) ∈ Wn with n > 0. Since w′ is an admissible word, there is some 0 <

k 6 n such that x does not visit the open cube Hε,δ
z′k

and the corresponding extended
signature is zero by definition (here we have implicitly used the definition of extended
signatures of geometric rough paths and the joint continuity of the integration map
with respect to the one forms and the driving path). If m = 1, assume that w =

(z0, z1) ∈ W1 and x ∈ Eε,δ
w . Then (3) follows by the same argument as before. To see
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(1), first we have

[
φε,δz0 , φ

ε,δ
z1

]
0,1

(x) =

ˆ 1

0

[
φε,δz0
]

0,t
(x)φε,δz1 (dxt)

=

ˆ 1

τε,δ1

[
φε,δz0
]

0,t
(x)φε,δz1 (dxt),

since φε,δz1 is supported in Hε,δ
z1
. Moreover, if τ ε,δ1 6 t 6 1, then

[
φε,δz0
]

0,t
(x) =

[
φε,δz0
]

0,τε,δ1
(x),

since φε,δz0 is supported in Hε,δ
z0
. Therefore,

[
φε,δz0 , φ

ε,δ
z1

]
0,1

(x) =

(ˆ τε,δ1

0

φε,δz0 (dxt)

)(ˆ 1

τε,δ1

φε,δz1 (dxt)

)

and (1) follows. If w′ = (z0, z
′
1, · · · , z′n) ∈ Wn with n > 1, there are two case. The

first case is that there is some 0 < k 6 n such that z′k is different from z0 and z1. In
this case (2) follows by the same argument as before. The second case is

w′ = (z0, z1, z0, z1, · · · , z′n),

where n > 1 and z′n is either z0 or z1. If z′n = z0, then

[
φε,δz0 , · · · , φ

ε,δ
z′n

]
0,1

(x) =

ˆ τε,δ1

0

[
φε,δz0 , · · · , φ

ε,δ
z′n−1=z1

]
0,t

(x)φz0(dxt).

But during
[
0, τ ε,δ1

]
the path x never visits the interior of Hε,δ

z1
, so the integral on

the R.H.S. is zero and hence the extended signature corresponding to w′ is zero. If
z′n = z1, [

φε,δz0 , · · · , φ
ε,δ
z′n

]
0,1

(x) =

ˆ 1

τε,δ1

[
φε,δz0 , · · · , φ

ε,δ
z′n−1=z0

]
0,t

(x)φε,δz1 (dxt).
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For τ ε,δ1 6 t 6 1, we have[
φε,δz0 , · · · , φ

ε,δ
z′n−1=z0

]
0,t

(x)

=
[
φε,δz0 , · · · , φ

ε,δ
z′n−1=z0

]
0,τε,δ1

(x) +

ˆ 1

τε,δ1

[
φε,δz0 , · · · , φ

ε,δ
z′n−2=z1

]
0,t

(x)φε,δz0 (dxt)

=
[
φε,δz0 , · · · , φ

ε,δ
z′n−1=z0

]
0,τε,δ1

(x).

But during
[
0, τ ε,δ1

]
the path x does not visit the interior of Hε,δ

z1
and the last term

contains the differential one form φε,δz1 , thus it is zero and
[
φε,δz0 , · · · , φ

ε,δ
z′n

]
0,1

(x) = 0.

Therefore (2) again follows.
Now assume that the claim is true for all non-negative integer less than m, and

we show that it is true for m. Let w = (z0, · · · , zm) ∈ Wm and x ∈ Eε,δ
w .

We first show (1). In fact,

[
φε,δz0 , · · · , φ

ε,δ
zm

]
0,1

(x) =

ˆ τε,δm

0

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x)φε,δzm(dxt)

+

ˆ 1

τε,δm

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x)φε,δzm(dxt)

=

ˆ τε,δm

0

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x)φε,δzm(dxt)

+
[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,τε,δm

(x)

ˆ 1

τε,δm

φε,δzm(dxt),

where the last equality comes from the fact that

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x) =
[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,τε,δm

(x), ∀t ∈
[
τ ε,δm , 1

]
,

since zm−1 6= zm and hence during
[
τ ε,δm , 1

]
the path does not visit the interior ofHε,δ

zm−1
.

Now we want to use the induction hypothesis (1) on the term
[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,τε,δm

(x).
To this end, let x̃ be a path in W such that x̃ = x on

[
0, τ ε,δm

]
and x̃ stays inside the

tunnel on
[
τ ε,δm , 1

]
. It follows that x̃ ∈ Eε,δ

w̃ where w̃ = (z0, · · · , zm−1) ∈ Wm−1, and[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,τε,δm

(x) =
[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,1

(x̃).
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Therefore, by the induction hypothesis (1) and the definition of x̃ we have

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,1

(x̃) = (
m−1∏
i=1

ˆ τε,δi

τε,δi−1

φε,δzi−1
(dx̃t))(

ˆ 1

τε,δm−1

φε,δzm−1
(dx̃t))

= (
m−1∏
i=1

ˆ τε,δi

τε,δi−1

φε,δzi−1
(dxt))(

ˆ τε,δm

τε,δm−1

φε,δzm−1
(dxt)).

Consequently (1) follows once we show that

ˆ τε,δm

0

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x)φε,δzm(dxt) = 0.

But this is an easy consequence of the fact that

ˆ τε,δm

0

[
φε,δz0 , · · · , φ

ε,δ
zm−1

]
0,t

(x)φε,δzm(dxt) =
[
φε,δz0 , · · · , φ

ε,δ
zm

]
0,1

(x̃)

and the induction hypothesis (2).
Now we show (2). Let w′ = (z0, z

′
1, · · · , z′n) ∈ Wn with n > m. As before, the case

when there exists some 0 < k 6 n such that z′k /∈ {z0, · · · , zm} is trivial. Otherwise,
write

[
φε,δz0 , · · · , φ

ε,δ
z′n

]
0,1

(x) =
∑
i

ˆ τε,δi

τε,δi−1

[
φε,δz0 , · · · , φ

ε,δ
z′n−1

]
0,t

(x)φε,δz′n (dxt), (4.4.2)

where the sum is over those i 6 m+ 1 such that zi−1 = z′n. Since z′n−1 6= z′n, for each
such i we have

ˆ τε,δi

τε,δi−1

[
φε,δz0 , · · · , φ

ε,δ
z′n−1

]
0,t

(x)φε,δz′n (dxt)

=
[
φε,δz0 , · · · , φ

ε,δ
z′n−1

]
0,τε,δi−1

(x)

ˆ τε,δi

τε,δi−1

φε,δz′n (dxt).

Define a new path x̃ ∈ W such that x̃ = x on
[
0, τ ε,δi−1

]
and x̃ stays inside the tunnel

on
[
τ ε,δi−1, 1

]
. Then x̃ ∈ Eε,δ

w̃ with w̃ = (z0, · · · , zi−2). Since during
[
τ ε,δi−1, 1

]
the path

x̃ does not visit the interior of Hε,δ
z′n

, we have[
φε,δz0 , · · · , φ

ε,δ
z′n−1

]
0,τε,δi−1

(x) =
[
φε,δz0 , · · · , φ

ε,δ
z′n−1

]
0,1

(x̃).
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Now observe that i− 2 < m 6 n− 1, and so by the induction hypothesis (2) we know
that [

φε,δz0 , · · · , φ
ε,δ
z′n−1

]
0,1

(x̃) = 0.

Therefore, each term in the R.H.S. is zero and (2) follows.
Finally we show (3). Let w′ = (z0, z

′
1, · · · , z′m) ∈ Wm with w′ 6= w. If z′m = zm,

then [
φε,δz0 , · · · , φ

ε,δ
z′m

]
0,1

(x)

=
[
φε,δz0 , · · · , φ

ε,δ
z′m

]
0,τε,δm

(x) +
[
φε,δz0 , · · · , φ

ε,δ
z′m−1

]
0,τε,δm

(x)

ˆ 1

τε,δm

φε,δzm(dxt).

Define x̃ ∈ W by x̃ = x on
[
0, τ ε,δm

]
and staying inside the tunnel on

[
τ ε,δm , 1

]
. It

follows from the induction hypothesis (2) that[
φε,δz0 , · · · , φ

ε,δ
z′m

]
0,τε,δm

(x) =
[
φε,δz0 , · · · , φ

ε,δ
z′m

]
0,1

(x̃) = 0.

Moreover, in this case we know that (z0, · · · , z′m−1) 6= (z0, · · · , zm−1). Therefore, by
induction hypothesis (3) we have[

φε,δz0 , · · · , φ
ε,δ
z′m−1

]
0,τε,δm

(x) =
[
φε,δz0 , · · · , φ

ε,δ
z′m−1

]
0,1

(x̃) = 0.

Consequently (3) follows. For the case z′m 6= zm and there exists some i 6 m+ 1 with
zi−1 = z′m (otherwise it is trivial), we know that i must be strictly less than m − 1.

By writing
[
φε,δz0 , · · · , φ

ε,δ
z′m

]
0,1

(x) as a sum of the form (4.4.2), the result (3) follows

easily from the induction hypothesis (2) by a similar argument.
Now the proof is complete.

Define a map M ε,δ : W → Z+ by sending a path x ∈ W to

sup
{
m > 0 : ∃w = (z0, z1, · · · , zm) ∈ Wm s.t.

[
φε,δz0 , φ

ε,δ
z1
, · · · , φε,δzm

]
0,1

(x) 6= 0
}
.

Note that by Lemma 4.4.1, M ε,δ 6 N ε,δ for P-almost surely. Moreover, we are able
to prove the following recovery result.

Proposition 4.4.1. For each x ∈ W outside a P-null set, there exists a unique word
w = (z0, · · · , zMε,δ(x)) ∈ WMε,δ(x) such that[

φε,δz0 , · · · , φ
ε,δ
z
Mε,δ(x)

]
0,1

(x) 6= 0.

81



UNIQUENESS OF SIGNATURE IN PROBABILISTIC SETTING

This word is exactly given by M ε,δ(x) = N ε,δ(x), and

zi = mε,δ
i (x), i = 0, · · · ,M ε,δ(x).

Proof. Let N ε,δ be the set

∞⋃
m=0

⋃
w=(z0,··· ,zm)∈Wm

m⋃
i=0

⋃
06r1<r261
r1,r2∈Q

({
x ∈ W :

ˆ r2

r1

φε,δzi (dxu) = 0

}⋂
Azi,ε,δr1,r2

)
,

where Azi,ε,δr1,r2
is the set defined in (4.2.1) associated with the cube Hε,δ

zi
and the differ-

ential one form φε,δzi . It follows from Assumption (C) that N ε,δ is a P-null set.
For any x ∈ (N ε,δ)c, let w = (z0, · · · , zm) be the word in Wm with m = N ε,δ and

zi = mε,δ
i , for i = 0, . . . ,m, so x ∈ Eε,δ

w .
By (4.4.1) in Lemma 4.4.1, if

[
φε,δz0 , · · · , φ

ε,δ
zm

]
0,1

(x) = 0, then there exists some

i = 1, · · · ,m+1 such that
´ τε,δi
τε,δi−1

φε,δzi−1
(dxt) = 0. By the definition of τ ε,δk and continuity,

we can find some rational numbers r1 < τ ε,δi−1 and r2 < τ ε,δi (if m = 0 take r1 = 0 and
r2 = 1; otherwise if i = 1, take r1 = 0 and if i = m+ 1, take r2 = 1) such that there
exists some u ∈ (r1, r2) with xu ∈ Hε,δ

zi−1
and

ˆ r2

r1

φε,δzi−1
(dxt) =

ˆ τε,δi

τε,δi−1

φε,δzi−1
(dxt) = 0.

This implies that x ∈ N ε,δ, which is a contradiction. Therefore, we have

[
φε,δz0 , · · · , φ

ε,δ
zm

]
0,1

(x) 6= 0.

By the second and third part of Lemma 4.4.1, we know that M ε,δ(x) = m and
w is the unique word in Wm such that the corresponding extended signature of x is
nonzero.

Together with the result in Section 4.3, proposition 4.4.1 tells us that outside a
P-null set, given the signature of a path x we can recover the sequence of open cubes
Hε,δ
z which x has visited in order.

4.4.2 An Approximation Result

Now we construct a polygonal approximation of a path based on the ordered se-
quence of open cubes visited by the path and the corresponding visit times. With
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Figure 4.4.1: This figure illustrates the corresponding approximation scheme. The
dotted lines represent the degenerate tunnels. According to Assumption (B) on the
process, the probability that a path stays in these tunnels for a positive time period
is zero, a crucial fact used in the proof of Proposition 4.4.2.

probability one, such polygonal approximations converge to the original path un-
der the uniform topology. This result is crucial for the recovery of a path up to
reparametrization from its signature.

Let x ∈ W and define the word w = (z0, · · · , zm) ∈ Wm by m = N ε,δ and
zi = mε,δ

i for i = 0, · · · ,m. Construct a polygonal path xε,δ as follows. If m = 0, let
xε,δt = 0 for t ∈ [0, 1]; otherwise for 1 6 k 6 m, define

xε,δt =
τ ε,δk − t

τ ε,δk − τ
ε,δ
k−1

εzk−1 +
t− τ ε,δk−1

τ ε,δk − τ
ε,δ
k−1

εzk, t ∈
[
τ ε,δk−1, τ

ε,δ
k

]
,

and
xε,δt = εzm, t ∈

[
τ ε,δm , 1

]
.

The approximation scheme is illustrated by Figure 4.4.1.
Now we have the following approximation result.

Proposition 4.4.2. For each n > 1 and εn = 1/n, there exists δn > 0, such that for
P-almost surely,

lim
n→∞

sup
06t61

∣∣∣xεn,δnt − xt
∣∣∣ = 0. (4.4.3)

Proof. For each ε, δ, let
T ε,δ = Rd\

⋃
z∈Zd

Hε,δ
z
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be the set of closed tunnels, and define

Aε,δ =
{
x ∈ W : ∃ [s, t] ⊂ x−1

(
T ε,δ

)
, |xt − xs| > ε

}
.

We first show that for any fixed ε > 0,

⋂
δ>0

Aε,δ ⊂
{
x ∈ W : ∃1 6 i 6 d, k ∈ Z, q ∈ Q

⋂
(0, 1) s.t. xiq =

2k − 1

2
ε

}
. (4.4.4)

Let x ∈
⋂
δ>0A

ε,δ, and δn be a sequence such that δn ↓ 0. Then for each n > 1,
there exists 0 6 sn < tn 6 1 such that [sn, tn] ⊂ x−1

(
T ε,δn

)
and |xtn − xsn| > ε.

By compactness we can find a subsequence (snl , tnl) of (sn, tn) such that (snl , tnl)

converges to some (s, t). The condition
∣∣xtnl − xsnl ∣∣ > ε then implies that s < t.

Therefore, for fixed u, v with s < u < v < t, there exists some N ∈ N such that
[u, v] ⊂

⋂
l>N [snl , tnl ], and hence

[u, v] ⊂
⋂
l>N

x−1
(
T ε,δnl

)
= x−1

(⋃
k∈Z

⋃
16i6d

Ri−1 ×
{

2k − 1

2
ε

}
× Rd−i

)
.

In particular, this implies (4.4.4) and by Assumption (B) we have P
(⋂

δ>0A
ε,δ
)

= 0.
Now we show that for each ε, δ,{

x ∈ W : sup
06u61

∣∣xε,δu − xu∣∣ > 11
√
dε

}
⊂ Aε,δ. (4.4.5)

To see this, first notice that if x belongs to the left hand side of (4.4.5), then either
(1) there exists some u ∈

[
τ ε,δk−1, τ

ε,δ
k

]
for some 1 6 k 6 N ε,δ, such that

∣∣xε,δu − xu∣∣ >
11
√
dε; or
(2) there exists some u ∈

[
τ ε,δ
Nε,δ , 1

]
, such that

∣∣∣xu − εmε,δ
Nε,δ

∣∣∣ > 11
√
dε.

In the first case, we know that x does not visit any cube other than Hε,δ

mε,δ
k−1

during

(τ ε,δk−1, τ
ε,δ
k ). If the distance between the cubes Hε,δ

mε,δ
k

and Hε,δ

mε,δ
k−1

is at least 3
√
dε, by

continuity there exist τ ε,δk−1 < s < t < τ ε,δk , such that∣∣∣xs − xτε,δk−1

∣∣∣ =
√
dε,

∣∣∣xt − xτε,δk−1

∣∣∣ = 2
√
dε,

and [s, t] ⊂ x−1
(
T ε,δ

)
. Moreover, by the triangle inequality we have |xt − xs| >
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ε. Therefore, x ∈ Aε,δ. If the distance between Hε,δ

mε,δ
k

and Hε,δ

mε,δ
k−1

is strictly less

than 3
√
dε, we know that

∣∣∣xε,δu − εmε,δ
k−1

∣∣∣ 6 4
√
dε for all u ∈

(
τ ε,δk−1, τ

ε,δ
k

)
. Since

sup06u61

∣∣xε,δu − xu∣∣ > 11
√
dε, there exists u ∈

(
τ ε,δk−1, τ

ε,δ
k

)
such that

∣∣∣xu − εmε,δ
k−1

∣∣∣ , ∣∣∣xu − εmε,δ
k

∣∣∣ > 7
√
dε.

It follows again from continuity that there exist τ ε,δk−1 < s < t < τ ε,δk such that∣∣∣xs − εmε,δ
k−1

∣∣∣ = 5
√
dε,

∣∣∣xt − εmε,δ
k−1

∣∣∣ = 6
√
dε,

and [s, t] ⊂ x−1
(
T ε,δ

)
. Therefore, |xs − xt| > ε and we have x ∈ Aε,δ.

In the second case, there exist τ ε,δ
Nε,δ < s < t 6 1 such that∣∣∣xs − εmε,δ

Nε,δ

∣∣∣ =
√
dε,

∣∣∣xt − εmε,δ
Nε,δ

∣∣∣ = 2
√
dε,

and [s, t] ⊂ x−1(T ε,δ). Again we have |xt − xs| > ε and hence x ∈ Aε,δ.
Now for εn = 1/n, if we choose δn small enough such that P

(
Aεn,δn

)
6 ε2

n, we
have

∞∑
n=1

P
({

x ∈ W : sup
06u61

|xεn,δnu − xu| > 11
√
dεn

})
6

∞∑
n=1

P
(
Aεn,δ(εn)

)
< ∞,

It follows from the Borel-Cantelli lemma that

P
(

lim sup
n→∞

{
x ∈ W : sup

06u61
|xεn,δnu − xu| > 11

√
dεn

})
= 0,

and hence the uniform convergence (4.4.3) holds P-almost surely.

Remark 4.4.2. From the previous proof, it is not hard to see that the result of Propo-
sition 4.4.2 holds for all continuous stochastic processes starting at the origin whose
law satisfies Assumption (B).

From now on, we always assume that εn = 1/n, and take δn as in the previous
proof.

4.4.3 A Variant of the Fréchet Distance on Path Space

Now we are coming to the last step of the proof of Theorem 4.2.1.
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Under Assumption (A), (B), (C), what we have obtained so far is that there
exists some P-null set N , such that for any path x ∈ N c, the signature S(x)0,1 is
well-defined, and for each n > 1, we can recover the ordered sequence of open cubes
Hεn,δn
z visited by x from its signature. Moreover, the polygonal approximation xεn,δn

constructed before converges to x uniformly.
By possibly enlarging the P-null set N (still a P-null set), we show that for any

two paths x, x′ ∈ N c, if S(x)0,1 = S(x′)0,1, then x and x′ differ by a reparametrization
σ ∈ R in the sense of Definition 1.2.9.

Now we introduce an equivalence relation “∼” on W by

x ∼ x′ ⇐⇒ (xt)06t61 =
(
x′σ(t)

)
06t61

, for some σ ∈ R.

Let W/∼ be the quotient space consisting of ∼-equivalence classes. For any [x], [x′] ∈
W/∼, define

d ([x], [x′]) = inf
σ∈R

sup
t∈[0,1]

∣∣xt − x′σ(t)

∣∣ . (4.4.6)

If we only assume that σ is non-decreasing, the function d(·, ·) is usually know as
the Fréchet distance. It was originally introduced by Fréchet to study the shape of
geometric spaces. Here we emphasize that σ is strictly increasing.

It is easy to see that d(·, ·) does not depend on the choice of representatives
in the corresponding equivalence classes, and d(·, ·) is non-negative and symmetric.
Moreover, d(·, ·) satisfies the triangle inequality. In fact, for any x, x′, x′′ ∈ W and
σ, θ ∈ R, we have

sup
t∈[0,1]

∣∣xt − x′′σ(t)

∣∣ 6 sup
t∈[0,1]

∣∣xt − x′θ(t)∣∣+ sup
t∈[0,1]

∣∣x′θ(t) − x′′σ(t)

∣∣ .
It follows that

d ([x], [x′′]) = inf
σ∈R

sup
t∈[0,1]

∣∣xt − x′′σ(t)

∣∣
6 sup

t∈[0,1]

∣∣xt − x′θ(t)∣∣+ inf
σ∈R

sup
t∈[0,1]

∣∣x′θ(t) − x′′σ(t)

∣∣
= sup

t∈[0,1]

∣∣xt − x′θ(t)∣∣+ d ([x′], [x′′]) .

By taking infimum over θ ∈ R, we obtain the triangle inequality.
It should be pointed out that unlike the Fréchet distance, d(·, ·) is not a metric on
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W/∼. For example, consider the one dimensional case. Let xt = t, t ∈ [0, 1], and

x′t =

2t, t ∈ [0, 1
2
];

1, t ∈ [1
2
, 1].

Then it is easy to see that d ([x], [x′]) = 0, but obviously x′ is not a reparametrization
of x in the sense of Definition 1.2.9. However, we are going to show that, if we
exclude paths with certain degeneracy, then on the corresponding quotient space
d(·, ·) is indeed a metric.

Let D be the set of paths x ∈ W such that there exist some 0 6 s < t 6 1 with

xu = xs, ∀u ∈ [s, t].

We first make an important remark that under Assumption (C), D is a P-null set.
To see this, let {Hn}n>1 be a covering of Rd consisting of open cubes, and for each n
let φn be the differential one form associated with Hn according to Assumption (C).

It follows that

D ⊂
⋃

r1,r2∈Q
⋂

[0,1]

⋃
n>1

({
x ∈ W :

ˆ r2

r1

φn(dxu) = 0

}⋂
AHnr1,r2

}
.

Therefore, by Assumption (C) we know that P(D) = 0.

Now we have the following result.

Proposition 4.4.3. Define the equivalence relation “∼” on W0 = Dc ⊂ W as before,
and let W0/∼ be the corresponding quotient space. Then d(·, ·), defined in the same
way as in (4.4.6), is a metric on W0/∼.

Proof. It suffices to show that, for any x, x′ ∈ W0, if

inf
σ∈R

sup
t∈[0,1]

∣∣xt − x′σ(t)

∣∣ = 0, (4.4.7)

then
xt = x′σ(t), ∀t ∈ [0, 1], (4.4.8)

for some σ ∈ R.
In fact, by (4.4.7), for any n > 1, there exists σn ∈ R, such that

∣∣xt − x′σn(t)

∣∣ 6 1

n
, ∀t ∈ [0, 1]. (4.4.9)
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It follows from compactness, denseness, and a standard diagonal selection argument
that we can find a subsequence {σnk} such that for any r ∈ Q

⋂
[0, 1],

lim
k→∞

σnk(r) =: σ̃(r)

exists.
Now define σ : [0, 1]→ [0, 1] by

σ(t) =

inf {σ̃(r) : r > t, r ∈ Q
⋂

[0, 1]} , 0 6 t < 1;

1, t = 1.

We want to show that σ ∈ R, and it satisfies (4.4.8).
(1) It is easy to see that σ is increasing. Let 0 6 t < 1. For any ε > 0, there exists

some r > t, r ∈ Q
⋂

[0, 1], such that

σ(t) 6 σ̃(r) < σ(t) + ε.

Therefore, for any t′ ∈ (t, r), if we take some r′ ∈ Q
⋂

[0, 1] with t′ < r′ < r, then

σ(t) 6 σ(t′) 6 σ̃(r′) 6 σ̃(r) < σ(t) + ε.

It follows that σ is right continuous.
(2) σ is also left continuous.
In fact, assume on the contrary that for some 0 < t 6 1, σ(t−) 6= σ(t). Fix

any σ(t−) < s < σ(t), and define for k > 1, tnk = σ−1
nk

(s). It follows that for any
r > t, r ∈ Q

⋂
[0, 1],

s < σ(t) 6 σ̃(r).

Since limk→∞ σnk(r) = σ̃(r), we know that when k is large enough, s < σnk(r), which
is equivalent to tnk < r for k large enough. Therefore, we have lim supk→∞ tnk 6 r.

But this is true for all r > t, r ∈ Q
⋂

[0, 1], which implies that lim supk→∞ tnk 6 t. On
the other hand, for any r < t, r ∈ Q

⋂
[0, 1], we have

σ̃(r) 6 σ(r) 6 σ(t−) < s,

A similar argument yields that lim infk→∞ tnk > t. Therefore, limk→∞ tnk exists and
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is equal to t. Now from (4.4.9) we know that

∣∣xtnk − x′s∣∣ 6 1

nk
, ∀k > 1,

and hence xt = x′s. But this is true for all σ(t−) < s < σ(t), which contradicts the
fact that x′ ∈ W0. Therefore, σ is left continuous. A similar argument also shows that
σ(0) = 0.

(3) For any r ∈ Q
⋂

[0, 1], σ(r) = σ̃(r).

In fact, it is obvious that σ(r) > σ̃(r). On the other hand, for any t < r we have
σ(t) 6 σ̃(r), and by the left continuity of σ we have σ(r) 6 σ̃(r).

(4) σ is strictly increasing.
In fact, if for some 0 6 s < t 6 1, σ(s) = σ(t), then σ remains constant over [s, t].

In particular, for any r ∈ Q
⋂

[s, t], from (4.4.9) and the previous step we have

xr = x′σ̃(r) = x′σ(r) = x′σ(s),

which implies that x is constant over [s, t], contradicting the fact that x ∈ W0.

Now it is obvious that σ ∈ R, and (4.4.8) follows.

From now on, we include D in the P-null set N .
Now we are in a position to complete the proof of Theorem 4.2.1.
Assume that x, x′ ∈ N c and S(x)0,1 = S(x′)0,1. For n > 1, let

(
φεn,δnz0

, · · · , φεn,δnzm

)
(
(
φεn,δnz0

, · · · , φεn,δnz′
m′

)
, respectively) be the unique maximal sequence of differential

one forms along which the extended signature of x (x′, respectively) is nonzero. It
follows from Theorem 4.3.1 that m = m′ and zi = z′i for i = 0, . . . ,m. Moreover, by
Proposition 4.4.1 we know that

N εn,δn(x) = N εn,δn(x′) = m,

and
mεn,δn

i (x) = mεn,δn
i (x′) = zi, ∀i = 0, · · · ,m.

It follows that in the quotient space W/∼,
[
xεn,δn

]
=
[
(x′)εn,δn

]
, where xεn,δn and

(x′)εn,δn are the polygonal approximation of x and x′ respectively. On the other
hand, by Proposition 4.4.2 we know that

xεn,δn → x, (x′)εn,δn → x′,
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under the uniform topology as n → ∞. Therefore, by the triangle inequality of
the distance function d(·, ·) we have d([x], [x′]) = 0. Since D ⊂ N , it follows from
Proposition 4.4.3 that there exists σ ∈ R, such that (4.4.8) holds.

Now the proof of Theorem 4.2.1 is complete.

4.5 A Fundamental Example: Gaussian Processes

As we have remarked before, Assumption (A) and (B) are natural for a large class
of stochastic processes. However, Assumption (C) is in general difficult to verify. In
this section, as a fundamental example of Theorem 4.2.1, we show that Assumption
(A), (B), (C) hold for a class of Gaussian processes including fractional Brownian
motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process and the
Brownian bridge. The main idea of verifying Assumption (C) for Gaussian processes is
to apply local regularity results for Gaussian functionals from the Malliavin calculus,
based on pathwise integration by parts which is possible due to the regularity of
sample paths and Cameron-Martin paths.

The class of Gaussian processes we study in this section is specified in the following.
Let P be the law of a centered, non-degenerate, continuous Gaussian process over

[0, 1] starting at the origin with i.i.d components. We assume that P satisfies the
following conditions: there exists H ∈

(
1
4
, 1
)
such that

(G1) for all ρ ∈
(

1
2H
∨ 1, 2

]
, the ρ-variation of the covariance function (see [26],

Definition 5.50) of each component of X is controlled by a 2-dimensional Hölder-
dominated control (see [26], Definition 5.51);

(G2) there exists δ > 0 and cδ > 0, such that for all 0 6 s < t 6 1 with |t− s| 6 δ,
we have

E
[
(Xt −Xs)

2
]
> cδ(t− s)2H ;

(G3) the Cameron-Martin space H associated with P satisfies the property that

C1+H−
0 ([0, 1];Rd) ⊂ H ⊂ Cq−var

0 ([0, 1];Rd), ∀q >
(
H +

1

2

)−1

,

where C1+H−

0 ([0, 1];Rd) is the space of differentiable paths in W with Hölder contin-
uous derivatives of any order smaller than H, and Cq−var

0 ([0, 1];Rd) is the space of
paths in W with finite total q-variation.

Now we prove our second main result, namely Theorem 4.2.2. Note that in this
case the verification of Assumption (A) is a standard result for Gaussian rough paths
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according to (G1) (see [26], Theorem 15.33), and Assumption (B) is trivial. The main
difficulty is the verification of Assumption (C).

For any open cube Hx0,η with center x0 = (x1
0, · · · , xd0) ∈ Rd and edges of length

2η, we construct a differential one form φ supported on the closure of Hx0,η, such that
for any 0 6 s < t 6 1,

P
({

x ∈ W :

ˆ t

s

φ(dxu) = 0

}⋂
A
Hx0,η
s,t

)
= 0, (4.5.1)

where AHx0,ηs,t is the set defined by (4.2.1). In other words, Assumption (C) holds.
Let h(t) ∈ C∞c (R1) be a function such thath(t) > 0, t ∈ (−1, 1);

h(t) = 0, t /∈ (−1, 1),

and h′(t) is everywhere nonzero in (−1, 1) except at t = 0. For example, the standard
mollifier function

h(t) =

e
−1

1−|t|2 , t ∈ (−1, 1);

0, t /∈ (−1, 1),

satisfies the properties.
Define a differential one form φ(x) =

∑d
i=1 φi(x)dxi on Rd by

φ1(x) = h

(
x1 − x1

0

η

)
· · ·h

(
xd − xd0

η

)
exp

(
h2

(
x2 − x2

0

η

))
, x ∈ Rd,

φi = 0, for all i = 2, · · · , d. (4.5.2)

It is easy to see that the support of φ is exactly the boundary of the Hx0,η. Moreover,
we have

∂φ1

∂x2
(x) =

1

η

(∏
i 6=2

h

(
xi − xi0
η

))
h′
(
x2 − x2

0

η

)
· exp

(
h2

(
x2 − x2

0

η

))(
1 + 2h2

(
x2 − x2

0

η

))
,

which is everywhere nonzero in Hx0,η except on the slice {x ∈ Hx0,η : x2 = x2
0}.

To verify Assumption (C) for such a differential one form φ, we need the following
Lemma.

Lemma 4.5.1. Fix 0 6 s < t 6 1. Let f be a smooth function on Rd with com-
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pact support. Then there exists a P-null set N1 such that for any x ∈ (N1)c , if´ v
u
f(xr)dx

1
r = 0 for all u, v with [u, v] ⊂ [s, t], then f(xu) = 0 for all u ∈ [s, t].

Proof. Fix 1
2H

< ρ < 1
H
. According to (G1) and [26], Theorem 15.33, outside some

P-null set N ′0, a sample path x admits a canonical lifting to a geometric 2ρ-rough
path X as well as a Gb2ρc(Rd)-valued 1

2ρ
-Hölder continuous path (GN(Rd) is the free

nilpotent group of step N over Rd, see [26], Theorem 7. 30). Since the path integral´ v
u
f(xr)dx

1
r can be regarded as the projection of the solution to the rough differential

equation 

dx1
r = dx1

r,

· · · ,

dxdr = dxdr ,

dxd+1
r = f(x1

r, · · · , xdr)dx1
r

over [u, v] with initial condition (x1
u, · · · , xdu, xd+1

u ) = (x1
u, · · · , xdu, 0), according to [26],

Corollary 10.15, we know that pathwisely∣∣∣∣∣
ˆ v

u

f(xr)dx
1
r − f(xu)X

1;1
u,v −

d∑
i=1

∂f

∂xi
(xu)X

2;i,1
u,v −

d∑
i,j=1

∂2f

∂xi∂xj
(xu)X

3;i,j,1
u,v

∣∣∣∣∣
6 C1

∥∥∥∥X ∥∥∥∥2ρθ
1
2ρ
−Höl;[u,v]

|u− v|θ,

where θ > 1 and C1 is some positive constant depending only on ρ, θ and the uniform
bounds on the derivatives of f . If

´ v
u
f(xr)dx

1
r = 0, then we have

∣∣f(xu)
(
x1
v − x1

u

)∣∣
6 C1

∥∥∥∥X ∥∥∥∥2ρθ
1
2ρ
−Höl;[u,v]

|u− v|θ + ‖Df‖∞ |π2(Xu,v)|+ ‖D2f‖∞ |π3(Xu,v)| (4.5.3)

On the other hand, according to (G1) and [26], Proposition 15.19, Corollary 15.21
and Theorem 15.33, we know that

E |πj (Xu,v)|2 6 C2 |u− v|j/ρ (4.5.4)

for each level j, where C2 is some positive constant depending only on ρ. Now we
choose α, γ such that H < α < γ < 1

ρ
. According to (G2) and (4.5.4), it follows from
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the Borel-Cantelli lemma that

N (u) :=

{
x ∈ W :

∣∣∣x1
u+ 1

2n
− x1

u

∣∣∣ 6 1

2αn
, for infinitely many n

}
⋃{

x ∈ W :
∣∣∣π2

(
Xu,u+ 1

2n

)∣∣∣ > 1

2γn
, for infinitely many n

}
⋃{

x ∈ W :
∣∣∣π3

(
Xu,u+ 1

2n

)∣∣∣ > 1

2γn
, for infinitely many n

}
is a P-null set.

Let x ∈ (N ′0
⋃
N (u))c. Then there exists some N > 1, such that∣∣∣x1

u+ 1
2n
− x1

u

∣∣∣ > 1

2αn
,
∣∣∣π2

(
Xu,u+ 1

2n

)∣∣∣ < 1

2γn
,
∣∣∣π3

(
Xu,u+ 1

2nk

)∣∣∣ < 1

2γn
,

for all n > N . Therefore, by (4.5.3) with v = u+ 1/2n, for any n > N we have

|f(xu)|

6
1

2n(θ−α)
C1

∥∥∥∥X ∥∥∥∥2ρθ
1
2ρ
−Höl;[0,1]

+
1

2n(γ−α)

(
‖Df‖∞ + ‖D2f‖∞

)
.

By taking n→∞, we have f (xu) = 0.
Now the result follows easily if we take

N1 = N ′0
⋃ ⋃

u∈Q
⋂

[s,t]

N (u).

Remark 4.5.1. By the denseness argument, it is easy to see that the P-null set N1 can
be taken uniformly in s, t.

Now we complete the proof of Theorem 4.2.2.
In what follows, for simplicity we use Einstein’s summation convention: repeated

indices of superscript and subscript are automatically summed over from 1 to d.
Let F (x) =

´ t
s
φ(dxu) =

´ t
s
φi(xu)dx

i
u. It follows that F is smooth in the sense of

Malliavin (see for example [7], and Y. Inahama [38]). Since F is a random variable
on the abstract Wiener space (W,H,P), it suffices to show that outside a P-null
set, for any x ∈ AHx0,ηs,t the Malliavin derivative DF (x) is a nonzero element in the
Cameron-Martin space H. It then follows from standard local regularity results from
the Malliavin calculus (see for example the monograph by D. Nualart [51], Theorem
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2.1.1 and the following remark on p. 93) that the measure

λ(B) = P
(
{F ∈ B}

⋂
A
Hx0,η
s,t

)
, B ∈ B

(
R1
)
,

is absolutely continuous with respect to the Lebesgue measure in R1. In particular,
(4.5.1) holds.

LetN1 be the null set in Lemma 4.5.1. We know that P-almost surely sample paths
can be lifted as geometric p-rough paths for 1 < p < 4 with Hp > 1, and according
to (G3) we have H ⊂ Cq−var

0 ([0, 1];Rd) for any q > (H + 1/2)−1. Obviously we can
choose such p, q so that 1/p + 1/q > 1. Therefore, in the sense of Young’s integrals
we know that for any x ∈ AHx0,ηs,t

⋂
N c

1 and h ∈ H,

〈DF (x), h〉H =
d

dε
|ε=0F (x+ εh)

=
d

dε
|ε=0

ˆ t

s

φi(xu + εhu)d(xiu + εhiu)

=

ˆ t

s

∂φi
∂xj

(xu)h
j
udx

i
u +

ˆ t

s

φi(xu)dh
i
u,

where the interchange of differentiation and integration can be verified easily by the
geometric rough path nature of x and the continuity of the integration map.

Integration by parts shows that

ˆ t

s

φi(xu)dh
i
u = φi(xt)h

i
t − φi(xs)his −

ˆ t

s

hiu
∂φi
∂xj

(xu)dx
j
u.

Therefore,

〈DF (x), h〉H =
(
φi(xt)h

i
t − φi(xs)his

)
+

ˆ t

s

(
∂φi
∂xj
− ∂φj
∂xi

)
(xu)h

j
udx

i
u.

Let
Yu,j =

ˆ u

s

(
∂φi
∂xj
− ∂φj
∂xi

)
(xv)dx

i
v, u ∈ [0, 1], j = 1, · · · , d. (4.5.5)

It follows from integration by parts again that

〈DF (x), h〉H = (φi(xt)h
i
t − φi(xs)his) +

ˆ t

s

hiudYu,i

= (φi(xt) + Yt,i)h
i
t − (φi(xs) + Ys,i)h

i
s −
ˆ t

s

Yu,idh
i
u.
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Now we define h = (h1, · · · , hd) by

hiu =

ˆ u

s

(φi(xt) + Yt,i − Yv,i)dv, u ∈ [0, 1], i = 1, · · · , d, (4.5.6)

then his = 0 for i = 1, . . . , d. Technically if s > 0 we modify hi smoothly on
[
0, s

2

)
so that hi0 = 0 for all i. Note that the modification does not change the value of
〈DF (x), h〉H as it depends only on the value of h on [s, t]. By the regularity of sample
paths, it is easy to see that h ∈ C1+H−

0 ([0, 1];Rd), which is also in H according to
(G3). Therefore,

〈DF (x), h〉H =
d∑
i=1

ˆ t

s

(φi(xt) + Yt,i − Yu,i)2du.

If DF (x) = 0, then 〈DF (x), h〉H = 0, which implies that for all i = 1, · · · , d, and
u ∈ [s, t], φi(xt) + Yt,i− Yu,i = 0. It follows from taking i = 2 and our construction of
φ that ˆ v

u

∂φ1

∂x2
(xr)dx

1
r = 0, ∀[u, v] ⊂ [s, t].

Therefore, by Lemma 4.5.1 we have for all u ∈ [s, t], ∂φ1
∂x2

(xu) = 0.
On the other hand, since x ∈ A

Hx0,η
s,t , there exists some u ∈ (s, t) such that

xu ∈ Hx0,η. From the construction of φ we have already seen that ∂φ1
∂x2

is everywhere
nonzero in Hx0,η except on the “slice”

Lx0,η =
{
x ∈ Hx0,η : x2 = x2

0

}
.

Therefore, by continuity there exists some open interval (u, v) ⊂ [s, t], such that
xr ∈ Lx0,η for all r ∈ (u, v). But this implies that there exists some r ∈ Q

⋂
(s, t)

such that x2
r = x2

0. Since for any r ∈ (0, 1), the law of xr is absolutely continuous with
respect to the Lebesgue measure, we know that

N2 :=
⋃

r∈Q
⋂

(0,1)

{
x2
r = x2

0

}
is a P-null set. By further removing N2, we arrive at a contradiction. Therefore, for
any x ∈ AHs,t

⋂
N c

1

⋂
N c

2 , DF (x) is a nonzero element in H.
Now the proof of Theorem 4.2.2 is complete.
In the rest of this chapter we consider three specific examples of Gaussian processes

which all verify conditions (G1), (G2) and (G3): fractional Brownian motion with
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Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process and the Brownian bridge.

4.5.1 Fractional Brownian Motion with Hurst Parameter H >

1/4

Let X be the d-dimensional fractional Brownian motion with Hurst parameter H
for H > 1/4. In other words, X is a Gaussian process starting at the origin with i.i.d.
components, and the covariance function of X i is given by

RH(s, t) =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, 1].

In this case the parameter H in the conditions (G1), (G2) and (G3) is just the
Hurst parameter. The verification of Condition (G1) is the content of [26], Proposition
15.5 if H ∈ (1/4, 1/2] (the case when H > 1/2 is trivial in the rough path setting),
and (G2) follows from direct calculation. The verification of (G3) is contained in the
following two lemmas.

Let HH be the Cameron-Martin space associated with X.

Lemma 4.5.2. HH contains Cα
0 ([0, 1];Rd) for all α > H + 1/2.

Proof. We assume H 6= 1/2, as the result is well-known for Brownian motion. Ac-
cording to L. Decreusefond and A. Ustunel [18], Theorem 2.1, we have

HH = IH+ 1
2

0+

(
L2 [0, 1]

)
,

where
Iα0+ (f) (x) =

ˆ x

0

f (t) (x− t)α−1 dt

is the fractional integral operator.
If 0 < H < 1/2, from fractional calculus (see the monograph by S. Samko, A.

Kilbas and O. Marichev [59], p. 233) we know that IH+ 1
2

0+ (L2 [0, 1]) contains all α-
Hölder continuous functions whenever α > H + 1/2. If H > 1/2, by the fundamental
theorem of calculus we know that h ∈ IH+ 1

2
0+ (L2 [0, 1]) if and only if h is differentiable

with derivative in IH−
1
2

0+ (L2 [0, 1]). Therefore, in both cases we have HH containing
Cα

0

(
[0, 1] ;Rd

)
for all α > H + 1/2.

Lemma 4.5.3. (1) (see [18], Theorem 2.1, Theorem 3.3 and [59], Theorem 3.6) If
H > 1/2, we have

HH ⊂ CH
0

(
[0, 1];Rd

)
. (4.5.7)
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(2) (see [24], Corollary 1) If 0 < H 6 1/2, then for any q > (H + 1/2)−1 , we
have

HH ⊂ Cq−var
0

(
[0, 1];Rd

)
.

Remark 4.5.2. From the proof of Theorem 4.2.2 we can see that the embedding
HH ⊂ Cq−var

0 ([0, 1];Rd) is only used for making sense of path integrals in the sense of
L.C. Young. Therefore, when H > 1/2, (4.5.7) is obviously sufficient for us to carry
out all the calculations before as we are also in the setting of Young’s integrals.

4.5.2 The Ornstein-Uhlenbeck Process

Let

Xt =

ˆ t

0

e−(t−s)dBs, t ∈ [0, 1],

be the standard Ornstein-Uhlenbeck process in Rd starting at the origin, where B is
the standard d-dimensional Brownian motion.

We take H = 1/2. The verification of Condition (G1) is contained in [26], p. 405
and (G2) follows by direct calculation. (G3) is a consequence of the fact that the
Cameron-Martin space HOU associated with X is the same as the one for Brown-
ian motion with a different but equivalent inner product (see the monograph by D.
Stroock [61], Theorem 8.5.4).

Remark 4.5.3. The uniqueness of signature for the Ornstein-Uhlenbeck process is the
direct consequence of the general result in [28], as it is the solution to a (hypo)elliptic
stochastic differential equation (which we write as SDE hereafter).

4.5.3 The Brownian Bridge

Finally we consider the d-dimensional Brownian bridge

Xt = Bt − tB1, t ∈ [0, 1].

In this case we also take H = 1/2. Similar to the case of the Ornstein-Uhlenbeck
process, (G1) and (G2) follows quite easily by direct calculations. However, (G3) is
not satisfied as the Cameron-Martin space HBridge associated with X is the one for
Brownian motion with vanishing terminal condition: h1 = 0 (see [61], pp. 334–335).
Of course the embedding HBridge ⊂ Cq−var([0, 1];Rd) still holds for any q > 1.

The main problem in the verification of Assumption (C) is that in the explicit
construction of our Cameron-Martin path, the h given by (4.5.6) may not satisfy
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h1 = 0. However, it is just a technical issue to overcome such a difficulty.
Recall that we want to show DF (x) 6= 0 for x ∈ A

Hx0,η
s,t , where F =

´ t
s
φ(dxu)

and φ is the differential one form given by (4.5.2). From our proof before it is easy
to see that everything follows in the same way if t < 1, since we can always modify
hi on ((t+ 1)/2, 1] so that hi1 = 0 and the value of 〈DF (x), h〉 does not change as it
depends only on the value of h on [s, t]. Therefore, we only need to consider the case
when t = 1.

On the path space W let x ∈ AH
ε,δ
z

s,t and take ε > 0 such that x|[1−ε,1] ⊂ Hε,δ
0 (this

is possible since x1 = 0). Define φ by (4.5.2) for the open cube Hε,δ
z , and define Yu,j

by (4.5.5). Now we need to consider two cases.
(1) If z 6= 0, then

φi(x1) + Y1,i − Yv,i = 0, ∀v ∈ [1− ε, 1],

since φ is supported on the closure of Hε,δ
z . Therefore, for any h ∈ H,

〈DF (x), h〉 =

ˆ 1−ε

s

(φi(x1) + Y1,i − Yv,i) dhiu.

To apply our previous argument, we just define h by (4.5.6) but modified on (1− ε/2, 1]

so that hi1 = 0, and the resulting h is an element in HBridge. By making use of Remark
4.5.1, the proof follows easily in the same way.

(2) If z = 0, based on our argument before, for any ψi ∈ C1([1 − ε, 1]) (i =

1, · · · , d) with

ψi1−ε = Ci :=

ˆ 1−ε

s

(φi(x1) + Y1,i − Yv,i) dv

and ψi1 = 0, the function

hiu =


´ u
s

(φi(x1) + Y1,i − Yv,i) dv, u ∈ [0, 1− ε];

ψiu, u ∈ [1− ε, 1],
(4.5.8)

defines an element h ∈ HBridge. It follows that

〈DF (x), h〉 =
d∑
i=1

ˆ 1−ε

s

(φi(x1) + Y1,i − Yv,i)2 dv

+
d∑
i=1

ˆ 1

1−ε
(φi(x1) + Y1,i − Yv,i) dψiv.
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Now we take ψi of the form

ψiu = Ci −
ˆ u

1−ε
ξivdv, u ∈ [1− ε, 1],

where ξi ∈ C([1− ε, 1]) with
´ 1

1−ε ξ
i
vdv = Ci. If 〈DF (x), h〉 = 0, then we have

d∑
i=1

ˆ 1−ε

s

(φi(x1) + Y1,i − Yv,i)2 dv −
d∑
i=1

ˆ 1

1−ε
(φi(x1) + Y1,i − Yv,i) ξivdv = 0.

It follows that for any ζ i ∈ C([1− ε, 1]) with
´ 1

1−ε ζ
i
vdv = 0, we have

d∑
i=1

ˆ 1

1−ε
(φi(x1) + Y1,i − Yv,i) ζ ivdv = 0,

which by an elementary argument implies that

φi(x1) + Y1,i − Yv,i = const., ∀v ∈ [1− ε, 1] and 1 6 i 6 d.

It follows from taking i = 2 that
ˆ v

u

∂φ1

∂x2
(xr)dx

1
r = 0, ∀[u, v] ⊂ [1− ε, 1].

Now the proof follows again by making use of Remark 4.5.1 and the fact that x|[1−ε,1] ⊂
Hε,δ

0 .

Remark 4.5.4. By the same argument with a technical modification of ψ so that the
h defined by (4.5.8) is regular enough to lie in the Cameron-Martin space, the result
holds for general Gaussian bridge processes

Xt = Gt − tG1, t ∈ [0, 1],

as long as the underlying Gaussian process G itself satisfies conditions (G1), (G2)
and (G3).
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Chapter 5

G-Brownian Motion as Rough Paths
and Differential Equations Driven by
G-Brownian Motion

5.1 Introduction

The classical Feynman-Kac formula (see for example M. Kac [39] or the mono-
graph by I.A. Karatzas and S.E. Shreve [40]) provides us with a way to represent the
solution to a linear parabolic partial differential equation (PDE hereafter) in terms
of the conditional expectation of a certain functional of a diffusion process. However,
it works only for the linear case, mainly due to the linear nature of diffusion pro-
cesses. To understand nonlinear parabolic PDEs from a probabilistic point of view,
S. Peng and E. Pardoux initiated the study of backward stochastic differential equa-
tions (BSDEs hereafter) in a series of important works [52], [53], [54]. In particular,
they showed that the solutions to a certain type of quasilinear parabolic PDE can
be expressed in terms of the solutions to BSDEs. This result suggests that BSDEs
reveal a certain type of nonlinear dynamics, and this was made explicit by S. Peng
[55]. More precisely, S. Peng introduced a notion of nonlinear expectation called the
g-expectation in terms of the solutions to BSDEs which is filtration consistent. How-
ever, it was developed under the framework of the classical Itô calculus and did not
investigate the fully nonlinear situation.

Motivated by the study of fully nonlinear dynamics, S. Peng [56] introduced the
notion of G-expectation in an intrinsic way which does not rely on any particular
probability space. It reveals the probability distribution uncertainty in a fundamen-
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tal way which is useful in many practical situations. The underlying mechanism
corresponding to this type of uncertainty is a fully nonlinear parabolic PDE. In [56],
[57], he also introduced the concept of G-Brownian motion which is generated by the
so-called nonlinear G-heat equation, and related stochastic calculus such as G-Itô’s
integrals, G-Itô’s formula, SDEs driven by G-Brownian motion. One of the major
contributions of this theory is the corresponding nonlinear Feynman-Kac formula
proved by S. Peng [58], which gives us a way to represent the solution to a fully
nonlinear parabolic PDE in terms of the solution to a forward-backward SDE under
the framework of G-expectation.

The case of classical Brownian motion is special, since we have a complete SDE
theory in the L2-sense, as well as the notion of Stratonovich type integrals and dif-
ferential equations. The fundamental relation between the two types of stochastic
differentials (one-dimensional case) can be expressed by

X ◦ dY = XdY +
1

2
dX · dY.

It is proved in rough path theory (see [26], [47], and also [37], [66] from the view of the
Wong-Zakai type approximation) that the Stratonovich type integrals and differential
equations are equivalent to path integrals and RDEs in the sense of rough paths. In
other words, the following two types of differential equation driven by Brownian
motion

dXt =
d∑

α=1

Vα (Xt) dW
α
t + b (Xt) dt, (Itô type SDE)

dYt =
d∑

α=1

Vα (Yt) dW
α
t +

(
b (Yt)−

d∑
α=1

1

2
DVα (Yt) · Vα (Yt)

)
dt, (RDE)

which are both well-defined under some regularity assumptions on the generating
vector fields, are equivalent in the sense that if their solutions Xt and Yt satisfy
X0 = Y0, then X = Y almost surely.

Under the framework of G-expectation, SDEs driven by G-Brownian motion in-
troduced by S. Peng, can be regarded as nonlinear diffusion processes in Euclidean
space. The idea of constructing G-Itô’s integrals and SDEs driven by G-Brownian
motion is similar to the classical Itô calculus, which is also an L2-theory but under the
G-expectation instead of a probability measure. What is missing is the notion of the
Stratonovich type integral, mainly due to the reason that the theory of G-martingales
is still not well understood. In particular, we don’t have the corresponding nonlinear
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Doob-Meyer type decomposition theorem and the notion of quadratic variation pro-
cesses for G-martingales. However, by the key observation in the classical case that
the Stratonovich type integrals and rough path integrals are essentially equivalent in
the sense of rough paths, we can start with the study of sample path regularity of
G-Brownian motion from the view of rough path theory. In particular, it may lead
us to a complete pathwise theory of SDEs driven by G-Brownian motion in the sense
of rough paths (namely RDEs). The basic language for describing path structure
under G-expectation is quasi sure analysis and related capacity theory, which was
developed by L. Denis, M. Hu and S. Peng [20]. In particular, they generalized the
Kolmogorov continuity theorem and studied sample path properties of G-Brownian
motion. They also studied the relation between G-expectation and upper expectation
associated to a family of probability measures which defines a Choquet capacity and
the relation between the corresponding two types of Lp-spaces. The pathwise prop-
erties and homeomorphic flows for SDEs driven by G-Brownian motion in the quasi
sure setting were then studied by F. Gao [27].

The main motivation of this chapter is to study nonlinear diffusions and their
associated intrinsic “distributions” on manifolds from the view of rough paths. In
particular, as the ultimate goal we are interested in constructing G-Brownian motion
on a Riemannian manifold and establishing its generating nonlinear heat flow.

This chapter is organized in the following way. Section 5.2 is a brief review on
G-expectation and related stochastic calculus. In Section 5.3 we develop the Euler-
Maruyama scheme for SDEs driven by G-Brownian motion. In Section 5.4, by using
techniques in rough path theory, we show that quasi surely the sample paths of
G-Brownian motion can be lifted to the second level in a canonical way so that
they become geometric p-rough paths for 2 < p < 3. In Section 5.5 we establish
the fundamental relation between SDEs and RDEs driven by G-Brownian motion
by using the rough Taylor expansion. In Section 5.6 we introduce the notion of
SDEs on a differentiable manifold driven by G-Brownian motion from the RDE point
of view by using a pathwise localization technique. In Section 5.7, we study the
infinitesimal diffusive nature and the generating PDE for nonlinear diffusion processes
in a (Riemannian) geometric setting. In particular, from the view of J. Eells, K.D.
Elworthy and P. Malliavin, it leads us to the construction of G-Brownian motion on
a compact Riemannian manifold and the generating nonlinear heat flow for a wide
and interesting class of G-functions whose invariant group (to be introduced in that
section) is the orthogonal group. As a consequence we also construct the canonical
G-expectation on the path space over the manifold.

102



DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

Throughout the rest of this chapter, for simplicity we again use the Einstein
convention of summation.

5.2 Preliminaries on G-expectation and Related Stochas-

tic Calculus

In this section we recall the basic notions of G-expectation and related stochastic
calculus. The contents of this section are based on the monograph by S. Peng [58].

Let Ω be a non-empty set, andH be a vector space of functionals on Ω such thatH
contains all constant functionals and for any X1, · · · , Xn ∈ H and any ϕ ∈ Cl,Lip(Rn),

ϕ(X1, · · · , Xn) ∈ H,

where Cl,Lip(Rn) denotes the space of functions ϕ on Rn satisfying

|ϕ(x)− ϕ(y)| 6 C(1 + |x|m + |y|m)(|x− y|), ∀x, y ∈ Rn,

for some constant C > 0 and m ∈ N depending on ϕ. H can be regarded as the space
of random variables.

Definition 5.2.1. A sublinear expectation E on (Ω,H) is a functional E : H → R
such that

(1) if X 6 Y, then E[X] 6 E[Y ];
(2) for any constant c, E[c] = c;
(3) for any X, Y ∈ H, E[X + Y ] 6 E[X] + E[Y ];

(4) for any λ > 0 and X ∈ H, E[λX] = λE[X].

The triple (Ω,H,E) is called a sublinear expectation space.
The relation between sublinear expectations and linear expectations, which was

proved by S. Peng [58], is contained in the following representation theorem.

Theorem 5.2.1. Let (Ω,H,E) be a sublinear expectation space. Then there exists a
family of linear expectations (linear functionals) {Eθ : θ ∈ Θ} on H, such that

E[X] = sup
θ∈Θ

Eθ[X], ∀X ∈ H.

Under the framework of a sublinear expectation space, we also have the notion of
independence and distribution (law).
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Definition 5.2.2. (1) A random vector Y ∈ Hn is said to be independent from
another random vector X ∈ Hm under the sublinear expectation E, if for any ϕ ∈
Cl,Lip(Rm × Rn),

E[ϕ(X, Y )] = E [E[ϕ(x, Y )]x=X ] .

(2) Given a random vector X ∈ Hn, the distribution (or the law) of X is defined
as the functional FX : Cl,Lip (Rn)→ R given by

FX [ϕ] = E[ϕ(X)], ϕ ∈ Cl,Lip(Rn).

This is a sublinear expectation on (Rn, Cl,Lip(Rn)). By saying that two random vec-
tors X, Y (possibly defined on different sublinear expectation spaces) are identically
distributed, we mean that their distributions are the same.

Now we introduce the notion of G-distribution, which is the generalization of
degenerate distributions and normal distributions. It captures the uncertainty of
probability distributions and plays a fundamental role in the theory of sublinear
expectation.

Let S(d) be the space of d × d symmetric matrices, and let G : Rd × S(d) → R
be a continuous and sublinear function monotonic in S(d) in the sense that:

(1) G(p+ p̄, A+ Ā) 6 G(p,A) +G(p̄, Ā), ∀p, p̄ ∈ Rd, A, Ā ∈ S(d);

(2) G(λp, λA) = λG(p,A), ∀λ > 0;

(3) G(p,A) 6 G(p, Ā), ∀A 6 Ā.

Definition 5.2.3. Let X, η ∈ Hd be two random vectors. (X, η) is called G-
distributed if for any ϕ ∈ Cl,Lip(Rd × Rd), the function

u(t, x, y) := E[ϕ(x+
√
tX, y + tη)], (t, x, y) ∈ [0,∞)× Rd × Rd,

is a viscosity solution to the following parabolic PDE (called a G-heat equation):

∂tu−G
(
Dyu,D

2
xu
)

= 0, (5.2.1)

with Cauchy condition u|t=0 = ϕ.

Remark 5.2.1. From the general theory of viscosity solutions (see for example M.G.
Crandall, H. Ishii and P.L. Lions [15] or [58]), the G-heat equation (5.2.1) has a unique
viscosity solution. By solving the G-heat equation (5.2.1) (in some special cases, it
is explicitly solvable), we can compute the sublinear expectation of some functionals
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of a G-distributed random vector. The case of convex functionals, for instance, the
power function |x|k, is quite interesting.

It can be proved (see [58]) that for such a functionG, there exists a bounded, closed
and convex subset Γ ⊂ Rd × Rd×d, such that G has the following representation:

G(p,A) = sup
(q,Q)∈Γ

{
1

2
tr
(
AQQT

)
+ 〈p, q〉

}
, ∀(p,A) ∈ Rd × S(d).

The set Γ captures the uncertainty of probability distribution (mean uncertainty and
variance uncertainty) of a G-distributed random vector.

In particular, if G only depends on p ∈ Rd, then there exists some bounded, closed
and convex subset Λ ⊂ Rd, such that

G(p) = sup
q∈Λ
〈p, q〉.

In this case a G-distributed random vector η is called maximal distributed and is
denoted by η ∼ N(Λ, {0}). Similarly, if G only depends on A ∈ S(d), then there
exists some bounded, closed and convex subset Σ ⊂ S+(d) (the space of symmetric
and non-negative definite matrices) such that

G(A) =
1

2
sup
B∈Σ

tr(AB), ∀A ∈ S(d). (5.2.2)

A G-distributed random vector X for such G is called G-normal distributed and is
denoted by X ∼ N({0},Σ).

Now we introduce the concept of G-Brownian motion and related stochastic cal-
culus.

From now on, let G : S(d)→ R be a function given by (5.2.2).

Definition 5.2.4. A d-dimensional process Bt is called a G-Brownian motion if
(1) B0(ω) = 0, ∀ω ∈ Ω;

(2) for each s, t > 0, Bt+s−Bt ∼ N({0}, sΣ) and is independent from (Bt1 , · · · , Btn)

for any n > 1 and 0 6 t1 < · · · < tn 6 t.

Similar to the classical situation, a G-Brownian motion can be constructed ex-
plicitly on the canonical path space by using independent G-normal random vectors.
Here we omit the details and refer the reader to [58] for the construction.

In summary, let Ω = C0([0,∞);Rd) be the space of Rd-valued continuous paths
starting at the origin, and let Bt(ω) := ωt be the coordinate process. For any T > 0,
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define

Lip(ΩT ) =
{
ϕ(Bt1 , · · · , Btn) : n > 1, t1, · · · , tn ∈ [0, T ], ϕ ∈ Cl,Lip(Rd×n)

}
,

and

Lip(Ω) =
∞⋃
n=1

Lip(Ωn).

Then on (Ω, Lip(Ω)) we can define the canonical sublinear expectation E such that
the coordinate process Bt becomes a G-Brownian motion, which is usually called
the G-expectation and denoted by EG. (Ω, Lip(Ω),EG) is also called the canonical G-
expectation space. Throughout the rest of this chapter, we restrict ourselves to the
canonical G-expectation space and its completion (to be defined later on).

Now we introduce the notion of conditional G-expectation and related properties.
For

X = ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1) ∈ Lip(Ω),

where 0 6 t1 < t2 < · · · < tn, the G-conditional expectation of X given Ωtj is defined
by

EG[X|Ωtj ] = ψ(Bt1 , Bt2 −Bt1 , · · · , Btj −Btj−1
),

where

ψ(x1, · · · , xj) := EG[ϕ(x1, · · · , xj, Btj+1
−Btj , · · · , Btn −Btn−1)], x1, · · · , xj ∈ Rd.

The conditional G-expectation EG[·|Ωt] has the following basic properties: for any
X, Y ∈ Lip(Ω),

(1) if X 6 Y, then EG[X|Ωt] 6 EG[Y |Ωt];

(2) EG[X + Y |Ωt] 6 EG[X|Ωt] + EG[Y |Ωt];

(3) for any η ∈ Lip(Ωt),

EG[η|Ωt] = η,

EG[ηX|Ωt] = η+EG[X|Ωt] + η−E[−X|Ωt],

where η+, η− denote the positive and negative parts of η respectively;
(4) EG[EG[X|Ωt]|Ωs] = EG[X|Ωt∧s]. In particular, EG[EG[X|Ωt]] = EG[X].

For any p > 1, let LpG (respectively, LpG(Ωt))) be the completion of Lip(Ω) (re-
spectively, Lip(Ωt)) under the semi-norm ‖X‖p :=

(
EG [|X|p]

) 1
p . Then EG can be

continuously extended to a sublinear expectation on LpG(Ω) (respectively, LpG(Ωt)),
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which is still denoted by EG.
For t < T 6∞, the conditional G-expectation EG[·|Ωt] : Lip(ΩT )→ Lip(Ωt) is a

continuous map under ‖ · ‖1 and can be uniquely extended to a continuous map

EG[·|Ωt] : L1
G(ΩT )→ L1

G(Ωt),

which can still be interpreted as the conditional G-expectation. It is easy to show that
the properties (1) to (4) for the conditional G-expectation still hold true on L1

G(ΩT )

as long as it is well-defined.
Now we introduce the related stochastic calculus for G-Brownian motion.
First of all, similar to the idea in the classical case, we still have the notion of

Itô’s integrals against a 1-dimensional G-Brownian motion. More precisely, in the
one dimensional case we can first define Itô’s integrals of simple processes and then
pass to the limit under the G-expectation EG in some suitable functional spaces. Let
Mp,0

G (0, T ) be the space of simple processes ηt(ω) on [0, T ] of the form

ηt(ω) =
N∑
k=1

ξk−1(ω)1[tk−1,tk)(t),

where πNT := {t0, t1, · · · , tN} is a partition of [0, T ] and ξk ∈ LpG(Ωtk), and introduce
the semi-norm

‖η‖Mp
G(0,T ) =

(
EG
[ˆ T

0

|ηt|p dt
]) 1

p

on Mp,0
G (0, T ). Let Mp

G(0, T ) be the completion of Mp,0
G (0, T ) under ‖ · ‖Mp

G(0,T ). It
is straight forward to define Itô’s integrals

´ T
0
ηtdBt of simple processes. Moreover,

such an integral operator is linear and continuous under ‖ · ‖Mp
G(0,T ) and hence can be

extended to a bounded linear operator

I : M2
G(0, T )→ L2

G(0, T ).

The operator I is called the Itô’s integral operator against a G-Brownian motion. For
0 6 s < t 6 T, define ˆ t

s

ηudBu =

ˆ T

0

1[s,t](u)ηudBu.

We list some important properties of G-Itô’s integrals in the following.

Proposition 5.2.1. Let η, θ ∈M2
G(0, T ) and let 0 6 s 6 r 6 t 6 T. Then
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(1) ˆ t

s

ηudBu =

ˆ r

s

ηudBu +

ˆ t

r

ηudBu;

(2) if α is bounded in L1
G(Ωs), then

ˆ t

s

(αηu + θu)dBu = α

ˆ t

s

ηudBu +

ˆ t

s

θudBu;

(3) for any X ∈ L1
G(Ω),

EG
[
X +

ˆ T

r

ηudBu

∣∣∣∣Ωs

]
= EG [X|Ωs] ;

(4)

σ2EG
[ˆ T

0

η2
t dt

]
6 EG

[(ˆ T

0

ηtdBt

)2
]
6 σ2EG

[ˆ T

0

η2
t dt

]
,

where σ2 := EG[B2
1 ] and σ2 := −EG[−B2

1 ].

Secondly, we have the notion of quadratic variation process of G-Brownian motion.
In the case of 1-dimensional G-Brownian motion, the quadratic variation process 〈B〉t
is defined as

〈B〉t = B2
t − 2

ˆ t

0

BsdBs,

which can be regarded as the L2
G-limit of the sum

∑kN
j=1

(
BtNj
−BtNj−1

)2

as µ
(
πNt
)
→

0, where πNt := {tNj }
kN
j=0 is any finite partition of [0, t] and

µ
(
πNt
)

:= max
{
tNj − tNj−1 : j = 1, 2, · · · , kN

}
.

It follows that 〈B〉t is an increasing process with 〈B〉0 = 0.
Similar to the definition of G-Itô’s integrals, we can define the integration against

〈B〉t where Bt is a 1-dimensional G-Brownian motion. We refer the reader to [58]
for a precise definition but we remark that the integral operator against 〈B〉t is a
continuous linear map

Q0,T : M1
G(0, T )→ L1

G(ΩT ).

The following identity can be regarded as the G-Itô isometry.
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Proposition 5.2.2. Let η ∈M2
G(0, T ), then

EG
[(ˆ T

0

ηtdBt

)2
]

= EG
[ˆ T

0

η2
t d〈B〉t

]
.

Now we consider the multi-dimensional case. Let Bt be a d-dimensional G-
Brownian motion, and for any v ∈ Rd, denote

Bv
t = 〈v,Bt〉,

where 〈·, ·〉 is the Euclidean inner product. Then for a, a ∈ Rd, the cross variation
process 〈Ba, Ba〉t is defined as

〈Ba, Ba〉t =
1

4
(〈Ba+a, Ba+a〉t − 〈Ba−a, Ba−a〉t).

In the same way as the case of the quadratic variation process, we have

〈Ba, Ba〉t = (L2
G−) lim

µ(πNt )→0

kN∑
j=1

(
Ba
tNj
−Ba

tNj−1

)(
Ba
tNj
−Ba

tNj−1

)
= Ba

tB
a
t −
ˆ t

0

Ba
sdB

a
s −
ˆ t

0

Ba
sdB

a
s .

Note that unlike the classical case, the cross variation process is not determinis-
tic. The following result characterizes the distribution of the matrix-valued process
〈B〉t := (〈Bα, Bβ〉t)dα,β=1, where Bt is a d-dimensional G-Brownian motion and Bα

t is
the α-th component of Bt. We refer the reader to [58] for the proof. Recall that the
function G has the representation (5.2.2).

Proposition 5.2.3. 〈B〉t ∼ N(tΣ, {0}).

As in the classical case, we also have the important G-Itô formula under G-
expectation, which takes a similar form to the classical one. The main difference
is that dBα

t · dB
β
t should be d〈Bα, Bβ〉t instead of δαβdt. We are not going to state

the full result of G-Itô’s formula here. See [58] for a detailed discussion.
Now we introduce the notion of SDEs driven by G-Brownian motion.
For p > 1, let Mp

G(0, T ;Rn) be the completion of Mp,0
G (0, T ;Rn) under the norm

‖η‖Mp
G(0,T ;Rn) :=

(ˆ T

0

EG [|ηt|p] dt
) 1

p

.
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It is easy to see that Mp

G(0, T ;Rn) ⊂Mp
G(0, T ;Rn).

Consider the following N -dimensional SDE driven by G-Brownian motion over
[0, T ]:

dXt = b(t,Xt)dt+ hαβ(t,Xt)d〈Bα, Bβ〉t + Vα(t,Xt)dB
α
t (5.2.3)

with initial condition ξ ∈ RN . Here we assume that the coefficients bi, hiαβ, V i
α are

Lipschitz functions in the space variable, uniformly in time. A solution to (5.2.3) is
a process in M2

G(0, T ;RN) satisfying the equation (5.2.3) in its integral form.
The existence and uniqueness of solutions to the SDE (5.2.3) is contained in the

following result. We refer the reader to [58] for the proof.

Theorem 5.2.2. There exists a unique solution X ∈ M
2

G(0, T ;RN) to the SDE
(5.2.3).

Finally, we introduce the notion of quasi sure analysis for G-expectation. It plays
an important role in studying pathwise properties of stochastic processes under the
framework of G-expectation.

First of all, on the canonical sublinear expectation space
(
Ω, Lip(Ω),EG

)
, we can

prove a refinement of Theorem 5.2.1: there exists a weakly compact family P of
probability measures on (Ω,B(Ω)), such that for any X ∈ Lip(Ω) and P ∈ P , EP [X]

is well-defined and
EG[X] = max

P∈P
EP [X], ∀X ∈ Lip(Ω),

where “max” means that the supremum is attainable (for each X). Moreover, there
is an explicit characterization of the family P . Let G be represented in the following
way:

G(A) =
1

2
sup
Q∈Γ

tr
(
AQQT

)
,

for some bounded, closed and convex subset Γ ⊂ Rd×d, and let AΓ be the collection
of all Γ-valued and {FWt : t > 0}-adapted processes on [0,∞), where {FWt : t > 0}
is the natural filtration of the coordinate process on Ω. Let P0 be the collection of
probability laws of the following classical Itô integral processes with respect to the
standard Wiener measure:

Bγ
t =

ˆ t

0

γsdWs, t > 0, γ ∈ AΓ.

Then P = P0. We refer the reader to [20] for the proof of this result.
For any B(Ω)-measurable random variable X such that EP [X] is well-defined for
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all P ∈ P , define the upper expectation

Ê[X] = sup
P∈P

EP [X].

Then we can prove that for any 0 6 T 6∞ and X ∈ L1
G(ΩT ),

EG[X] = Ê[X].

See again [20] for a detailed discussion and other related properties.
For this particular family P , define the set function c by

c(A) = sup
P∈P

P (A), A ∈ B(Ω).

Then we have the following result.

Proposition 5.2.4. The set function c is a Choquet capacity (for an introduction of
capacity theory, see G. Choquet [12], C. Dellacherie [19]). In other words,

(1) for any A ∈ B(Ω), 0 6 c(A) 6 1;

(2) if A ⊂ B, then c(A) 6 c(B);

(3) if An is a sequence in B(Ω), then c (
⋃
nAn) 6

∑
n c(An);

(4) if An is increasing in B(Ω), then c (
⋃
nAn) = limn→∞ c(An).

Definition 5.2.5. A property depending on ω ∈ Ω is said to hold quasi surely, if it
holds outside a B(Ω)-measurable subset of zero capacity.

We end this section by stating the following Markov inequality and Borel-Cantelli
lemma under the capacity c, which are both crucial for our study. We refer the reader
to [58] for the proof.

Theorem 5.2.3. (1) For any X ∈ LpG(Ω) and λ > 0, we have

c(|X| > λ) 6
EG[|X|p]

λp
.

(2) Let An be a sequence in B(Ω) such that
∑∞

n=1 c(An) <∞. Then

c(lim supAn) = 0.
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5.3 The Euler-Maruyama Approximation for SDEs

Driven by G-Brownian Motion

In this section, we develop the Euler-Maruyama approximation scheme for SDEs
driven by G-Brownian motion.

This result can be used to establish the Wong-Zakai type approximation which
reveals the relationship between SDEs (in the sense of L2

G(Ω;RN) by S. Peng) and
RDEs driven by G-Brownian motion. In Section 5.5, the study of this relationship is
our main focus. However, based on the result in the next section which reveals the
rough path nature of G-Brownian motion, we use the rough Taylor expansion in the
theory of RDEs instead of developing the Wong-Zakai type approximation to show
that the solution to an SDE solves some associated RDE with a correction term in
terms of the cross variation process of multidimensional G-Brownian motion. Such
an approach reveals the natural of G-Brownian motion and differential equations in
the sense of rough paths in a more essential way.

We also believe that there are other interesting applications of the Euler-Maruyama
approximation, such as in numerical analysis under G-expectation, and in practical
models under probability distribution uncertainty.

Consider the following N -dimensional SDE driven by the canonical d-dimensional
G-Brownian motion over [0, 1] on the sublinear expectation space (Ω, L2

G(Ω),EG)

which is the L2
G-completion of the canonical path space (Ω, Lip(Ω),EG):

dXt = b(Xt)dt+ hαβ(Xt)d
〈
Bα, Bβ

〉
t
+ Vα(Xt)dB

α
t , (5.3.1)

with initial condition X0 = ξ ∈ RN , where the coefficients bi, hiαβ, V i
α are bounded

and uniformly Lipschitz. From Theorem 5.2.2 we know that the SDE has a unique
solution.

The Euler-Maruyama approximation of the solution Xt to (5.3.1) is defined as
follows. The underlying idea is similar to the classical situation.

For n > 1, consider the dyadic partition of the time interval [0, 1], i.e.

tnk =
k

2n
, k = 0, 1, · · · , 2n.

Define Xn
t to be the approximation of Xt in the following inductive way:

Xn
0 = ξ,
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and for t ∈ [tnk−1, t
n
k ],

(Xn
t )i = (Xn

k−1)i + V i
α(Xn

k−1)∆n
kB

α + bi(Xn
k−1)∆tn + hiαβ(Xn

k−1)∆n
k〈Bα, Bβ〉,

where
Xn
k−1 := Xn

tnk−1
, ∆n

kB
α := Bα

tnk
−Bα

tnk−1
,

∆tn :=
1

2n
, ∆n

k〈Bα, Bβ〉 := 〈Bα, Bβ〉tnk − 〈B
α, Bβ〉tnk−1

.

In this section, we prove that Xn
t converges to the solution Xt to (5.3.1) in

L2
G(Ω;RN) with convergence rate 1/2, which coincides with the classical case when

Bt reduces to the classical Brownian motion.
First of all, we need the following lemma.

Lemma 5.3.1. Let ηt be a bounded process in M2
G(0, 1). Then for any v ∈ Rd, 0 6

s < t 6 1,

EG
[(ˆ t

s

ηud〈Bv〉u
)2
]
6 σ2

v(t− s)EG
[ˆ t

s

η2
ud〈Bv〉u

]
,

where σ2
v := 2G(v · vT ) and Bv := 〈v,B〉, in which 〈·, ·〉 denotes the Euclidean inner

product of Rd.

Proof. By approximation, it suffices to consider

ηu =
k∑
j=1

ζj−11[uj−1,uj),

where s = u0 < u1 < · · · < uk = t and ζj ∈ Lip(Ωuj) are bounded. In this case, by
definition ˆ t

s

ηud〈Bv〉u =
k∑
j=1

ζj−1(〈Bv〉uj − 〈Bv〉uj−1
),

and ˆ t

s

η2
ud〈Bv〉u =

k∑
j=1

ζ2
j−1

(
〈Bv〉uj − 〈Bv〉uj−1

)
,

which are both defined in the pathwise sense for step functions. Since 〈Bv〉 is increas-
ing, the Cauchy-Schwarz inequality yields that(ˆ t

s

ηud〈Bv〉u
)2

6 (〈Bv〉t − 〈Bv〉s) ·
ˆ t

s

η2
ud〈Bv〉u.
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Since the ζj are bounded, if we use M to denote an upper bound of η2
u, it follows that

for any c > σ2
v,(ˆ t

s

ηud〈Bv〉u
)2

6 M (〈Bv〉t − 〈Bv〉s − c(t− s))+ (〈Bv〉t − 〈Bv〉s) + c(t− s)
ˆ t

s

η2
ud〈Bv〉u.

Let ϕ(x) = (x − c(t − s))+x. Since 〈Bv〉t − 〈Bv〉s is N((t − s)[σ2
v, σ

2
v] × {0})-

distributed, it follows that

EG [ϕ(〈Bv〉t − 〈Bv〉s)] = sup
σ2
v6x6σ

2
v

ϕ(x(t− s))

= (t− s)2 sup
σ2
v6x6σ

2
v

(x− c)+x

= 0.

Therefore, by the sub-linearity of G, we have

EG
[(ˆ t

s

ηud〈Bv〉u
)2
]
6 c(t− s)EG

[ˆ t

s

η2
ud〈Bv〉u

]
, c > σ2

v.

Now the proof is complete.

Now we are in position to state and prove our main result of this section.

Theorem 5.3.1. We have the following error estimate for the Euler-Maruyama ap-
proximation:

sup
t∈[0,1]

EG
[
|Xn

t −Xt|2
]
6 C∆tn,

where C is some positive constant only depending on d,N,G and the coefficients of
(5.3.1). In particular,

lim
n→∞

sup
t∈[0,1]

EG
[
|Xn

t −Xt|2
]

= 0.

Proof. For t ∈ [tnk−1, t
n
k ], by construction we have

X i
t − (Xn

t )i = I i1 + J i1 +Ki
1 + I i2 + J i2 +Ki

2,
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where

I i1 =
k−1∑
l=1

ˆ tnl

tnl−1

(
V i
α(Xs)− V i

α(Xn
s )
)
dBα

s +

ˆ t

tnk−1

(
V i
α(Xs)− V i

α(Xn
s )
)
dBα

s ,

J i1 =
k−1∑
l=1

ˆ tnl

tnl−1

(
bi(Xs)− bi(Xn

s )
)
ds+

ˆ t

tnk−1

(
bi(Xs)− bi(Xn

s )
)
ds,

Ki
1 =

k−1∑
l=1

ˆ tnl

tnl−1

(
hiαβ(Xs)− hiαβ(Xn

s )
)
d
〈
Bα, Bβ

〉
s

+

ˆ t

tnk−1

(
hiαβ(Xs)− hiαβ(Xn

s )
)
d
〈
Bα, Bβ

〉
s
,

I i2 =
k−1∑
l=1

ˆ tnl

tnl−1

(
V i
α(Xn

s )− V i
α(Xn

l−1)
)
dBα

s +

ˆ t

tnk−1

(
V i
α(Xs)− V i

α(Xn
l−1)
)
dBα

s ,

J i2 =
k−1∑
l=1

ˆ tnl

tnl−1

(
bi(Xn

s )− bi(Xn
l−1)
)
ds+

ˆ t

tnk−1

(
bi(Xs)− bi(Xn

l−1)
)
ds,

Ki
2 =

k−1∑
l=1

ˆ tnl

tnl−1

(
hiαβ(Xs)− hiαβ(Xn

s )
)
d
〈
Bα, Bβ

〉
s

+

ˆ t

tnk−1

(
hiαβ(Xs)− hiαβ(Xn

s )
)
d
〈
Bα, Bβ

〉
s
.

It follows that

(
X i
t − (Xn

t )i
)2
6 6

(
(I i1)2 + (J i1)2 + (Ki

1)2 + (I i2)2 + (J i2)2 + (Ki
2)2
)
. (5.3.2)

Throughout the rest of this section, we always use the same notation C to denote
constants only depending on d,N,G and the coefficients of (5.3.1), although they may
be different from line to line.

The following estimates are important for further development.
(1) From the G-Itô isometry, the distribution of 〈Bα〉 and the Lipschitz property,

we have,

EG
(ˆ u

tnl−1

(V i
α(Xs)− V i

α(Xn
s ))dBα

s

)2
 6 C

ˆ u

tnl−1

EG
[
|Xs −Xn

s |
2] ds, ∀u ∈ [tnl−1, t

n
l ].
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(2) Similarly, by the Cauchy-Schwarz inequality, we have

EG
(ˆ u

tnl−1

(
bi(Xs)− bi(Xn

s )
)
ds

)2


6 C(u− tnl−1)

ˆ u

tnl−1

EG
[
|Xs −Xn

s |
2] ds,

for all u ∈ [tnl−1, t
n
l ]. By the definition of 〈Bα, Bβ〉 and Lemma 5.3.1, we also have

EG
(ˆ u

tnl−1

(
hiαβ(Xs)− hiαβ(Xn

s )
)
d〈Bα, Bβ〉s

)2


6 C(u− tnl−1)

ˆ u

tnl−1

EG
[
|Xs −Xn

s |
2] ds,

for all u ∈ [tnl−1, t
n
l ].

(3) By construction and similar arguments to (1), (2), we have

EG
(ˆ u

tnl−1

(V i
α(Xn

s )− V i
α(Xn

l−1))dBα
s

)2
 6 C(u− tnl−1)2,

EG
(ˆ u

tnl−1

(
bi(Xn

s )− bi(Xn
l−1)
)
ds

)2
 6 C(u− tnl−1)3,

EG
(ˆ u

tnl−1

(
hiαβ(Xn

s )− hiαβ(Xn
s )
)
d〈Bα, Bβ〉s

)2
 6 C(u− tnl−1)3,

for all u ∈ [tnl−1, t
n
l ].

(4) By conditioning and from the properties of Itô’s integrals against G-Brownian
motion, we know that the G-expectation of each “cross term” in (I i1)2 and in (I i2)2 is
zero.

Combining (1) to (4) and applying the following elementary inequality to (J i1)2,

(J i2)2, (Ki
1)2 and (Ki

2)2:

(a1 + · · ·+ am)2 6 m(a2
1 + · · ·+ a2

m),
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it is not hard to obtain that

EG
[
‖Xt −Xn

t ‖
2] 6 C

ˆ t

0

EG
[
‖Xs −Xn

s ‖
2] ds+ C(∆tn), ∀t ∈ [0, 1].

By using Gronwall’s inequality, we arrive at

EG
[
‖Xt −Xn

t ‖2
]
6 C(∆tn),

which completes the proof of the theorem.

5.4 G-Brownian Motion as Rough Paths and RDEs

Driven by G-Brownian Motion

In this section, we study the geometric rough path nature for sample paths of G-
Brownian motion. More precisely, we show that: on the canonical path space, outside
a Borel-measurable set of capacity zero, the sample paths of G-Brownian motion can
be lifted canonically as geometric p-rough paths for 2 < p < 3. As pointed out before,
such a result enables us to make sense of RDEs driven by G-Brownian motion in the
pathwise sense.

Recall that (Ω, Lip(Ω),EG) is the canonical path space associated with the function
G, on which the coordinate process

Bt(ω) := ωt, t ∈ [0, 1],

is a d-dimensional G-Brownian motion with continuous sample paths.
By the following moment inequality for Bt:

EG
[
|Bt −Bs|2q

]
6 Cq(t− s)q, ∀0 6 s < t 6 1, q > 1, (5.4.1)

and the generalized Kolmogorov criterion (see [58] for details), we know that quasi-
surely, the sample paths of Bt are α-Hölder continuous for any α ∈ (0, 1

2
). Therefore, if

the sample paths of Bt can be regarded as geometric rough paths, the exact roughness
should be 2 < p < 3. The situation here is the same as the classical Brownian
motion, and the fundamental reason lies in the distribution of Bt (or more precisely,
the moment inequality (5.4.1)), which yields the same kind of Hölder continuity for
sample paths of Bt as the classical case.

From now on, we assume that p ∈ (2, 3) is some fixed constant.
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As in the last section, for n > 1, k = 0, 1, · · · , 2n, let tnk = k
2n

be the dyadic
partition of [0, 1], and let Bn

t be the piecewise linear interpolation of Bt over the
partition points {tn0 , tn1 , · · · , tn2n}. Since the sample paths of Bn

t have bounded total
variation, Bn

t has a unique lifting

Bn
s,t =

(
1, Bn,1

s,t , B
n,2
s,t

)
, 0 6 s < t 6 1,

to the space GΩp(Rd) of geometric p-rough paths (in fact, for any p > 1) determined
by iterated path integrals.

Our goal is to show that quasi-surely, Bn is a Cauchy sequence under the p-
variation metric dp. It follows that quasi-surely, the sample paths of Bt can be lifted
as geometric p-rough paths, which are defined as limits of Bn under dp. Such a lifting
via dyadic piecewise linear interpolation can be regarded as a canonical lifting.

Throughout the rest of this section, we use ‖ · ‖q to denote the Lq-norm under the
G-expectation EG. Moreover, we use the same notation C to denote constants only
depending on d,G, p, although they may be different from line to line.

The following estimates are crucial for the proof of the main result of this section.

Lemma 5.4.1. Let m,n > 1, and k = 1, 2, · · · , 2n. Then
(1) ∥∥∥Bm,j

tnk−1,t
n
k

∥∥∥
p
j

6

C
(

1

2
n
2

)j
, n 6 m;

C
(

2
m
2

2n

)j
, n > m,

where j = 1, 2.

(2) ∥∥∥Bm+1,1
tnk−1,t

n
k
−Bm,1

tnk−1,t
n
k

∥∥∥
p
6

0, n 6 m;

C 2
m
2

2n
, n > m,

∥∥∥Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

∥∥∥
p
2

6

C 1

2
m
2 2

n
2
, n 6 m;

C 2m

22n
, n > m.

Here ‖·‖q denotes the Lq-norm under the G-expectation EG, and C is some positive
constant not depending on m,n, k.

Proof. (1) The first level.
If n 6 m, then

Bm,1
tnk−1,t

n
k

= Btnk
−Btnk−1

.
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It follows from the moment inequality (5.4.1) that

EG
[∣∣∣Bm,1

tnk−1,t
n
k

∣∣∣p] 6 C
1

2
np
2

,

and thus ∥∥∥Bm,1
tnk−1,t

n
k

∥∥∥
p
6 C

1

2
n
2

.

Also it is trivial to see that

Bm+1,1
tnk−1,t

n
k
−Bm,1

tnk−1,t
n
k

=
(
Btnk
−Btnk−1

)
−
(
Btnk
−Btnk−1

)
= 0.

If n > m, then by construction we know that

Bm,1
tnk−1,t

n
k

=
2m

2n

(
Btml
−Btml−1

)
,

where l is the unique integer such that [tnk−1, t
n
k ] ⊂ [tml−1, t

m
l ]. Therefore,

∥∥∥Bm,1
tnk−1,t

n
k

∥∥∥
p

=
2m

2n

∥∥∥Btml
−Btml−1

∥∥∥
p
6 C

2
m
2

2n
.

On the other hand, if [tnk−1, t
n
k ] ⊂ [tm+1

2l−2 , t
m+1
2l−1 ], then

Bm+1,1
tnk−1,t

n
k
−Bm,1

tnk−1,t
n
k

=
2m+1

2n

(
Btm+1

2l−1
−Btm+1

2l−2

)
− 2m

2n

(
Btml
−Btml−1

)
=

2m

2n

((
B 2l−1

2m+1
−B 2l−2

2m+1

)
−
(
B 2l

2m+1
−B 2l−1

2m+1

))
.

It follows that ∥∥∥Bm+1,1
tnk−1,t

n
k
−Bm,1

tnk−1,t
n
k

∥∥∥
p
6 C

2
m
2

2n
.

Similarly, if [tnk−1, t
n
k ] ⊂ [tm+1

2l−1 , t
m+1
2l ], we obtain the same estimate.

(2) The second level.
Since p

2
< 2, by monotonicity it suffices to establish the desired estimates under

the L2-norm.
First consider the term Bm+1,2

tnk−1,t
n
k
−Bm,2

tnk−1,t
n
k
.
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If n 6 m, by the construction of Bm,2
s,t , we have

Bm,2;α,β
tnk−1,t

n
k

=

ˆ tnk

tnk−1

Bm,1;α
tnk−1,v

dBm,1;β
v

=
2m−nk∑

l=2(m−n)(k−1)+1

∆m
l B

β

∆tm

ˆ tml

tml−1

(
v − tml−1

∆tm
Bα
tml

+
tml − v
∆tm

Bα
tml−1
−Bα

tnk−1

)
dv

=
2m−nk∑

l=2(m−n)(k−1)+1

(
Bα
tml−1

+Bα
tml

2
−Bα

tnk−1

)
∆m
l B

β.

Therefore,

Bm+1,2;α,β
tnk−1,t

n
k
−Bm,2;α,β

tnk−1,t
n
k

=
2m+1−nk∑

l=2(m+1−n)(k−1)+1

(
Bα
tm+1
l−1

+Bα
tm+1
l

2
−Bα

tnk−1

)
∆m
l B

β

−
2m−nk∑

l=2(m−n)(k−1)+1

(
Bα
tml−1

+Bα
tml

2
−Bα

tnk−1

)
∆m
l B

β

=
2(m−n)k∑

l=2(m−n)(k−1)+1

((
Bα
tm+1
2l−2

+Bα
tm+1
2l−1

2
−Bα

tnk−1

)
∆m+1

2l−1B
β

+

(
Bα
tm+1
2l−1

+Bα
tm+1
2l

2
−Bα

tnk−1

)
∆m+1

2l Bβ

−

(
Bα
tm+1
2l−2

+Bα
tm+1
2l

2
−Bα

tnk−1

)(
∆m+1

2l−1B
β + ∆m+1

2l Bβ
))

=
1

2

2m−nk∑
l=2m−n(k−1)+1

(
∆m+1

2l−1B
α∆m+1

2l Bβ −∆m+1
2l Bα∆m+1

2l−1B
β
)
.

By using the notation of tensor products, we have

Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

=
1

2

2m−nk∑
l=2m−n(k−1)+1

(
∆m+1

2l−1B ⊗∆m+1
2l B −∆m+1

2l B ⊗∆m+1
2l−1B

)
.
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It follows that

EG
[∣∣∣Bm+1,2

tnk−1,t
n
k
−Bm,2

tnk−1,t
n
k

∣∣∣2]

=
1

4
EG
∣∣∣∣∣∣

2m−nk∑
l=2m−n(k−1)+1

(
∆m+1

2l−1B ⊗∆m+1
2l B −∆m+1

2l B ⊗∆m+1
2l−1B

)∣∣∣∣∣∣
2

6 C
∑
α 6=β

α,β=1,··· ,d

EG
∣∣∣∣∣∑

l

(
∆m+1

2l−1B
α∆m+1

2l Bβ −∆m+1
2l Bα∆m+1

2l−1B
β
)∣∣∣∣∣

2


6 C
∑
α 6=β

∑
l,r

EG
[(

∆m+1
2l−1B

α∆m+1
2l Bβ −∆m+1

2l Bα∆m+1
2l−1B

β
)

·
(
∆m+1

2r−1B
α∆m+1

2r Bβ −∆m+1
2r Bα∆m+1

2r−1B
β
)]

6 C
∑
α 6=β

∑
l,r

(
EG
[
∆m+1

2l−1B
α∆m+1

2r−1B
α∆m+1

2l Bβ∆m+1
2r Bβ

]
+EG

[
∆m+1

2l Bα∆m+1
2r Bα∆m+1

2l−1B
β∆m+1

2r−1B
β
]

+EG
[
−∆m+1

2l−1B
α∆m+1

2r Bα∆m+1
2r−1B

β∆m+1
2l Bβ

]
+EG

[
−∆m+1

2r−1B
α∆m+1

2l Bα∆m+1
2l−1B

β∆m+1
2r Bβ

])
,

where the summation over l and r is taken from 2m−n(k − 1) + 1 to 2m−nk. Here we
have used the sub-linearity of E. Now we study every term separately. If l < r, by
the properties of conditional G-expectation and the distribution of Bt, we have

EG
[
∆m+1

2l−1B
α∆m+1

2l Bβ∆m+1
2r−1B

α∆m+1
2r Bβ

]
= EG

[
EG
[

∆m+1
2l−1B

α∆m+1
2l Bβ∆m+1

2r−1B
α∆m+1

2r Bβ
∣∣Ωtm+1

2r−1

]]
= EG

[
η+EG

[
∆m+1

2r Bβ
∣∣Ωtm+1

2r−1

]
+ η−E

[
−∆m+1

2r Bβ
∣∣Ωtm+1

2r−1

]]
= 0,

where η = ∆m+1
2l−1B

α∆m+1
2l Bβ∆m+1

2r−1B
α. Similarly, we can prove that for any l 6= r,

EG
[
∆m+1

2l−1B
α∆m+1

2r−1B
β∆m+1

2l Bβ∆m+1
2r Bβ

]
= EG

[(
∆m+1

2l Bα∆m+1
2r Bα∆m+1

2l−1B
β∆m+1

2r−1B
β
)]

= EG
[(
−∆m+1

2l−1B
α∆m+1

2r Bα∆m+1
2r−1B

β∆m+1
2l Bβ

)]
= EG

[(
−∆m+1

2r−1B
α∆m+1

2l Bα∆m+1
2l−1B

β∆m+1
2r Bβ

)]
= 0.
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On the other hand, if l = r, it is straight forward that

EG
[(

∆m+1
2l−1B

α
)2 (

∆m+1
2l Bβ

)2
]
6

1

2

(
EG
[(

∆m+1
2l−1B

α
)4
]

+ EG
[(

∆m+1
2l Bβ

)4
])

6 C
1

22m
,

and similarly,

EG
(
−∆m+1

2l−1B
α∆m+1

2l−1B
β∆m+1

2l Bα∆m+1
2l Bβ

)
6

1

4

(
EG
[(

∆m+1
2l−1B

α
)4
]

+ EG
[(

∆m+1
2l−1B

β
)4
]

+EG
[(

∆m+1
2l Bα

)4
]

+ EG
[(

∆m+1
2l Bβ

)4
])

6 C
1

22m
.

Combining all the estimates above, we arrive at

EG
[∣∣∣Bm+1,2

tnk−1,t
n
k
−Bm,2

tnk−1,t
n
k

∣∣∣2] 6 C
∑
α6=β

2m−nk∑
l=2m−n(k−1)+1

1

22m
6 C

1

2m2n
,

and hence ∥∥∥Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

∥∥∥
2
6 C

1

2
m
2 2

n
2

.

If n > m, by construction we have

Bm,2;α,β
tnk−1,t

n
k

=

ˆ
tnk−1<u<v<t

n
k

d(Bm)αud(Bm)βv

=

ˆ tnk

tnk−1

Bm,1;α
tnk−1,v

d(Bm)βv

=
∆m
l B

α∆m
l B

β

(∆tm)2

ˆ tnk

tnk−1

(v − tnk−1)dv

=
1

2
22(m−n)∆m

l B
α∆m

l B
β,

where l is the unique integer such that [tnk−1, t
n
k ] ⊂ [tml−1, t

m
l ]. In other words, we have

Bm,2
tnk−1,t

n
k

=
1

2
22(m−n)(∆m

l B)⊗2,

It follows that

Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

= 22(m−n)+1(∆m+1
2l−1B)⊗2 − 22(m−n)−1(∆m

l B)⊗2
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if [tnk−1, t
n
k ] ⊂ [tm+1

2l−2 , t
m+1
2l−1 ], and

Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

= 22(m−n)+1(∆m+1
2l B)⊗2 − 22(m−n)−1(∆m

l B)⊗2

if [tnk−1, t
n
k ] ⊂ [tm+1

2l−1 , t
m+1
2l ]. By using the Minkowski inequality, the Cauchy-Schwarz

inequality and the sub-linearity of E, it is easy to obtain that∥∥∥Bm+1,2
tnk−1,t

n
k
−Bm,2

tnk−1,t
n
k

∥∥∥
2
6 C

2m

22n
.

Now consider the term Bm,2
tnk−1,t

n
k
.

If n > m, by using
Bm,2
tnk−1,t

n
k

= 22(m−n)−1(∆m
l B)⊗2,

we can proceed in the same way as before to obtain that∥∥∥Bm,2
tnk−1,t

n
k

∥∥∥
2
6 C

2m

22n
.

If n < m, then

Bm,2
tnk−1,t

n
k

=
m∑

l=n+1

(
Bl,2
tnk−1,t

n
k
−Bl−1,2

tnk−1,t
n
k

)
+Bn,2

tnk−1,t
n
k
.

It follows that∥∥∥Bm,2
tnk−1,t

n
k

∥∥∥
2
6

m∑
l=n+1

∥∥∥Bl,2
tnk−1,t

n
k
−Bl−1,2

tnk−1,t
n
k

∥∥∥
2

+
∥∥∥Bn,2

tnk−1,t
n
k

∥∥∥
2

6 C

(
1

2
n
2

∞∑
l=n+1

1

2
l
2

+
1

2n

)

6 C
1

2n
.

Now the proof is complete.

In order to study the convergence of Bm in the space GΩp(Rd), we need to control
the p-variation metric dp in a proper way. For X, X̃ ∈ GΩ(Rd), define

ρj(X, X̃) =

(
∞∑
n=1

nγ
2n∑
k=1

∣∣∣Xj
tnk−1,t

n
k
− X̃j

tnk−1,t
n
k

∣∣∣ pj)
j
p

, j = 1, 2, (5.4.2)

where γ > p − 1 is some fixed universal constant. The functional ρj was initially
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introduced by B.M. Hambly and T. Lyons [33] to construct the stochastic area process
associated with the Brownian motion on the Sierpinski gasket. We use ρj(X) to denote
ρj(X, X̃) with X̃ = (1, 0, 0).

The following estimate for the p-variation metric is crucial for us. We refer the
reader to [47] for the proof.

Proposition 5.4.1. There exists some positive constant R = R(p, γ), such that for
any X, X̃ ∈ GΩ(Rd),

dp(X, X̃) 6 R ·max{ρ1(X, X̃), ρ1(X, X̃)(ρ1(X) + ρ1(X̃)), ρ2(X, X̃)}.

Now let

I(X, X̃) := max{ρ1(X, X̃), ρ1(X, X̃)(ρ1(X) + ρ1(X̃)), ρ2(X, X̃)}, (5.4.3)

and observe that

{ω : Bm is not Cauchy under dp}

⊂

{
ω :

∞∑
m=1

dp
(
Bm,Bm+1

)
=∞

}

⊂ lim sup
m→∞

{
ω : dp

(
Bm,Bm+1

)
>

R

2mβ

}
⊂ lim sup

m→∞

{
ω : I(Bm,Bm+1) >

1

2mβ

}
. (5.4.4)

where β is some positive constant to be chosen. Notice that the R.H.S. of (5.4.4)
is B(Ω)-measurable so its capacity is well-defined. Therefore, in order to prove that
quasi-surely, Bm is a Cauchy sequence under dp, it suffices to show that the R.H.S.
of (5.4.4) has capacity zero. This can be shown by using the Borel-Cantelli lemma.

According to (5.4.3), we may first need to establish estimates for

c
(
ρj
(
Bm,Bm+1

)
> λ

)
, j = 1, 2,

and
c (ρ1 (Bm) > λ) ,

where m > 1 and λ > 0. They are contained in the following lemma.

Lemma 5.4.2. For m > 1, λ > 0, we have the following estimates.
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(1)
c(ρ1 (Bm) > λ) 6 Cλ−p.

(2) Let θ ∈ (0, p
2
− 1) be some constant such that

nγ+1 6 C
2n(p−1)

2n(p−θ−1)
, ∀n > 1.

Then we have

c
(
ρj
(
Bm,Bm+1

)
> λ

)
6 Cλ−

p
j

1

2m( p2−θ−1)
, j = 1, 2.

Proof. First consider

c (ρ1 (Bm) > λ) = c

(
∞∑
n=1

nγ
2n∑
k=1

∣∣∣Bm,1
tnk−1,t

n
k

∣∣∣p > λp

)
.

Define

AN =

{
ω :

N∑
n=1

nγ
2n∑
k=1

∣∣∣Bm,1
tnk−1,t

n
k

∣∣∣p > λp

}
∈ B(Ω),

and

A =

{
ω :

∞∑
n=1

nγ
2n∑
k=1

∣∣∣Bm,1
tnk−1,t

n
k

∣∣∣p > λp

}
∈ B(Ω).

It is obvious that AN ↑ A. By the properties of the capacity c, we have

c(A) = lim
N→∞

c(AN).

On the other hand, by the sub-linearity of EG, the Chebyshev inequality for the
capacity c and Lemma 5.4.1, we have

c(AN) 6 λ−p
N∑
n=1

nγ
2n∑
k=1

E
[∣∣∣Bm,1

tnk−1,t
n
k

∣∣∣p]
6 Cλ−p

[
m∑
n=1

nγ2n
1

2
np
2

+
∞∑

n=m+1

nγ2n
2
mp
2

2np

]

= Cλ−p

[
m∑
n=1

nγ
1

2n(
p
2
−1)

+ 2
mp
2

∞∑
n=m+1

nγ
1

2n(p−1)

]
6 Cλ−p.
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It follows that
c (ρ1 (Bm) > λ) = c(A) 6 Cλ−p.

Now consider

c
(
ρ1

(
Bm,Bm+1

)
> λ

)
= c

(
∞∑
n=1

nγ
2n∑
k=1

∣∣∣Bm+1,1
k−1
2n

, k
2n
−Bm,1

k−1
2n

, k
2n

∣∣∣p > λp

)
.

For similar reasons we have

c
(
ρ1

(
Bm,Bm+1

)
> λ

)
6 λ−p

∞∑
n=1

nγ
2n∑
k=1

E
[∣∣∣Bm+1,1

tnk−1,t
n
k
−Bm,1

tnk−1,t
n
k

∣∣∣p]
6 Cλ−p

(
∞∑

n=m+1

nγ2n
2
mp
2

2np

)

= Cλ−p2
mp
2

∞∑
n=m+1

nγ
1

2n(p−1)
.

Since θ ∈ (0, p
2
− 1) satisfies

nγ+1 6 C
2n(p−1)

2n(p−θ−1)
, ∀n > 1,

we arrive at
c
(
ρ1

(
Bm,Bm+1

)
> λ

)
6 Cλ−p

1

2m( p2−θ−1)
.

Finally, consider the second level part. For similar reasons, we have

c
(
ρ2

(
Bm,Bm+1

)
> λ

)
6 Cλ−

p
2

[
m∑
n=1

nγ2n
1

2
mp
4 2

np
4

+ 2
mp
2

∞∑
n=m+1

nγ2n
1

2np

]

= Cλ−
p
2

[
1

2
mp
4

m∑
n=1

nγ2n(1− p
4) + 2

mp
2

∞∑
n=m+1

nγ
1

2n(p−1)

]

6 Cλ−
p
2

[
1

2
mp
4

mγ+12m(1− p
4) + 2

mp
2

1

2m(p−θ−1)

]
6 Cλ−

p
2

1

2m( p2−θ−1)
.

Now we are in position to prove the main result of this section.
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Theorem 5.4.1. Outside a B(Ω)-measurable set of capacity zero, Bm is a Cauchy
sequence under the p-variation metric dp. In particular, quasi-surely, the sample paths
of Bt can be lifted as geometric p-rough paths

Bs,t =
(
1, B1

s,t, B
2
s,t

)
, 0 6 s < t 6 1,

which are defined as the limit of sample (geometric p-rough) paths of Bm in GΩp

(
Rd
)

under the p-variation metric dp.

Proof. By Lemma 5.4.2, we have

c

(
I
(
Bm,Bm+1

)
>

1

2mβ

)
6

2∑
j=1

c

(
ρj
(
Bm,Bm+1

)
>

1

2mβ

)
+ c

(
ρ1

(
Bm,Bm+1

) (
ρ1 (Bm) + ρ1

(
Bm+1

))
>

1

2mβ

)
6 2c

(
ρ1

(
Bm,Bm+1

)
>

1

22mβ

)
+ c

(
ρ2

(
Bm,Bm+1

)
>

1

2mβ

)
+ c

(
ρ1 (Bm) >

2mβ

2

)
+ c

(
ρ1

(
Bm+1

)
>

2mβ

2

)
6 C

[
1

2mβp
+

1

2m( p2−θ−2βp−1)
+

1

2m( p2−θ−
βp
2
−1)

]
,

where θ ∈
(
0, p

2
− 1
)
is some fixed constant.

If we choose β such that

0 < β <
p− 2θ − 2

4p
,

then
∞∑
m=1

c

(
I
(
Bm,Bm+1

)
>

1

2mβ

)
<∞.

By the Borel-Cantelli lemma, we have

c

(
lim sup
m→∞

{
ω : I

(
Bm,Bm+1

)
>

1

2mβ

})
= 0,

and the result follows from the inclusion (5.4.4).

With the help of Theorem 5.4.1 and the regularity of
〈
Bα, Bβ

〉
t
(by definition the
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sample paths of
〈
Bα, Bβ

〉
t
have bounded total variation), we are able to apply the

universal limit theorem in rough path theory to define RDEs driven by G-Brownian
motion in the pathwise sense. More precisely, consider the following N -dimensional
RDE in the sense of rough paths:

dYt = b̃(Yt)dt+ h̃αβ(Yt)d
〈
Bα, Bβ

〉
t
+ Vα(Yt)dB

α
t , (5.4.5)

with initial condition Y0 = x, where b̃, h̃αβ, Vα are C3
b -vector fields on RN . Then

outside a B(Ω)-measurable set of capacity zero, (5.4.5) has a unique solution Y in
GΩp(RN). Y is constructed as the limit of the lifting of Y n

t in GΩp

(
RN
)
under the

p-variation metric, where Y n
t is the unique classical solution to the following ordinary

differential equation:

dY n
t = b̃(Y n

t )dt+ h̃αβ(Y n
t )d

〈
Bα, Bβ

〉
t
+ Vα(Y n

t )d(Bn)αt , (5.4.6)

with Y n
0 = x, in which Bn

t is the dyadic piecewise linear interpolation of Bt.

In practice, we usually only consider the first level Y := x+π1(Y) of the solution
instead of the full geometric rough path Y. Therefore, without ambiguity we simply
regard Y as the solution to the RDE (5.4.5). It is easy to see that quasi-surely, Y is
the uniform limit of the solution to (5.4.6) with initial condition Y n

0 = x.

To end this section, we give an explicit description of the second level B2
s,t of Bt

defined in Theorem 5.4.1 which reveals the nature of B2
s,t. Such a result is crucial to

understand the relationship between SDEs and RDEs driven by G-Brownian motion.

Lemma 5.4.3. Assume that Xn converges to X in L2
G(Ω) and converges to Y quasi-

surely. Then X = Y quasi-surely.

Proof. By the Chebyshev inequality for the capacity, we have

c (|Xn −X| > ε) 6
1

ε2
EG
[
|Xn −X|2

]
, ∀ε > 0.

Since
Xn → X in L2

G(Ω),

we can extract a subsequence Xnk , such that for any k > 1,

EG
[
|Xnk −X|

2] 6 1

k4
.
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It follows that
c

(
|Xnk −X| >

1

k

)
6

1

k2
, ∀k > 1,

and
∞∑
k=1

c

(
|Xnk −X| >

1

k

)
<∞.

By the Borel-Cantelli lemma for the capacity, we conclude that Xnk converges to X
quasi-surely. By assumption it follows that X = Y quasi-surely.

The following result shows the nature of the second level of Bt. In the case when
Bt reduces to the classical Brownian motion, it is essentially the relation between
Stratonovich’s and Itô’s integrals.

Proposition 5.4.2. Let Bs,t =
(
1, B1

s,t, B
2
s,t

)
be the quasi-surely defined lifting of Bt

in Theorem 5.4.1. Then for any 0 6 s < t 6 1, we have

B2;α,β
s,t =

ˆ t

s

Bα
s,udB

β
u +

1

2

〈
Bα, Bβ

〉
s,t

(5.4.7)

quasi-surely, where the integral on the R.H.S. of (5.4.7) is Itô’s integral.

Proof. We know from Theorem 5.4.1 that

lim
n→∞

dp(B
n,B) = 0

quasi-surely. From the definition of dp, it is straight forward that Bn,2
s,t converges

uniformly to B2
s,t quasi-surely.

Without loss of generality, we assume that s, t are both dyadic points in [0, 1]. It
follows that when n is large enough,

Bn,2;α,β
s,t =

ˆ
s<u<v<t

d(Bn)αud(Bn)βv

=

ˆ t

s

(Bn)αs,vd(Bn)βv

=
∑

k:[tnk−1,t
n
k ]⊂[s,t]

∆n
kB

β

∆tn

ˆ tnk

tnk−1

(
v − tnk−1

∆tn
Bα
k +

tnk − v
∆tn

Bα
k−1 −Bα

s

)
dv

=
∑

k:[tnk−1,t
n
k ]⊂[s,t]

(
Bα
k−1 +Bα

k

2
−Bα

s

)
∆n
kB

β

=
∑

k:[tnk−1,t
n
k ]⊂[s,t]

(Bα
k−1 −Bα

s )∆n
kB

β +
1

2

∑
k

∆n
kB

α∆n
kB

β.
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From properties of Itô integrals and the cross-variation
〈
Bα, Bβ

〉
t
, we know that the

R.H.S. of the above equality converges to
´ t
s
Bα
s,udB

β
u + 1

2

〈
Bα, Bβ

〉
s,t

in L2
G(Ω).

Consequently, by Lemma 5.4.3 B2
s,t must coincide with

´ t
s
Bα
s,udB

β
u + 1

2

〈
Bα, Bβ

〉
s,t

quasi surely.

5.5 The Relationship between SDEs and RDEs Driven

by G-Brownian Motion

So far we have seen that there are two types of well-defined differential equations
driven by G-Brownian motion: SDEs which are defined in the L2

G-sense under the
G-expectation EG, and RDEs which are quasi surely defined in the pathwise sense.
This section is devoted to the study of the fundamental relationship between these
two types of differential equation.

Consider the following N -dimensional SDE driven by G-Brownian motion on
(Ω, L2

G(Ω),E) :

dXt = b(Xt)dt+ hαβ(Xt)d
〈
Bα, Bβ

〉
t
+ Vα(Xt)dB

α
t , (5.5.1)

with initial condition X0 = x ∈ RN . Here we assume that b, hαβ, Vα are C3
b -vector

fields on RN .

Our aim is to find the correct RDE of the form (5.4.5) whose solution coincides
with Xt quasi surely in the pathwise sense.

Let us first illustrate the idea informally. We use the rough Taylor expansion for
RDEs and Proposition 5.4.2 to seek the correct form of the RDE for Xt.

Consider the following general RDE:

dYt = b̃(Yt)dt+ h̃αβ(Yt)d
〈
Bα, Bβ

〉
t
+ Ṽα(Yt)dB

α
t , (5.5.2)

with initial condition Y0 = x, where b̃, h̃αβ, Ṽα are C3
b -vector fields on RN . By the

regularity of the cross variation process 〈Bα, Bβ〉 and the roughness of Bt studied in
the last section, we know from the rough Taylor expansion theorem that quasi-surely,
for some control ω(s, t), the solution Yt to (5.5.2) satisfies, when ω(s, t) 6 1, that∣∣∣Ys,t − b̃(Ys)(t− s)− h̃αβ(Ys)

〈
Bα, Bβ

〉
s,t
− Ṽα(Ys)B

1;α
s,t −DṼβ(Ys) · Ṽα(Ys)B

2;α,β
s,t

∣∣∣
6 Cω(s, t)θ, (5.5.3)
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where C and θ > 1 are two constants not depending on s, t. Note that inequality
(5.5.3) reveals the local behavior of the solution Yt. It follows from Proposition 5.4.2
that ∣∣∣Ys,t − Ĩs,t∣∣∣ 6 Cω(s, t)θ

quasi-surely, where

Ĩs,t : = b̃(Ys)(t− s) + (h̃αβ(Ys) +
1

2
DṼβ(Ys) · Ṽα(Ys))d

〈
Bα, Bβ

〉
t

+Ṽα(Ys)B
1;α
s,t +DṼβ(Ys) · Ṽα(Ys)

ˆ t

s

Bα
s,udB

β
u . (5.5.4)

Now if we consider the global behavior of Yt, we may sum up inequality (5.5.4) over
dyadic intervals [tnk−1, t

n
k ] and then take the limit (in L2

G(Ω;RN)) to obtain that

Ys,t

=

ˆ t

s

b̃ (Yu) du+

ˆ t

s

(
h̃αβ (Yu) +

1

2
DṼβ (Yu) · Ṽα (Yu)

)
d
〈
Bα, Bβ

〉
u

+

ˆ t

s

Ṽα (Yu) dB
α
u

+
(
L2
G−
)

lim
n→∞

∑
k:[tnk−1,t

n
k ]⊂[s,t]

DṼα

(
Ytnk−1

)
· Ṽβ

(
Ytnk−1

) ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u , (5.5.5)

quasi-surely, where the integrals against Bt are interpreted as Itô’s integrals. On the
other hand, by the distribution of Bt and properties of G-Itô’s integrals, it is not hard
to prove that the L2

G-limit in the last term of the above identity is zero. Therefore,
we know that Yt solves the SDE

dXt = b̃(Xt)dt+

(
h̃αβ(Xt) +

1

2
DṼβ(Xt) · Ṽα(Xt)

)
d
〈
Bα, Bβ

〉
t
+ Ṽα(Xt)dB

α
t .

In other words, if Xt is the solution to the SDE (5.5.1), it is natural to expect that
quasi-surely, Xt is the solution to the following RDE:

dYt = b(Yt)dt+

(
hαβ(Yt)−

1

2
DVβ(Yt) · Vα(Yt)

)
d
〈
Bα, Bβ

〉
+ Vα(Yt)dB

α
t , (5.5.6)

with the same initial condition.
Now we prove this assertion rigorously.
From now on, assume that Xt is the solution to the SDE (5.5.1) and Yt is the

solution to the RDE (5.5.6) with the same initial condition x ∈ RN , where the
coefficients b, hαβ, Vα are C3

b -vector fields on RN . For simplicity we also use the same
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notation to denote constants only depending on d,N,G, p and the coefficients of
(5.5.1), although they may be different from line to line.

The following lemma enables us to show that the L2
G-limit in the last term of the

identity (5.5.5) is zero.

Lemma 5.5.1. Let f ∈ Cb(RN), and s < t be two dyadic points in [0, 1] (i.e. s = tmk
and t = tml for some m and k < l). Then for any α, β = 1, 2, · · · , d,

lim
n→∞

EG
 ∑

k:[tnk−1,t
n
k ]⊂[s,t]

f
(
Ytnk−1

) ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

2 = 0.

Proof. From direct calculation, we have

EG
 ∑

k:[tnk−1,t
n
k ]⊂[s,t]

f
(
Ytnk−1

)ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

2
6 ‖f‖2

∞

∑
k:[tnk−1,t

n
k ]⊂[s,t]

EG
(ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

)2


+2
∑
k<l

[tnk−1,t
n
k ],[tnl−1,t

n
l ]⊂[s,t]

[
EGf

(
Ytnk−1

)(ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

)

·f
(
Ytnl−1

)(ˆ tnl

tnl−1

Bα
tnl−1,u

dBβ
u

)]
6 C‖f‖2

∞

∑
k:[tnk−1,t

n
k ]⊂[s,t]

(∆tn)2

+2
∑
k<l

[tnk−1,t
n
k ],[tnl−1,t

n
l ]⊂[s,t]

(
EG
[(

f
(
Ytnk−1

)(ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

)
f
(
Ytnl−1

))+

·EG
[ˆ tnl

tnl−1

Bα
tnl−1,u

dBβ
u

∣∣∣Ωtnl−1

]]

+ EG
[(
f(Ytnk−1

)(ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u

)
f
(
Ytnl−1

))−

·EG
[
−
ˆ tnl

tnl−1

Bα
tnl−1,u

dBβ
u

∣∣∣Ωtnl−1

]])
6 C‖f‖2

∞∆tn,
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and the result follows easily.

Now we are in a position to prove the main result of this section.

Theorem 5.5.1. Quasi-surely, we have

Xt = Yt, ∀t ∈ [0, 1].

Proof. Since the coefficients of the RDE (5.5.6) are in C3
b (RN), quasi-surely we can

define the following pathwise control

ω(s, t) =
(
‖V ‖2,∞‖B‖p; [s, t]

)p
+ ‖b‖1,∞ (t− s)

+

∥∥∥∥h− 1

2
DV · V

∥∥∥∥
1,∞
‖〈B,B〉‖1;[s,t]

for (s, t) ∈ ∆, where ‖·‖m,∞ denotes the maximum of uniform norms of derivatives up
to order m. It follows from the rough Taylor expansion (see [26], Corollary 12.8) that
quasi-surely, there exists some positive constant θ > 1, such that for 0 6 s < t 6 1,

when ω(s, t) 6 1, we have
|Ys,t − Is,t| 6 Cω(s, t)θ,

where

Is,t = b (Ys) (t− s) +

(
hαβ (Ys)−

1

2
DVβ (Ys) · Vα (Ys)

)〈
Bα, Bβ

〉
s,t

+ Vα (Ys)B
1;α
s,t

+DVβ (Ys) · Vα (Ys)B
2;α,β
s,t

By Proposition 5.4.2, we have quasi-surely,∣∣∣Ys,t − b (Ys) (t− s)− hαβ (Ys)
〈
Bα, Bβ

〉
s,t
− Vα (Ys)B

1;α
s,t

−DVβ (Ys) · Vα (Ys)

ˆ t

s

Bα
s,udB

β
u

∣∣∣∣ 6 Cω(s, t)θ.(5.5.7)

Now consider fixed s < t being two dyadic points in [0, 1].When n is large enough,
by applying inequality (5.5.7) on each small dyadic interval

[
tnk−1, t

n
k

]
⊂ [s, t] and

summing up through the triangle inequality, we obtain that

∣∣Ys,t − Ins,t∣∣ 6 C
∑

ω
(
tnk−1, t

n
k

)θ
6 Cω(s, t) max

{
ω
(
tnk−1, t

n
k

)θ−1
:
[
tnk−1, t

n
k

]
⊂ [s, t]

}
,
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quasi-surely, where

Ins,t =
∑

b
(
Ytnk−1

)
∆tn +

∑
hαβ

(
Ytnk−1

)
∆n
k

〈
Bα, Bβ

〉
+
∑

Vα

(
Ytnk−1

)
∆n
kB

α

+
∑

DVβ

(
Ytnk−1

)
· Vα

(
Ytnk−1

) ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u ,

and each sum is over all k such that
[
tnk−1, t

n
k

]
⊂ [s, t]. It follows that quasi-surely,

Ins,t → Ys,t, n→∞.

On the other hand, the following convergence in L2
G

(
Ω;RN

)
holds:

∑
b
(
Ytnk−1

)
∆tn →

ˆ t

s

b (Yu) du,∑
hαβ

(
Ytnk−1

)
∆n
k

〈
Bα, Bβ

〉
→
ˆ t

s

hαβ (Yu) d
〈
Bα, Bβ

〉
u
,∑

Vα

(
Ytnk−1

)
∆n
kB

α →
ˆ t

s

Vα (Yu) dB
α
u ,

as n→∞.
The reason is the following. For simplicity we only consider the third one, as the

first two are similar (and in fact easier). It is straight forward that

ˆ 1

0

∣∣∣∣∣Vα (Yt)−
2n∑
k=1

Vα

(
Ytnk−1

)
1[tnk−1,t

n
k )(t)

∣∣∣∣∣
2

dt

=
2n∑
k=1

ˆ tnk

tnk−1

∣∣∣Vα (Yt)− Vα
(
Ytnk−1

)∣∣∣2 dt
6 C

2n∑
k=1

ˆ tnk

tnk−1

∣∣∣Yt − Ytnk−1

∣∣∣2 dt
6 C

2n∑
k=1

‖Y ‖2
p;[tnk−1,t

n
k ]

∆tn

6 C

(
2n∑
k=1

‖Y ‖p
p;[tnk−1,t

n
k ]

∆tn

) 2
p

6 C (∆tn)
2
p ‖Y ‖2

p;[0,1] ,

where C depends only on Vα. Therefore, it suffices to show that ‖Y ‖p−var;[0,1] ∈
L2
G(Ω), as it implies the G-Itô integrability of Vα (Yt) and the desired convergence in
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L2
G

(
Ω;RN

)
holds. For simplicity we assume that Yt is the solution to the following

RDE
dYt = Vα (Yt) dB

α
t

with Y0 = ξ (there is no substantial difference because dt and d
〈
Bα, Bβ

〉
t
are more

regular than dBt), then by [26], Theorem 10. 14, we know that

‖Y ‖p;[0,1] 6 C ‖B‖p;[0,1] ∨ ‖B‖
p
p;[0,1] .

Therefore, we only need to show that ‖B‖pp;[0,1] ∈ L2
G(Ω). For this purpose, we use

Proposition 5.4.1 to control the p-variation norm by the functions ρ1, ρ2 defined in
(5.4.2). It follows that

‖B‖p 6 C(1 + ρ1(B)2 + ρ2(B)).

Therefore, it remains to show that ρ1(B)2p, ρ2(B)p ∈ L1
G(Ω). First consider level one.

By the distribution of Bt, we have∥∥∥∥∥
∞∑
n=1

nγ
2n∑
k=1

∣∣∣B1
tnk−1,t

n
k

∣∣∣p∥∥∥∥∥
2

6
∞∑
n=1

nγ
2n∑
k=1

∥∥∥∣∣∣B1
tnk−1,t

n
k

∣∣∣p∥∥∥
2

6
∞∑
n=1

nγ (∆tn)
p
2
−1

< ∞,

and we know that ρ1(B)2p ∈ L1
G(Ω). Now consider level two. By Proposition 5.4.2

and the distribution of Bt and 〈B,B〉t, we have

∥∥∥∥∥
∞∑
n=1

nγ
2n∑
k=1

∣∣∣B2
tnk−1,t

n
k

∣∣∣ p2∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑
n=1

nγ
2n∑
k=1

∣∣∣∣∣
ˆ tnk

tnk−1

Btnk−1,u
⊗ dBu +

1

2
〈B,B〉tnk−1,t

n
k

∣∣∣∣∣
p
2

∥∥∥∥∥∥
2

6
∞∑
n=1

nγ
2n∑
k=1

∥∥∥∥∥∥
∣∣∣∣∣
ˆ tnk

tnk−1

Btnk−1,u
⊗ dBu +

1

2
〈B,B〉tnk−1,t

n
k

∣∣∣∣∣
p
2

∥∥∥∥∥∥
2

6 C
∞∑
n=1

nγ (∆tn)
p
2
−1

< ∞.

It follows that ρ2(B)p ∈ L1
G(Ω). Therefore, the desired L2

G-convergence holds.
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In addition, by Lemma 5.5.1 we also have the following L2
G-convergence:

∑
DVβ

(
Ytnk−1

)
· Vα

(
Ytnk−1

)ˆ tnk

tnk−1

Bα
tnk−1,u

dBβ
u → 0, n→∞.

Consequently, in L2
G

(
Ω;RN

)
,

Ins,t →
ˆ t

s

b (Yu) du+

ˆ t

s

hαβ (Yu) d
〈
Bα, Bβ

〉
u

+

ˆ t

s

Vα (Yu) dB
α
u ,

as n→∞.
From Lemma 5.4.3, we conclude that

Ys,t =

ˆ t

s

b (Yu) du+

ˆ t

s

hαβ (Yu) d
〈
Bα, Bβ

〉
u

+

ˆ t

s

Vα (Yu) dB
α
u

quasi-surely. Since Xt and Yt are both quasi-surely continuous, it follows that X
coincides with Y quasi-surely.

Remark 5.5.1. As we have mentioned at the beginning of Section 5.3, it is possible
to prove Theorem 5.5.1 by establishing the Wong-Zakai type approximation. More
precisely, if we let Xn

t to be the Euler-Maruyama approximation of the SDE (5.5.1)
and let Y n

t to be the unique classical solution to the following ODE:

dY n
t = b (Y n

t ) dt+

(
hαβ (Y n

t )− 1

2
DVβ (Y n

t ) · Vα (Y n
t )

)
d
〈
Bα, Bβ

〉
t
+ Vα (Y n

t ) d (Bn)αt

with Xn
0 = Y n

0 = ξ, where Bn
t is the dyadic piecewise linear interpolation of Bt, then

by using our main result in Section 5.3 and establishing related L2
G-estimates, we can

prove that
sup
t∈[0,1]

EG
[
|Xn

t − Y n
t |

2] 6 C
√

1 + ξ2 (∆tn)
1
2 .

In other words, Y n
t converges to the solution Xt to the SDE (5.5.1) in the L2

G-sense.
However, we know that Y n

t converges uniformly to the solution Yt to the RDE (5.5.6)
quasi-surely. Again by Lemma 5.4.3 and continuity, we conclude that X coincides
with Y quasi-surely.

From the above discussion, if we forget the RDE (5.5.6) and only consider the L2
G-

limit of Y n
t , it seems that there is nothing to do with rough paths at all as everything

is well-defined in the classical sense. However, the crucial point of understanding the
convergence of Y n

t in the pathwise sense lies in the fact that Bt can be regarded as
a geometric rough path (i.e. the lifting defined in Section 5.4) with approximating
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sequence in GΩp

(
Rd
)
being the lifting of the natural dyadic piecewise linear interpo-

lation Bn
t . This is exactly what the universal limit theorem tells us.

Remark 5.5.2. From the RDE point of view, it is possible to reduce the regularity
assumptions on the coefficients. In particular, since the regularity of t and 〈Bα, Bβ〉t
are both “better” than Bt, the regularity assumptions on the coefficients of dt and
d
〈
Bα, Bβ

〉
t
can be weaker than the one imposed on the coefficient of dBt. However,

we are not going to present the results in such generality. We refer the reader to [26]
for general existence and uniqueness results for RDEs.

5.6 SDEs on a Differentiable Manifold Driven by G-

Brownian Motion

Our main result in Section 5.5 can be used to construct SDEs on a differentiable
manifold driven by G-Brownian motion, which is the main focus of this section. Our
development is based on the idea in the classical case, for which the reader may refer
to the monographs by K.D. Elworthy [22], E.P. Hsu [36], N. Ikeda and S.Watanabe
[37]. This part is the foundation of constructing G-Brownian motion on a Riemannian
manifold in the next section.

In classical stochastic analysis, SDEs on a manifold are constructed using the
Stratonovich type formulation, which can be regarded as a pathwise approach. The
reason for using the Stratonovich type formulation instead of the Itô type one is the
following. First of all, the notion of SDE can be introduced by using test functions
on the manifold from an intrinsic point of view, which is consistent with ordinary dif-
ferential calculus and invariant under diffeomorphisms. Moreover, when we construct
solutions extrinsically, we can prove that almost-surely, the solutions to the extended
SDEs which start on the manifold always live on it. This reveals the intrinsic nature
of ordinary differential equations.

In the setting of G-expectations, we adopt the same idea for the development.
However, there is a major difficulty in this situation. The method of constructing
solutions in the classical case from the extrinsic point of view depends heavily on
the localization technique, which is not available in the setting of G-expectations,
mainly due to the reason that concepts of information flow and stopping times are
not well understood. To get around this difficulty, we use our main result in Section
5.5 to obtain a pathwise construction. The advantage of such an approach is that we
can still use localization arguments but do not need to care about measurability and
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integrability issues under G-expectation.
Now assume that M is a differentiable manifold. For technical reasons we fur-

ther assume that M is compact (it is not necessary if we impose restrictive geomet-
ric conditions on the manifold and the generating vector fields). Let {b, hαβ, Vα :

α, β = 1, · · · , d} be a family of C3-vector fields on M, and let Bt be the canonical
d-dimensional G-Brownian motion on the path space (Ω, L2

G(Ω),EG), where G is a
function given by (5.2.2).

Consider the following symbolic Stratonovich type SDE over [0, 1]:dXt = b (Xt) dt+ hαβ (Xt) d
〈
Bα, Bβ

〉
t
+ Vα(Xt) ◦ dBα

t ,

X0 = ξ ∈M,
(5.6.1)

on M .

Definition 5.6.1. A solution Xt to the SDE (5.6.1) is an M -valued continuous
stochastic process such that for any f ∈ C∞(M) and α, β = 1, · · · , d,

{hαβf(Xt) : t ∈ [0, 1]} ∈M1
G(0, 1), {Vαf(Xt) : t ∈ [0, 1]} ∈M2

G(0, 1),

and the following equality holds on [0, 1] :

f(Xt) = f(ξ)+

ˆ t

0

bf(Xs)ds+

ˆ t

0

hαβf(Xs)d
〈
Bα, Bβ

〉
s
+

ˆ t

0

Vαf(Xs)◦dBα
s , (5.6.2)

where the last term is defined as
ˆ t

0

Vαf(Xs) ◦ dBα
s :=

ˆ t

0

Vαf(Xs)dB
α
s +

1

2

ˆ t

0

VβVαf(Xs)d
〈
Bα, Bβ

〉
s
.

Remark 5.6.1. Definition 5.6.1 is intrinsic. It is easy to see that Definition 5.6.1 is
consistent with the Euclidean case.

Now we construct the solution to (5.6.1) from the extrinsic point of view.
According to the Whitney embedding theorem (see the monograph by G. de Rham

[17]), M can be embedded into some ambient Euclidean space RN as a submanifold
such that the image i(M) of M is closed in RN . We simply regard M as a subset of
RN .

Let F 1, · · · , FN ∈ C∞(M) be the coordinate functions onM. The following result
is easy to prove. It is similar to the classical case.
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Proposition 5.6.1. Xt is a solution to (5.6.1) if and only if for any i = 1, · · · , N,
α, β = 1, · · · , d,

{hαβF i(Xt) : t ∈ [0, 1]} ∈M1
G(0, 1), {VαF i(Xt) : t ∈ [0, 1]} ∈M2

G(0, 1),

and for any t ∈ [0, 1],

F i(Xt) = F i(ξ) +

ˆ t

0

bF i(Xs)ds+

ˆ t

0

hαβF
i(Xs)d

〈
Bα, Bβ

〉
s

+

ˆ t

0

VαF
i(Xs) ◦ dBα

s .

(5.6.3)

Proof. Necessity is obvious since F i ∈ C∞(M) for any i = 1, 2, · · · , N.
Now consider sufficiency. Let f ∈ C∞(M), and choose a C∞-extension f̃ of f with

compact support in RN (it is possible since M is compact). Then for any x ∈M,

f(x) = f̃
(
F 1(x), · · · , FN(x)

)
,

and thus
f(Xt) = f̃

(
F 1(Xt), · · · , FN(Xt)

)
, ∀t ∈ [0, 1].

Since M is compact and f̃ is smooth with compact support, it follows from the G-Itô
formula that for t ∈ [0, 1],

f̃
(
F 1(Xt), · · · , FN(Xt)

)
= f(ξ) +

ˆ t

0

∂f̃

∂yi
(
bF i(Xs)ds+ hαβF

i(Xs)d
〈
Bα, Bβ

〉
s

+VαF
i(Xs) ◦ dBα

s

)
= f(ξ) +

ˆ t

0

(
bf(Xs)ds+ hαβf(Xs)d

〈
Bα, Bβ

〉
s

+ Vαf(Xs) ◦ dBα
s

)
,

where we have used the simple fact that for any C1-vector field V on M,

V f =
N∑
i=1

∂f̃

∂yi
V F i.

By Definition 5.6.1, we know that Xt is a solution to the SDE (5.6.1).

Now we prove the existence and uniqueness of (5.6.1) by using the main result of
Section 5.5, namely, a pathwise approach based on the associated RDE.

Let b̃, h̃αβ, Ṽα be C3
b -extensions (not unique) of the vector fields b, hαβ, Vα. Consider
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the following Stratonovich type SDE in the ambient space RN :

dXt = b̃(Xt)dt+ h̃αβ(Xt)d
〈
Bα, Bβ

〉
t
+ Ṽα(Xt) ◦ dBα

t (5.6.4)

with X0 = x ∈ RN , which is interpreted as the following Itô type SDE:

dXt = b̃(Xt)dt+

(
h̃αβ(Xt) +

1

2
DṼα(Xt) · Ṽβ(Xt)

)
d
〈
Bα, Bβ

〉
t
+ Ṽα(Xt)dB

α
t .

According to Section 5.5, we can alternatively interpret (5.6.4) as an RDE which is
defined pathwisely. Both the SDE and the RDE have unique solutions, and according
to Theorem 5.5.1 they coincide quasi-surely. Our aim is to show that quasi-surely,
the solution Xt to (5.6.4) never leaves M and it is the unique solution to (5.6.1).

The following result is important to prove the existence and uniqueness of the
SDE (5.6.1) on the manifold M .

Proposition 5.6.2. Let xt be a continuous path with bounded total variation in Rd,
and let W1, · · · ,Wd be a family of C1-vector fields on M and W̃1, · · · , W̃d be their
C1
b -extensions to RN . Consider the following ODE in the ambient space RN over

[0, 1] :

dyt = W̃α(yt)dx
α
t (5.6.5)

with y0 = x ∈ M. Then the solution yt ∈ M for all t ∈ [0, 1]. Moreover, yt does not
depend on extensions of the vector fields.

Proof. Let F (x) := d(x,M)2 be the squared distance function to the submanifold
M. It follows that F is smooth in an open neighborhood of M . By using the cut-off
function we may assume that F ∈ C∞b (M). Now we are able to choose an open
neighborhood U of M , such that for any x ∈ U, F (x) = 0 if and only if x ∈ M .
Moreover, since W̃α (α = 1, 2, · · · , d) are tangent vector fields of M when restricted
to M, U can be chosen such that for any x ∈ U and α = 1, 2, · · · , d,∣∣∣W̃αF (x)

∣∣∣ 6 CF (x), (5.6.6)

for some positive constant C depending on U. The function F (x) was used in [36] to
construct SDEs on M driven by classical Brownian motion.

Since xt is a path with bounded total variation and y0 = ξ ∈M , by the change of

140



DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

variables formula in ordinary calculus, we have

F (yt) =

ˆ t

0

W̃αF (ys)dx
α
s , ∀t ∈ [0, 1].

Define τ := inf {t ∈ [0, 1] : yt /∈ U} . It follows from (5.6.6) that

F (yt) 6 C

ˆ t

0

F (ys)d|x|s, ∀t ∈ [0, τ ],

where |x|t is the total variation of the path xt.
By iteration and Fubini’s theorem, on [0, τ ] we have

F (yt) 6 C2

ˆ t

0

(ˆ s

0

F (yu)d|x|u
)
d|x|s

= C2

ˆ t

0

(|x|t − |x|s)F (ys)d|x|s.

By induction, it is easy to see that for any k > 1,

F (yt) 6 Ck

ˆ t

0

(|x|t − |x|s)k−1

(k − 1)!
F (ys)d|x|s, ∀t ∈ [0, τ ].

Since F is bounded, we obtain further that for any k > 1,

F (yt) 6 ‖F‖∞
Ck(|x|t − |x|0)k

k!
, ∀t ∈ [0, τ ].

By letting k →∞, it follows that F (yt) ≡ 0 on [0, τ ], which implies that yt ∈ M for
any t ∈ [0, τ ]. Since yt is continuous, the only possibility is that yt never leaves M on
[0, 1].

If we rewrite the ODE (5.6.5) in its integral form:

yt = ξ +

ˆ t

0

W̃α(ys)dx
α
s , t ∈ [0, 1], (5.6.7)

we know from the previous discussion that equation (5.6.7) depends only on the
values of W̃α on M, that is, of Wα (α = 1, 2, · · · , d). In other words, if Ŵα is another
extension ofWα and ŷt is the solution to the corresponding ODE with the same initial
condition, ŷt is also a solution to (5.6.5). By uniqueness, we have y = ŷ. Therefore,
yt does not depend on the extensions of the vector fields.

With the help of Proposition 5.6.2, we can prove the following existence and
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uniqueness result.

Theorem 5.6.1. Let b, hαβ, Vα be C3-vector fields on M. Then the Stratonovich type
SDE (5.6.1) has a solution Xt which is unique quasi surely.

Proof. Fix C3
b -extensions b̃, h̃αβ, Ṽα of b, hαβ, Vα, and let Xt be the solution to the

Stratonovich type SDE (5.6.4) in RN over [0, 1]. By Theorem 5.5.1, quasi-surely Xt

coincides with the solution to (5.6.4) when it is interpreted as an RDE. Since M
is closed in RN , it follows from Proposition 5.6.2 and Theorem 1.2.2 (the universal
limit theorem) that quasi-surely, Xt never leaves M over [0, 1]. In this case, (5.6.4)
is equivalent to (5.6.3), which implies from Proposition 5.6.1 that Xt is a solution to
(5.6.1). On the other hand, if Yt is another solution to (5.6.1), then it is a solution
to (5.6.4) (interpreted as an SDE or an RDE). By the uniqueness of RDEs, we know
that X = Y quasi-surely.

Remark 5.6.2. It is possible to formulate uniqueness in the L2
G-sense when M is

regarded as a closed submanifold of RN . However, we use the quasi sure formulation
because the notion itself is intrinsic although the proof is developed from the extrinsic
point of view.

5.7 G-Brownian Motion on a Compact Riemannian

Manifold and the Generating Nonlinear Heat

Flow

In this section, we construct G-Brownian motion on a compact Riemannian man-
ifold for a wide and interesting class of G-functions, based on J. Eells, K.D. Elworthy
and P. Malliavin’s horizontal lifting construction (see [22], [36], [37] for the construc-
tion of Brownian motion on a Riemannian manifold and related topics). Roughly
speaking, we “roll” an Euclidean G-Brownian motion up to the Riemannian manifold
“without slipping” via a proper frame bundle (for the class of G-functions we are
interested in, such a bundle is the orthonormal frame bundle).

It should be pointed out that, unlike the classical case, the non-compact situation
becomes much more complicated as we may encounter issues of integrability and local-
ization under G-expectation when explosion is taken into account. In particular, the
notion of localization and random times is not well understood under G-expectation.
Here we only consider the compact case and leave the study of explosion in the non-
compact case for future research.

142



DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

In the classical case, we know that the law of a d-dimensional Brownian motion Bt

is invariant under orthogonal transformations on Rd. This is a crucial point to obtain
a linear parabolic PDE (the standard heat equation associated with the Bochner hor-
izontal Laplacian ∆O(M)) on the orthonormal frame bundle O(M) over a Riemannian
manifold M governing the law of the horizontal lifting ξt of Bt to O(M), which is
invariant under orthogonal transformations along fibers. It is such an invariance that
enables us to “project” the PDE down to the base manifold M and obtain the stan-
dard heat equation associated with the Laplace-Beltrami operator ∆M on M. This
heat equation governs the law of the development Xt = π(ξt) of Bt to the Riemannian
manifold M via the horizontal lifting ξt. As a stochastic process on M, although Xt

depends on the initial orthonormal frame ξ at x as well as the initial position x ∈M ,
the law of Xt depends only on the initial position x, and it is characterized by the
Laplace-Beltrami operator ∆M via the heat equation. Equivalently, it can be shown
that the law of Xt is the unique solution to the martingale problem on M associated
with ∆M starting at x. Xt is called the Brownian motion on M starting at x in the
sense of Eells, Elworthy and Malliavin.

It is quite natural to expect that the Brownian sample paths Xt on M depend
on the initial orthonormal frame ξ at x if we look back into the Euclidean case, in
which we actually fix the standard orthonormal basis in advance and define Brownian
motion in the corresponding coordinate system. If we use another orthonormal basis,
we obtain a process (still a Brownian motion) which is an orthogonal transformation
of the original Brownian motion. Therefore, it is the law, which is characterized by
the Laplace operator on Rd, rather than the sample paths that captures the intrinsic
nature of the Brownian motion, and this idea can be developed in a Riemannian
geometric setting.

It should be remarked that in a pathwise manner, we can lift Bt horizontally to
the total frame bundle F(M) instead of O(M) by solving the same SDE generated
by the horizontal vector fields but using a general frame instead of an orthonormal
one as initial condition. Moreover, we can write down the generating heat equation
on F(M) which takes the same form as the one on O(M). The key difference here is
that although the horizontal lifting of Bt can be projected onto M, the heat equation
on F(M) cannot. In other words, the heat equation is not invariant under non-
degenerate linear transformations along fibers. This becomes less interesting to us,
as we are not able to obtain an intrinsic law of the development of Bt on M which
is independent of initial frames. The fundamental reason for using the orthonormal
frame bundle is that the Laplace operator on Rd is invariant exactly under orthogonal
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transformations.
The case of G-Brownian motion can be studied in a similar manner. From the

last section we are able to solve SDEs on a differentiable manifold (in particular, on
F(M)) driven by an Euclidean G-Brownian motion Bt. By projection we obtain the
development Xt of Bt toM . As we have pointed out before, such a development is not
interesting unless we are able to prove that the law of Xt depends only on the initial
position x rather than the initial frame. In fact, if the law of Xt depends on the initial
frame, we might not be able to write down the generating PDE of Xt intrinsically on
M although it is possible on F(M). Therefore, for a given G-function, it is crucial
to identify a proper frame bundle over M with a specific structure group such that
parallel transport preserves fibers and the generating PDE of the horizontal lifting ξt
of Bt to such a frame bundle is invariant under actions by the structure group along
fibers. It follows that the law of Xt is independent of initial frames in the fiber over
x (x is the starting point of Xt) and we should be able to obtain the generating PDE
of Xt, which is associated with G and intrinsically defined on M.

As we will see, such an idea depends on a crucial algebraic quantity associated
with the G-function called the invariant group I(G) of G, which will be defined later
on. In this section, we are mainly interested in the case when I(G) is the orthogonal
group. We will see that it includes a wide class of G-functions. In particular, one
example is the generalization of the one-dimensional Barenblatt equation to higher
dimensions.

The concept of the invariant group of G is motivated from the study of the in-
finitesimal diffusive nature of SDEs driven by G-Brownian motion and their generat-
ing PDEs, which is discussed below.

We first consider the Euclidean case.
From now on, we always assume that G : S(d) → R is a given continuous,

sublinear and monotonic function. Equivalently, from Section 5.2 we know that G is
represented by

G(A) =
1

2
sup
B∈Σ

tr(AB), ∀A ∈ S(d), (5.7.1)

where Σ is some bounded, closed and convex subset of S+(d). Let Bt be the standard
d-dimensional G-Brownian motion on the path space.

Assume that V1, · · · , Vd are C3
b -vector fields on RN . Consider the following N -
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dimensional Stratonovich type SDE over [0, 1]:dXt,x = Vα(Xt,x) ◦ dBα
t ,

X0,x = x,
(5.7.2)

which is either interpreted as an RDE or the associated Itô type SDEdXt,x = Vα(Xt,x)dB
α
t + 1

2
DVα(Xt,x)Vβ(Xt,x)

〈
Bα, Bβ

〉
t
,

Xt,x = x,

according to the main result of Section 5.5.
The following result characterizes the generator of the SDE (5.7.2) in terms of G.

It describes the infinitesimal diffusive nature of (5.7.2). One might compare it with
the case of linear diffusion processes.

Proposition 5.7.1. For any p ∈ RN , A ∈ S(N),

lim
δ→0+

1

δ
EG
[
〈p,Xδ,x − x〉+

1

2
〈A (Xδ,x − x) , Xδ,x − x〉

]
=G

((
1

2
〈p,DVα(x)Vβ(x) +DVβ(x)Vα(x)〉+ 〈AVα(x), Vβ(x)〉

)
16α,β6d

)
. (5.7.3)

Proof. From the distribution of Bt we know that

G(A) =
1

2
EG [〈AB1, B1〉]

=
1

2t
EG [〈ABt, Bt〉] , ∀t > 0.

Therefore, the R.H.S. of (5.7.3) is equal to

Iδ =
1

2δ
EG
[
(〈p,DVα(x)Vβ(x)〉+ 〈AVα(x), Vβ(x)〉)Bα

δ B
β
δ

]
,

for any δ > 0.

Since

Xδ,x − x =

ˆ δ

0

Vα(Xs,x)dB
α
s +

1

2

ˆ δ

0

DVα(Xs,x)Vβ(Xs,x)d
〈
Bα, Bβ

〉
s
,
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by the properties of EG and the distribution of Bt, we have∣∣∣∣1δEG
[
〈p,Xδ,x − x〉+

1

2
〈A(Xδ,x − x), Xδ,x − x〉

]
− Iδ

∣∣∣∣
6

∣∣∣∣ 1

2δ
EG
[ˆ δ

0

〈p,DVα(Xs,x) · Vβ(Xs,x)〉 d
〈
Bα, Bβ

〉
s

+

〈
A

ˆ δ

0

Vα(Xs,x)dB
α
s ,

ˆ δ

0

Vβ(Xs,x)dB
β
s

〉]
− 1

2δ
EG
[
〈p,DVα(x) · Vβ(x)〉

〈
Bα, Bβ

〉
δ

+
〈
AVα(x)Bα

δ , Vβ(x)Bβ
δ

〉]∣∣∣∣+ Cδ
1
2 + Cδ

6
1

2δ

(
C

ˆ δ

0

√
EG
[
|Xs,x − x|2

]
ds+ C

ˆ δ

0

EG
[
|Xs,x − x|2

]
ds

+Cδ
1
2

√ˆ δ

0

EG
[
|Xs,x − x|2

]
ds

+ Cδ
1
2 + Cδ,

where we have also used the fact that G-Itô integrals and Bα
δ B

β
δ − 〈Bα, Bβ〉δ do not

have mean uncertainty. Here C always denotes positive constants independent of δ.
Now the result follows easily from the fact that

EG[|Xt,x − x|2] 6 Ct, ∀t ∈ [0, 1].

The infinitesimal diffusive nature of (5.7.2) characterized by Proposition 5.7.1
enables us to establish the generating PDE of (5.7.2) in terms of viscosity solutions.
The understanding of this PDE, especially its intrinsic nature, is essential for the
development in a geometric setting.

Theorem 5.7.1. Let ϕ ∈ C∞b
(
RN
)
, and define

u(t, x) = EG[ϕ(Xt,x)], (t, x) ∈ [0, 1]× RN .

Then u(t, x) is the unique viscosity solution to the following nonlinear parabolic PDE:
∂u
∂t
−G

((
V̂αVβu

)
16α,β6d

)
= 0,

u(0, x) = ϕ(x),

(5.7.4)

where V̂αVβ denotes the symmetrization of the second order differential operator VαVβ,
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that is,

V̂αVβ =
1

2
(VαVβ + VβVα).

Proof. The continuity of u in t and x can be shown in a standard way by using the
Lipschitz continuity of ϕ (in fact, u is Lipchitz in x and 1/2-Hölder continuous in t).
Here the proof is omitted.

Fix (t0, x0) ∈ (0, 1) × RN . Let v(t, x) ∈ C2,3
b

(
[0, 1]× RN

)
be a test function such

that
u(t0, x0) = v(t0, x0)

and
u(t, x) 6 v(t, x), ∀(t, x) ∈ [0, 1]× RN .

For 0 < δ < t0, by the uniqueness of the SDE (5.7.2) and the fact that Bt and
〈Bα, Bβ〉t have independent and identically distributed increments, we know that

EG [ϕ(Xt0,x0)|Ωδ] = EG
[
ϕ(Xδ,x0 +

ˆ t0

δ

Vα (Xs,x0) dB
α
s

+
1

2

ˆ t0

δ

DVα (Xs,x0) · Vβ (Xs,x0) d
〈
Bα, Bβ

〉
s
)

∣∣∣∣Ωδ

]
= EG [ϕ (Xt0−δ,y)]

∣∣∣y=Xδ,x0
.

Therefore,

v(t0, x0) = EG [ϕ (Xt0,x0)]

= EG
[
EG [ϕ (Xt0,x0)|Ωδ]

]
= EG [u (t0 − δ,Xδ,x0)]

6 EG [v (t0 − δ,Xδ,x0)] .

It follows that

0 6 EG [v (t0 − δ,Xδ,x0)− v(t0, x0)]

= EG [v (t0 − δ,Xδ,x0)− v (t0, Xδ,x0) + v (t0, Xδ,x0)− v(t0, x0)]

= EG
[
−δ
ˆ 1

0

∂v

∂t
(t0 − (1− α)δ,Xδ,x0) dα + 〈∇v(t0, x0), Xδ,x0 − x0〉

+

ˆ 1

0

ˆ 1

0

〈
∇2v(t0, x0 + αβ (Xδ,x0 − x0)) (Xδ,x0 − x0) , Xδ,x0 − x0

〉
αdαdβ

]
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6− δ∂v
∂t

(t0, x0) + EG [〈∇v(t0, x0), Xδ,x0 − x0〉

+
1

2

〈
∇2v(t0, x0) (Xδ,x0 − x0) , Xδ,x0 − x0

〉]
+ EG [|Iδ|] + EG [|Jδ|] ,

where

Iδ = −δ
ˆ 1

0

(
∂v

∂t
(t0 − (1− α)δ,Xδ,x0)−

∂v

∂t
(t0, x0)

)
dα,

Jδ =

ˆ 1

0

ˆ 1

0

〈
(∇2v(t0, x0 + αβ(Xδ,x0 − x0))

−∇2v(t0, x0))(Xδ,x0 − x0), Xδ,x0 − x0

〉
αdαdβ.

By a standard argument one can easily show that

EG[|Iδ|] + EG[|Jδ|] 6 Cδ
3
2 ,

where C is a positive constant independent of δ. On the other hand, the R.H.S. of
(5.7.3) applying to

p = ∇v(t0, x0), A = ∇2v(t0, x0),

is exactly the same as G
((

V̂αVβv(t0, x0)
)

16α,β6d

)
. Therefore, by Proposition 5.7.1,

we arrive at
∂v

∂t
(t0, x0)−G

((
V̂αVβv(t0, x0)

)
16α,β6d

)
6 0.

Consequently, u(t, x) is a viscosity sub-solution to (5.7.4).
Similarly, one can show that u(t, x) is a viscosity supersolution to (5.7.4). There-

fore, u(t, x) is a viscosity solution to (5.7.4).
The reason for uniqueness is the following. Define a function F : RN × RN ×

S(N)→ R by the R.H.S. of (5.7.3), that is,

F (x, p, A)

=G

((
1

2
〈p,DVα(x) · Vβ(x) +DVβ(x) · Vα(x)〉+ 〈AVα(x), Vβ(x)〉

)
16α,β6d

)
,

for (x, p, A) ∈ RN × RN × S(N). It is easy to prove that F is sublinear in (p,A) and
monotonically increasing in S(N), due to the same properties held by G. Moreover,
F satisfies the continuity condition (Assumption (G) in [58], Appendix C) for the
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uniqueness of the associated nonlinear PDE, due to the regularity of the given vector
fields Vα. In other words, all properties of G to ensure uniqueness are preserved in F,
and the space dependence of F are uniformly controlled. Therefore, according to the
uniqueness results (see [15], [58]), the parabolic PDE has a unique viscosity solution,
which is given by u(t, x).

Example 5.7.1. An example which motivates the study of G-Brownian motion on
a Riemannian manifold is the following.

Let Q ∈ GL(d,R), where GL(d,R) is the group of d× d real invertible matrices.
Define BQ

t = QBt, and for ϕ ∈ C∞b (Rd), define

u(t, x) = EG
[
ϕ
(
x+BQ

t

)]
, (t, x) ∈ [0, 1]× Rd.

Then u(t, x) is the unique viscosity solution to the PDE:∂u
∂t
−G

(
QT · ∇2u ·Q

)
= 0,

u(0, x) = ϕ(x).

In fact, it follows directly from Theorem 5.7.1 if we regard x+BQ
t as the solution to

the SDE over [0, 1]: dXt,x = Qα ◦ dBα
t ,

X0,x = x,
(5.7.5)

where Q = (Q1, · · · , Qd), and each Qα is a constant vector field on Rd (so the SDE
(5.7.5) coincides exactly with the Itô type one).

The result of Theorem 5.7.4 is similar to the discussion of the nonlinear Feynman-
Kac formula in [58], in which the solution to a forward-backward SDE is used to
represent the viscosity solution to an associated nonlinear backward parabolic PDE.
Here the intrinsic nature of (5.7.4) is essential and should be emphasized below.

It is not hard to see that the nonlinear second order differential operator

G

((
V̂αVβ·

)
16α,β6d

)
is intrinsically defined on RN , since V1, · · · , Vd are vector fields independent of co-
ordinates. Moreover, in local coordinates it preserves the same properties of the
G-function which is defined under the standard coordinate system of Rd. In particu-
lar, it shares the same ellipticity as G. Therefore, from our results in Section 5.6, we
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should be able to establish the generating PDE of a nonlinear diffusion process on a
differentiable manifold.

Assume that M is a compact manifold, and V1, · · · , Vd are C3-vector fields on M .
According to Section 5.6, the Stratonovich type SDE over [0, 1]dXt,x = Vα(Xt,x) ◦ dBα

t ,

X0,x = x ∈M,
(5.7.6)

has a unique solution. The following result is immediate from Theorem 5.7.1.

Theorem 5.7.2. Let ϕ ∈ C∞(M), and define

u(t, x) = EG[ϕ(Xt,x)], (t, x) ∈ [0, 1]×M,

then u(t, x) is the unique viscosity solution to the following nonlinear parabolic PDE
on M : 

∂u
∂t
−G

((
V̂αVβu

)
16α,β6d

)
= 0,

u(0, x) = ϕ(x),

(5.7.7)

where V̂αVβ is the symmetrization of VαVβ, defined in the same way as in Theorem
5.7.1. Here the notion of viscosity solutions to the PDE (5.7.7) can be defined in the
same way as in the Euclidean case by using test functions (see D. Azagra, J. Ferrera
and B. Sanz [1]).

Proof. The result follows easily from an extrinsic point of view.
In fact, assume that M is embedded into an ambient Euclidean space RN as a

closed submanifold, and take a C3-extension Ṽα of Vα with compact support. Consider
the following Stratonovich type SDE over [0, 1]:dXt,x = Ṽα(Xt,x) ◦ dBα

t ,

X0,x = x ∈ RN .

Let ϕ̃ be a C∞-extension of ϕ with compact support, and define

ũ(t, x) = EG[ϕ̃(Xt,x)], (t, x) ∈ [0, 1]× RN .

It follows from Theorem 5.7.1 that ũ(t, x) is the unique viscosity solution to the
nonlinear parabolic PDE generated by the vector fields Ṽα.

150



DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

According to Section 5.6, if x ∈ M, Xt,x never leaves M quasi-surely. Therefore,
when restricted to M, ũ = u. In particular, we know that u is continuous. To see
that u is a viscosity sub-solution to (5.7.7), let (t0, x0) ∈ (0, 1) ×M, and v(t, x) ∈
C2,3([0, 1]×M) be a test function such that

v(t0, x0) = u(t0, x0)

and
u(t, x) 6 v(t, x), ∀(t, x) ∈ [0, 1]×M.

Take an C2,3
b -extension ṽ of v such that

ũ(t, x) 6 ṽ(t, x), ∀(t, x) ∈ [0, 1]× RN .

It follows from previous discussion that

∂ṽ

∂t
(t0, x0)−G

((
̂̃
VαṼβ ṽ(t0, x0)

)
16α,β6d

)
6 0.

Since
Ṽα|M = Vα, ṽ|M = v,

from the intrinsic nature of the generating PDE, we know that

∂ṽ

∂t
(t0, x0) =

∂v

∂t
(t0, x0)

and

G

((
̂̃
VαṼβ ṽ(t0, x0)

)
16α,β6d

)
= G

((
V̂αVβv(t0, x0)

)
16α,β6d

)
.

It follows that
∂v

∂t
(t0, x0)−G

((
V̂αVβv(t0, x0)

)
16α,β6d

)
6 0.

Therefore, u(t, x) is a viscosity sub-solution to (5.7.7). Similarly we can show that it
is a viscosity supersolution as well, and thus a viscosity solution.

The uniqueness of (5.7.7) follows from the same reason as in the proof of Theorem

5.7.1 once we notice that the second order differential operator G
((

V̂αVβ·
)

16α,β6d

)
on M shares exactly the same properties as G (in particular, the same ellipticity),
which can be seen either in an extrinsic way or via local computation. Another way
to see the uniqueness is to use the results in [1] as long as we assign a complete
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Riemannian metric on M , which is always possible according to K. Nomizu and H.
Ozeki [50] even in the non-compact situation. In this case

G

((
V̂αVβu

)
16α,β6d

)
= G

((
1

2

〈
∇u,∇VαVβ +∇VβVα

〉
+ Hessu(Vα, Vβ)

)
16α,β6d

)
,

where ∇ is the Levi-Civita connection corresponding to the Riemannian metric. The
uniqueness of (5.7.7) follows from [1], Theorem 5.1 directly, as the assumptions in
the theorem are verified by the properties of G. Note that we do not need the Ricci
curvature condition in [1] due to the compactness of M and uniform continuity of

G

((
V̂αVβ·

)
16α,β6d

)
.

Remark 5.7.1. The study of the SDE (5.7.6) as a nonlinear diffusion process on M is
independent of the geometry of M. The fundamental reason is that (5.7.6) is defined
in the pathwise sense as an RDE generated by the vector fields Vα on M . Such
an RDE depends only on the differential structure of M. The infinitesimal diffusive
nature of (5.7.6) can be studied by local computation.

Now we turn to the study of G-Brownian motion on a compact Riemannian man-
ifold. The Riemannian structure (the Levi-Civita connection) is used to “roll” the
Euclidean G-Brownian motion up to the manifold “without slipping” by solving an
SDE generated by the fundamental horizontal vector fields on a proper frame bundle
(usually known as horizontal lifting). This is the fundamental idea of Eells, Elworthy
and Malliavin on the construction of Brownian motion on a Riemannian manifold.

As is pointed out at the beginning of this section, the essential point of this
development is the invariance of the generating PDE on the frame bundle under
actions by the structure group along fibers. The key to capturing such invariance is
Theorem 5.7.4 and Example 5.7.1, which leads to the following important concept.

Definition 5.7.1. The invariant group I(G) of G is defined by

I(G) =
{
Q ∈ GL(d,R) : ∀A ∈ S(d), G

(
QTAQ

)
= G(A)

}
.

It is easy to check the I(G) is a group, and hence a subgroup of GL(d,R).

By using the representation (5.7.1) of G, we have the following equivalent charac-
terization of the invariant group I(G).
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Proposition 5.7.2. Let G be represented by

G(A) =
1

2
sup
B∈Σ

tr(AB), ∀A ∈ S(d),

where Σ is some bounded, closed and convex subset of S+(d). Then Σ is uniquely
determined by G and the invariant group I(G) of G is given by

I(G) =
{
Q ∈ GL(d,R) : QΣQT = Σ

}
. (5.7.8)

Proof. It suffices to show the uniqueness of Σ, and (5.7.8) follows immediately from
the commutativity of the trace operator and the uniqueness of Σ. Note that for any
Q ∈ GL(d,R), QΣQT is also a bounded, closed and convex subset of S+(d).

Introduce a symmetric bilinear form 〈·, ·〉tr on the finite dimensional vector space
S(d) by

〈A1, A2〉tr = tr(A1A2), A1, A2 ∈ S(d).

It is easy to check that 〈·, ·〉tr is indeed an inner product, thus (S(d), 〈·, ·〉tr) is a finite
dimensional Hilbert space. The norm ‖ · ‖tr induced by 〈·, ·〉tr is equivalent to any
other matrix norm on S(d) since S(d) is finite dimensional.

Let Σ1,Σ2 be two bounded, closed and convex subsets of S+(d), such that

sup
B∈Σ1

tr(AB) = sup
B∈Σ2

tr(AB), ∀A ∈ S(d).

If Σ1 6= Σ2, without loss of generality assume that B0 ∈ Σ2\Σ1. According to the
Mazur separation theorem in functional analysis (see the monograph by K. Yosida
[68]), there exists a bounded linear functional f ∈ S(d)∗ and some α ∈ R, such that

f(B) < α < f(B0), ∀B ∈ Σ1.

By the Riesz representation theorem, there exists a unique A∗ ∈ S(d), such that

f(B) = 〈A∗, B〉tr = tr(A∗B), ∀B ∈ S(d).

It follows that
sup
B∈Σ1

tr(A∗B) 6 α < tr(A∗B0) 6 sup
B∈Σ2

tr(A∗B),

which is a contradiction. Therefore, Σ1 = Σ2.

We now give some examples for the invariant groups I(G) of different G-functions.
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Example 5.7.2. If Σ = {0}, then it is obvious that I(G) = GL(d,R), which is a
non-compact group.

Example 5.7.3. It is possible that I(G) is a finite group.
Consider Σ to be the set of diagonal matrices

Λ = diag(λ1, · · · , λd)

such that each λα ∈ [0, 1], then Σ is a bounded, closed and convex subset of S+(d).

We claim that

I(G) =
{

(±eσ(1), · · · ,±eσ(d)) : σ is a permutation of order d
}
, (5.7.9)

where {e1, · · · , ed} is the standard orthonormal basis of Rd, each ei being regarded
as a column vector.

In fact, if Q ∈ GL(d,R) has the form (5.7.9), by direct computation one can show
easily that

QΣQT = Σ. (5.7.10)

Conversely, if Q satisfies (5.7.10), by choosing

Λ = diag(1, 0, · · · , 0),

we know that (
QΛQT

)α
β

= Qα
1Q

β
1 .

Therefore, if QΛQT ∈ Σ, the first column of Q must contain at most one nonzero
element q1 such that q2

1 6 1. Similarly for other columns of Q. Moreover, the
corresponding nonzero elements in any two different columns of Q must be in different
rows, otherwise Q is degenerate. Consequently, Q has the form

Q =
(
q1eσ(1), · · · , qdeσ(d)

)
with q2

i 6 1 (i = 1, 2, · · · , d). On the other hand, for the identity matrix Id, there
exists Λ ∈ Σ, such that

QΛQT = Id.

By taking determinants on both sides, we have

q2
1 · · · q2

ddet(Λ) = 1,
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which implies that qα = ±1 (α = 1, 2, · · · , d). Therefore, Q has the form of (5.7.9).
Note that in this case I(G) is a finite subgroup of the orthogonal group O(d) with

order 2dd!. Moreover, G is given by

G(A) =
1

2

d∑
α=1

(Aαα)+, ∀A ∈ S(d).

Example 5.7.4. Now we give some examples of G such that I(G) = O(d). This case
is our main interest in this section.

(1) Σ = {Id}.
Obviously (5.7.10) is equivalent to Q ∈ O(d).

This corresponds to the case of classical Brownian motion, in which

G(A) =
1

2
tr(A)

and the generator is 1
2
∆.

(2) Σ is given by the segment joining λId and µId, where 0 6 λ < µ.

If Q ∈ GL(d,R) such that (5.7.10) holds, then

µQQT = tId,

for some t ∈ [λ, µ]. On the other hand, there exists some t′ ∈ [λ, µ] such that

t′QQT = µId.

The only possibility is that QQT = Id, which means Q ∈ O(d). The converse is trivial.
In this case, G is given by

G(A) =
1

2

(
µ(trA)+ − λ(trA)−

)
.

The corresponding G-heat equation can be regarded as the generalization of the one-
dimensional Barenblatt equation to higher dimensions.

(3) Σ is given by the subset of matrices B ∈ S+(d) such that the eigenvalues of B
lie in the bounded interval [λ, µ], where 0 6 λ < µ. Equivalently,

Σ =
{
B ∈ S+(d) : λ 6 xTBx 6 µ, ∀x ∈ Rd with |x| = 1

}
.

It follows that Σ is a bounded, closed and convex subset of S+(d).
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Since Σ is characterized by eigenvalues, and the eigenvalues of a symmetric matrix
are preserved under change of orthonormal basis, it follows that for any Q ∈ O(d),

(5.7.10) holds. Conversely, let Q ∈ GL(d,R) with (5.7.10). Then there exists B1, B2 ∈
Σ, such that

µQQT = B1, QB2Q
T = µId.

It follows that all eigenvalues of QQT lie in
[
λ
µ
, 1
]
, and

det
(
QQT

)
det(B2) = µd.

Therefore, the only possibility is that all eigenvalues of QQT are equal to 1, which
implies that Q is an orthogonal matrix.

In this case G can be expressed by

G(A) =
1

2
sup
B∈Σ

tr(AB)

=
1

2
sup

P∈O(d)

sup
λ6c1,··· ,cd6µ

tr
(
AP Tdiag(c1, · · · , cd)P

)
=

1

2
sup

P∈O(d)

sup
λ6c1,··· ,cd6µ

tr
(
PAP Tdiag(c1, · · · , cd)

)
=

1

2
sup

P∈O(d)

sup
λ6c1,··· ,cd6µ

d∑
α=1

cα
(
PAP T

)α
α

=
1

2
sup

P∈O(d)

d∑
α=1

(
µ
((
PAP T

)α
α

)+ − λ
((
PAP T

)α
α

)−)
.

Similar to Example 5.7.4, for those Σ’s characterized by eigenvalues, we can con-
struct a large class of G with I(G) = O(d).

Remark 5.7.2. If Σ has at least one non-degenerate element, that is, if there exists
some positive definite matrix B0 ∈ Σ, then I(G) is a compact group. In fact, if we
introduce a matrix norm ‖ · ‖B0 on the space Mat(d,R) of real d× d matrices by

‖A‖B0 =
√

tr (AB0AT ), A ∈ Mat(d,R),

it follows that

sup
Q∈I(G)

‖Q‖B0 = sup
Q∈I(G)

√
tr (QB0QT ) 6 sup

B∈Σ

√
tr(B) <∞,

since Σ is bounded. It is obvious that I(G) is closed. Therefore, it is compact.
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Now suppose that (M, g) is a d-dimensional compact Riemannian manifold.
We first recall some basic notions on frame bundles, which is the central concept

in the horizontal lifting construction. We refer the reader to the monograph [10], and
also the one by S. Kobayashi and K. Nomizu [41] for a systematic introduction.

Let F(M) be the total frame bundle over M defined by

F(M) =
⋃
x∈M

Fx(M),

where the fibre Fx(M) is the set of all frames (bases of the tangent space Tx(M))
at x. A frame ξ = (ξ1, · · · , ξd) ∈ Fx(M) can be equivalently regarded as a linear
isomorphism from Rd to TxM (also denoted by ξ) if we let

ξ(eα) = ξα, α = 1, 2, · · · , d,

and extend linearly to Rd, where we always fix {e1, · · · , ed} to be the standard or-
thonormal basis of Rd. F(M) is a principal bundle with structure group GL(d,R)

acting along fibers from the right.
Fix a frame ξ ∈ Fx(M). A vector X ∈ TξF(M) is called vertical if it is tangent

to the fibre Fx(M). The space of vertical vectors at ξ is called the vertical subspace,
and it is denoted by VξF(M). VξF(M) is a d2-dimensional vector space, which is
independent of the Riemannian structure.

A smooth curve ξt = (ξ1,t · · · , ξd,t) ∈ F(M) is called horizontal if ξα,t is a parallel
vector field along the projection curve xt = π(ξt) for each α = 1, 2, · · · , d. Given a
smooth curve xt ∈ M and a frame ξ0 = (ξ1, · · · , ξd) ∈ Fx0(M), by solving a first
order linear ODE, we can determine a unique parallel vector field ξα,t along xt with
ξα,0 = ξα for each α = 1, 2, · · · , d. The smooth curve

ξt = (ξ1,t, · · · , ξd,t) ∈ F(M)

is then the unique horizontal curve with xt = π(ξt) and initial position ξ0. ξt is called
the horizontal lifting of xt from ξ0. A vector X ∈ TξF(M) is called horizontal if it is
tangent to a horizontal curve through ξ. The space of horizontal vectors at ξ is called
the horizontal subspace, and it is denoted by HξF(M). It is a d-dimensional vector
space characterized by the Levi-Civita connection ∇.

As ξ varies, VξF(M) (respectively, HξF(M)) determines a vertical (respectively,
horizontal) subspace field on M. The following result reveals the fundamental struc-
ture of F(M). We refer the reader to [41] for the proof.
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Theorem 5.7.3. The horizontal subspace field HF(M), which is determined by ∇,
has the following properties.

(1) For each ξ ∈ Fx(M), the tangent space TξF(M) has the decomposition

TξF(M) = HξF(M)⊕ VξF(M).

Moreover, HξF(M) is isomorphic to TxM under the canonical projection π : F(M)→
M.

(2) HF(M) is invariant under actions by the structure group GL(d,R). More
precisely, for any ξ ∈ F(M), Q ∈ GL(d,R),

Q∗(HξF(M)) = HξQF(M).

It should be pointed out the Riemannian structure is not essential for the existence
of the above horizontal-vertical decomposition; it is the affine connection (the Levi-
Civita connection) ∇ that plays the key role. Moreover, on the contrary it can be
proved (see[41]) that given any horizontal subspace field HF(M) satisfying the two
properties in Theorem 5.7.3, there exists an affine connection ∇H such that HF(M)

is the horizontal subspace field determined by ∇H .

On F(M) there is a canonical way to define a frame field globally, which is not
always possible on a general Riemannian manifold. This makes F(M) simpler than
the base space M to some extent. Fix w ∈ Rd. For any ξ ∈ Fx(M) regarded as a
linear isomorphism ξ : Rd → TxM, we know that ξ(w) is a tangent vector in TxM . By
Theorem 5.7.3 (1), ξ(w) corresponds to a unique vector Hw(ξ) ∈ HξF(M). It follows
that Hw is a globally defined horizontal vector field on F(M). If we take w = eα (α =

1, 2, · · · , d), then we obtain a family of horizontal vector fields {He1 , · · · , Hed} as a
basis of the horizontal subspaceHξF(M) at each frame ξ ∈ F(M). {He1 , · · · , Hed} are
called the fundamental horizontal fields of F(M), simply denoted by {H1, · · · , Hd}.

Now we introduce the concept of development and anti-development based on
[36], which is crucial in the construction of G-Brownian motion on M. Assume that
xt ∈ M is a smooth curve and ξt is the horizontal lifting of xt from ξ0. Then we can
determine a smooth curve

wt =

ˆ t

0

ξ−1
s ẋsds ∈ Rd

starting at 0 (wt is regarded as a column vector in Rd). wt is called the anti-
development of xt in Rd with respect to ξ0. If ξt and ηt are two horizontal liftings of xt
with ξ0 = η0Q for some Q ∈ GL(d,R), then the two corresponding anti-developments
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are related by
wηt = Qwξt .

The key relation between the anti-development wt of xt and the horizontal lifting ξt
is the following ODE on F(M) :

dξt = Hα(ξt)dw
α
t . (5.7.11)

Conversely, given a smooth curve wt ∈ Rd starting at 0, by solving the ODE (5.7.11)
on F(M) with initial frame ξ0, we obtain a horizontal curve ξt ∈ F(M). The pro-
jection xt = π(ξt) is called the development of wt in M with respect to ξ0. If we use
another initial frame η0 = ξ0Q

−1 and the driven process vt = Qwt ∈ Rd, by solving
(5.7.11) from η0 and projection onto M we obtain the same curve xt. In this way, we
obtain a one-to-one correspondence between the Euclidean curve wt and the manifold
curve xt via the horizontal curve ξt in F(M), which depends on the initial frame ξ0.

The procedure of getting xt from wt is usually known as “rolling without slipping”.
A crucial point here is that such a procedure is carried out by solving the ODE

(5.7.11) in the pathwise sense, which fits well in the context of rough paths if the
Euclidean curve wt is interpreted as a rough path. In this case, (5.7.11) should be
interpreted as an RDE. This is an important reason why we need to develop the
notion of Stratonovich type SDEs on a differentiable manifold.

For a general Euclidean G-Brownian motion Bt, from Section 5.6 we are able to
solve (5.7.11) pathwisely if the driving curve dwt is replaced by dBt in the Stratonovich
sense (or in the RDE sense). By projecting the solution ξt ∈ F(M) to the manifoldM,

we obtain a process Xt ∈M pathwisely which depends on the initial position x0 and
the initial frame ξ0 ∈ Fx0(M). A disadvantage of using the total frame bundle F(M)

is that in this way it is not possible to write down the generating PDE governing the
law of Xt intrinsically on M , which does not depend on the initial frame ξ0. Note
that the generating PDE of ξt is well-defined on F(M) according to Theorem 5.7.2,
which takes the form

∂u

∂t
−G

((
ĤαHβu

)
16α,β6d

)
= 0. (5.7.12)

The main reason for this disadvantage is that the PDE (5.7.12) is not invariant under
actions by GL(d,R) along fibers, since the G-function does not have this kind of
invariance.

To fix this issue, a possible way is to use the invariant group I(G) of G as the
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structure group, so that the generating PDE is invariant under actions by I(G) along
fibers due to the form (5.7.12) takes. Therefore, we need to use a proper frame bundle
(a submanifold of F(M) which is a principal bundle overM with structure group I(G)

and fibers being a suitable class of frames) instead of F(M). The fibers of such frame
bundle should be preserved by parallel transport so the fundamental horizontal fields
can be restricted to it and we are able to solve the RDE

dξt = Hα(ξt) ◦ dBα
t

on the frame bundle. It then turns out that we are able to establish the generating
PDE of the projection process Xt = π(ξt) intrinsically on M , which does not depend
on the initial frame. Therefore, although as a process the sample paths of Xt depend
on the initial frame (this is not surprising since in the Euclidean case we also don’t
have a canonical Brownian motion if we do not fix the frame {e1, · · · , ed} in advance),
the law of Xt does not. In this way we obtain a canonical PDE on M associated with
the original G-function, which can be regarded as the generating PDE governing the
law of Xt. The process Xt can be defined as a G-Brownian motion on M and the
solution to the generating PDE plays the role of the canonical Wiener measure (the
solution of the martingale problem for the operator 1

2
∆M) on M in the nonlinear

setting.
The construction of such a frame bundle for a G-function with an arbitrary in-

variant group I(G) is not clear to us at the moment. However, in the case when
I(G) is the orthogonal group O(d), which contains a wide and interesting class of
G-functions, there is a very natural frame bundle serving us well for this purpose: the
orthonormal frame bundle O(M).

From now on, let G be given by (5.7.1) with I(G) = O(d).

The orthonormal frame bundle O(M) over M is defined by

O(M) =
⋃
x∈M

Ox(M),

where the fibre Ox(M) is the set of orthonormal bases of TxM . Since M is compact,
O(M) is a compact submanifold of F(M). Moreover, since the Levi-Civita connection
is compatible with the Riemannian metric g, parallel transport preserves the fibers
of O(M). Therefore, statements about F(M) before on the horizontal aspect can
be carried through in the case of O(M) directly. In particular, the fundamental
horizontal fields Hα can be restricted to O(M). The only difference is in the vertical
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direction: the fibre becomes orthonormal frames, and the structure group which acts
on fibers becomes the orthogonal group; the dimension in the vertical direction is
reduced to d(d− 1)/2.

For ξ ∈ Ox(M), according to Section 5.6, let Ut,ξ ∈ O(M) be the unique solution
to the following RDE over [0, 1]:dUt,ξ = Hα(Ut,ξ) ◦ dBα

t ,

U0,ξ = ξ.
(5.7.13)

Let Xt,ξ = π(Ut,ξ) be the projection of Ut,ξ onto M.

Definition 5.7.2. Xt,ξ is called a G-Brownian motion on M with respect to the
initial orthonormal frame ξ ∈ Ox(M), and Ut,ξ is called a horizontal G-Brownian
motion in O(M) starting at ξ.

For any ϕ ∈ CLip(M) (under the Riemannian distance), define

u(t, ξ) = EG [ϕ(Xt,ξ)] , (t, ξ) ∈ [0, 1]×O(M).

Let ϕ̂ = ϕ ◦ π be the lifting of ϕ to O(M). It is obvious that

u(t, ξ) = EG [ϕ̂(Ut,ξ)] .

By Theorem 5.7.2, we know that u(t, ξ) is the unique viscosity solution to the following
nonlinear parabolic PDE:

∂u
∂t
−G

((
ĤαHβu

)
16α,β6d

)
= 0,

u(0, ξ) = ϕ̂(ξ),

(5.7.14)

on O(M).

The following result tells us that the law ofXt,ξ depends only on the initial position
x.

Proposition 5.7.3. If ξ, η ∈ Ox(M), then

u(t, ξ) = u(t, η).

Proof. For any fixed orthogonal matrix Q ∈ O(d), let B̃t = QBt, which is an or-
thogonal transformation of the original G-Brownian motion Bt, and let Wt,ζ be the
pathwise solution to the following RDE over [0, 1]:
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dWt,ζ = Hα(Wt,ζ) ◦ dB̃α
t ,

W0,ζ = ζ ∈ O(M),
(5.7.15)

on O(M). If we regard B̃t as the solution to the SDE

dB̃t = QαdB
α
t

starting at 0 with constant coefficients, then the RDE (5.7.15) is equivalent todWt,ζ = Hβ(Wt,ζ)Q
β
α ◦ dBα

t ,

W0,ζ = ζ,

in which the generating vector fields are HβQ
β
α. Since the invariant group I(G) of G

is the orthogonal group, by Theorem 5.7.2 we know that the function

v(t, ζ) = EG [ϕ̂(Wt,ζ)] , (t, ζ) ∈ [0, 1]×O(M)

is the unique viscosity solution to the same PDE (5.7.14) on O(M). Therefore,

u(t, ζ) = v(t, ζ), ∀(t, ζ) ∈ [0, 1]×O(M).

Now since ξ, η ∈ Ox(M), there exists some Q ∈ O(d) such that ξ = ηQ. Define
Wt,ζ as before. By the previous discussion on the relation between different anti-
developments, we know that

Xt,ξ = π(Ut,ξ) = π(Wt,η), ∀t ∈ [0, 1].

Therefore,

u(t, ξ) = EG[ϕ ◦ π(Ut,ξ)]

= EG[ϕ ◦ π(Wt,η)]

= v(t, η)

= u(t, η).

From Proposition 5.7.3, we know that u(t, ξ) is invariant along each fibre. There-
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fore, the law of Xt,ξ depends only on the initial position x ∈M and not on the initial
frame ξ. We use u(t, x) to denote u(t, ξ), where x is the base point of ξ. In this situ-
ation it is possible to establish the PDE for u(t, x) intrinsically on M by “projecting
down” (5.7.14), which should become the generating PDE governing the law of Xt,ξ.

For any u ∈ C∞(M), take an orthonormal frame ξ = (ξ1, · · · , ξd) ∈ Ox(M), and
consider the quantity

G((Hessu(ξα, ξβ))16α,β6d).

Since I(G) = O(d), it is easy to see that the above quantity is independent of the
orthonormal frame ξ ∈ Ox(M). In other words, G can be regarded as a functional
of the Hessian, and the nonlinear second order differential operator G(Hess(·)) is
globally well-defined on M.

Now we have the following result.

Theorem 5.7.4. u(t, x) is the unique viscosity solution to the following nonlinear
heat equation on M : ∂u

∂t
−G(Hessu) = 0,

u(0, x) = ϕ(x).
(5.7.16)

Proof. It suffices to show that: if f ∈ C∞(M), and f̂ = f ◦ π is the lifting of f to
O(M), then for any ξ = (ξ1, · · · , ξd) ∈ Ox(M),

Hessf(ξα, ξβ)(x) = HαHβ f̂(ξ).

Note that uniqueness follows for the same reason as pointed out in the proof of
Theorem 5.7.2 by using results in [1].

In fact, for any ξ = (ξ1, · · · , ξd) ∈ Ox(M), let ξt be a horizontal curve through
ξ such that Hβ(ξ) is tangent to ξt at t = 0, and let xt be its projection onto M. It
follows that the tangent vector of xt at t = 0 is ξβ, and

Hβ f̂(ξ) =
df̂(ξt)

dt
|t=0

=
df(xt)

dt
|t=0

= 〈ξβ,∇f(x)〉g.

Therefore, if we now assume that ξt is a horizontal curve through ξ with tangent
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vector Hα(ξ) at ξ and still xt = π(ξt), then

HαHβ f̂(ξ) = Hα〈ξβ,∇f(π(ξ))〉g

=
d

dt
|t=0 〈ξβ,t,∇f(xt)〉g

=

〈
Dξβ,t
dt
|t=0 ,∇f(x)

〉
g

+ 〈ξβ,∇ξα∇f(x)〉g

= Hessf(ξα, ξβ)(x),

where we have used the fact that ξβ,t is parallel along xt.

Since Xt,ξ is the projection of Ut,ξ and Ut,ξ is the solution to the RDE (5.7.13)
which is equivalent to an Itô type SDE from an extrinsic point of view, by Theorem
5.7.4 we can see that as a process on M the law of the G-Brownian motion Xt,ξ is
characterized by the nonlinear parabolic PDE (5.7.16).

Example 5.7.5. When G is given by a functional of the trace, as in Example 5.7.4
(1), (2), the generating PDE (5.7.16) takes a more explicit form in terms of the
Laplace-Beltrami operator ∆M on M. This is due to the fact that

∆M = tr(Hess).

For instance, if G(A) = 1
2
tr(A), then (5.7.16) becomes the classical heat equation on

M :
∂u

∂t
− 1

2
∆Mu = 0,

which governs the law of classical Brownian motion on M (see [36], [37]). If G is
given by

G(A) =
1

2

(
µ(trA)+ − λ(trA)−

)
,

where 0 6 λ < µ, then (5.7.16) becomes

∂u

∂t
− 1

2

(
µ(∆Mu)+ − λ(∆Mu)−

)
= 0.

It is a generalization of the one-dimensional Barenblatt equation to higher dimensions
in a Riemannian geometric setting.

As pointed out before, as a process the G-Brownian motion Xt,ξ on M depends
on the initial orthonormal frame ξ and hence there is not a canonical choice of a
particular one. However, if we consider the path space W (M) = C([0, 1];M), then
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for each x ∈ M , it is possible to define a canonical sublinear expectation Ex on the
space H(M) of functionals on W (M) of the form

f(xt1 , · · · , xtn),

where 0 6 t1 < · · · < tn 6 1 and f ∈ CLip(M), such that under Ex the law of the
coordinate process is characterized by the PDE (5.7.16) with Ex[ϕ(x0)] = ϕ(x) for
any ϕ ∈ CLip(M).

To see this, we define Ex explicitly. We use uϕ(t, x) to denote the solution to
(5.7.16), emphasizing the dependence on ϕ. For a functional of the form f(xt), we
simply define

Ex[f(xt)] = uf (t, x).

For a functional of the form f(xs, xt), Exf(xs, xt) should be defined by EG[f(Xs,ξ, Xt,ξ)],

where Xt,ξ is a G-Brownian motion onM with respect to an initial orthonormal frame
ξ ∈ Ox(M). Similar to the proof of Theorem 5.7.1 we know that

EG[f(Xs,ξ, Xt,ξ)] = EG
[
EG [f(Xs,ξ, Xt,ξ)|Ωs]

]
= EG

[
EG [f(π(Us,ξ), π(Ut,ξ))|Ωs]

]
= EG

[
EG [f(π(η), Xt−s,η)]

∣∣
η=Us,ξ

]
.

But since the law of Xt−s,η does not depend on the initial orthonormal frame η, we
obtain that

EG [f(π(η), Xt−s,η)]
∣∣
η=Us,ξ = uf(Xs,ξ,·)(t− s,Xs,ξ).

Therefore, we define

Ex [f(xs, xt)] = EG [f(Xs,ξ, Xt,ξ)] = ug(s, x),

where
g(y) := uf(y,·)(t− s, y), y ∈M.

Inductively, assume that

u
(n)
f (t1, · · · , tn, x) = Ex[f(xt1 , · · · , xtn)]

is already defined. For a functional of the form f(xt1 , · · · , xtn+1), define

Ex
[
f(xt1 , · · · , xtn+1)

]
= ug(t1, x),
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where
g(y) := u

(n)
f(y,·,··· ,·)(t2 − t1, · · · , tn+1 − t1, y), y ∈M.

Then Ex is the desired sublinear expectation on H(M).

Remark 5.7.3. As we have pointed out before, for non-compact Riemannian mani-
folds, the RDE (5.7.13) may possibly explode at some finite time and so may the
corresponding G-Brownian motion as well. An interesting question is the study of ge-
ometric conditions for explosion from both the deterministic and PDE point of view.
It possibly relates to the curvature and topology of the Riemannian manifold.

On the other hand, for those G-functions with the same invariant group, they may
have some important features in common; while for those with different invariant
groups, their structures should be very different. The study of classification of G-
functions in terms of the invariant group is interesting, and it might give us some
hints on generalizing our results to the case when I(G) 6= O(d). We believe that in
some cases it is still possible to construct a proper frame bundle (or more generally a
principal bundle) with structure group I(G) on which we can apply similar technique
as before. But in some extreme cases, for instance when I(G) is a finite group as
in Example 5.7.3, it seems difficult to proceed along this approach unless we have a
globally defined frame field over the Riemannian manifold M , which is usually not
true. We should explore different ideas for those extreme cases.
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