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THE TAIL ASYMPTOTICS OF THE BROWNIAN SIGNATURE

HORATIO BOEDIHARDJO AND XI GENG

Abstract. We prove that the order-k multiple Stratonovitch integrals of
Brownian motion, suitably normalised, converge to a deterministic limit as k

tends to infinity. The proof relies on the hyperbolic development of Brownian
sample paths as well as some new results on multiple integrals of rough paths.
We discuss a number of open problems in relation to the limiting behaviour of
multiple integrals.

1. Introduction

In this article, we aim to prove the following limit theorem for multiple Stratonovitch
integrals:

Theorem 1. Let (W 1(ω), . . . ,Wn(ω)) be a standard Brownian motion on R
n

equipped with the Euclidean metric. Let ‖ · ‖ be the projective tensor norm over
tensor products of Rn. Let ◦ denote Stratonovitch integration. Then there exists a
deterministic constant C such that

1

2
(n− 1) ≤ C ≤ 25

8
n2

and almost surely

lim sup
k→∞

(

(
k

2
)!‖
ˆ

0<s1<...<sk<1

◦dWs1 ⊗ . . .⊗ ◦dWsk‖
)

2
k = C.

Our motivation comes from studying the relationship between a path X : [0, 1] →
R

n and its formal series of iterated integrals

S(X) = (1,

ˆ 1

0

dXs1 ,

ˆ 1

0

ˆ s2

0

dXs1 ⊗ dXs2 ,

ˆ 1

0

ˆ s3

0

ˆ s2

0

dXs1 ⊗ dXs2 ⊗ dXs3 , . . .).

The formal series of iterated integrals was first systematically studied by K. T.
Chen [3]. The formal series is interesting partly because it is a homomorphism
with respect to concatenation, or more specificly that

S(X |[s,u])⊗ S(X |[u,t]) = S(X |[s,t]),

a identity now sometimes known as Chen’s identity. The more recent interests in
the formal series comes from its role in rough path theory, where the formal series
is commonly known as signature. In the rough path context, Hambly and Lyons [7]
took Chen’s work much further and fully characterised all the bounded variation
paths whose signature is the identity sequence

(1, 0, 0 . . .)
1
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and showed that there is a unique shortest path with a given signature. These
results have natural generalisation in the context of rough paths [2]. Hambly-
Lyons’ results were in fact quantitative and in particular gives a natural formula
for recovering the length of a C3 path from its signature. More precise, let

△k(0, t) = {(s1, . . . , sk) : 0 < s1 < . . . < sk < t}.
Hambly-Lyons showed that if X is a C3 path with respect to the unit speed
parametrisation, then

(1.1) Length(X) = lim sup
n→∞

‖k!
ˆ

△k(0,t)

dXs1 ⊗ . . .⊗ dXsk‖
1
k ,

where ‖ · ‖ will denote the projective tensor norm (defined below in section 2). The
key technique Hambly-Lyons used is to develop the path X onto a hyperbolic space
and uses the negative curvature. This approach is natural partly because the set
of all signatures has a natural hyperbolic structure [2]. The result was extended
by Lyons and Xu in [12] to C1 paths under the unit speed parametrisation, also
using the development of the path to the hyperbolic space. Since both sides of the
equation (1.1) makes sense for bounded variation paths, it is natural to to ask if
(1.1) holds for bounded variation path. However, this has been a surprisingly chal-
lenging problem, partly because once the derivative of a path is discontinuous, the
hyperbolic development techniques require major modification. This article studies
an analogue of (1.1) for the sample paths of Brownian motion, where the integration
is defined in the sense of Stratonovitch (or equivalently as geometric rough paths).
More precisely, we would like to study for a multidimensional Brownian motion W ,
the limit

(1.2) lim sup
n→∞

‖(k
2
)!

ˆ

△k(0,t)

◦dWs1 ⊗ . . .⊗ ◦dWsk‖
2
k .

The different (k2 )! normalisation is necessary to ensure we have a non-trivial limit.
Indeed, Lyons [10] showed that for all p > 2, we have almost surely

(1.3) ‖
ˆ

△k(0,t)

◦dWs1 ⊗ . . .⊗ ◦dWsk‖ ≤ C(ω)k

(k/p)!
,

and this motivates our (n2 )!normalisation factor.
Given Hambly-Lyons’ result (1.1), one might expect that the limit (1.2) to be a

random variable. It is apriori unclear whether the limit (1.2) is even finite, as Lyons’
estimate (1.2) holds only for p > 2 while Brownian sample paths have infinite 2-
variation almost surely. However, we are able to show that almost surely the limit
exists and is deterministic. Moreover, the deterministic limit has non-trivial upper
and lower bound in terms of the quadratic variation of Brownian motion. In one
dimension, our main result Theorem 1 is trivially true since in this case

ˆ

△k(0,t)

dWs1 ⊗ . . .⊗ dWsk =
(W1 −W0)

k

k!

and hence the limit (1.2) will be trivially zero.
We use hyperbolic development, similar to that in [12] and [7]. However, our

calculation diverges early on from the previous work, which reflects the use of
martingales instead of deterministic classical calculus computations. The upper
bound is much easier and is a simple manipulation of an L2 estimate of multiple
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Stratonovitch integrals of Brownian motion due to G. Ben-Arous [1]. We will also
use, at key places, some new facts about rough paths that we shall also prove.

Theorem 1 give rise to many interesting questions:

(1) What is the exact value of C? This problem is equivalent to computing
exactly the expectation

E
(

‖
ˆ

△k(0,t)

◦dWs1 ⊗ . . .⊗ ◦dWsk‖
2
k

)

.

(2) Does Theorem 1 hold for other processes? It seems that our proof should
carry forward to Lévy processes. The more interesting question is whether
Theorem 1 holds for Markov processes and Gaussian processes, such as the
fractional Brownian motion? This is less clear. This will depend on general
type of 0-1 laws available to those processes.

(3) Does Theorem 1 hold deterministically for rough paths? If so what would
C be? It is known that for C1 paths parametrised under unit speed, C is
the length of the path. However, even for general bounded variation path,
this is not a mathematically known fact.

(4) Is it possible to derive the rate of convergence in the lim sup in Theorem
1? Are there central-limit type theorems or law of iterated logarithms? At
the moment it is unclear even what would the statement be like.

We would like to also mention that there are major recent progress on recovering
not just the length but the entire path in [13] and [6].

The plan for the rest of the paper is as follows. In section 2, we recalled basic
properties of signature that we shall use. In section 3, we prove the lower bound
in our main result. In section 4, we prove the upper bound in our main result. In
section 5, we prove that the limit is deterministic. In section 6, we proved new basic
proerties about the limit of signature towards answer some of the open problems
stated above.

2. Basics of signature

Let

T (k)(Rn) = 1⊕ R
n ⊕ . . .⊕ (Rn)⊗k.

Let T ((Rn)) be the set of all formal sequences of tensors

(a0, a1, a2 . . . ),

with ai ∈ (Rn)⊗i. We will equip the space R
n with the Euclidean 2-norm and the

tensor power (Rn)⊗k with the projective tensor norm ‖ · ‖ defined by

‖v‖ = inf{
M
∑

j=1

‖v(j)1 ‖ . . . ‖v(j)k ‖ : v =

M
∑

j=1

v
(j)
1 ⊗ . . .⊗ v

(j)
k v

(j)
i ∈ R

n, ∀i, j}.

Let △ = {(s, t) : 0 ≤ s ≤ t ≤ 1}. Let p ≥ 1. Let ⌊p⌋ denote the biggest
integer j such that j ≤ p. Define the p-variation metric between two functions
X,Y : △ → T (⌊p⌋)(Rn) so that if

Xs,t = (1, X1
s,t, . . . , X

⌊p⌋
s,t )

Ys,t = (1, Y 1
s,t, . . . , Y

⌊p⌋
s,t ),
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then

dp(X,Y ) = sup
P

max
1≤k≤⌊p⌋

(

r−1
∑

i=0

‖Xk
ti,ti+1

− Y k
ti,ti+1

‖ p

k

)
k
p ,

where the supremum is taken over all partitions (t0 < t1 < . . . < tr). For each
smooth path X , define

X
k
s,t =

ˆ

△k(s,t)

dXs1 ⊗ . . .⊗ dXsk .

The closure of the space

{(1,X1
s,t, . . . ,X

⌊p⌋
s,t ) : X is a smooth path}

under the p-variation metric dp is called the space of geometric rough paths. For
example (c.f. [14]), if W is a multidimensional Brownian motion and ◦ denote the
Stratonovitch integral, then

(s, t) → (1,

ˆ t

s

◦dWs1 ,

ˆ t

s

◦dWs1 ⊗ ◦dWs2)

can be defined almost surely and is a geometric rough path. Therefore, all the
results below on geometric rough paths would apply to Stratonovitch integration.
For geometric rough paths, there is a canonical way of defining the iterated integrals
of the geometric rough paths of all orders, through the following Lyons’ extension
Theorem [10]. We state a weaker form of the theorem that we need.

Theorem 2. Let (s, t) → Xs,t ∈ T (⌊p⌋)(Rn) be a p-geometric rough path. Then
there exists a unique extension of X to T ((Rn)), denoted as (s, t) → S(X)s,t so that

1. For all s ≤ u ≤ t,

S(X)s,u ⊗ S(X)u,t = S(X)s,t;

2. If S(X)s,t = (1,X1
s,t,X

2
s,t, . . .), then for all j,

sup
P

r−1
∑

i=0

‖Xj
ti,ti+1

‖
p

j < ∞

where the supremum is taken over all partitions P = (t0 < . . . < tr) or [0, 1].

Remark 3. For a geometric rough path X, we will define the iterated integrals
ˆ

△k(0,t)

dXs1 ⊗ . . .⊗ dXsk

to be the tensor X
k
0,t that appeared in the extension Theorem 2.

3. Lower bound

Let ◦ be Stratonovitch and • be Itô integration. Let Wt be a n-dimensional
standard Brownian motion and let

dXλ
t = λ

n
∑

i=1

(Y i
t )

λ ◦ dW i
t , X

λ
0 = 1

d(Y i
t )

λ = λXλ
t ◦ dW i

t , Y
i
0 = 0.(3.1)
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For x, y ∈ R
n and

x = (x1, . . . , xn)

y = (y1, . . . , yn);

we have

〈x, y〉 =
n
∑

i=1

xiyi.

Lemma 4. (Explicit representation) Let Xλ and ((Y i)λ)ni=1 be defined as in (3.1).
For all t ≥ 0,

Xλ
t =

∞
∑

k=0

λ2k

ˆ

△2k(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉

Y λ
t =

∞
∑

k=0

λ2k+1

ˆ

△2k+1(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉

◦ dWs2k+1
.

Proof. We first prove that

αt =
∞
∑

k=0

λ2k

ˆ

△2k(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉

βt =

∞
∑

k=0

λ2k+1

ˆ

△2k+1(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉

◦ dWs2k+1

is a solution to the system of differential equations (3.1). As the system (3.1) is
linear, any solution must be unique (see [10]).

Note that

dαt =

∞
∑

k=1

λ2k

〈

ˆ

△2k−1(0,t)

〈◦dWs1 , ◦dWss〉 . . . ◦ dWs2k−1
, ◦dWt

〉

=

∞
∑

k=0

λ2k+2

〈

ˆ

△2k+1(0,t)

〈◦dWs1 , ◦dWss〉 . . . ◦ dWs2k+1
, ◦dWt

〉

= λ 〈βt, ◦dWt〉 .
Also,

dβt =

∞
∑

k=0

λ2k+1

ˆ

△2k(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉

◦ dWt

= λαt ◦ dWt.

Therefore, αt = Xλ
t and βt = Y λ

t . �

Lemma 5. (Hyperbolic length and signature) Let Xλ and Y λ be defined as in (3.1).
Then let ‖ · ‖ denote the projective tensor norm. Let

L̃t = lim sup
j

‖( j
2
)!

ˆ

△j(0,t)

◦dWs1 ⊗ . . .⊗ ◦dWsj‖
2
j .

Then for any sequence λm → ∞,

lim sup
m→∞

1

λ2
m

logXλm

t ≤ L̃t.
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Proof. We will use the following property of the projective norm ‖ · ‖ (see (2.3) in
[9]): for any 2l-linear functional B such that for all v1 . . . , v2l ∈ R

n,

(3.2)
∣

∣B(v1, . . . , v2l)
∣

∣ ≤ ‖v1‖ . . . ‖v2l‖
, we have that for all v ∈ (Rn)⊗2l

|B(v)| ≤ ‖v‖.
This follows directly from the definition of projective tensor product described in
section 2. In particular, as the functional

B
(

v1 ⊗ . . .⊗ v2l
)

= 〈v1, v2〉 . . . 〈v2l−1, v2l〉
does satisfy (3.2), and hence we have that

B
(

ˆ

△2l(0,t)

dWs1 ⊗ . . .⊗ dWs2l

)

≤ ‖
ˆ

△2l(0,t)

dWs1 ⊗ . . .⊗ dWs2l‖.

Let

L̃(j)t = sup
l≥2j

((
l

2
)!‖
ˆ

△l(0,t)

dWs1 ⊗ . . .⊗ dWsl‖)
2
l .

Using the explicit representation for Xλm

t , we have

Xλm

t ≤
∞
∑

k=0

λ2k
m

∣

∣

ˆ

△2k(0,t)

〈◦dWs1 , ◦dWss〉 . . .
〈

◦dWs2k−1
, ◦dWs2k

〉 ∣

∣

≤
∞
∑

k=0

λ2k
m ‖
ˆ

△2k(0,t)

dWs1 ⊗ . . .⊗ dWs2k‖

≤
j−1
∑

k=0

λ2k
m ‖
ˆ

△2k(0,t)

dWs1 ⊗ . . .⊗ dWs2k‖+
∞
∑

k=j

λ2k
m

[

L̃(j)t
]k

k!
(3.3)

= exp(λ2L̃(j)t) +

j−1
∑

k=0

λ2k
m ak,(3.4)

with

ak = ‖
ˆ

△2k(0,t)

dWs1 ⊗ . . .⊗ dWs2k‖ −
L̃(j)kt
k!

Note that for any sequence λm such that λm → ∞, since L̃(j)t ≥ 0, we have

lim
m→∞

1

λ2
m

log(

j−1
∑

k=0

λ2k
m ak + exp(λ2

mL̃(j)t)
)

= L̃(j)t.

Therefore, from (3.3) we have

lim sup
m

1

λ2
m

log(Xλm

t ) ≤ L̃(j)t.

As this holds for all j, we may take j → ∞ to obtain

lim sup
m

1

λ2
m

log(Xλm

t ) ≤ lim
j→∞

L̃(j)t

= L̃t.

�
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Lemma 6. Let Xλ and Y λ be defined as in (3.1). Then for all t,

(Xλ
t )

2 −
〈

Y λ
t , Y λ

t

〉

= 1.

Proof. Note that

Xλ
t ◦ dXλ

t = λ

n
∑

i=1

Xλ
t (Y

i
t )

λ ◦ dW i
t

and

(Y i
t )

λ ◦ d(Y i
t )

λ = λXt(Y
i
t )

λ ◦ dW i
t .

Therefore,

Xλ
t ◦ dXλ

t −
n
∑

i=1

(Y i
t )

λ ◦ d(Y i
t )

λ = 0.

Integrating gives
1

2
(Xλ

t )
2 − 1

2

〈

Y λ
t , Y λ

t

〉

= C

for some constant C independent of t. Putting t = 0 and substituting in the initial
conditions for Xλ

t and Y λ
t , we have

(Xλ
t )

2 −
〈

Y λ
t , Y λ

t

〉

= 1.

�

Corollary 7. For all λ, Xλ
t ≥ 1.

Proof. Lemma 6 gives in particular that

(Xλ
t )

2 ≥
n
∑

i=1

(Y i
t )

2 + 1.

This implies that |Xλ
t | ≥ 1 and that Xλ

t 6= 0 for all t. Since Xλ
0 = 1 > 0 and Xλ

t is
continuous, Xλ

t 6= 0 implies that Xλ
t ≥ 0 for all t. Therefore, Xλ

t = |Xλ
t | ≥ 1. �

Lemma 8. Let Xλ and Y λ be defined as in (3.1), then for all µ > 0,

E
(

(Xλ
t )

−µ
)

≤ exp
(

− λ2µt

2
(n− 1− µ)

)

.

Proof. By Itô-Stratonovitch conversion,

dXλ
t = λ

n
∑

i=1

(Y i
t )

λ • dW i
t + λ

1

2

n
∑

i=1

d
[

(Y i
t )

λ,W i
t

]

= λ

n
∑

i=1

(Y i
t )

λ • dW i
t +

λ2

2

n
∑

i=1

Xλ
t dt

= λ
n
∑

i=1

(Y i
t )

λ • dW i
t +

λ2

2
nXλ

t dt.

As Xλ
t ≥ 1 for all t, (Xλ

t )
−µ is well defined. Moreover, by Itô’s formula,

d(Xλ
t )

−µ = −µλ
(

Xλ
t

)−µ−1[
n
∑

i=1

(Y i
t )

λ • dW i
t +

λ

2
nXλ

t dt
]

+
µ(µ+ 1)

2
λ2(Xλ

t )
−µ−2 〈Yt, Yt〉dt.
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By Lemma 6,
〈Yt, Yt〉 = X2

t − 1

and taking expectation,

E(Xλ
t )

−µ = 1− λ2µ(n− 1− µ)

2

ˆ t

0

E(Xλ
u )

−µdu

−µ(µ+ 1)

2
λ2

ˆ t

0

E
[

(Xλ
u )

−µ−2
]

du.

The interchange of expectation and integral is permitted as (Xλ
t )

−µ ≤ 1. Therefore,
E(Xλ

t )
−µ is differentiable and

d

dt
E(Xλ

t )
−µ ≤ −λ2µ(n− 1− µ)

2
E(Xλ

t )
−µ.

Gronwall’s Lemma gives that

E(Xλ
t )

−µ ≤ exp
[

− λ2µt

2
(n− 1− µ)

]

.

�

Lemma 9. Let n ≥ 2 and s > t. For all µ > 0, for almost all ω, there exists a
M(ω, µ) > 0 such that for all m ≥ M(ω, µ),

Xm
t ≥ exp(

m2s

2
(n− 1− µ)).

Proof. For any K > 0, by Chebyshev’s inequality

P(Xλ
t ≤ K) = P((Xλ

t )
−µ ≥ K−µ)

≤ Kµ exp(−λ2µt

2
(n− 1− µ)).

Let s < t. Taking K = exp(λ
2s
2 (n− 1− µ)). Then we see that

P(Xλ
t ≤ exp(

λ2s

2
(n− 1− µ))) ≤ exp(−λ2(t− s)

2
(n− 1− µ)).

By Borel-Cantelli Lemma

P(Xm
t ≤ exp(

m2s

2
(n− 1− µ)) for infinitely many m ∈ N) = 0

Therefore, for almost all ω, there exists M(ω) such that for all m ≥ M(ω),

Xm
t ≥ exp(

m2s

2
(n− 1− µ)).

�

Corollary 10. For almost all ω,

L̃t ≥
t

2
(n− 1).

Proof. If n = 1, then the Corollary is trivial. By Lemma 5, for almost all ω,

L̃t ≥ lim sup
m

1

m2
logXm

t .

Hence by Lemma 9, for almost all ω,

(3.5) L̃t ≥
s

2
(n− 1− µ).
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As this holds for all rational number s < t and µ > 0, we can let s tends to t
and µ tends to 0 by enlarging the null set to become another null set so that the
inequality (3.5) holds with s = t and µ = 0. �

4. Upper bound

Lemma 11. Let W be n-dimensional standard Brownian motion and

W
k
0,t =

ˆ

△k(0,t)

dWs1 ⊗ . . .⊗ dWsk .

Then almot surely,

lim sup
k

(

(
k

2
)!‖Wk

0,t‖
)

2
k ≤ 25

8
n2t.

Proof. Let W ij denote the ij-th component of W and define

W
i1,...,ik
0,t =

ˆ

△k(0,t)

dW i1
s1 . . .dW

ik
sk .

If {e1, . . . en} is the standard basis for R
n,

‖Wk
0,t‖ = ‖

∑

i1,...,ik

W
i1,...,ik
0,t ei1 ⊗ . . .⊗ eik‖

≤
∑

i1,...,ik

∣

∣W
i1,...,ik
0,t

∣

∣.

Therefore,

E(‖Wk
0,t‖) ≤

∑

i1,...,ik

E
∣

∣W
i1,...,ik
0,t

∣

∣

≤
∑

i1,...,ik

√

E(Wi1,...,ik
0,t )2.

G. Ben Arous ([1], Lemma 3) showed that

E
(

(Wi1,...,ik
0,t )2

)

≤
(5

2

)2k 1

k!
tk.

Therefore,

E(‖Wk
0,t‖) ≤ nk(

5

2
)k

1√
k!
t
k
2 .

Let s > t, then

P(‖Wk
0,t‖ > nk(

5

2
)k

1√
k!
s

k
2 ) ≤

(

t

s

)
k
2

.

Therefore for almost all ω, there exists M(ω) such that for all k ≥ M(ω),

‖Wk
0,t‖ ≤ nk(

5

2
)k

1√
k!
s

k
2 .

Using the Stirling’s approximation, we have

lim sup
k

(
(k/2)!

(k!)
1
2

)
2
k ≤ 1

2
.
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We therefore have

lim sup
k

(

(
k

2
)!‖Wk

0,t‖
)

2
k ≤ 25

8
n2s× lim sup

k

(

(
k

2
)!

1√
k!

)
2
k

≤ 25

8
n2s.

As this holds for all ration s > t, we may let s tends to t by enlarging the null set.
The result now follows. �

5. The limsup is deterministic

We first need a lemma on the behaviour for the factorial.

Lemma 12. Let α be such that 0 < α < N . There exists a M and a constant C4

independent of N such that for all N ≥ M ,

(N/p)!

((N − α)/p)!
≤ C4N

α
p .

Proof. By Stirling’s formula, we have that there exists C1, C2 > 0 such that for all
sufficiently large N ,

C1(
N

p
)

N
p
+ 1

2 exp(−N

p
) ≤ (

N

p
)! ≤ C2(

N

p
)

N
p
+ 1

2 exp(−N

p
).

and

C1(
N − α

p
)

N−α
p

+ 1
2 exp(−N − α

p
) ≤ (

N − α

p
)! ≤ C2(

N − α

p
)

N−α
p

+ 1
2 exp(−N − α

p
)

and hence there exists C3 such that for sufficiently large N ,

(N/p)!

((N − α)/p)!
≤ C3 exp(

α

p
)(

N

N − p
)

N−α
p

+ 1
2N

α
p

≤ C4N
α
p .

�

Lemma 13. (Addivity lemma) Let X be a geometric rough path and

X
k
s,t =

ˆ

△k(s,t)

dXs1 ⊗ . . .⊗ dXsk .

Let p ≥ 1. If

L̃s,t = lim sup
N→∞

‖(N
p
)!XN

s,t‖
p

N ,

then for all s ≤ u ≤ t,

L̃s,t ≤ L̃s,u + L̃u,t.

Proof. We will assume that there exists k1, k2 > 0 such that

X
k1
s,u 6= 0 and X

k2
u,t 6= 0.

Otherwise, then we have by Chen’s identity that either

X
N
s,t = X

N
u,t or X

N
s,t = X

N
s,u, for all N
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in which case the present Lemma is trivially true. Let α ≥ 1.Assume that N > 2α.
Note that by Chen’s identity,

‖XN
s,t‖ ≤

α−1
∑

k=0

‖XN−k
s,u ‖‖Xk

u,t‖+
N
∑

k=N−α+1

‖XN−k
s,u ‖‖Xk

u,t‖

+
N−α
∑

k=α

‖XN−k
s,u ‖‖Xk

u,t‖.

Let

L̃α
s,t = sup

k≥α
‖(k

p
)!Xk

s,t‖
p

k .

Note that as we assumed that there exists k1, k2 > 0 such that X
k1
s,u 6= 0 and

X
k2
u,t 6= 0, we may use Corollary 20 in the Appendix to conclude that

L̃α
s,u > 0, L̃α

u,t > 0.

Then

‖XN
s,t‖ ≤

α−1
∑

k=0

(L̃α
s,u)

N−k
p

(N−k
p )!

‖Xk
u,t‖+

N
∑

k=N−α+1

‖XN−k
s,u ‖

(L̃α
u,t)

k
p

(kp )!
+

N−α
∑

k=α

(

L̃α
s,u

)

N−k
p

(

L̃α
u,t

)
k
p

(N−k
p )!(kp )!

.

By the neoclassical inequality [8], which states that for all a, b ≥ 0 and p ≥ 1,

N
∑

i=0

ai/pb(N−i)/p

(i/p)!((N − i)/p)!
≤ p

(a+ b)
N
p

(N/p)!
.

Therefore,

‖XN
s,t‖ ≤ 1

(N−α
p )!

α−1
∑

k=0

(L̃α
s,u)

N−k
p ‖Xk

u,t‖+
1

(N−α+1
p )!

N
∑

k=N−α+1

‖XN−k
s,u ‖(L̃α

u,t)
k
p+p

(L̃α
s,u + L̃α

u,t)
N
p

(Np )!
.

By Lemma 12 on the behaviour of the factorial function,

(
N

p
)!‖XN

s,t‖ ≤ C4N
α
p

α−1
∑

k=0

(L̃α
s,u)

N−k
p ‖Xk

u,t‖+ C4N
α
p

N
∑

k=N−α+1

‖XN−k
s,u ‖(L̃α

u,t)
k
p

+p(L̃α
s,u + L̃α

u,t)
N
p .

Note that if c > a > 0, c > b > 0, and k > 0 independent of N , then

(C̃4N
kaN + C̃4N

kbN + C̃5c
N )

1
N → c

as N → ∞. Therefore,

lim sup
N→∞

(

(
N

p
)!‖XN

s,t‖
)

p

N ≤ L̃α
s,u + L̃α

u,t.

We now take limit as α → ∞, we have

L̃s,t ≤ L̃s,u + L̃u,t.

�

Remark 14. A similar additive lower bound would require that the path is reduced
(see [2]). For this upper bound, there is no assumption that the path is reduced.
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Corollary 15. Let B be a Brownian motion and

B
N
s,t =

ˆ

△N (s,t)

◦dBs1 ⊗ . . .⊗ ◦dBsN ,

where ◦ denote the Stratonovitch integration. Then for each s and t, almost surely

lim sup
N→∞

‖(N
2
)!BN

s,t‖
2
N

is deterministic.

Proof. By our apriori lower bound, Lemma 10, for each s and t, almost surely

L̃s,t = lim sup
N→∞

‖(N
2
)!BN

s,t‖
2
N > 0.

Therefore, by the additivity Lemma 13, if tmi = s+ i
2m (t− s),

L̃s,t ≤
2m−1
∑

i=0

L̃tm
i
,tm

i+1

=
1

2m

2m−1
∑

i=0

(

2mL̃tm
i
,tm

i+1

)

.(5.1)

Note first that by Brownian scaling,

2mL̃tm
i
,tm

i+1
=D L̃s,t.

Therefore, each random variable 2mL̃tm
i
,tm

i+1
is almost surely bounded above by

(58 )n
2(t− s). Moreover,

(L̃tm
i
,tm

i+1
)2

m

i=0

are independent.
By the weak law of large numbers, we have the convergence

1

2m

2m−1
∑

i=0

(

2mL̃tm
i
,tm

i+1

)

→ E(L̃s,t)

in probability. This allows us to take a subsequence mk so that almost surely,

1

2mk

2mk−1
∑

i=0

(

2mk L̃t
mk
i

,t
mk
i+1

)

→ E(L̃s,t)

Therefore by (5.1), we have almost surely,

L̃s,t ≤ E(L̃s,t)

However, any random variable X that satisfies

X ≤ E(X)

must satisfy almost surely that

X = E(X).

Therefore, L̃s,t is deterministic. �
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Corollary 16. For each s ≤ t, almost surely,

L̃s,t = E(L̃0,1)(t− s).

In particular, for each s ≤ u ≤ t, we have almost surely

L̃s,u + L̃u,t = L̃s,t.

Proof. Since for each s ≤ t almost surely

L̃s,t = E(L̃s,t),

we have by Brownian scaling that

L̃s,t = (t− s)E(L̃0,1).

The second statement of the Corollary follows directly from the first statement. �

6. Appendix: some useful properties on Signature

We define the set Sh(m1, . . . ,mk) as the set of all permutations σ on

{1, . . . ,m1 + . . .+mk}

such that

σ−1(1) < σ−1(2) < . . . < σ−1(m1);

σ−1(m1 + 1) < σ−1(m1 + 2) < . . . < σ−1(m2);

...

σ−1(

k−1
∑

i=1

mi + 1) < . . . < σ−1(

k
∑

i=1

mi).

For each permutation σ, we will define a linear map on (Rn)⊗k by extending linearly
the map

σ(v1 ⊗ . . .⊗ vk) = vσ(1) ⊗ . . .⊗ vσ(k).

Note that the projective tensor norm has the symmetric property [11] that for any
permutation σ and any v ∈ (Rn)⊗k,

‖σv‖ = ‖v‖.

We will use the following property of iterated integral.

Lemma 17. Let X be a bounded variation path and let

X
k
0,t =

ˆ

△k(0,t)

dXs1 ⊗ . . .⊗ dXsk .

Then for all m1, . . . ,mk,

(6.1) X
m1
0,t ⊗ . . .⊗ X

mk

0,t =
∑

σ∈Sh(m1,...,mk)

σ−1
X

m1+...+mk

0,t .
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Proof. Note that

X
m1
0,t ⊗ . . .⊗ X

mk

0,t

=

ˆ

0<s1<...<sm1<t

dXs1 ⊗ . . .⊗ dXsm1
⊗ . . .

⊗
ˆ

0<sm1+...+mk−1+1<...<sm1+...+mk
<t

dXsm1+...+mk−1+1 ⊗ . . .⊗ dXsm1+...+mk
.

=

ˆ

A

dXs1 ⊗ . . .⊗ dXsm1+...+mk
,

where

A = {(s1, . . . , sm1+...+mk
) : 0 < s1 < . . . < sm1 < t

, . . . 0 < sm1+···+mk−1+1 < . . . < sm1+...+mk<t < t}.
We may rewrite A as the disjoint union

A = ∪σ∈Sh(m1,...,mk){(s1, . . . , sm1+...+mk
) : 0 < sσ(1) < . . . < sσ(m1+...+mk) < t}.

Therefore, by the additivity of integral,

X
m1
0,t ⊗ . . .⊗ X

mk

0,t

=
∑

σ∈Sh(m1...,,mk)

ˆ

0<sτ(1)<...<sτ(m1+...+mk)<t

dXs1 ⊗ . . .⊗ dXsm1+...+mk

=
∑

σ∈Sh(m1...,,mk)

ˆ

0<s1<...<sm1+...+mk
<t

dXs
σ−1(1)

⊗ . . .⊗ dXs
σ−1(m1+...+mk)

=
∑

σ∈Sh(m1,...,mk)

σ−1
X

m1+...+mk

0,t .

�

Corollary 18. Equation (6.1) holds even when X is a geometric rough path.

Proof. This follows directly from Lemma 17 (6.1), that geometric rough paths can
be approximated by bounded variations paths in p-variation metric and that the
iterated integrals are continuous with respect to the p-variation metric [11]. �

Remark 19. In the case of Brownian motion, one can simply prove equation (6.1)
by replacing the Lebesgue-Stieltjes integral with Stratonovitch integral line by line
in the proof of Lemma 17.

Corollary 20. Let X be a geometric rough path. Let X
k
s,t be its k-order iterated

integral (defined in Theorem 2). If there exists k > 0 such that

(6.2) X
k
s,t 6= 0,

then (6.2) hold for infinitely many k.

Proof. Assume for contradiction that there exists K > 0 such that X
K
s,t 6= 0 and

X
k
s,t = 0

for all k > K. Then

X
K
s,t ⊗ X

K
s,t 6= 0.
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However, as X
k
s,t = 0 for all k > K,

∑

σ∈Sh(K,...,K)

σ−1
X

2K
0,t = 0

This contradicts Lemma 17. �

An interesting corollary of Lemma 17 is that the terms in signature are increasing
when the N -th term is normalised by N !.

Lemma 21. Let X be any geometric rough path and let

X
m
0,t =

ˆ

△m(0,t)

dXs1 ⊗ . . .⊗ dXsm .

Then if ‖ · ‖ is the projective norm, we have
(

j!‖Xj
0,t‖

)
1
j ≤ ((jk)!‖Xjk

0,t‖)
1
jk

for all j, k ∈ N.

Proof. Note that by Lemma 17,

(Xj
0,t)

⊗k =
∑

σ∈Sh(j,...,j)

σ−1
X

jk
0,t.

Therefore, using the property of projective norm that ‖σ−1
v‖ = ‖v‖ (see [11]),

‖(Xj
0,t)

⊗k‖ ≤
∑

σ−1∈Sh(j,...,j)

‖Xjk
0,t‖

=
(jk)!

(j!)k
‖Xjk

0,t‖.

Therefore, by using the multiplicative property of projective norm, that ‖a⊗ b‖ =
‖a‖‖b‖,

‖Xj
0,t‖k ≤ (jk)!

(j!)k
‖Xjk

0,t‖.

Rearranging gives,
(

j!‖Xj
0,t‖

)
1
n ≤ ((jk)!‖Xjk

0,t‖)
1
jk .

�

Corollary 22. (limsup is sup) For any bounded variation path,

lim sup
m

(

m!‖Xm
0,t‖

)
1
m = sup

m

(

m!‖Xm
0,t‖

)
1
m .

Proof. One side of the inequality, namely that

lim sup
m

(

m!‖Xm
0,t‖

)
1
m ≤ sup

m

(

m!‖Xm
0,t‖

)
1
m ,

follows directly from the definition of limsup and sup. For the other direction, note
that for any j,

lim sup
m

(

m!‖Xm
0,t‖

)
1
m ≥ lim sup

k

(

(jk)!‖Xjk
0,t‖

)
1
jk

and by Corollary 21, for all k,
(

(jk)!‖Xjk
0,t‖

)
1
jk ≥

(

j!‖Xj
0,t‖

)
1
j .
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Therefore,

lim sup
k

(

(jk)!‖Xjk
0,t‖

)
1
jk ≥

(

j!‖Xj
0,t‖

)
1
j .

The Corollary now follows from taking supremum over j on both sides. �

Remark 23. Corollary 22 does not hold for Brownian motion. Note that if W
m

now denotes the m-th term in the iterated integrals of Brownian motion, then

sup
m

[(
m

2
)!‖Wm

0,1‖
2
m ] ≥ ‖(1

2
)!W1

0,1‖2 ≥ |1
2
!|‖W1 −W0‖2.

Since |WT −W0| can be arbitrarily large with positive probability, so is the supre-
mum

sup
m

[(
m

2
)!‖Wm

0,1‖
2
m ].

On the other hand, by our main result Theorem 1, the lim sup is bounded above.
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