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Abstract. The solutions to linear differential equations driven by a path can be expressed

in terms of iterated integrals of the path. While upper bounds for the iterated integrals

are well-known, it is known only relatively recently that some asymptotics of the order-n

iterated integrals of path, as n tends to infinity, is related to the length of the path for C1

paths travelling at unit speed. We provide an upper and lower bound for the corresponding

asymptotics for rough paths whose signature (sequence of iterated integrals) is the expo-

nential of a degree four Lie polynomial generated by two letters. The methodology, which

we believe is new for this problem, involves using the eigenvalues for certain Lie-algebraic

development of the signature as a lower bound for the aforementioned asymptotics.

1. Introduction

Controlled differential equation of the form

dYt =
d∑
i=0

Vi(Yt)dX
i
t , (1.1)

where Y : [0, 1] → Rn, Vi : Rn → Rn and X : [0, 1] → Rd, frequently appears in stochastic

analysis. The example when X is a Brownian motion is perhaps the most well-known. Rough

path theory, initiated by Lyons’ [10], identified a wide class of “rough paths” X for which the

equation (1.1) is well-defined. The theory motivates a study of the properties of (1.1) driven

by general rough paths. One particularly tractable class of examples is when the functions

{Vi}di=1 are linear. In this case, Y can be represented explicitly as

Yt =
∞∑
n=0

d∑
i1,...,in=1

Vin . . . Vi1(Y0)

∫
0<t1<...<tn<t

dX i1
t1 . . . dX

in
tn . (1.2)

In this particular case, the solution Y depends on driving path X through the collection of

iterated integrals

{
∫

0<t1<...<tn<t

dX i1
t1 . . . dX

in
tn}

d
i1,...,in=1.

This article is motivated by the study of the properties of these iterated integrals. For

algebraic reasons, it is useful to think of this collection as an element of the tensor algebra,

called the signature of X and denoted as S(X)0,1. Let {e1, . . . , ed} be the standard basis of

Rd. For a bounded variation path X, the signature of X is defined to be

1 +
∞∑
n=1

d∑
i1,...,in=1

∫
0<t1<...<tn<t

dX i1
t1 . . . dX

in
tn ei1 ⊗ . . .⊗ ein ,

1
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or more succinctly as

S(X)0,1 =
∞∑
n=0

∫
0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn ,

where we use the convention that the 0-th order iterated integral is equal to zero. An

interesting question about the signature is how does

‖
∫

0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn‖

with a suitably defined tensor norm ‖ · ‖ decay as n → ∞. This affects, in particular, the

convergence of (1.2), and is also related to the problem of reconstructing a path X from its

signature ([5], [13]), because the algebraic properties of signature guarrantees that all the

information about the signature is stored at its tail. Lyons [10] showed that the following

uniform upper bound, for rough paths with finite p-variation,

‖
∫

0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn‖ ≤ cp
‖X‖np−var

(n
p
)!

, (1.3)

where (n
p
)! is defined using the gamma function, and cp depends only on p (but not X).

More recently, Hambly and Lyons [6] , and subsequently Lyons and Xu [12], showed that it is

possible to obtain the exact asymptotics for ‖
∫

0<t1<...<tn<t
dXt1⊗. . .⊗dXtn‖ as n→∞. They

showed, in particular, that if X is a C1-path with respect to the unit speed parametrisation,

then

lim sup
n→∞

‖n!

∫
0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn‖
1
n = ‖X‖1−var. (1.4)

Recall here that

‖X‖1−var = lim
maxi |ti+1−ti|→0

n−1∑
i=0

|Xt1+i −Xti |,

where the limit maxi |ti+1 − ti| → 0 is taken as the maximum gap between the partition

points (0 = t0 < . . . < tn = 1) tend to zero.

In the more general setting of rough paths, where the iterated integrals may be defined in

the sense of Lyons [10], the upper bound (1.3) suggests that the normalisation for p-rough

path would be
(
n
p

)
!. It is however difficult to see what the analogous limit

lim sup
n→∞

‖
(
n

p

)
!

∫
0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn‖
p
n . (1.5)

It certainly is not the p-variation norm, since (1.4) implies that the limit (1.5) is zero for any

C1 unit speed path. It is useful therefore to explore the limit (1.5) in some special cases.

When X is Brownian motion, and the differential dX is defined in terms of the Stratonovich

integral, the following limiting asymptotics is available [2]

lim sup
n→∞

‖
(n

2

)
!

∫
0<t1<...<tn<t

dXt1 ⊗ . . .⊗ dXtn‖
2
n = Ct, (1.6)

where C is a positive and finite deterministic constant. Since the exact value of C is not

known, it is unclear how to use (1.6) to make general guess about the limit (1.5). For instance

the constant Ct can be interpreted as a constant multiple of the quadratic variation
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[X,X]t = lim
maxi |ti+1−ti|→0

n−1∑
i=0

|Xt1+i −Xti |2,

which is exactly equal to t for the sample paths of Brownian motion; the constant Ct could

also depend on the Levy area of Brownian motion. To get a clearer idea of what the limit

(1.5) would be, we investigate in this article, a different class of rough paths. The signature

S(X)0,1 of a rough path X can be informally interpreted as the formal series of iterated

integrals

S(X)0,1 = 1 +

∫ 1

0

dXt1 +

∫ 1

0

∫ t1

0

dXt1 ⊗ dXt2 + . . . .

The signature of a p weakly geometric rough path is equal to either the exponential of a

Lie series, or equal to the exponential of a degree p polynomial P =
∑p

i=1 Pi, where Pi is a

homogeneous Lie polynomial of degree i and Pp 6= 0. We investigate the latter case. In the

appendix, we showed that certain variational norm of X is equal to ‖Pp‖. Our main result

is that for some values of p, the asymptotic (1.5) is also equal to ‖Pp‖.

Theorem 1.1. Let X be a rough path over Rd whose signature S(X)0,1 can be expressed as

S(X)0,1 = exp(P ), (1.7)

for some P =
∑p

i=1 Pi, Pi is a homogeneous Lie polynomial of degree i. Then for any

admissible norms ‖ · ‖ (see Section 2.2 for the definition of admissible norms)

lim sup
n→∞

‖
(
n

p

)
!πn(S(X)0,1)‖

p
n ≤ ‖Pp‖.

Moreover when d = 2, p ≤ 3 and ‖ · ‖proj is the projective norm induced by the Euclidean

norm on Rd, then

lim sup
n→∞

‖
(
n

p

)
!πn(S(X)0,1)‖

p
n
proj = ‖Pp‖proj,

and when d = 2 and p = 4,

1

4
‖P4‖ ≤ lim sup

n→∞
‖
(n

4

)
!πn(S(X)0,1)‖

p
n
proj ≤ ‖P4‖proj.

In the appendix, we details which paths satisfy the relation (1.7), as well as other properties

of such a path.

Our proof of Theorem 1.1 considers a finite dimensional projection of the signature

S(X)0,1, in the following way: We start with a map Φ : Rd → Mn×n(R); then extend Φ

naturally to a map Φ̃ on the tensor algebra of Rd and consider Φ̃(S(X)0,1), which can be

thought of as the finite dimensional projection of the signature S(X)0,1. A specific choice of

Φ was used in the work of Hambly-Lyons [6] to prove the C1 unit speed case (1.4); and other

choices of Φ were used by Chevyrev and Lyons [3] and Lyons and Sidorova [11] to prove

other properties of the signature. The main new ingredients in this article is that we make a

more quantitative use of the development Φ̃; namely to prove the limiting asymptotics (1.4)

through computing the eigenvalues of Φ̃(S(X)0,1).

The rest of the article is organised in the following way: In Section 2, we recall some

essential preliminaries and notations, and formulate our problem in precise terms. In Section
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3, we prove the first part of our main result, namely an upper bound on the tail asymptotics

for pure rough paths. In Section 4, we prove some general results relating the tail asymptotics

of the signature S(X)0,1 to the eigenvalues of its projection Φ̃(S(X)0,1). In Section 5, we

prove the lower bounds for tail asymptotics. Finally, in the appendix, we prove some results

about the pure rough paths and their signatures, which provides the motivation for our

study.

2. Preliminaries and Notation

2.1. Tensor algebra. Let V be a finite dimensional, real vector space and let T ((V )) be

the tensor algebra of V over R, that is

T ((V )) = R× V ⊕ V ⊗2 × · · · × V ⊗i × · · · = Π∞i=0V
⊗i ,

where V ⊗
i

= V ⊗ · · · ⊗ V︸ ︷︷ ︸
i−times

and V ⊗0 = R. The tensor product between two elements in

V can be extended to a product ⊗ on T ((V )), making (T ((V )),⊗) an associative algebra.

Subsequently, the bracket operation [ , ] in T ((V )), with [x, y] = x ⊗ y − y ⊗ x, for x, y ∈
T ((V )), induces a Lie algebra structure in T ((V )). We denote by L((V )) ⊂ T ((V )) the space

of Lie formal series over V , that is

L((V )) = V × [V, V ]× · · · × [· · · [[[V, V ], V ], . . . , V ]︸ ︷︷ ︸
i times

× · · · = Π∞i=1[· · · [[[V, V ], V ], . . . , V ]︸ ︷︷ ︸
i times

.

An element in
⊕n

i=1 [· · · [[[V, V ], V ], . . . , V ]︸ ︷︷ ︸
i times

is called a Lie polynomial of degree n, while an

element in [· · · [[[V, V ], V ], . . . , V ] is called a homogeneous Lie polynomial.

2.2. Admissible norms on the tensor algebra. A family of norms ‖ · ‖n in V ⊗
n
, n =

1, 2, . . . , is called admissible if it satisfies the following properties:

(i) ‖
∑k

i=1 v
i
1⊗v2⊗· · ·⊗vni ‖n = ‖

∑k
i=1 v

i
σ(1)⊗viσ(n)⊗· · ·⊗vnσ(n)‖n, for any k ∈ N, vi1 , . . . vin ∈ V ,

and for any permutation σ of the set {1, 2, . . . , n}.

(ii) ‖v ⊗ w‖n+m ≤ ‖v‖n‖w‖m, for any v ∈ V ⊗n , w ∈ V ⊗m .

For simplicity, we will omit the subscript n, and thus write ‖ ·‖, instead of ‖ ·‖n, whenever

the value of n is clear from the context. We will consider the following two families of

admissible norms.

Definition 2.1. Fix a norm | · | on V . The projective norm on V ⊗
k

is defined by

‖v‖proj = inf{
n∑
i=1

|vi1| · · · |vik| : v =
n∑
i=1

vi1 ⊗ · · · ⊗ vik}. (2.1)

To define the next family of admissible norms, we let {e1, . . . , ed} be an orthonormal basis

of V . Then the set {ei1 ⊗ · · · ⊗ eik : i1, . . . , ik = 1, . . . , d} is a basis for V ⊗
k
.
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Definition 2.2. The l2-norm on V ⊗
k

is defined by

‖
d∑

i1,...,ik=1

ai1,...,ikei1 ⊗ · · · ⊗ eik‖l2 :=
( d∑
i1,...,ik=1

a2
i1,...,ik

) 1
2 . (2.2)

By considering orthogonal transformations of V and extending them to V ⊗
k

we deduce

that the l2-norm is independent of the orthonormal basis of V .

2.3. Formulation of the conjecture. For n ∈ N, let πn : T ((V )) → V ⊗
n

be the linear

projection. Denote by exp : T ((V ))→ T ((V )) the exponential map given by

exp(v) =
∞∑
i=0

vi

i!
, where v ∈ T ((V )).

Assume that ‖ · ‖ is a family of admissible norms on V ⊗
n
, n ∈ N. We state the following

conjecture.

Conjecture 2.1. Let P = P1 + · · · + Pp ∈ L((V )) be a Lie polynomial of degree p, where

Pi, i = 1, . . . , p, is the homogeneous component of P with degree i . Then

L̃p := lim sup
n→∞

(
(
n

p
)!‖πn(expP )‖

) p
n = ‖Pp‖. (2.3)

2.4. Relation of the conjecture to the length of a rough path. For n ∈ N, denote by

T (n)(V ) the truncated tensor algebra of V , that is the space T ((V ))/In, where In is the ideal

In = {(a0, a1, . . . , an, . . . ) ∈ T ((V )) : a0 = a1 = · · · = an = 0}.
Then the product in T ((V )) induces naturally a product in T (n)(V ). Recall that a p-

rough path is a multiplicative functional X : ∆[0,1] → T [p](V ) with finite p-variation, where

∆[0,1] = {(s, t) ∈ [0, 1] × [0, 1] : 0 ≤ s ≤ t ≤ 1} is the 2-simplex. The signature functional

of a p-rough path X is the unique extension S(X) : ∆[0,1] → T ((V )) of X, such that S(X)

is multiplicative and of finite p-variation. The signature of X is the tensor S(X)0,1. The

signature is the exponential of a Lie series, i.e. there exists a Lie polynomial P ∈ L((V ))

such that

S(X)0,1 = expP = exp(
∞∑
i=1

Pi), (2.4)

where each Pi is a homogeneous Lie polynomial of degree i. It can be proved that either∑∞
i=1 Pi is a Lie polynomial of degree [p] or at most finitely many terms of

∑∞
i=1 Pi are zero.

This motivates the following definition.

Definition 2.3. A pure p-rough path is a p-rough path X whose signature has the form

S(X)0,1 = exp(
∑[p]

i=1 Pi).

For example, any linear path is a pure 1-rough path. Let X : ∆[0,1] → T [p](V ) be a pure

p-rough path. Consider a family of admissible norms ‖ · ‖ on V ⊗
n
, n ∈ N. We set
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L̃p := lim sup
n→∞

(
(n/p)!‖πnS(X)0,1‖

)p/n
= lim sup

n→∞

(n/p)!‖πn(exp(

[p]∑
i=1

Pi)‖

p/n

. (2.5)

Then Conjecture 2.1 can be reformulated as follows in terms of pure rough paths.

Conjecture 2.2. Let X : ∆[0,1] → T [p](V ) be a pure p-rough path and let S(X)0,1 =

exp(
∑[p]

i=1 Pi) be the signature of X. Then L̃p = ‖P[p]‖.

3. Upper bound of L̃p

In this section we will show that one side of the equality in Conjecture 2.2 is true.

Proposition 3.1. Let L̃p and P[p] be as defined in Definition 2.3 and 2.5. Then for any

admissible norm ‖ · ‖,
L̃p ≤ ‖P[p]‖. (3.1)

To prove this, we first need a lemma.

Lemma 3.1. Let 0 < α < β ≤ 1 and let a, b > 0. Then

lim sup
k

(
(kα)!

k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!

) 1
kα ≤ b.

Proof. Let ε > 0. It follows from Stirling’s approximation that for 0 < γ ≤ 1,

(jγ)! ∼ (
jγ

e
)jγ
√

2πjγ,

and that for β > α, there exists J such that for all j ≥ J ,

(jα)!

(jβ)!
< εj.

Therefore,

k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!

≤
J−1∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!
+

k∑
j=J

(ε1/αa)jαb(k−j)α

(jα)!((k − j)α)!
.

We may apply the neoclassical inequality below (See Theorem 1.2 in [7])

α
n∑
j=0

(
αn

αj

)
xαjyα(n−j) ≤ (x+ y)αn (3.2)

to conclude that
k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!

≤
J−1∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!
+

(ε1/αa+ b)kα

α(kα)!
. (3.3)
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We observe that

(kα)!
J−1∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!
≤

{
(kα)!J(a∨1)Jαb(k−J)α

((k−j)α)!
, if b ≤ 1;

(kα)!J(a∨1)Jαbkα

((k−j)α)!
, if b > 1.

Noting that once again by Stirling’s approximation,

(kα)!

((k − j)α)!
≤ CkJα

where C is a constant depending only on j and α. Then

(kα)!
J−1∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!
≤ C̃kJαbkα

where C̃ depends on J, a, b and α. Therefore,

(kα)!
k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!
≤ C̃kJαbkα +

(ε1/αa+ b)kα

α
.

We then take limsup in k to obtain,

lim sup
k

[
(kα)!

k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!

] 1
kα

≤ lim sup
k

[
C̃kJαbkα +

(ε1/αa+ b)kα

α

] 1
kα

= ε1/αa+ b.

We then let ε→ 0 to obtain

lim sup
k

[
(kα)!

k∑
j=0

ajαb(k−j)α

(jβ)!((k − j)α)!

] 1
kα ≤ b.

�

We now prove our main proposition, Proposition 3.1.

Proof. Note that

‖πk(exp(

p∑
i=1

Pi))‖

≤
∞∑
N=0

‖πk
((
∑p

i=1 Pi)
⊗N

N !

)
‖

≤
∞∑
N=0

∑
i1+...+iN=k

‖Pi1‖ . . . ‖PiN‖
N !

=
∑

∑
ini=k

‖P1‖n1 . . . ‖Pp‖np
(n1)! . . . (np)!

.
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If we substitute ñi = ini, we have ∑
∑
ini=k

‖P1‖n1 . . . ‖Pp‖np
(n1)! . . . (np)!

≤
∑

∑
ñi=k

‖P1‖ñ1 . . . ‖Pp‖ñp/p

(ñ1)! . . . (ñp/p)!
. (3.4)

Note first that we may use neoclassical inequality (the multi-factor version, see Lemma 1 in

[4]) to bound ∑
∑p−1
i=1 ñi=k−ñp

‖P1‖ñ1 . . . ‖Pp−1‖ñp−1/(p−1)

(ñ1)! . . . (ñp−1/(p− 1))!

≤
∑

∑p−1
i=1 ñi=k−ñp

‖P1‖ñ1 . . . ‖Pp−1‖ñp−1/(p−1)

(ñ1/(p− 1))! . . . (ñp−1/(p− 1))!

≤ (p− 1)p−1(
∑p−1

i=0 ‖Pi‖(p−1)/i)(k−ñp)/(p−1)

((k − ñp)/(p− 1))!
.

We now let

a = (

p−1∑
i=0

‖Pi‖(p−1)/i
)p/(p−1)

.

Then by continuing the calculation from (3.4),

‖πk(exp(

p∑
i=1

Pi))‖ ≤ (p− 1)p−1

k∑
ñp=0

a(k−ñp)/p‖Pp‖ñp/p

(k−ñp
p−1

)!( ñp
p

)!
.

We now apply Lemma 3.1 to see that

lim sup
k
‖(k
p

)!πk(exp(

p∑
i=1

Pi))‖
p
k ≤ ‖Pp‖.

�

Therefore, proving Conjecture 2.2 boils down to establishing the matching lower bound.

4. Estimates for the lower bound of L̃p

The main result of this section is an estimate for a lower bound of L̃p, in terms of eigen-

values of special matrix representations of the Lie polynomial P .

Let (A,+, ·) be an associative algebra over R. Then A, endowed with the Lie bracket

[X, Y ] = XY − Y X, X, Y ∈ A, becomes a Lie algebra. We consider the space L(V,A) of

linear maps from V to A. Let Φ ∈ L(V,A). From the universal property of T ((V )) we

obtain a unique algebra homomorphism Φ̃ : T ((V ))→ A, extending Φ.

Our main example for A will be the algebra Mn×nC, of n× n matrices with complex valued

entries.

We proceed to define a norm for the space L(V,Mn×nC). We fix norms | · | on V and ‖ · ‖ on

Cn, and we consider the operator norm ‖ · ‖op on Mn×nC, with respect to ‖ · ‖. We define a

norm ‖ · ‖Ln on L(V,Mn×nC) by
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‖Φ‖Ln := sup
|v|=1

‖|Φ(v)‖op.

We will show that the limit L̃p can be bounded below, independently of the lower order

terms of the Lie polynomial P =
∑p

i=1 Pi. The Euclidean norm ‖ · ‖ on Cn is defined by

‖(z1, . . . , zn)‖ =
√
|z1|2 + · · ·+ |zn|2. We state the main result of the section.

Proposition 4.1. Choose a norm | · | on V and let ‖ · ‖ be the Euclidean norm on Cn. Let

P =
∑p

i=1 Pi ∈ L(V ) be a Lie polynomial, let Φ ∈ L(V,Mn×nC) and denote by Φ̃ : T ((V ))→
Mn×nC the unique extension of Φ. Then for any eigenvalue v of Φ̃(Pp) it is

L̃p := lim sup
n→∞

(
(n/p)!‖πn exp(P )‖proj

)p/n ≥ Re(v)

‖Φ‖pLn
,

where ‖ · ‖proj is the projective norm on V ⊗
n

induced from | · |, and ‖Φ‖Ln is defined by

Equation (4).

In order to prove Proposition 4.1, for λ ∈ R and P =
∑p

i=1 Pi ∈ L(V ), we consider the

dilated polynomial δλP =
∑p

i=1 λ
iPi. We firstly prove the following.

Lemma 4.1. Let P =
∑p

i=1 Pi ∈ L(V ) be a Lie polynomial and let Φ ∈ L(V,Mn×nC). Then

L̃p ≥ lim sup
λ→∞

log ‖ exp(Φ̃(δλ(P ))‖op
λp‖Φ‖pLn

, (4.1)

where the exponential on the right-hand side is the matrix exponential in Mn×nC.

Before proving Lemma 4, we need a few intermediate lemmas.

The estimate below is well-known:

Lemma 4.2. Let v ∈ V ⊗p. Then

‖Φ̃(v)‖op ≤ ‖Φ‖pLn‖v‖proj.

Proof. Note that if v =
∑m

i=1 v
i
1 ⊗ . . .⊗ vin, then

‖Φ̃(v)‖op = ‖
m∑
i=1

Φ(vi1) . . .Φ(vin)‖op

≤
m∑
i=1

‖Φ(vi1)‖op . . . ‖Φ(vin)‖op

= ‖Φ‖nLn
m∑
i=1

‖vi1‖ . . . ‖vin‖.

Taking infinum over all possible representations
∑m

i=1 v
i
1 ⊗ . . .⊗ vin of v, we obtain

‖Φ̃(v)‖op ≤ ‖Φ‖nLn‖v‖proj.

�
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Lemma 4.3. Let p be a natural number. Define fp : [0,∞)→ R by

fp(x) =
∞∑
n=0

x
n
p

(n
p
)!
.

Then for all x ∈ [0,∞),

ex ≤ fp(x) ≤
p−1∑
r=0

x
r
p ex.

Proof. Note that for each n ∈ N, we may find q ∈ N ∪ {0} and r < p such that

n = qp+ r.

Then for x ≥ 0,

fp(x) =

p−1∑
r=0

x
r
p

∞∑
q=0

xq

(q + r
p
)!

≤
p−1∑
r=0

x
r
p

∞∑
q=0

xq

q!

≤
p−1∑
r=0

x
r
p ex.

At the same time, we have by considering only terms in
∑∞

n=0
x
n
p

(n
p

)!
which are divisible by p,

fp(x) ≥ ex.

�

Proof of Lemma 4. Note that

‖ exp(Φ̃(δλ(P )))‖op
=‖Φ̃ [exp(δλ(P ))] ‖op

=‖
∞∑
n=0

λnΦ̃ [πn (exp(P ))] ‖op

≤
∞∑
n=0

λn‖Φ̃ [πn (exp(P ))] ‖op.

Using Lemma 4.2,

‖ exp(Φ̃(δλ(P )))‖op

≤
∞∑
n=0

λn‖Φ‖nLn‖πn (exp(P )) ‖proj.
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Let m ∈ N. Then

‖ exp(Φ̃(δλ(P )))‖op

≤
m∑
n=0

λn‖Φ‖nLn‖πn (exp(P )) ‖proj

+
∞∑

n=m+1

λn‖Φ‖nLn‖πn (exp(P )) ‖proj

=
m∑
n=0

λn‖Φ‖nLn‖πn (exp(P )) ‖proj

+
∞∑

n=m+1

λn‖Φ‖nLn

[
‖(n

p
)!πn (exp(P )) ‖

p
n
proj

]n
p(

n
p

)
!

.

Define

L̂m = sup
n≥m
‖(n
p

)!πn (exp(P )) ‖
p
n
proj.

Then

‖ exp(Φ̃(δλ(P )))‖op

≤
m∑
n=0

λn‖Φ‖nLn‖πn (exp(P )) ‖proj

+
∞∑

n=m+1

λn‖Φ‖nLn
L̂
n
p
m(
n
p

)
!
.

Therefore,

‖ exp(Φ̃(δλ(P )))‖op

≤
m∑
n=0

λn‖Φ‖nLn‖πn (exp(P )) ‖proj

−
m∑
n=0

λn‖Φ‖nLn
L̂
n
p
m(
n
p

)
!

+
∞∑
n=0

(λp)
n
p (‖Φ‖pLn)

n
p
L̂
n
p
m(
n
p

)
!
.

We define the degree polynomial in λ

Pm(λ) =
m∑
n=0

λn‖Φ‖nLn(‖πn (exp(P )) ‖proj −
L̂
n
p
m(
n
p

)
!
)
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and recall the definition of fp from Lemma 4.3. Then

‖ exp(Φ̃(δλ(P )))‖op
≤Pm(λ) + fp(λ

p‖Φ‖pLnL̂m).

Taking limit as λ→∞,

lim sup
λ→∞

log ‖ exp(Φ̃(δλ(P )))‖op
λp‖Φ‖pLn

≤ lim sup
λ→∞

log
[
Pm(λ) + fp(λ

p‖Φ‖pLnL̂m)
]

λp‖Φ‖pLn
. (4.2)

Note that by Lemma 4.3,

log
[
Pm(λ) + fp(λ

p‖Φ‖pLnL̂m)
]

≤ log

[
Pm(λ) +

[
p−1∑
r=0

(
λp‖Φ‖pLnL̂m

) r
p

]
eλ

p‖Φ‖pLn L̂m

]

≤ log

[
Pm(λ)e−λ

p‖Φ‖pLn L̂m +

[
p−1∑
r=0

(
λp‖Φ‖pLnL̂m

) r
p

]]
+ λp‖Φ‖pLnL̂m.

Notice that

Pm(λ)e−λ
p‖Φ‖pLn L̂m +

[
p−1∑
r=0

(
λp‖Φ‖pLnL̂m

) r
p

]
grows at most polynomially fast in λ as λ→∞. Therefore, using the property that for any

polynomial Q in λ,

lim
λ→∞

1

λ
log |Q(λ)| = 0,

we have

lim sup
λ→∞

log
[
Pm(λ) + fp(λ

p‖Φ‖pLnL̂m)
]

λp‖Φ‖pLn
≤L̂m.

Therefore, returning to (4.2), we have

lim sup
λ→∞

log ‖ exp(Φ̃(δλ(P )))‖op
λp‖Φ‖pLn

≤L̂m.

This holds for all m, and therefore taking m→∞ yields

lim sup
λ→∞

log ‖ exp(Φ̃(δλ(P )))‖op
λp‖Φ‖pLn

≤L̃p.

�



THE TAIL ASYMPTOTICS FOR THE SIGNATURES OF SOME PURE ROUGH PATHS 13

Proof of Proposition 4.1. For a matrix M ınMn×nC, we denote by Spec(M) its spectrum. By

using Lemma 4 we have

‖Φ‖pLnL̃p ≥ lim sup
λ→∞

log ‖ exp(Φ̃(δλ(P )))‖
λp

≥ lim sup
λ→∞

log(max{‖v‖ : v ∈ Spec(exp(Φ̃(δλP )))}
λp

= lim sup
λ→∞

log(max{|ev| : v ∈ Spec(Φ̃(δλP ))}
λp

= lim sup
λ→∞

log(max{eRe(v) : v ∈ Spec(Φ̃(δλP ))}
λp

= lim sup
λ→∞

max{Re(v) : v ∈ Spec(Φ̃(δλP ))}
λp

= lim sup
λ→∞

max{Re(v) : v ∈ Spec(Φ̃(
δλP

λp
))}

= lim sup
λ→∞

max{Re(v) : v ∈ Spec(Φ̃(

∑p−1
i=1 λ

iPi
λp

+ Pp))}

= lim sup
λ→∞

max{Re(v) : v ∈ Spec(Φ̃(
o(λp)

λp
) + Φ̃(Pp))}. (4.3)

We consider the one-parameter family of operators A : R → Mn×nC given by A(λ) =

Φ̃(o(λ
p)

λp
) + Φ̃(Pp)). Then

lim
λ→∞

A(λ) = Φ̃(Pp). (4.4)

Moreover, Theorem 5.2. in [9] asserts that there exist n continuous functions vi(λ), i =

1, . . . , n, the values of which constitute the n-tuple Spec(A(λ)) for any λ ∈ R. The continuity

of vi as well as Equation (4.4) imply that Spec(Φ̃(Pp)) = {limλ→∞ v1(λ), . . . , limλ→∞ vn(λ)},
thus the limit limλ→∞max{Re(v) : v ∈ Spec(A(λ))} exists and is equal to max{Re(v) : v ∈
Spec(Φ̃(Pp))}. Therefore, if v is an eigenvalue of Φ̃(Pp), then inequality (4.3) yields

L̃p ≥
1

‖Φ‖pLn
max{Re(v) : v ∈ Spec(Φ̃(Pp))}.

Therefore,

L̃p ≥
Re(v)

‖Φ‖pLn
,

for any eigenvalue v of Φ̃(Pp). �

By virtue of Proposition (4.1), and upon taking into account the upper bound of L̃p, we

deduce the following.

Corollary 4.1. Choose a norm | · | on V and endow C with the Euclidean norm. Let

P =
∑p

i=1 Pi ∈ L(V ) and assume that there exists an n ∈ N and a map Φ ∈ L(V,Mn×nC)

with the following properties:
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1) ‖Φ‖Ln = 1 and

2) Φ̃(Pp) has an eigenvalue v such that Re(v) ≥ ‖Pp‖proj.

Then L̃p ≥ ‖Pp‖proj, that is Conjecture 2.1 is true for the polynomial P .

5. A diagonal representation for Φ̃(Pp)

In this section we prove that for any p ∈ N, there exists a subspace s of Mp×pC such that

for any Φ ∈ L(V, s) the matrix Φ̃(Pp) is diagonal.

Denote by slpC the algebra of traceless matrices in Mp×pC. For any i, j = 1, . . . , p, denote

by Eij ∈ slnC the matrix whose (i, j) entry is 1, and all the other entries are zero. Denote by

Hij the matrix Eii−Ejj, 1 ≤ i < j ≤ p. Then the set B = {Eij, Hkl : i 6= j = 1, . . . , p, 1 ≤
k < l ≤ p} is a basis of slpC. Moreover, the following relations are valid.

[Eij, Ekl] = δjkEil − δilEkj, (5.1)

[Hij, Eij] = 2Eij.

We consider the spaces

gij : = CEij, 1 ≤ i < j ≤ p,

h : = spanC{Hkl : 1 ≤ k < l ≤ p}. (5.2)

The space h coincides with the algebra of diagonal matrices in slpC. We have the decom-

position

slpC = h⊕
∑
i 6=j

gij. (5.3)

Relation (5.3) coincides with the root decomposition of slpC (see [8]). Equation (5.1)

implies the following.

[gij, gkl] ⊆


gil, if j = k and i 6= l,

h, if j = k and i = l,

gkj, if j 6= k and i = l,

{0} , otherwise.

(5.4)

The main result of the section is the following.

Lemma 5.1. For any integer p ≥ 2, let s be the subspace of slpC defined by

s := (

p−1∑
i=1

gi(i+1)) + gp1, (5.5)

Then any matrix in [· · · [[[s, s], s], . . . , s]︸ ︷︷ ︸
p times

is diagonal.
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Remark 5.1. In matrix form, the space s, defined by Equation (5.5), is given by

s = {


0 z1 0 0 · · · 0

0 0 z2 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · zp−1

zp 0 0 0 · · · 0

 : z1, . . . , zp ∈ C}. (5.6)

Proof of Lemma 5.1 It suffices to prove that s satisfies the relation

[· · · [[[s, s], . . . , s], s]︸ ︷︷ ︸
p times

⊆ h, (5.7)

where h is the algebra of diagonal matrices, given by relation (5.2). By taking into account

relation (5.4), we obtain

[s, s] ⊆ (g13 + g24 + · · ·+ g(p−2)p) + (gp2 + g(p−1)1),

[[s, s], s] ⊆ (g14 + g25 + · · ·+ g(p−3)p) + (gp3 + g(p−1)2 + g(p−2)1),

...

[· · · [[[s, s], . . . , s], s]︸ ︷︷ ︸
k times

⊆ (g1(k+1) + g2(k+2) + · · ·+ g(p−k)p) + (gpk + g(p−1)(k−1) + · · ·+ g(p−k+1)1),

...

[· · · [[[s, s], . . . , s], s]︸ ︷︷ ︸
(p−1) times

⊆ (g1p) + (gp(p−1) + g(p−1)(p−2) + · · ·+ g21). (5.8)

Moreover, relation (5.4) implies that

[gij, gji] ⊆ h. (5.9)

Taking into account relation (5.9), relation (5.8) along with the definition (5.5) of s yield

[· · · [[[s, s], s], . . . , s]︸ ︷︷ ︸
p times

⊆ h. �

Corollary 5.1. Let p ∈ N with p ≥ 2, and let P = P1+· · ·+Pp ∈ L((V )) be a Lie polynomial

of degree p. Then there exists a subspace s of Mp×pC such that, for any Φ ∈ L(V, s),

the matrix Φ̃(Pp) is diagonal, where Φ̃ : T ((V )) → Mp×pC is the unique homomorphism

extending Φ.

Proof. Let s be the space given in Lemma 5.1. Let V = spanR{e1, . . . , ed}, and write

Pp =
∑

i1,...,ip=1,...,d

ai1...ip [· · · [[[eip , eip−1 ], eip−2 ], . . . , ei1 ].

Then
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Φ̃(Pp) =
∑

i1,...,ip=1,...,d

ai1...ip [· · · [[[Φ(eip),Φ(eip−1)],Φ(eip−2)], . . . ,Φ(ei1)] ∈ [· · · [[[s, s], s], . . . , s]︸ ︷︷ ︸
p times

,

which, by virtue of Lemma 5.1 is diagonal. �

6. Conjecture 2.1 for Lie polynomials of degree p ≤ 3

In this section, we prove Conjecture 2.1 in the case where V = R2 and P ∈ L((V )) is

any Lie polynomial of degree p ≤ 3. We endow V with the Euclidean norm ‖ · ‖l2 . We also

consider the projective norm ‖ · ‖proj on V ⊗
n
, n = 1, 2, . . . , induced by the norm ‖ · ‖l2 . We

have the following result.

Theorem 6.1. Let V be a two dimensional vector space and let P ∈ L((V )) be a Lie

polynomial of degree p ≤ 3. Then

L̃p := lim sup
n→∞

(
(
n

p
)!‖πn(expP )‖proj

) p
n = ‖Pp‖proj,

where ‖ ·‖proj is the projective norm induced from the Euclidean norm on V . In other words,

Conjecture 2.1 is true for P .

Proof. Since L̃p ≤ ‖Pp‖proj for any p ∈ N, it suffices to show that

L̃p ≥ ‖Pp‖proj, p = 1, 2, 3. (6.1)

If p = 1, then P = P1 ∈ V and inequality (6.1) holds trivially. Let {e1, e2} be an

orthonormal basis of V . Assume that p = 2, that is P = P1 +P2 with P2 ∈ [V, V ]. The space

[V, V ] is one-dimensional, and is generated by the vector [e1, e2]. Therefore P2 = c[e1, e2].

From the definition (2.1) of the projective norm we have

‖P2‖proj ≤ |c|
(
‖e1‖l2‖e2‖l2 + ‖e2‖l2‖e1‖l2

)
= 2|c|. (6.2)

We will verify Corollary 4.1 for P . We choose Φ ∈ L(V,M2×2C) by

Φ(e1) =

(
0 1

i 0

)
and Φ(e2) =

(
0 i

1 0

)
. (6.3)

We have

‖Φ‖L2 = sup
‖v‖l2=1

‖Φ(v)‖op = sup
‖v‖l2=1,‖z‖=1

‖Φ(v)z‖. (6.4)

We set v = ae1+be2 with
√
a2 + b2 = ‖v‖l2 ≤ 1 and z = (z1, z2) ∈ C2 with

√
‖z1‖2 + ‖z2‖2 =

‖z‖ ≤ 1. By taking into account equations (6.3) and (6.4), we obtain
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‖Φ‖L2 = sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

‖
(
(a+ ib)z2, (ia+ b)z1

)
‖

= sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
‖(a+ ib)z2‖2 + ‖(ia+ b)z1‖2

= sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
‖(a+ ib)‖2‖z2‖2 + ‖(ia+ b)‖2‖z1‖2

= sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
(a2 + b2)(‖z2‖2 + |z1‖2) = 1. (6.5)

Moreover,

Φ̃(P2) = c[Φ(e1),Φ(e2)] =

(
2c 0

0 −2c

)
,

hence Φ̃(P2) has the eigenvalue 2|c|, which, by virtue of relation (6.2) is greater than or equal

to ‖P2‖proj. Taking into account Equation (6.5), Corollary 4.1 implies that Conjecture 2.1

is true for P .

Finally, assume that p = 3, that is P = P1 + P2 + P3, with P3 ∈ [V, [V, V ]]. We claim the

following.

Claim 6.1. There exists an orthonormal basis {v1, v2} of V such that

P3 = c[v1, [v1, v2]]. (6.6)

Proof of Claim 6.1. A basis for the space [V, [V, V ]] is {[e1, [e1, e2]], [e2, [e1, e2]]}. Therefore

P3 = c1[e1, [e1, e2]] + c2[e2, [e1, e2]], c1, c2 ∈ R. (6.7)

If c2 = 0 the proof is concluded. If c2 6= 0, we consider the clockwise rotation Aθ by

θ := arctan
c1

c2

, (6.8)

and we set v1 := Aθe2, v2 := Aθe1. Then {v1, v2} is an orthonormal basis of V . Moreover,

e1 = (cos θ)v2 + (sin θ)v1 and e2 = −(sin θ)v2 + (cos θ)v1. By substituting the last equations

into Equation (6.7) and by taking into account Equation (6.8), we obtain

P3 = (c1 sin θ + c2 cos θ)[v1, [v1, v2]].

�
By taking into account Equation (6.6) as well as the definition (2.1) of the projective norm

we obtain

‖P3‖proj ≤ |c|
(
‖v1‖l2‖v1‖l2‖v2‖l2 + 2‖v1‖l2‖v2‖l2‖v1‖l2 + ‖v2‖l2‖v2‖l2‖v1‖l2

)
≤ 4|c|. (6.9)

We define Φ ∈ L(V,M3×3C by



18 HORATIO BOEDIHARDJO, XI GENG, NIKOLAOS SOURIS

Φ(e1) =

 0 1 0

0 0 i

1 0 0

 and Φ(e2) =

 0 −i 0

0 0 −1

−i 0 0

 , if c > 0,

Φ(e1) =

 0 1 0

0 0 i

1 0 0

 and Φ(e2) =

 0 i 0

0 0 1

i 0 0

 , if c < 0.

With similar calculations as in the case p = 2 and by taking into account relation (6.9),

we can verify that 1) ‖Φ‖L3 = 1 and 2) Φ̃(P3) has an eigenvalue which is greater that or

equal to ‖P3‖proj. Therefore, by virtue of Corollary 4.1, Conjecture 2.1 is true for P . �

7. A weaker version of Conjecture 2.1 for Lie polynomials of degree four

Let V = R2. We prove the following result for Lie polynomials of degree four in L((V )).

Proposition 7.1. Let ‖·‖proj : V ⊗
n → R, n = 1, 2, . . . denote the family of projective norms

induced from the Euclidean norm ‖·‖l2 on V . Then for any Lie polynomial P = P1+· · ·+P4,

of degree four in L(V ), it is

1

4
‖P4‖proj ≤ L̃p ≤ ‖P4‖proj.

We will firstly prove the following lemma.

Lemma 7.1. For any homogeneous Lie polynomial P4 of degree four in L(V ) there exists

an orthonormal basis {v1, v2} of V such that

P4 = d1[v1, [v1, [v1, v2]] + d2[v2, [v2, [v1, v2]]], d1, d2 ∈ R. (7.1)

Proof. We fix the standard basis {e1, e2} on V . A basis for the space [V, [V, [V, V ]], of

homogeneous Lie polynomials of degree four, is the set

{[e1, [e1, [e1, e2]]], [e1, [e2, [e1, e2]]], [e2, [e2, [e1, e2]]]}. Therefore, P4 has the form

P4 = c1[e1, [e1, [e1, e2]] + c2[e1, [e2, [e1, e2]]] + c3[e2, [e2, [e1, e2]]], c1, c2, c3 ∈ R. (7.2)

If c2 = 0 then the proof is concluded. Assume that c2 6= 0. We set

θ , −1

2
arccot

c1 + c3

c2

, (7.3)

and we rotate the basis {e1, e2} by θ, thus obtaining an orthonormal basis {v1, v2} satisfying

the equations

e1 = (cos θ)v1 + (sin θ)v2 and e2 = −(sin θ)v1 + (cos θ)v2. (7.4)

By substituting Equations (7.4) into Equation (7) and after straightforward calculations,

we obtain

P4 = d1[e1, [e1, [e1, e2]] + d2[e2, [e2, [e1, e2]]] + d3[e1, [e2, [e1, e2]]],
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where

d3 = 2c1 cos θ sin θ + c2(cos2 θ − sin2 θ) + 2c3 cos θ sin θ

= (c1 + c3) sin (2θ) + c2 cos (2θ) = 0,

the last equality following from Equation (7.3). �

By expressing explicitly the Lie brackets in Equation (7.1), by using the fact that {v1, v2}
is an orthonormal basis as well as the definition (2.1) of the projective norm, we obtain

‖P4‖proj ≤ 8(|d1|+ |d2|). (7.5)

We proceed to prove Proposition 7.1.

Proof of Proposition 7.1 It suffices to prove that L̃p ≥ ‖P4‖proj. Let {v1, v2} be the basis of

V constructed in Lemma 7.1. We consider the following two cases for P4: (a) d1, d2 ≥ 0 and

(b) d1 ≥ 0, d2 < 0. The other two cases are similar.

For Case (a) we define Φ ∈ L(V,M2×2C) by

Φ(v1) =

(
0 1

e
iπ
4 0

)
and Φ(v2) =

(
0 i

e−
iπ
4 0

)
. (7.6)

We will prove that 1) ‖Φ‖L2 = 1 and 2) Φ̃(P4) has an eigenvalue equal to 8(d1 +d2), which,

in view of Proposition 4.1 and relation (7.5), will imply that L̃4 ≥ 1
2
‖P4‖proj for Case (a).

For the first fact, we endow C2 with the Euclidean norm ‖ · ‖, and we have

‖Φ‖L2 = sup
‖v‖l2=1,‖z‖=1

‖Φ(v)z‖. (7.7)

Setting v = av1 + bv2 and z = (z1, z2) ∈ C2, equations (7.6) and (7.7) yield

‖Φ‖L2 = sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

∥∥∥∥((a+ bi)z2,

√
2

2

(
(a+ b) + (a− b)i

)
z1

)∥∥∥∥
= sup

a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
‖(a+ bi)z2‖2 +

1

2
‖
(
(a+ b) + (a− b)i

)
z1‖2

= sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
‖a+ bi‖2‖z2‖2 +

1

2
‖(a+ b) + (a− b)i‖2‖z1‖2

= sup
a2+b2≤1,‖z1‖2+‖z2‖2≤1

√
(a2 + b2)(‖z2‖2 + ‖z1‖2) = 1.

The second fact is straightforward to verify, therefore the proof of Proposition 7.1 is

concluded for Case (a).

For Case (b) we set

Φ(v1) =

(
0 1√

2
1√
2

0

)
and Φ(v2) =

(
0 1√

2

− 1√
2

0

)
, (7.8)
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By using similar calculations as in Case (a), we deduce that ‖Φ‖L2 = 1. Moreover, after

some straightforward calculations, it can be shown that Φ̃(P4) has an eigenvalue v such that

Re(v) = 2(d1 − d2). By virtue of relation (7.5), we have Re(v) ≥ 1
4
‖P4‖. Since ‖Φ‖L2 = 1,

Proposition 4.1 implies that L̃4 ≥ 1
4
‖P4‖, which concludes the proof of Proposition 7.1 for

Case (b). �

8. Appendix: Some properties of pure rough paths

This article focuses on studying rough paths X whose signature can be expressed as

S(X)0,1 = exp(P ), (8.1)

where P =
∑p

i=1 Pi, Pi is a Lie polynomial of degree i and Pp 6= 0.

In the first subsection, we will characterise all the rough paths for which (8.1) holds. In

the second subsection, we will show that certain variational norms of X is exactly equal to

‖Pp‖. Since the quantity ‖Pp‖ appears in our main result Theorem 1.1, the result of the

second subsection provides a geometric intuition for the limit studied in Theorem 1.1 in

terms of the path X.

8.1. Paths whose signatures are the exponential of Lie polynomials. Given a Lie

polynomial P of degree p, we claim that the function X : ∆[0,1] → T [p](V ) defined by

X : (s, t)→ exp((t− s)P )

is the only rough paths whose signature is exp(P ). This consists of three claims:

(a) The function X defines a rough path, and hence its signature is well-defined;

(b) The signature of X is exp(P );

(c) The path X is the only reduced rough path with exp(P ) as its signature.

We start with showing (a). A rough path must satisfy two conditions:

(i) The function X must be multiplicative, in the sense that for any 0 ≤ s ≤ u ≤ t,

Xs,u ⊗Xu,t = Xs,t.

Note that (t−u)P and (u−s)P is commutative with respect to the tensor product. Therefore,

Xs,u ⊗Xu,t

= exp((u− s)P )⊗ exp((t− u)P )

= exp((u− s)P + (t− u)P )

= exp((t− s)P ).

=Xs,t.

(ii) The function X must have finite p-variation, which is shown in the lemma below:

Lemma 8.1. Let P =
∑p

i=1 Pi, Pi is a homogeneous Lie polynomial of degree i. For every

n, the function

X : (s, t)→ πn(exp((t− s)P ))

is finite p-variation.



THE TAIL ASYMPTOTICS FOR THE SIGNATURES OF SOME PURE ROUGH PATHS 21

Proof. Let 0 = t0 < t1 < . . . < tN = 1 be a partition.

N−1∑
i=0

‖πn(Xti,ti+1
)‖

p
n

=
N−1∑
i=0

‖πn(exp((ti+1 − ti)P ))‖
p
n

=
N−1∑
i=0

‖
∞∑
k=0

((ti+1 − ti)P ))⊗k

k!
‖
p
n

=
N−1∑
i=0

‖
∑

i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖
p
n .

Note that for each term inside the sum
∑

i1+...+ik=n, since ij ≤ p for all j, we have that

k ≥ n
p
. This together with ti+1 − ti ≤ 1 implies that (ti+1 − ti)k ≤ (ti+1 − ti)

n
p .

N−1∑
i=0

‖πn(Xti,ti+1
)‖

p
n

≤
N−1∑
i=0

(ti+1 − ti)‖
∑

i1+...+ik=n

Pi1 ⊗ . . .⊗ Pik
k!

‖
p
i

=
∑

i1+...+ik=n

Pi1 ⊗ . . .⊗ Pik
k!

‖
p
i .

Since the quantity ‖
∑

i1+...+ik=n
1
k!
Pi1 ⊗ . . .⊗Pik‖

p
i is independent of the partition (0 < t1 <

. . . < tN = 1),

sup
0<t1<...<tN=1

N−1∑
i=0

‖πn(Xti,ti+1
)‖

p
n

≤ ‖
∑

i1+...+ik=n

1

k!
Pi1 ⊗ . . .⊗ Pik‖

p
i .

Therefore, X has finite p-variation. Since X is by definition expressed as the exponential of

Lie polynomial, X is a p weakly geometric rough path. �

We now show (b).

Lemma 8.2. The signature S(X)0,1 of the p-rough path X is of the form

S(X)0,1 = exp(P ).

Proof. The signature functional

(s, t)→ S(X)s,t

is defined to be the unique function (s, t)→ T ((Rd)) such that

S(X)s,u ⊗ S(X)u,t = S(X)s,t
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for all s ≤ u ≤ t; (s, t)→ πn(S(X)s,t) has finite p-variation; and

πn(S(X)s,t) = πn(Xs,t)

for all n ≤ p (see Theorem 2.2.1 in [10]). Define

S̃(X)s,t = exp((t− s)P ).

Note that S̃(X)s,t is an extension of X in the sense that

πn(S̃(X)s,t) = πn(Xs,t)

for all s ≤ t.

Since (t− s)P and (u− s)P commutes with respect to the tensor product,

S̃(X)s,u ⊗ S̃(X)u,t

= exp((u− s)P )⊗ exp((t− u)P )

= exp((t− s)P )

=S̃(X)s,t,

and therefore S̃(X) is a multiplicative extension of X. By Lemma 8.1, (s, t)→ S̃(X)s,t has

finite p-variation.

Therefore, by the uniqueness of multiplicative extension for rough paths, Theorem 2.2.1

in [10],

S(X)s,t = exp((t− s)P ).

�

Finally, to show Claim (c) at the beginning of this subsection, we simply note that X is

the unique reduced path such that S(X)0,1 = exp(P ). This is a direct consequence of the

uniqueness theorem (Lemma 4.6 in [1]): The signature of a reduced weakly geometric rough

path uniquely determines the path.

8.2. Interpretation of ‖Pp‖ in terms of X.

Lemma 8.3. Let limmaxi |ti+1−ti|→0 denote the limit as the maximum gap, maxi |ti+1−ti| → 0,

between adjacent partition points of (t0 < t1 < . . . < tn) tends to zero. Let πn(Xti,ti+1
) be the

projection onto the degree-n component of X. Then

lim
maxi |ti+1−ti|→0

n−1∑
i=0

‖πn(Xti,ti+1
)‖

p
i =

{
‖Pp‖, if n = p;

0, ifn < p.

Proof. Recall from the proof of Lemma 8.1 that

N−1∑
i=0

‖πn(Xti,ti+1
)‖

p
n

=
N−1∑
i=0

‖
∑

i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖
p
n .
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Suppose that n < p. Note that as k ≥ 1 and ti+1 − ti < 1,

N−1∑
i=0

‖
∑

i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖
p
n

≤
N−1∑
i=0

(ti+1 − ti)
p
n‖

∑
i1+...+ik=n

Pi1 ⊗ . . .⊗ Pik
k!

‖
p
n .

As n < p,

lim
maxi |ti+1−ti|→0

N−1∑
i=0

(ti+1 − ti)
p
n = 0.

Therefore if n < p, then

lim
maxi |ti+1−ti|→0

N−1∑
i=0

‖πn(Xti,ti+1
)‖

p
n = 0.

Now suppose that n = p. Since the only term in∑
i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!

such that k = 1 is Pp. Therefore, we have∑
i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!

=(ti+1 − ti)Pp + (ti+1 − ti)2R,

where

R =
∑

i1+...+ik=n,k≥2

(ti+1 − ti)k−2Pi1 ⊗ . . .⊗ Pik
k!

.

Note that R can be bounded so that it is independent of the partition points, through

‖R‖ ≤ ‖
∑

i1+...+ik=n,k≥2

(ti+1 − ti)k−2Pi1 ⊗ . . .⊗ Pik
k!

‖

≤
∑

i1+...+ik=n,k≥2

(ti+1 − ti)k−2‖Pi1 ⊗ . . .⊗ Pik‖
k!

≤
∑

i1+...+ik=n,k≥2

‖Pi1 ⊗ . . .⊗ Pik‖
k!

, as ti ≤ 1.

Since (ti)
N
i=0 are partition points of [0, 1],

∑N−1
i=0 (ti+1 − ti) = 1. We have∣∣∣∣∣

N−1∑
i=0

‖
∑

i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖ − ‖Pp‖

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
i=0

‖
∑

i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖ −

N−1∑
i=0

(ti+1 − ti)‖Pp‖

∣∣∣∣∣ .
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Using the reverse triangle inequality,∣∣∣∣∣
N−1∑
i=0

[
‖

∑
i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
‖ − (ti+1 − ti)‖Pp‖

]∣∣∣∣∣
≤

N−1∑
i=0

∣∣∣∣∣‖ ∑
i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!
− (ti+1 − ti)Pp‖

∣∣∣∣∣
=

N−1∑
i=0

‖(ti+1 − ti)2R‖.

Since R can be bounded independent of the choice of partition (ti)
N−1
i=0 ,

lim
maxi |ti+1−ti|→0

N−1∑
i=0

‖(ti+1 − ti)2R‖ = 0.

Therefore,

lim
maxi |ti+1−ti|→0

N−1∑
i=0

∥∥ ∑
i1+...+ik=n

(ti+1 − ti)k
Pi1 ⊗ . . .⊗ Pik

k!

∥∥
=‖Pp‖.

�
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