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Abstract

The signature of a path is the collection of all iterated integrals of the
path. It plays a fundamental role in rough path theory. B. Hambly and
T. Lyons proved that the signature of a bounded variation path is trivial
if and only if the path is the image of some closed path in a real tree.
Extending their result to general rough paths has been a long standing
open problem in rough path theory. We propose a proof for this conjecture
in the case of weakly geometric rough paths in finite dimensions.

1 Introduction
The Stieltjes differential equation

dys = V (ys) dxs, y0 = Y (1)

where x is a path and V is a vector field, frequently appears in the mathematical
modeling of, for example, electric circuits and stock prices.

We are interested in the information about the driving signal x required
to predict yT , for some time T . For preciseness, assume x : [0, T ] → Rd has
bounded total variation and V : Rn → L

(
Rd,Rd′

)
. Under some regulairty

conditions on V , yt depends on x only through the iterated integrals of x up to
time t [9].
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For algebraic reasons, it is useful to collect the sequence of iterated integrals
into a single tensor element.

Definition 1. Suppose x : [0, T ]→ Rd has bounded variation. Then the tensor
element

S (x) =

(
1,

ˆ T

0

dxs1 , . . . ,

ˆ
0<s1<...<sn<T

dxs1 ⊗ . . .⊗ dxsn , . . .

)
∈ T

((
Rd
))

is called the signature of the path x.
Let ∆ = {(s, t) : 0 6 s 6 t 6 T}. For (s, t) ∈ ∆, let S (x)s,t = S

(
x|[s,t]

)
.

The signature satisfies the Chen’s identity

S (x)s,t = S (x)s,u ⊗ S (x)u,t ∀s 6 u 6 t, (2)

which is a non-commutative version of additivity of integral over disjoint inter-
vals.

The signature also preserves the regularity of the original path, in the sense
that if x has bounded total variation, then for each n, if π(n) is the projection
of T

((
Rd
))

onto
(
Rd
)⊗n, then πn ◦ S (x)·,· also has bounded total variation.

When x only has bounded p variation, p > 2, the iterated integrals if defined
as Riemann-Stieltjes sums will not converge. However, the conditions of addi-
tivity and preserving the regularity still makes sense. Indeed, let x : [0, T ] →
GN

(
Rd
)
be a path in the step N nilpotent Lie group [7], viewed as embedded

into its enveloping tensor algebra TN
(
Rd
)
, with finite p-variation, that is

‖x‖p = max
n6N

sup
0<t1<...<tn<T

(∑
i

∥∥∥π(n)
(
S (x)ti,ti+1

)∥∥∥ p
n

(Rd)⊗n

) 1
p

<∞

, where p < N , then there exists a unique function S (x) : ∆ → T
((
Rd
))

such that S (x) satisfies (2), πn ◦ S (x) has finite p variation for all n and
πN

(
S (x)s,t

)
= x−1s xt [12], where πN is the projection T

((
Rd
))
→ TN

(
Rd
)
.

Let SN (x) denote πN (S (x)). For p > 1, let WGΩp
(
Rd
)
denote the set

of all paths x : [0, T ] → Gbpc
(
Rd
)
with finite p variation. The elements of

WGΩp
(
Rd
)
are called p weakly geometric rough paths. For x ∈ WGΩp

(
Rd
)
,

S (x)0,T will be called the signature of the path x. Note that in the case when
paths have bounded total variation, this notion of signature coincides with the
one we defined before.

The goal of this paper is to investigate the conditions under which two
multidimensional paths share the same signature. Note that by (2) and that
if ←−x denote the reversal of the path x, then S (←−x ) = S (x)

−1, the problem is
reduced to identifying paths whose signature is trivial.

In [4], K.T. Chen showed that for piecewise regular, irreducible paths, the
signatures determines the paths. In [9], B. Hambly and T. Lyons showed that
a bounded variation path has trivial signature if and only if it is tree-like in the
following sense.
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Definition 2. Let V be a topological space. A continuous path x : [0, T ]→ V
is tree-like if there exists a real tree τ , a continuous map φ : [0, T ] → τ and a
map ψ : τ → V such that φ (0) = φ (T ) = r and x = ψ ◦ φ.

The proof in [9] uses the fact that for bounded variation paths x, the map
φ →

´ T
0
φ (dxs) is a continuous function in the uniform norm. As this does

not hold for weakly geometric rough paths and we feel the proof in [9] relies on
this in a sufficiently fundamental way, we construct a proof that is completely
different and independent from that of [9]. The following is the main result of
this paper.

Theorem 3. Let x ∈ WGΩp
(
Rd
)
for some p > 1. S (x)0,T = 1 if and only if

x is tree-like.

There has also been substantial work in proving that the signatures of sample
paths determine the sample paths outside the null set of some probability mea-
sure. This has been proved for the Wiener measure [11], hypoelliptic diffusions
[8], Gaussian measures [3] and the Chordal SLEκ measure, κ 6 4 [2].

One important consequence of our main result is that the relationWGΩp
(
Rd
)

defined by
x ∼ y ⇐⇒ x ?←−y is tree-like

,where ? denote the concatenation of paths, is an equivalence relation. The
main difficulty in proving this directly is the transitivity property, but this can
be proved easily using our main result together with the associativity of the
tensor product.

Recently, I. Chevyrev [5] proved that under some conditions, the expected
signatures of stochastic processes determine the law of the signatures of the
processes. Our main result implies that the law of the signatures determine
the law of processes as long as the sample paths of the processes do not have
tree-like parts.

Finally, as mentioned at the very beginning, let x, x̃ ∈ WGΩp
(
Rd
)
and let

yV , ỹV be the solution of (1) driven by x and x̃ respectively, then yVT = ỹVT for
all vector fields V whose uniform norms of the derivatives grow no faster than
geometrically with the order, if and only if S (x)0,T = S (x̃)0,T .

2 Tree-like paths have trivial signature
In this section, we shall prove one direction of Theorem 3: the signature of a
tree-like weakly geometric rough path is trivial.

First recall the definition of a real tree.

Definition 4. A metric space (τ, d) is a real tree if for all x, y ∈ τ , there exists
a unique simple curve α starting at x and ending at y and the image of α is
isometric to an interval.

Let τ be a real tree. For a, b ∈ τ , we shall let [a, b] denote the image of the
unique simple path in τ from a to b.
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Remark 5. If σ ⊂ τ satisfies a, b ∈ σ =⇒ [a, b] in σ then σ is also a real tree.

We first recall two important properties of real trees. The first one is an
equivalent characterisation of a compact real tree and the second one is about
paths in a real tree.

Lemma 6. ([10], Proposition 2.17 and Lemma 2.19) τ is a compact real tree
if and only if there exists a continuous function h : [0, T ] → [0,∞) such that
τ is the quotient of [0, T ] under the equivalence s ∼ t if and only if hs = ht =
infu∈[s,t] hu.

Lemma 7. ([6], Lemma 2.1)Let τ be a real tree and let α : [a, b] → τ be a
continuous function. If x = α (a) and y = α (b) ,then [x, y] ⊆ α ([a, b]).

A consequence of Lemma 6 and Lemma 7 is the following.

Corollary 8. Let V be a topological space. A continuous path x : [0, T ] → V
is tree-like if and only if there exists a function h : [0, T ] → R such that h0 =
hT = 0, h > 0 and whenever s, t is such that ht = hs = infu∈[s,t] hu, we have
xs = xt.

Proof. The “if” part follows directly from Lemma 6. Let x be tree-like and
x = φ ◦ψ be the decomposition in Definition 2. Then by Lemma 7 and Remark
5, the image φ [0, T ] is a compact real tree. The corollary then follows from
Lemma 6.

An important concept in the study of real tree is partial order.

Lemma 9. Let τ be a real tree and r ∈ τ . Define the relation - on τ by a - b
if and only if [r, a] ⊆ [r, b]. Then

(1) - is a partial order on τ .
(2) For all b ∈ τ ,{a : a - b} is a totally ordered set.

For any a, b ∈ τ , we define a ∧ b by the unique element of τ such that

[r, a ∧ b] = [r, a] ∩ [r, b]

If a � b, then a ∨ b = b.
Let x : [0, T ] → Gbpc

(
Rd
)
be a path. For any partition P of [0, T ], xP

denotes a piecewise geodesic interpolation of x with respect to P in Gbpc
(
Rd
)
.

Lemma 10. Let τ be a real tree. Let x = ψ ◦φ be a tree-like path in Gbpc
(
Rd
)
.

Let P = {0 = t0 < t1 < . . . < tn = T} be a partition of [0, T ]. Then there exists
a partition P ′ such that P ⊂ P ′ such that xP

′
is tree-like and the height function

of xP
′
is monotone between adjacent partition points in P ′.

Proof. Define a partial order - as in Definition 9 with r = φ (0).
Let P = {t0, t1, . . . , tn}. Let

B = {φ (ti1) ∧ . . . ∧ φ (tik) i1, . . . , ik = 1, . . . , n, k 6 n} .
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Note that for all a, b ∈ B ∪ φ (P), a ∧ b ∈ B ∪ φ (P).
Let P ′ = φ−1 (B ∪ φ (P)). Note that the open set [0, T ] \φ−1 (B ∪ φ (P))

may be expressed as a union of disjoint open intervals. By the continuity of φ
and the finiteness of B∪φ (P), there can only be finitely many of these intervals
where the value of φ at the two endpoints are different.

We shall first prove that if (s, s′) is a pair of adjacent partition points in P ′,
then either φ (s) � φ (s′) or φ (s′) � φ (s).

Suppose not. Then

φ (s) ∧ φ (s′) /∈ {φ (s) , φ (s′)} .

As [φ (s) , φ (s′)] contains φ (s) ∧ φ (s′), we have by Lemma 7 that φ ([s, s′])
contains φ (s) ∧ φ (s′). Therefore, there exists s′′ ∈ [s, s′] such that φ (s′′) =
φ (s) ∧ φ (s′). As

φ (s) , φ (s′) ∈ B ∪ φ (P)

, we have φ (s) ∧ φ (s′) ∈ B ∪ φ (P). By our construction, s′′ has to lie in P ′.
This contradicts the adjacency of s and s′.

Let φ′ : [0, T ] → τ be defined by φ′ (ti) = φ (ti) for all ti ∈ P ′ and if
ti 6 s 6 ti+1, then

φ′ (s) = ρi

(
s− ti
ti+1 − ti

d (φ (ti) , φ (ti+1))

)
,

where ρi is the isometric map from [0, d (φ (ti) , φ (ti+1))] to [φ (ti) , φ (ti+1)]. By
Lemma 7 and Remark 5, we have that φ′ ([0, T ]) is a real tree.

We now show that if µ ∈ φ′ ([0, T ]), then there exists a pair of adjacent
partition points s, s′ in P ′ such that φ (s) � µ � φ (s′) . Let u ∈ φ′−1 (µ).
There exists a pair of adjacent points s and s′ in P ′ such that s 6 u 6 s′.
Assume without loss of generality that φ (s) � φ (s′). As µ ∈ [φ (s) , φ (s′)], we
must have

φ (s) � µ � φ (s′) .

We now show that if (s, s′) and (v, v′) are two pairs of adjacent points in
P ′ such that φ (s′) � µ � φ (s) and φ (v′) � µ � φ (v), then φ (v) = φ (s) and
φ (v′) = φ (s′).

φ (s′) ∨ φ (v′) � µ � φ (v) ∧ φ (s) .

If we do not have

φ (s′) = φ (v′) = φ (s′) ∨ φ (v′) and φ (v) ∧ φ (s) = φ (v) = φ (s) ,

we would again contradict the adjacency of the (s, s′)or (v, v′).
Define ψ′ : φ′ ([0, T ]) → V by ψ′ (t) = ψ (t) if t ∈ φ (P ′) and if φ (si) � t �

φ (si+1), then ψ (t) is the unique point on a geodesic from xsi to xsi+1
such that

dV (ψ (t) , ψ (si)) =
dV (ψ (si+1) , ψ (si))

d (φ (si) , φ (si+1))
d (t, φ (si))
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where dV is the metric in V . When connecting xsi+1 and xsi , we shall use the
reversal of the geodesic from xsi to xsi+1 .

Note that xP
′

= ψ′φ′ and that since there are only finitely many pairs of
adjacent points in P ′ where φ′ takes different values, we may take P ′ to be
finite without changing xP

′
. Moreover, s→ d (φ′ (s) , φ (0)) is a height function

for the tree-like path xP
′
and is by construction monotone between adjacent

partition points.

Lemma 11. If x is a tree-like piecewise linear path such that the height function
is monotone between all adjacent partition points, then x has trivial signature.

Proof. Proceed by induction on the number n of partition points in the piecewise
linear path.

The n = 2 case is trivial.
Let h be the height function and let u be such that hu = suph. Then either

there exists a closed interval [a, b], a < b, containing u such that h is constant
on [a, b] or for all ε > 0, there exists sε, tε,

u− ε < sε < u < tε < u+ ε

such that hsε = htε = inf hu.
In the former case, there exists a partition point ti such that x is constant

on [ti, ti+1]. We remove the partition point ti. The remaining path is tree-like
and hence by induction has trivial signature. Hence by (2), the original path x
also has trivial signature.

In the latter case, take ε < min (tj+1 − tj) where the minimum is taken over
all partition points. Then either we have as before a degenerate partition point,
or there exists a partition points ti ∈ [sε, tε] such that x|[ti−1,ti] and x|[ti,ti+1]

is colinear and in opposite direction. In particular, we have by (2) that x has
the same signature as the path obtained by removing ti from the partition. .
Remove ti and by induction hypothesis, the remaining path has trivial signature
and hence x has trivial signature.

Remark 12. The difficulty in proving this for piecewise geodesics in Gbpc
(
Rd
)

is that it is still unkown whether the geodesics in Gbpc
(
Rd
)
are unique.

Corollary 13. A tree-like weakly geometric p-rough path x has trivial signature.

Proof. We first prove the p = 1 case. Let Pn be a sequence of partitions such
that ‖Pn‖ → 0. Let P ′n be the corresponding sequence of approximations given
by Lemma 10 and xP

′
n be the piecewise linear path in V constructed as in

Corollary 10. By Lemma 11, γP
′
n has trivial signature. Since by Theorem [7]

xP
′
n converge in p′-variation for all p′ > 1 to x, so we have by Theorem 3.1.2 in

[12] that x has trivial signature.
In particular, piecewise geodesic tree-like paths in Gbpc have trivial signa-

tures. It now suffices to use this fact and repeats the argument above with p
instead of 1 and geodesics in Gbpc instead of linear paths.
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3 Existence and Uniqueness of Tree-reduced Paths
The rest of this paper is devoted to the proof of another direction of Theorem
3: if a weakly geometric p-rough path has trivial signature, then it is tree-like.

We wish to construct directly the required height function h. The intuition
is that ht should be the p variation of the “tree-reduction” of x|[0,t]. In [9],
the notion of “tree reduction” is defined using the tree structure after proving
paths with trivial signature is tree-like. We observe that it is possible to define
tree-reduction before proving our main result.

Definition 14. 1. We say x ∈ WGΩp is tree-reduced if the path t → S (x)0,t
has no self-intersection.

2. We say x̃ ∈ WGΩp is a tree-reduction of x ∈ WGΩp if x̃ is tree-reduced
and S (x̃)0,T = S (x)0,T .

It is easy to see our definition is equivalent to that of [9] in the p = 1 case,
although we shall not need it. In other words, tree-reducing x is the same as
erasing loops from the signature path t → S (x)0,t. If we were to define ht as
the p variation of the tree reduction of x|[0,t], we need to prove two lemmas:

1. The tree reduction of x|[0,t] exists and is unique for each t.

2. The height defined as such is indeed a height function.

We first show the existence result for tree-reduced paths.

Proposition 15. Let X be a Hausdorff topological space, andx : [0, T ]→ X be a
continuous function. Then there exists disjoint open intervals {Ii : 1 6 i 6∞}
such that the continuous path x̃ defined by

x̃t =

{
xt,

xinf Ii ,

t ∈ (∪∞i=1Ii)
c
,

t ∈ Ii.

satisfies the property that if x̃t = x̃s then there exists i such that t, s ∈ Ii .

Proof. Let P be the set

{∪iIi : Ii disjoint open intervals, xinf Ii = xsup Ii} .

Define an order on P to be such that I 6 J if and only if I ⊆ J .
We claim that P is inductively ordered. Indeed, let I be a totally ordered

subset of P. Then the set ∪j∈Ij can be expressed in terms of union of disjoint
open intervals ∪iIi

Fix an i. We will prove that xinf Ii = xsup Ii . Note that Ii ⊆ ∪j∈Ij.
Let ε > 0. For each y ∈ Ii, there exists jy ∈ I such that y ∈ jy. Now
∪y∈[inf Ii+ε,sup Ii−ε]jy is an open cover for [inf Ii + ε, sup Ii − ε] and therefore
has a finite subcover. ∪ni=1jyi . Let jY = max {jy1 , . . . , jyn}. Then

[inf Ii + ε, sup Ii − ε] ⊂ jY .
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Note that in particular, [inf Ii + ε, sup Ii − ε] has to lie in a single connected
component of jY , which we will call IY . Note that we must have IY ⊆ Ii as
IY ∈ ∪iIi and Ii is the maximal connected component of ∪iIi containing Ii .
Therefore,

inf Ii 6 inf IY 6 inf Ii + ε

sup Ii − ε 6 sup IY 6 sup Ii

Moreover we have xinf IY = xsup IY . Taking limit as ε → 0 we have xinf Ii =
xsup Ii .

By Zorn’s Lemma, P has a maximal element, which we will denote by J .
Let J = ∪iJi, where Jiare open intervals. Now we will prove that if x̃t = x̃s
then t, s ∈ Ji for some i. Let s, t be such that x̃t = x̃s. There are four cases:

1. If both s and t lies in (∪∞i=1Ji)
c and (s, t) 6= Ji for all i, then

∪∞i=1Ji ⊂ ∪∞i=1Ji ∪ (s, t) ∈ P

which contradicts the maximality of ∪∞i=1Ji in P.
2. If t ∈ ∪∞i=1Ji and s ∈ (∪∞i=1Ji)

c, then by the definition of x̃ we have
xs = xinf Ji . Note that inf Ji ∈ (∪iJi)c.

2(a) If s < inf Ji and (s, inf Ji) = Ji′ for some i′, then inf Ji /∈ ∪iJi and
xsup Ji′ = xinf Ji . Therefore ∪∞i′=1Ji′ ∪ {inf Ji} strictly contains ∪iJi, which is a
contradiction. Therefore, (s, inf Ji) 6= Ji′ for any i′. We have a contradiction
for the maximality of ∪iJi as

∪iJi ⊂ ∪∞i=1Ji ∪ (s, inf Ji) ∈ P.

2(b) If inf Ji < s and (inf Ji, s) = Ji′ for some i′, then i = i′ and s, t ∈ Ji so
there is nothing to prove. Therefore (inf Ji, s) 6= Ji′ for all i′. Again we have a
contradiction as

∪∞i′=1Ji′ ⊂ ∪∞i′=1Ji′ ∪ (inf Ji, s) ∈ P.

4. Finally, if s ∈ Ji , t ∈ Jj , then

x̃s = x̃inf Ji = x̃inf Jj = x̃t.

If (inf Ji, inf Jj) = Ji′ for some i′, then we must have i′ = i. Therefore,

∪∞i′=1Ji′ ∪ {inf Jj} ⊂ ∪∞i′=1Ji′

which is a contradiction. Since (inf Ji, inf Jj) 6= Ji′ for all i′, so

∪∞i′=1Ji′ ∈ ∪∞i′=1Ji′ ∪ (inf Ji, inf Jj) ∈ P

contradicting maximality.

Remark 16. x̃ is in general not unique.
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Let X be again a Hausdorff space. Given a continuous path x : [0, T ]→ X,
let x̃ be the path constructed in Proposition 15. Let x̂ be a continuous simple
curve over [0, T ] joining x̃0 and x̃1, with image lying in x̃ ([0, T ]) (the existence
of x̂ follows from a general fact in topology that a compact path connected
Hausdorff space is arcwise-connected, see [13]).

Lemma 17. x̂ [0, T ] = x̃ [0, T ] , and ϕ = x̂−1 ◦ x̃ : [0, T ] → [0, T ] is non-
decreasing.

Proof. Let’s first show that if x̂ ([0, T ]) = x̃ ([0, T ]), then ϕ is non-decreasing.
Since x̂ : [0, T ]→ x̂ ([0, T ]) is a homeomorphism, so ϕ (s) = ϕ (t) if and only if
x̃s = x̃t, and by the construction of x̃ this is equivalent to s, t ∈ Ii for some i.

If ϕ is not non-decreasing, since ϕ (0) = 0 and ϕ (T ) = T, then by continuity
there exists some s < u < t such that

ϕ (u) < ϕ (s) = ϕ (t) . (3)

Therefore s, t ∈ Ii for some i and by the construction of x̃ we know that x̃u =
x̃s = x̃t, contradicting 3.

Now we show that x̂ ([0, T ]) = x̃ ([0, T ]) .
We first prove that for any 0 < t < T, x̃ ([0, T ]) \ {x̃t} is disconnected.
If t /∈ ∪iIi, then x̃ ([0, T ]) \ {x̃t} can be written as the disjoint union x̃ ([0, t))∪

x̃ ((t, T ]) of non-empty sets. By continuity and Hausdorff property, x̃ ([t, T ]) c is
open in X. Since

x̃ ([0, t)) = x̃ ([t, T ]) c
⋂
x̃ ([0, T ]) ,

so x̃ ([0, t)) is open in x̃ ([0, T ]). Similarly, x̃ ((t, T ]) is open in x̃ ([0, T ]).
If t ∈ Ii for some i, then x̃ ([0, T ]) \ {x̃t} can be written as the disjoint union

x̃ ([0, inf Ii)) ∪ x̃ ((sup Ii, T ]) of non-empty sets. Since

x̃ ([0, inf Ii)) = x̃ ([inf Ii, T ]) c
⋂
x̃ ([0, T ]) ,

so x̃ ([0, inf Ii)) is open in x̃ ([0, T ]) , and similarly for x̃ ((sup Ii, T ]) .
Therefore, x̃ ([0, T ]) \ {x̃t} is disconnected.
Now assume there exists some 0 < t < T such that x̃t /∈ x̂ ([0, T ]) , then

x̂ ([0, T ]) ⊂ x̃ ([0, T ]) \ {x̃t} , but this is a contradiction to connectedness since
x̂ (0) and x̂ (T ) lie in different components of x̃ ([0, T ]) \ {x̃t} .

From now on, we shall equip T
((
Rd
))
with the norm |g| = maxn |g|(Rd)⊗n .

Corollary 18. Let x ∈ WGΩp
(
Rd
)
. There exists a x̃ ∈ WGΩp such that x̃ is

a tree-reduction of x.

Proof. Let X̂ : [0, τ ] → T
((
Rd
))

be the simple path obtained by applying
Lemma 15 then Lemma 17 to t → S (x)0,t. As the p variation of a path is
invariant under reparametrisation,∣∣∣πn (X̂0,·

)∣∣∣
p−var

=
∣∣∣πn (X̃0,·

)∣∣∣
p−var

6
∣∣∣πn (S (x)0,·

)∣∣∣
p−var

,
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where X̃ is the path obtained by applying Lemma 15 to t→ S (x)0,t. Therefore,

by construction πbpc

(
X̂0,·

)
lies in Gbpc

(
Rd
)
. Therefore by uniqueness of lift

(Theorem 2.2.1 [12]), we have S
(
πbpc

(
X̂0,·

))
= X̂0,·.

Now we prove the uniqueness of tree-reduced paths.

Lemma 19. Let x, y ∈ WGΩp(Rd) with S(x)0,T = S(y)0,T . Then for any
N ∈ N and any CKc -one form ψ on R(dN ) with K > bpc, we have

ˆ T

0

ψ(dSN (x)0,u) =

ˆ T

0

ψ(dSN (y)0,u). (4)

Proof. Write ψ =
∑
|I|6N ψIdX

I , where XI is the coefficient of ei1 ⊗ . . . ⊗ ein
in SN (x)0,T if I = (i1, . . . , in). If those ψI are polynomials, (4) follows imme-
diately from the shuffle product formula. In general, since ψI are compactly
supported, according to [1] they can be approximated by polynomials under the
CK-norm. The result then follows from the continuity of rough path integrals
with respect to the integrating one forms under the CK-norm provided K > bpc
([7], Theorem 10.50).

Lemma 20. Let x ∈ WGΩp(Rd) and t → S(x)0,t be simple. Then for any
ε > 0, there exists N(ε) ∈ N, such that SN (x)0,s 6= SN (x)0,t for every N > N(ε)
and (s, t) ∈ ∆ with |t− s| > ε.

Proof. Let ∆ε = {(s, t) ∈ ∆ : t − s > ε}. For each (s, t) ∈ ∆ε, since Xs 6= Xt,
there exists some Ns,t ∈ N such that

SNs,t
(x) 0,s 6= SNs,t

(x) 0,t. (5)

By continuity, (5) holds in a neighborhood of (s, t). The result then follows easily
from a compactness argument on ∆ε.

Proposition 21. Let x, y ∈ WGΩp(Rd) be such that S(x)0,1 = S(y)0,1 and
S(x)0,·, S(y)0,· are both simple. Then x and y differ by a reparametrization.

Proof. It suffices to show that X· := S(x)0,· and Y· := S(y)0,· have the same
image.

If Xτ /∈ Y [0, 1], then there exists ε > 0 such that |Xτ −Yσ| > ε for all
σ ∈ [0, 1]. Let s and t be such that |Xτ ′ −Yσ| > ε for all s 6 τ ′ 6 t and all σ.
Take N1 such that ω(0,1)n/p

(n/p)! < ε/2 for all n > N1, where ω is a control for both
x and y, then by Theroem 2.2.1 in [12],

sup
σ∈[0,1]

∣∣∣Sn (x)0,τ ′ − Sn (y)0,σ

∣∣∣ > ε

for all n > N1, s 6 τ ′ 6 t and all σ.
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AsXs 6= Xt so there exists a functional f ∈
(
Rd
)⊗n∗ such that f◦Xs 6= f◦Xt

for some n. Suppose without loss of generality that f ◦Xs < f ◦X0,t. Then let
R1,R2 be such that

f ◦X0,s < R1 < R2 < f ◦X0,t.

.
Let s2 and t2 be defined by

s2 = inf {u > s : f ◦Xu > R1}
t2 = sup {u 6 t : f ◦Xu 6 R2} .

Then f ◦Xs2 = R1, f ◦Xt2 = R2 and for all u ∈ (s, s2) and u ∈ (t2, t), we
have either f ◦Xu < R1 or f ◦Xu > R2.

As X· is simple, by Lemma 20 there exists N2 such that for all n > N2,
Sn (x)u,v 6= 1 for all |u− v| > max (s2 − s, t− t2).

Take N2 > |I| ∨N1. Then

SN2 (x) |[s2,t2] ∩ SN2
(x) |[0,s]∪[t,1] = ∅.

Let U ⊂ V be an open sets in TN2
(
Rd
)
such that

SN2
(x) |[s2,t2] ⊂ U, SN2

(x) |[0,s]∪[t,1] ∪ SN2
(y) |[0,1] ⊂ V c.

Let ψ denote a bump function in TN2
(
Rd
)
with respect to (U, V ), so that

ψ (z) = 1 for z ∈ U and ψ (z) = 0 for z ∈ V c. Let

W =
{
xN2 ∈ TN2

(
Rd
)

: R1 6 f ◦ xN2 6 R2

}
, and 1W be the indicator function on W .

Then define φ on TN2
(
Rd
)
by

φ
(
xN2

)
=


(
f ◦ xN2 − f ◦ xN2

s2

)2k (
f ◦ xN2 − xN2

t2

)2k
,

0,

xN2 ∈W,
xN2 ∈W c.

where k is chosen to be arbitrarily large to satisfy the regularity assumptions in
Lemma 19.

We now show that
´ 1
0
φ
(
xN2
v

)
dxN2

v 6= 0. Note that as xN2
v /∈ V ,

ˆ 1

t

φ
(
xN2
v

)
df ◦ xN2

v = 0 =

ˆ s

0

φ
(
xN2
v

)
df ◦ xN2

v .

As xN2
v < R1 or xN2

v > R2 for v ∈ (s, s2) ∪ (t2, t). We also have
ˆ s2

s

φ
(
xN2
v

)
df ◦ xN2

v = 0 =

ˆ t

t2

φ
(
xN2
v

)
dxN2

v .
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Therefore,
ˆ 1

0

φ
(
xN2
v

)
df ◦ xN2

v =

ˆ t2

s2

φ
(
xN2
v

)
df ◦ xN2

v 6= 0.

On the other hand,
´ 1
0
φ
(
yN2
v

)
df ◦ yN2

v = 0 as yN2
v /∈ V for all v. The proof

completes by Lemma 19.

We now prove Theorem 3.

Proof of Theorem 3. Let x ∈WGΩp such that S (x)0,T = 1. Fix p′ > p. Define

ht =
∣∣x̃t∣∣

p−var

where x̃t is the tree-reduction of x|[0,t]. We now prove that if S (x)0,1 = 1, then
h is a height function.

Obviously, h > 0, h0 = hT = 0. We now prove that h is continuous. Let
s < t. Let x̃s and x̃t be the tree-reduction of x|[0,s] and x|[0,t] respectively. Let
x′ be such that

S (x′)0,v =

{
S (x̃s)0,v ,

S (x)0,v ,

v ∈ [0, s] ,

v ∈ [s, t] .

Suppose |x̃t|p−var > |x̃s|p−var, then

ht − hs
=

∣∣x̃t∣∣
p−var − |x̃

s|p−var
6 |x′|p−var − |x̃

s|p−var as x′ is a reduction of x̃

= |x′|p−var,[0,t] − |x
′|p−var,[0,s]

and the last expression goes to zero as s goes to t.
In the case |x̃s|p−var > |x̃t|p−var, continuity is obtained similarly by defining

x′ so that

S (x′)0,v =

{
S (x̃t)0,v ,

S (x)0,2t−v ,

v ∈ [0, t] ,

v ∈ [t, 2t− s] .

We now need that if ht = hs = infu∈[s,t] hu, then xt = xs.
Suppose S (x)s,t 6= 1. Define x̃ on [0, s] to be tree-reduction of x|[0,s]. Extend

the definition of x̃ so that x̃|[s,t] is the tree-reduction of x|[s,t].
We will prove that v → S (x̃)0,v is simple. By definition, we already have

v → S (x̃)0,v simple on [0, s] and [s, t]. We just need to prove that

S (x̃) |[0,s) ∩ S (x̃)[s,t] = ∅.

Suppose for contradiction that there is s′ < s and t′ ∈ (s, t) that S (x̃)0,s′ =
S (x̃)0,t′ .Then hs′ = hs. But then

hs′ = |x̃|p−var,[0,s′] < |x̃|p−var,[0,s] = hs.
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Hence ht′ < hs, a contradiction. Hence v → S (x̃)0,v is a simple curve.
Therefore,

ht = |x̃|p−var,[0,t] > |x̃|p−var,[0,s] = hs.

This is again a contradiction.
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