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Abstract

In the groundbreaking work of B. Hambly and T. Lyons (Uniqueness for
the signature of a path of bounded variation and the reduced path group,
Ann. of Math. 2010), it has been conjectured that the geometry of a tree-
reduced bounded variation path can be recovered from the tail asymptotics
of its associated sequence of iterated path integrals. While this conjecture is
still remaining open in the general deterministic case, in the present article
we investigate a similar problem in the probabilistic setting for Brownian
motion. It turns out that a martingale approach applied to the hyperbolic
development of Brownian motion allows us to extract useful information
from the tail asymptotics of Brownian iterated integrals, which can be used
to determined the Brownian rough path along with its natural parametriza-
tion uniquely. This in particular strengthens the existing uniqueness results
in the literature.

1 Introduction

Every continuous path v : [0,7] — R? with bounded variation is naturally
associated with a sequence
gé{/ d%1®---®d%n:n€N} (1.1)
0<t) <--<tn<T

of iterated path integrals, which is known as the signature of . In the renowned
work of Hambly and Lyons [10], it was proved that every continuous path with
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bounded variation is uniquely determined by its signature up to a tree-like equiv-
alence. This result was extended to the general rough path case in [3].

On the one hand, from the uniqueness results, it is seen that every tree-like
equivalence class contains a unique representative path v with given signature g,
which does not contain any tree-like pieces. This representative path is called
the tree-reduced path. On the other hand, from the algebraic shuffie product
structure of signatures, every finite degree component of a signature element g
can be recovered from looking at the component of g at degree “infinite” (i.e. the
tail of ¢g). Therefore, it is natural and reasonable to expect that some intrinsic
geometric properties associated with a tree-reduced rough path can be explicitly
recovered from the tail behavior of its signature.

In the bounded variation case, it was proved that the length of a path v can
be recovered from the tail asymptotics of its signature g in the following way:

. 1
7l vae = T (il (12)

provided that v € C! when parametrized by unit speed and the modulus of con-
tinuity d.,/ for 4/ satisfies d./(¢) = o(¢%/*) as ¢ | 0. Here g, is the homogeneous
component in degree n of the signature g and the tensor norm is the projec-
tive norm induced by the Euclidean norm on R? The same result can also be
proved for piecewise linear paths and monotonely increasing paths. It has been
conjectured that the same result should hold for all tree-reduced continuous path
with bounded variation. However, very little progress has been made towards a
complete solution.

For an arbitrary continuous path with bounded variation, one can easily see

that .
HfYH 1—var

S !
n:

, VneN.

gl pro;

So the length conjecture (1.2) is about establishing a matching lower bound. If
proved to be true in general, it will indicate that for a tree-reduced path, the
signature components decay in an exact factorial rate. The original idea of Hambly
and Lyons for proving (1.2) in the C'-case is to look at the lifting X* of A -y
(rescaling v by a large constant A) to the hyperbolic manifold of constant curvature
—1 (the hyperbolic development). It turns out that when A — oo, X* becomes
more and more like a hyperbolic geodesic in the sense that the hyperbolic distance
between the two endpoints of X* is asymptotically comparable to its hyperbolic
length. As a simple consequence of the nature of hyperbolic development, the first
quantity is related to the signature of v is a fairly explicit way, while the second
quantity is the same as the original length. In this way, one sees a lower bound



for the signature in terms of the length. It seems to us that in the deterministic
setting, the technique of hyperbolic development is essentially a C!-technique
which requires major modification in the general bounded variation case in a
quite fundamental way.

In parallel, we could certainly ask a similar question in the rough path context.
According to Lyons [13], for a rough path X with roughness p > 1, the signature
estimate takes the form

w(X)»
ol < 2
()

where w(X) is a constant depending on the p-variation of X. To expect an analogue
of (1.2) which is not even clear at this point, it is natural to search lower bounds
for g, of the same form and look at the quantity

Vn € N,

p

L 2 tmsup ( (2 )l )
n—o0 b

On the one hand, the reason of looking at the “limsup” instead of an actual limit
is that unlike the bounded variation case, one could easily find examples of tree-
reduced geometric rough paths with infinitely many zero signature components
(for instance X; £ exp(t[v,w]) for certain vectors v,w € R?). One might expect
that Zp recovers the p-variation of the underlying rough path. However, if the
length conjecture (1.2) is true for bounded variation paths, this cannot be the
case since E,, = 0 for a bounded variation path when p > 1. On the other hand,
if we define the local p-variation of a rough path in the same way as the usual
p-variation but additionally by requiring that the mesh size of partitions goes to
zero instead of taking supremum over all partitions, it is easy to see that the
local p-variation of a bounded variation path is also zero when p > 1. Therefore,
it is not entirely unreasonable to expect that the quantity L, recovers the local
p-variation of X.

In the present article, we investigate a similar problem for the Brownian rough
path B;, which is the canonical lifting of the Brownian motion B; as geometric p-
rough paths for 2 < p < 3. One can equivalently view it as the Brownian motion
coupled with the Lévy area process. It is well known that B; has a quadratic
variation process, which can be viewed as the local 2-variation of Brownian motion
in certain probabilistic sense. In view of the previous discussion, if we define the



normalized “limsup”

Zs,t £ lim sup ((E)! / odB;, ® --- ® odBy, ) (1.3)
n—00 2 s<t1 <<t <t

for the Brownian signature path under suitable tensor norms, one might expect
that L, recovers some sort of quadratic variation of the Brownian rough path.
The aim of the present article is to establish a result of this kind. It is a priori
unclear that L,; is even finite since Brownian motion has infinite 2-variation
almost surely. B _

We are going to show that L, is a deterministic multiple of t—s: Ly, = k(t—5)
for some deterministic constant x. This implies that the natural speed of Brownian
motion (i.e. its quadratic variation) can be recovered from the tail asymptotics of
its signature. In addition, we establish upper and lower bounds on the constant
K.

3w

On the one hand, the upper estimate is shown by using general rough path
arguments and does not reflect the tree-reduced nature of the Brownian rough
path at all. The deterministic nature of L,,; comes from the fact that Brownian
motion has independent increments. The result holds under a wide choice of
tensor norms.

On the other hand, the lower estimate is obtained by considering the hyper-
bolic development of Brownian motion. Although we also work in the hyperbolic
situation, our calculation diverges early on from the work of Hambly and Lyons
[10], which makes use of martingale arguments instead of deterministic hyperbolic
analysis. Our lower estimate allows us to conclude that the Brownian rough path
is tree-reduced with probability one and also its natural parametrization can be
recovered from the tail asymptotics of the Brownian signature. In particular, with
probability one, every Brownian rough path is uniquely determined by its signa-
ture. This result is stronger than the existing uniqueness results for Brownian
motion in the literature (c.f. [2], [12]), since it was only known that the signature
determines the Brownian rough path up to reparametrization.

Our main result on the upper and lower estimates of L,; can be summarized
as follows.

Theorem 1.1. Let By = (B}, -+, B) be a d-dimensional Brownian motion (d >
2). Define Ly, as in (1.3) under suitable tensor norms to be specified in the
following.

(1) (upper estimate) Given arbitrary admissible tensor norms under which
each element of the canonical basis {ey,--- ,eq} of R? has norm one, there exists
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a deterministic constant kg < d* depending on the choice of tensor norms, such
that with probability one

Loy =ra(t—s) Vs<t.

(2) (lower estimate) Under the IP-norm (1 < p < 2) on R? and the associated
projective tensor norms on the tensor products, we have
d—1
Kq = 5
Remark 1.1. The one dimensional case (d = 1) is uninteresting and the result of
Theorem 1.1 holds trivially since L,; = 0 in this case.

It worths mentioning that the idea of hyperbolic development was also used
by Lyons and Xu [15] to recover the derivative of a unit speed C'-path at the
endpoint. There are also some recent works on recovering the full trajectory of a
path from its signature. See for instance [6], [9], [16].

Our article is organized in the following way. In Section 2, we present some
basic notions from rough path theory which are needed for our analysis. In Section
3, we prove the first part of Theorem 1.1. In Section 4, we prove the second part
of Theorem 1.1. In that section we also present some crucial details for under-
standing the hyperbolic development which seems to be incomplete or missing in
the literature. In Section 5, we present some interesting applications of our main
result to the Brownian rough path itself. In Section 6, we give some concluding
remarks and discuss a few related further problems.

2 Notions from rough path theory

In this section, we present some basic notions from rough path theory which are
needed for our study. We refer the reader to the monographs [5], [8], [14] for a
systematic introduction.

Suppose that V is a finite dimensional normed vector space. For each n € N,
define T (V) £ @, V® and let T((V)) be the algebra of formal sequences of
homogeneous tensors a = (ag, ai, as, - -+ ) with a, € V®" for each n.

Definition 2.1. A family of tensor norms {|| - |[yesn : n > 1} on the tensor

products is called admissible if
(1) for any a € V™ and b € VO™,

||a®b||v®<m+n> é ||Cl||v®m||b||v®n; (21)
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(2) for any permutation o € S,, and a € V&,
1P (a)llven = llallver,

where P is the linear operator on V" induced by a1 ®- - -®a,, — Ug(1) Q)+ QUg(n)
for ay,--- ,a, € V.
We call it a family of cross-norms if the inequality in (2.1) is an equality.

Definition 2.2. The projective tensor norm on V™" is defined to be

|| pro; = inf a' a(l cifa= a(l)®---®a(l) )
proj 1 1 n

l

It is known that the projective tensor norm is the largest cross-norm on V™.
In the case when V = R? is equipped with the {'-norm, one can see by definition
that the projective tensor norm on V®" is just the {!-norm under the canonical
tensor basis induced from the one on R%.

We assume that V' is equipped with a family of admissible tensor norms. Define
A2 {(s,t):0< s <t <1} Given p > 1, we denote |p] as the largest integer
not exceeding p.

Definition 2.3. A multiplicative functional of degree n € N is a continuous map
X, = (X, X"): A — T (V) which satisfies

Xsu @ Xyt = X4, for 0 <s<u<<t <L

Let X,Y be two multiplicative functionals of degree n. Define

i
P p

k3

vei | 7

where the supremum is taken over all possible finite partitions of [0,1]. d, is
called the p-variation metric. If d, (X,1) < oo where 1 = (1,0,---,0), we say
that X has finite p-variation. A multiplicative functional of degree |p| with finite
p-variation is called a p-rough path.

d, (X, Y) £ max sup (Z Hth b il L

Isisn p

The following important result, proved by Lyons [13|, asserts that “iterated
path integrals” for a rough path are also well defined.



Theorem 2.1 (Lyons’ extension theorem). Let X = (1,X',--- XIP}) be q p-
rough path. Then for any n > |p| + 1, there exists a unique continuous map
X" A —= Ve such that

X, 2 ((1,x,. . ’X.Lf.ﬂ’... X )
is a multiplicative functional in T ((V))) whose projection onto T™ (V) has finite
p-variation for every n.

Remark 2.1. Due to the multiplicative structure, when we consider a rough path,
one could simply look at the path ¢ — X, whose increments are defined to be
X1 X;.

Definition 2.4. Let X be a p-rough path. The path ¢t — X, € T'((V')) defined
by Lyons’ extension theorem is called the signature path of X. The quantity X
is called the signature of X.

It was also proved by Lyons [13| in his extension theorem that the signature
Xo,1 satisfies the following factorial decay estimate:

33

w(X)
()
p
where w(X) is a constant depending on the p-variation of X.
When p = 1 and X is a continuous path with bounded variation, all the
previous notions reduces to the classical iterated path integrals defined in the
sense of Lebesgue-Stieltjes.

Among general rough paths there is a fundamental class of paths called geo-
metric rough paths.

X < Vn > 1,

Definition 2.5. For a continuous path 7 : [0,1] — V, define

X:,t:/ d’7u1®®d’7un, n}l,sét
s<uy <---<un<t

The closure of the space
{(1,xt,,... ,ng) : 7y is a continuous path with bounded variation}

s,t)

under the p-variation metric d,, is called the space of geometric p-rough paths.



The space of geometric rough paths plays a fundamental role in rough path
theory. In particular, a complete integration and differential equation theory
with respect to geometric rough paths has been established by Lyons [13]. The
rough path theory has significant applications in probability theory, mainly due
to the fact that a wide class of interesting stochastic processes can be regarded as
geometric rough paths in a canonical way in the sense of natural approximations.

In particular, it is known that (c.f. [18]) a multidimensional Brownian motion
B, admits a canonical lifting as geometric p-rough path B, with p € (2,3). B,
is called the Brownian rough path. The corresponding Brownian signature path,

determined by Lyons’ extension theorem, is denoted as
By, = (1B, B2, ---), s<t

Under the canonical tensor basis on tensor products over V £ R?, for each word
(41, -+ ,in) over {1,--- d}, the coefficient of B}, with respect to ¢; ®@ - ®e;,
coincides with the iterated Stratonovich integral (c.f. [5]):

71/,117 7i’ﬂ _ i1 in
B, = / odB,. ---odB".
s<ul<--<un<t

For a given family of admissible tensor norms, we define

2
Lo 2 timsup (5 )1 [B2ll)" s <t

3 First part of the main result: the upper estimate

In this section, we develop the proof of the first part of Theorem 1.1.

Lemma 3.1. The signature coefficients ]B%n“" " satisfy the following estimate:

5 | s, oz < ( - V2) (m)%(n_iw“—sﬂ

foralls<t,n>1and 1 <4, ,1, <d.

Proof. By translation, it suffices to consider the case when s = 0.
We first estimate the second moment of By,'""*". According to the shuffle
product formula for signatures (c.f. [5]),

B = 3 m[Eer o],

ceS(n,n)
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where (71, , jon) = (i1, ,in, i1, -+ ,in) and S(n, n) is the set of (n, n)-shuffles
in the permutation group of order 2n. On the other hand, by the formula of the
Brownian expected signature (c.f. |7]), we know that

d
E[Bg.] = exp (g Z e;® ei> .

i=1

It follows that

n d on
£ (o] - o (Leoa)

In particular, every coefficient of E [Bg’z is either zero or

5w+ Therefore,

n

]
[|IB%"“" ﬂ o (2n)!  u
S ()2 pl2n

1
e 2n)2n+§e—2n u™

27Tn2n+1ef2n n|2n
e 2"

= Van

where in the second inequality we have used Stirling’s approximation.
Secondly, according to the differential equation for the signature path, we have

(3.1)

i T ’
d]Bg,’Zlv [ — ]Bgu 521, 5tn—1 o dBZn
_]_7 s 1: , )i .
=B, " - dBir + dIB%" fiinst g pin
u

PO P R 1 N—D5i1 e ; :
— By, N B 5 (By. = 0 dBy—) - Bl

717 7"'7' - ; 2 7"'7‘ -
R ) : 51 By, 2 .,

n—1,in Ou



It follows from (3.1) that

E { sup |IB%"“’ i ‘}

o<ut

” -
n—1i1, ,in—1 i
< E sSup / BO,U ’ dan /
L0<u<t [Jo ]

n 2117"7n 2

2
}du

=11, Jin— i
B(T]LU 11 in—1 den +

7 A /o (\/_ﬁ\/nT(n—Z)!un_2>2du

/
_ . 1 n
e Tsin e ; 1 2 22 n
:E Sup / Bovlqlv stn—1 dB,Zn +_ ( e ) 2 t2
0 2 (n— !

| 0<u<t \/§7r

2
u ] 1 % 2
< E 11 Bn_lﬂly'”ﬂ"ﬂ*l . den + = t2
| o<ust /0 o 2 (\/iw) (n—2)ivnl

The first term can be estimated easily by using Doob’s LP-inequality:

< E | sup
L 0<u<t

E {sup / By il g Bin } < || sup / ]B%gvl“’ int L g Bin
o<u<t | Jo ’ o<u<t | Jo 9
t
<2 / By, "By
0 2
t i 2 3
) (/ E [Bgv } dv)
O b
2n—1 2
< nldv>
\/_7r \/n —1(n—1)!
2 23 n
\/_( ) t3
V2 (n— 2)1\/H
Now the desired estimate follows immediately. O]

Remark 3.1. Second moment estimate on iterated Stratonovich’s integrals was
studied by Ben Arous [1]| through iterated Ito’s integrals. Here the estimate
(3.1) we obtained through the shuffle product formula and the Brownian expected
signature is sharper in the exponential factor.

Now we are able to establish the following main upper estimate.
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Proposition 3.1. Suppose that the tensor products (RY)®™ are equipped with given
admissible norms, under which each element of the standard basis {eq, - ,eq} of
R? has norm one. Then for each s < t, with probability one, we have

2
max{limsup (<E> sup ||BZ H) hmsup (<2>! sup HIB%ZtH)n} < d*(t—s).
n—00 2 s<u<t 2 s<u<t ’

Proof. Since the tensor norms are admissible, we have

H _ E ]Bnll:"ﬂne“ R Qe
217 . 7ln71
d

n5i1, e in
< Y B

i1, ,in=1

Y

and thus

d
E {sup ||]B%?t||} < Z E {sup |B””""Z”@.

<u< ) -
sSust i1, in=1

According to Lemma 3.1, we arrive at

C23
E [sup ||B:,u||} <dr———
1

s<u<st ( 2)

ot (377) (ﬁ)é

Now for each r > (¢t — s), we have

C’d”2’ n t— s
P (sup IBS. Il > )

s<u<t (

where

N)

By the Borel-Cantelli lemma, with probablhty one (with null set depending on s
and t),

for all sufficiently large n. It follows from Stirling’s approximation that with prob-
ability one,

2 n 2
" cdr2z n\
lim sup (<ﬁ>' sup HIB%?u”) < lim <2> !—127’5 = d*r.
n—o00 2/ scust ’ n—00 2 (n — 2)1 vn!



By taking a rational sequence 7 | (t — s), we conclude that with probability one
(with null set depending on t),

limsolip ((g)' sup HBZuH)i <Pt —s). (3.2)

n— s<ust

n

w1 observe that

For the estimate involving B

]B%Zt:/ dB,, ®---® dB,,
' U< < <vp <t

:/ dBt—m@"'@dBt—rn
O<ry<--<ri<t—u

:'PT(/ dWm@"'@dWrn),
0<r1 < <rp<t—u

where W, 2 B,_, — B, (0 < r <t — ) is again a Brownian motion and P7 is the
linear transformation on (Rd) “" determined by & ® - @& — & Q@ - ®&. It
follows that

||]BZt|| - ||Wg,t7uH :
Therefore,
sup ||By .|| = sup [[Wg,].
s<u<t 0vt—s

Therefore, what we have proven before shows that

2 2
lim sup ((E>! sup HIB%ZtH) C = lim sup ((2)! sup HngH) '
n—oo 2 s<u<t ’ n—oo 2 o<v<t—s ’
< d*(t —s)
for almost surely. O]

Recall that Es,t is defined by (1.3) under given admissible tensor norms. It is
immediate from Proposition 3.1 that L, < d*(t — s) for almost surely.

Now we are going to show that E&t is almost surely a deterministic constant.

Recall that g € T((R?)) is a group-like element if and only if ¢ satisfies the
shuffle product formula. In particular, the signature of a geometric rough path is
always a group-like element.

Lemma 3.2. Let g = (1,9, 4%, -+ +) be a non-trivial group-like element in the ten-
sor algebra T((R?)), where the tensor products are equipped with given admissible
norms. Then g has infinitely many non-zero components.

12



Proof. Suppose that g* # 0 for some k > 1. According to the shuffle product
formula, for each n > 1,

@)= > P(g™).

oSk, k)

Since the tensor norms are admissible, we have

lg"I" < > [[P7 (a")]]

o€S (ky+ )
(nk)!, .
= O
In particular, g"* # 0 for all n. O

Lemma 3.3. Given a > 0, there exists a constant C' > 0, such that
~ L Cnv, VYn>2a, p>1.

Proof. According to Stirling’s approximation, there exist constants Cy,Cy > 0,

such that ) )
CiMze™ P <A < CodM2e™, YA > 0.

Therefore,
E+l n
G) __al)
< n—a | 1
<E:2>| nea)\ 7 t2 _n=a
Cfa() T e
n—a | 1
C ECEREI
- 2 (14_ a ) no
Cl (pe) p n—ao
\/§Cgea a
S ne
Ch
Choosing C' & \/50260‘/01 suffices. O

The following deterministic sub-additivity property is essential for us.
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Proposition 3.2. Suppose that X is a rough path, where the tensor products are
equipped with given admissible norms. Let p > 1 be a given constant. Define

B

ls,t g ls,u + L,t

3k

~ .
ls; = limsup
n—oo

, s< t.

Then (s,t) — le,t is sub-additive, i.e.

fors <u <t

Proof. We may assume that ZW, ’lvw are both finite. Moreover, we may also assume
that both of X, ,, and X, ; are non-trivial, otherwise the desired inequality is trivial
due to Chen’s identity. From Lemma 3.2, X, ,, and X,,; have infinitely many non-
Zero components.

Given integers a > 2p and n > 2«, according to Chen’s identity, we have

=z = © X"

n

> I (1

k=n—a+1

ZHX -,
+ki||xn )

14



Define (s,t) — l?t = SUPjsq H(k:/p 'X’“th/ It follows that

I, < << )> T +z% )

where we have used the neo-classical inequality (c.f. [11]), which states that

i arb’ v _ (a+))

=0 Gy

According to Lemma 3.3,

) xe
(%))

S|z

Ya,b > 0,p > 1, N € N.

)
N
N\
o~
® 9
2
N———
3
\
%
““_
+
IM:
A
v
RSEES
PR
('IJ
&
_:
E‘
v
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where we have used the simple fact that

3

lim ((Aa% + ,ub%> n’ + (a + b)%> =a+b

n—oo

for any A\, p, v, a,b,p > 0 (note that fl;",u,flzoj’t > 0 according to our assumption).

Now the result follows from taking a — oc. O

Remark 3.2. Typically if p > 1 is the roughness of X, then from Lyons’ extension
theorem we know that L, is finite.

Theorem 3.1. Let the tensor products over R? be equipped with given admissible
norms, under which each element of the standard basis {e, -+ ,eqs} of R has

norm one. Then Zs,t 15 almost surely a deterministic constant which s bounded
above by d*(t — s).

Proof. For m > 1, consider the dyadic partition

i
th & s+ —

z S(t=s), =0, 2"

According to Proposition 3.2, we know that pathwisely
2m 2m
Ls,t g Z Lt'Z(Yiht:‘n —= 27m Z 2mLt;’il,t;” .
i=1 i=1

On the one hand, by the Brownian scaling, for each 1, 2“@;[ .t has the same
distribution as f[j&t. In particular, by Proposition 3.1, it is bounded above by
d*(t — s) almost surely. On the other hand, the family {27 Ly o @ 1 <4< 2™}
are independent. According to the weak law of large numbers, we conclude that

2m N

23 2" Lyn n > E | Ly

i=1
in probability. By taking an almost surely convergent subsequence, we obtain
that

)

Zst < E [zs,t}

almost surely. This certainly implies that z&t =E [Zs,t] almost surely. O
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Remark 3.3. Although the fact of ES’t being a deterministic constant is a result of
independent increments for Brownian motion, it is not clear that any simple type
of 0-1 law argument could apply.

Corollary 3.1. Under the assumption of Theorem 3.1, there exists a constant Ky

depending on d, such that for each pair of s < t, with probability one we have

Ly = kq(t — s).

Proof. The result follows immediately from Theorem 3.1 and Brownian scaling.
m

Remark 3.4. We should emphasize that the constant x; depends on the choice of
given admissible norms on the tensor products.

We can further show that the P-null set arising from Corollary 3.1 associated
with each pair of s < t can be chosen to be universal. This point will be very
useful for applications to the level of the Brownian rough path (c.f. Section 6
below).

Proposition 3.3. With probability one, we have
Es,t = kq(t —s) forall s <t.
Proof. According to Proposition 3.1 and Corollary 3.1, there exists a P-null set
N, such that for all w ¢ N, we have
max {L . (w), LV ., (w)} < d*(rs — 1)

and

LTlﬂ"z(w) = ’%d(TQ - 7’1>

for all 1,1y € Q with r; < 79, where

2
L;hm £ li?Hsgp ((g)' sup HBZUH) ! ;

r1SUST2
2
n n
" FANE K | n
L,, ,, = limsup <§> sup HIB%U’TQH .
n—o0 r1<uLry

Now fix w ¢ N and let s < r with » € Q. For arbitrary 71,7, € Q with
ry < s < ro, we know that

I
N

T, (w)

Lyys(w) + Loy (w)

Ll () + Ly (w)
d*(ry —11) + Ly o (w).

Kq(r —r1)

INININ
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By letting 1 1 s and 75 | s along rational times, we obtain that

Lgr(w) = Kka(r — s).

Similarly, from

Ls,’r(w) Ls,rz ((,d) + LTQ,T (w)
L;“/lﬂ“z (W) + LTQJ"(W)

d*(ry — 1) + Kg(r —13),

NN N

we conclude that N
Lg,(w) < Ka(r —s).

Therefore, B
L, (w) = Ka(r — s).

By repeating the same argument, we conclude that for all s < t,

L (w) = ka(t — s).

]

4 The second part of the main result: the lower
estimate

For given admissible tensor norms, from the last section we know that with prob-
ability one, B
Loy = kq(t —s),

where r, is a deterministic constant depending only on the dimension d of Brow-
nian motion, which is bounded above by d?. It is not even clear that xg should
be strictly positive. In this section, we are going to establish a lower estimate
of kg under the projective tensor norm by applying the technique of hyperbolic
development which was introduced by Hambly and Lyons in their remarkable pa-
per [10]. In the next section, we shall see that the positivity of k, reflects certain
non-degeneracy properties of the Brownian rough path.
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4.1 The hyperbolic development of a regular path

Before study the Brownian signature, let us first summarize the fundamental idea
of hyperbolic development in the deterministic context for regular paths. We
present proofs of a few results which seems not appearing in the literature. For
an expository review on hyperbolic geometry, we refer the reader to the wonderful
survey [4].

Let H? (d > 2) be the complete, connected and simply-connected d-dimensional
Riemannian manifold with constant sectional curvature —1. For computational
convenience, we choose the hyperboloid model. In particular, H? is defined to be
the submanifold {z € R*™! : z*x = —1, 29 > 0}, where x is the Minkowski
metric on R given by

d
A o
rxy 2 § xzyz o $d+1yd+1.
i=1

The Minkowski metric induces a Riemannian metric on H¢ which gives it the
desired hyperbolic structure. For z,y € H¢, one can show that

coshp(z,y) = —x *xy, (4.1)

where p(x,y) is the hyperbolic distance between x and y.
It is known that the isometry group SO(d, 1) of H¢ is the space of (d + 1) x
(d + 1)-invertible matrices T' such that [t = JI*J and %"} > 0, where J £
diag(1,---,1,—1). The Lie algebra so(d, 1) of SO(d, 1) is the space of (d + 1) x
(d + 1)-matrices A of the form
Ay b
=(3 )

where Ag is an antisymmetric d X d-matrix and b € R%.
Define a linear map F : R? — so(d, 1) by

0O --- 0 2!
F(z) 2 O O ;d , oz =(z' - 2% e R
L

Given a continuous path 7 : [0,1] — R? with bounded variation, consider the
linear ordinary differential equation

dFt = PtF(d’Yt), te [0, 1],
Lo =Ty
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The solution I'; defines a continuous path with bounded variation in the isometry
group SO(d, 1). Explicitly, by Picard’s iteration, we see that

o0 [e.e]

=% / Fldy) - Fldw,) =Y Fo (10). (42)
n=0 O<t1 < <tn<t

n=0
Define X; = I';0, where o = (0,---,0,1)* € H%
Definition 4.1. T, is called the Cartan development of v, onto SO(d,1). X; is
called the hyperbolic development of ~;, onto H<.

The reason of expecting a lower estimate of k4 in our Brownian setting from
the hyperbolic development is quite related to the philosophy in the deterministic
setting. To be precise, define

~ 1
[ £ sup (n!HganrOj)n < ||’YH1—VaI‘7 (43)

n>1

where ¢, = f0<t1<_._<tn<1 dy, ® -+ ® dyy, is the n-th component of the signature

of v, and || - || proj is the projective tensor norm induced by the Euclidean norm on
R,
Remark 4.1. Let g = (1,91,92,---) be a group-like element. From the shuffle
product formula,

g}%9 "= Z P (gnk)

oSk, k)

Therefore,

“ngproj < (k")n ||gnk||pr0j'

It follows that

|~

e
El

(KMl gnlloros)

Therefore, we conclude that

< ((nk)!Hgnkaroj)" , Vn, k> 1.

S|=
3=

sup (n![gnllproj) ™ = lim sup (n!]|gn||pro;)

n=1 n—o00

This is indeed true for any given admissible norms. A similar statement with a
fractional factorial normalization (which naturally corresponds to the rough path
situation) is not true. Indeed, considering the Brownian motion case, we have

N\ 1o B 1 ?
sup <<§>!\|Bo,1||proj> > ((5) "By — Bo||Rd) :
n>1

20



while on the other hand, by Theorem 3.1,

. n\ | ion
lim sup ((5)!”E0,1"proj> = Kd
n—oo

for almost surely. Therefore, with positive probability the “sup” is not equal to
the “limsup” for the Brownian signature.

3

Now suppose that 7 is tree-reduced. There are essentially two cases in which
the length conjecture [ = ||v||1_var is known to be true: piecewise linear paths or
C'-paths in constant speed parametrization with suitable modulus of continuity
for the derivative.

The_fundamental reason that the hyperbolic development yields the lower
bound ! > ||v||1—var is hidden in the following two key facts.

Fact 1. The hyperbolic development is length preserving. Moreover, if ~; is
piecewise linear , then its hyperbolic development X, is piecewise geodesic with
the same intersection angles as those of ;.

Proof. We first show that the Cartan development is length preserving.
If 7, is smooth, then the equation for I'y becomes

ft: FtF(r.)/t)7

Xt:I;tOZFt(’(};t>.

Since Iy is an isometry of H¢, by identifying T,H? = R, we conclude that

(3]

It follows that the hyperbolic length of X, is the same as the Euclidean length of
v¢. The general bounded variation case can be proved by smooth approximation.
Next we show that the Cartan development of a piecewise linear path is a
piecewise geodesic with the same intersection angles.
If 4, = tv is a linear path, according to (4.2), it is easily seen that

and thus

= H ’)./t ||Euc1idean7

*

| | Euclidean *

d+1 d+1 - 0]l Bhctia
X = (Ty0)* = Z —<2‘;;)1'ean = cosh |lv
n=0 ’
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From the identity (4.1), we know that
cosh p(X1,0) = —=X; x 0 = X&' = cosh ||v]| Buctidean;

which implies that
P(X170) = ||U||Euclidean = ||’7||1—Var-
Therefore, X is a geodesic in Hy.
Now suppose that v, is piecewise linear over a partition P : 0 =ty < t; <

-+ < tpy1 = 1, where V= v, € RY for t € [ty_1,t]. Apparently, the Cartan
development X; of v; is a piecewise geodesic. Given 1 < k < n, we have

’ _ U U
th_: Ftk—lrtklflrtk ( Ok ) = Ftk ( Ok ) ,

and
' v
Xop+= Ftk ( k(;_l ) .
Therefore,
v v : :
<Ukavkr+1>Euclidean = <( Ok ) ) ( k(;_l )> = <th—>th+>*>
This implies that the Cartan development preserves intersection angles. O

Fact 2. In a hyperbolic triangle with edges a,b,c > 0, we have a > b+ ¢ —
log ﬁ, where 0, is the angle opposite a.

Proof. The only point which requires some attention is the following fact: for
A > 0, if we consider triangles with the same angle 64, and edges \b, A\c with the
corresponding a()\), then

FO) 2 Ab+ Ae—a())

is monotonely increasing in A\. Based on this fact, one finds the upper bound of
b+ c—a to be limy (A0 + Ac — a(A)), which can be computed by using the
hyperbolic cosine law (c.f. Proof of Lemma 3.4 in [10])

To this end, it suffices to show that f'(\) = b+ ¢ — d/(\) > 0. By the first
hyperbolic cosine law, we have

cosh a(A) = cosh Ab cosh Ac — sinh A\bsinh Accos 6 4.
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Differentiating with respect to A, we obtain that

a'(M\) sinh a(\) = b (sinh Ab cosh A\¢ — 7 cosh Absinh Ac)
+ ¢ (cosh Absinh A¢ — 7 sinh \b cosh Ac¢)

where r £ cos 4. For simplicity we write sinh = sh, cosh = ch. Now it suffices to
show that

b(shAb - chAc — rchAb - shAc) 4 ¢(chAb - shAc — rshAb - chAc) < (b + ¢)sha(N).

We use X, Y to denote the left and right hand sides respectively. From direct
computation, we see that

X% = (b—cr)*sh*Ab - ch®\c + (c — br)?ch?\b - sh®\c
+ (2be + 2ber® — 2b*r — 2¢*r)shAb - chAb - shAc - ch)c,

and

Y2 = (b4 ¢)*((1 4 7)?sh®Ab - sh®Ac 4 sh®Ab + sh* ¢
— 2rshAb - chAb - shAc - ch)c).
By using cosh? z — sinh? z = 1, we obtain that

Y2_X2

[ 2bc(1 + 7)sh®Ab - sh®Ac — 2bc(1 + r)shAb - chAb - shAc - chAc
;

+ (21 — 7) 4 2bc)sh? b + (b*(1 — 7) + 2bc)sh*Ae.

Define g(r) to be the function in r given by the right hand side of the above
equality. Then
g(1) = 2bc(shAb - chAc — chAb - shae)? > 0.

Moreover,
g (r) = —2bcsh\b - shac - chA(b — ¢)
— ?sh®\b — b%sh? e
<0.

Therefore, g(r) > 0 for r € [—1, 1], which implies that Y2 > X2 Since Y > 0, we
conclude that Y > X. O
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Let v : [0,1] — R be a tree-reduced path with bounded variation. From
(4.1) and the explicit formula for the Cartan development, it is not hard to see
that (see also (4.6) below), for each A > 0,

cosh p(X7, 0) = Z )\2”/ (Yers dVey) -+ - (A Yty 1 dty,) < cOSh AL
n=0 0

<t1 < <tonp<1

where [ is defined by (4.3), v £ Ay, (0 < t <) is the path obtained by rescaling
7 by the factor \, and X} is the hyperbolic development of 4;'. In particular, we
see that Al = p(X?, 0).

The previous Fact 2 tells us that for all two-edge piecewise geodesic paths
Y : [0,1] — H¢ with fixed intersection angle 0 < < 7, the distance between
hyperbolic length of Y and p(Y}, 0) is uniformly bounded by a constant depending
on . Now suppose that v : [0,1] — R? is a two-edge piecewise linear path with
intersection angle 0 < # < . Fact 1 and 2 together implies that

2
0 < AMY|licvar — p (X7, 0) < K(0) £ log ———,
v = (X2,0) < K(6) £ log ——
uniformly in A > 0. In particular,
. p(Xo
)\hm % = [[7[l1-var, (4.4)
—00

from which we obtain the desired estimate [ > ||v||i_var. It is important to note
that the angle 6 captures the tree-reduced nature of ~ in this simple case. Indeed,
if 0 =0, K(0) = +o0.

With some effort, the previous argument extends to tree-reduced piecewise
linear paths with minimal intersection angle given by 6 > 0. In this case, one can
obtain an estimate of the form

0 < )‘H’YHl—var - P (X1>\’0) < N - A(e)

uniformly in A > 0, where N is the number of edges of v and A(f) is a constant
depending only 6 (which explodes as 6 | 0). We again obtain (4.4) and thus
the desired estimate. Here 6 > 0 captures the tree-reduced nature of v. With
some further delicate analysis, one can establish a similar estimate for a path
v : [0,1] = R? which is continuously differentiable when parametrized at constant
speed. The estimate takes the form

C 2
0< )\H7||1—var - ,O(Xl)‘,o) < Cl)‘H’yHl—var&y (72)
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provided that A is large, where C4,Cy are universal constants and ¢,(-) is the
modulus of continuity for 4. In particular, we again obtain (4.4) and thus the
desired estimate. Here the existence of modulus of continuity for 4 already implies
that 7 is tree-reduced implicitly. In any case, the fundamental reason which makes
the technique of hyperbolic development work is hidden in the nature of Fact 1
and 2. B

If one is attempting to attack the length conjecture | = ||7y||;_var for a general
tree-reduced path with bounded variation by using the idea of hyperbolic devel-
opment, it seems that a crucial point is to find a quantity w.,, a certain kind of
“modulus of continuity”, which on the one hand captures the tree-reduced nature
of v quantitatively, and on the other hand can be used to control the growth of
A = MY var — (X7, 0) (difference between hyperbolic length and hyperbolic
distance for the rescaled path). Up to the current point, this fascinating and
challenging problem remains unsolved.

4.2 The hyperbolic development of Brownian motion and a
lower estimate for x,

In spite of the huge difficulty in obtaining lower estimates of the hyperbolic dis-
tance function in the general deterministic setting, it is surprising that a simple
martingale argument will give us a meaningful lower estimate for the hyperbolic
development of Brownian motion. In particular, we can obtain a lower estimate
on the constant kg .

From now on, we assume that R? is equipped with the [P-norm for some given
1 < p < 2, and the tensor products over R? are equipped with the associated
projective tensor norms.

The following characterization of projective tensor norms is important for us.

Lemma 4.1. For each § € (R?) “"we have
1€llproj = sup {|@(€)| = @ € L(RY,--- ,RERY), [|@f <1},

where we identify L(RY,---  R%RY) with ((Rd)®")* through the universal prop-
erty, and

@[] = inf{C' >0 [®(vr,-,va)] < Clloll -+ [lvnll Vor,--- v, € R}

Proof. See [17], Identity (2.3). O
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Let By = (B}, -+, B?) be a d-dimensional Brownian motion. We define

. ny,- 0
L, & limsup <<§>!||B07t||proj> .

n—oo

For each A > 0, we consider the Cartan development

> = A[MF(odB,), t3> 0,
1—‘(/)\ = Id+17

of A\ - B;, where the differential equation is understood in the Stratonovich sense.
Let X} £ I'’o be the hyperbolic development of A - B;. Since B; has a canonical
lifting as geometric rough paths, from the universal limit theorem for rough dif-
ferential equations, we see that I'} defines a path on the isometry group SO(d, 1)
and hence X} is a path on H¢ starting at o.

Picard’s iteration again shows that

) = f: A" / F(cdBy,)---F(odB,). (4.5)

<t <--<tp<t

Define h} = (le‘)dJrl to be the hyperbolic height of X' (the last coordinate of
X}). Tt follows from (4.1), (4.5) and the definition of F' that

h;' = cosh p(X}', 0)

= ; )\"/O (F(odBy,)--- F(oBy, )o)™

<tp < <tp<t

=y A / (0dBy,,0dB,) - - - (0odBy,, _,,0dBy, ), (4.6)
n=0 0

<t <-<tn<t

The following result shows that the quantity L, can be controlled from below
in terms of the asymptotics of h} as A — oo.

Proposition 4.1. With probability one, we have

) 1
lim sup

Elogh? <L, Vt=0.
A—00

Proof. For each n > 1, define a real-valued 2n-linear map ®,, over R? by
CI)n(,Uh Tt 7“271) é <U17U2> o <U2n—17 U2n>7 V1, , V2 S Rd-
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Since we are taking the [P-norm on R? for 1 < p < 2, we see that
[P (1, -+ van)| < lvallez - - [[oanllre
< villew -+ vzl

In particular, ||®,|| < 1. Therefore, by Lemma 4.1, we have

/ (0B, 0B} -+ (0B 1, 00B0,)| = 100 B < B3
0<t1 <o <tn<t

Now for each o > 1, define

~. n n
L = sup <<§>!HBO,thr0j>

n>o

3o

It follows that

oo
By <) A (IBE: lpro;
n=0

a—1 0
= Z )\2nHBgm’proj + Z Azn"Bgz”PrOJ
n=0 n=a

a—1 oo (z?O‘)n
<D N B oo + Y A - S
n=0 n=o ’

_ a—1 (Z?a>n
= exp </\2Lfa> + Z A% HB(Q),Y;HMOJ T

n=0

Therefore,

1
Ii — log b}
ol 2 o8

a—1 ZQa "
o1 27 2 on m ( t )
< Jim Slog | exp (ML) + 300 { 18G5l = =7
o

Since « is arbitrary, we conclude that

) 1 A P ~
— < = .
111)7\11 sup 2 log h; < 1I;fl Li* =L,
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The following result is the probabilistic counterpart of a lower estimate on the
hyperbolic height function h;.

Lemma 4.2. For any 0 < p < d — 1, we have

E|(m)™] <exp <—A2”(d_ 1_“)15).

2

Proof. Note that

F(dB,) - F(dB,) — ( (dlgt)* dft > . ( (dgt)* dft ) _ ( I(‘)i 2 ) dt.

By the It6-Stratonovich conversion, we have

A
dl'} = A\['} - F(dB;) + =dU} - F(dBy)

=\ F(dB,) + =T} (F(dB,) - F(dB,))
A2 I, 0
= \[} - F(dB,) + ?F? ( g y ) dt.

Therefore

d+1
d+1

i = d(T)
d 2
=AY (@) aB+ ¥

=1

h}dt.

Moreover, since I'? € SO(d, 1), we know that

d

SN - ) = -1

=1

and hence

dh - dh = \? zd: ((rg)j“)Q at = ((n)* — 1) d.

i=1
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According to Itd’s formula,

A ()" =~ () am LD ()70

d
= = (1) YD () B
=1

Npd—=1—=p) ay-n | XPulp+1) o3\ —u+2)
_ ( L) gy 2 D) gy )dt.

By taking expectation and differentiating with respect to ¢, we obtain that

%E [(hi\)*u] _ _)\Qﬂ(d; 1- 'LL)E [(h;‘)iﬂ]
_ )‘QM(/; + 1)]E [(h?)*(lﬂr?)]
< _Vu(d; LWy [(hz\)w] |

By Gronwall’s inequality, we arrive at

E ()] <exp (- AZ“(d; L= “)t> .

Now we can state our main lower estimate on k.

Theorem 4.1. Under the IP-norm (1 < p < 2) on R? and the associated projective
tensor norms on the tensor products, we have

d—1
Fa > ——.

Proof. Fix t > 0, A > 0 and 0 < u < d — 1. According to Lemma 4.2, for each
K >0,
P(h} < K) =P ((n)" > K")
< KVE (1) "]
Nu(d—1—p) t)

< KPexp (— 5
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Now for each m > 1, define \,,, £ m and

mz(d—l—p,)s).

K, &
exp ( 5

It follows that

u(d—1-
P (h)™ < Ki) < exp (—m l 5 M)(t—8)>-
In particular, > = /P (hf‘m < Km) < o00. By the Borel-Cantelli lemma, there
exists a P-null set N (s, ¢, 1), such that for any w ¢ N (s, t, i), there exists M(w) >
1 with

2(d—1-—
hm (w) > exp <m ( 5 u)s), Vm > M(w).
Therefore,
h:r?—?olip g log hy™(w) > —y 5

By enlarging the P-null set through rationals s 7 ¢ and u | 0, we conclude that

d—1
li —logh} > ——¢
imsup s log h; 2

for almost surely.
Finally, according to Proposition 4.1, we obtain that

5 Applications to the Brownian rough path

We present a few interesting consequences of the lower estimate on kg4 given in
Theorem 4.1.

Let us consider the d-dimensional Brownian motion B; on [0, 1]. Recall that
with probability one, B, has a canonical lifting B; as geometric p-rough path for
2 < p < 3. As a process on G?(R?), the Brownian rough path B, is canonically
defined and it is independent of the choice of tensor norms on (R%)®2.

Corollary 5.1. For almost every w, the path t — By(w) is tree-reduced.
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Proof. Let the tensor products be equipped with the projective tensor norms
associated with the [2-norm on R?. From Proposition 3.3, for every w outside
some P-null set NV, N

Lot(w) = ka(t —s) Vs <t
In addition, from Theorem 4.1 we know that the constant k. is strictly positive.

Therefore, for every w ¢ N, B(w) cannot have any tree-like pieces, otherwise
Ls+(w) = 0 for some s < t which is a contradiction. O

From Corollary 5.1, we know that for any two wy,ws outside some P-null set,
B(w;) and B(ws) have the same signature if and only if they differ from each other
by a reparametrization. In other words, with probability one the Brownian rough
path is uniquely determined by its signature up to reparametrization. This result
was first proved by Le Jan and Qian [12] (see also [2]).

We can actually obtain the following stronger uniqueness result which is not
implied by the work in the literature.

Corollary 5.2. There ezists a P-null set N, such that for any two distinct wy, wo ¢
N, B(w1) and B(wg) cannot be equal up to a reparametrization. In particular, with
probability one, the Brownian rough path is uniquely determined by its signature.

Proof. We follow the same notation as in the proof of Corollary 5.1. Given two
distinct wy, wos ¢ N, suppose that

Bi(w2) = Bopy(w1), 0<t<1,

for some reparametrization o : [0,1] — [0, 1]. Then we have

Zo,a(t) (w1) = Kqo(t)

and B
LO,t (LUQ) = lidt.

But from assumption we know that Eo,a(t) (w1) = Lo4(ws). Therefore, we must
have o(t) =t and hence B(w;) = B(w,). O

Finally, we also have the following useful consequence.

Corollary 5.3. With probability one, Brownian rough path together with its parametriza-
tion can be recovered from its signature.
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Proof. We know from [2], [12] that for every w outside some P-null set, the equiva-
lence class [B(w)] (i.e. B(w) modulo reparametrization defined in the sense of |2],
Section 5.3) can be recovered from its signature. Pick an arbitrary representative

(Xt)o<t<1 € [B(w)]. Then
X; =Byp(w), 0<t<1,

for some unique reparametrization o that we want to figure out. According to
Proposition 3.3 and Theorem 4.1, we have

3o

1. n n
o(t) = —timsup ( (5 )15 lhowos) "

Rd n—oo

where we again choose the projective tensor norms on the tensor products asso-
ciated with the [>-norm on R?. The underlying path B(w) is then given by

Bt(w) = Xg—l(t), 0 < t < 1.
[

Another way of understanding the previous result is the following. Since [B(w)]
can be recovered from its signature, we know that the image of the signature path
B(w) can be recovered from its endpoint. For every £ = (1,&1,&s,--+) € Im(B(w)),
we then have

B¢ /n,(w) = 7@ (€),

where ,

_ n =
el 2 timsup ((5) € loror)
n—oo
and 7 : T((R?)) — T®((R?)) is the canonical projection map.

6 Further remarks and related problems

In Theorem 1.1, we considered the tail asymptotics of the Brownian signature
defined in terms of iterated Stratonovich’s integrals. Stratonovich’s integrals arise
naturally when we study Brownian motion from the rough path point of view.
On the other hand, one could ask a similar question for 1td’s iterated integrals.

Indeed, if we define
)

E&t £ lim sup (<E>'
n—00 2

3w

/ dBy, @ -+ ® dB,,
s<uy < <unp<t
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where the iterated integrals are defined in the sense of 1t6 and the tensor products
are equipped with the {!-norm, then by a similar type of arguments, one can show
that &t 20t

dit =) 5 ) <7, < LU= 5 °) (6.1)
for almost surely. Since the lifting of Brownian motion in [t6’s sense is not a geo-
metric rough path, uniqueness of signature result does not apply and the intrinsic
meaning of the quantity L, is unclear. The proof of (6.1) will not be included
here since it is essentially parallel to the Stratonovich case.

Our main result of Theorem 1.1 gives rise to many interesting and related
problems in the probabilistic context.

(1) The first interesting and immediate question one could come up with is the
exact value of k4 and its probabilistic meaning. In view of the length conjecture
(1.2) and Theorem 1.1, if we consider the projective tensor norms on the tensor
products induced by the Euclidean norm on R?, it is quite natural to expect that,
kq would have a meaning related to certain kind of quadratic variation for the
Brownian rough path. It also seems that there are rooms for improving the upper
estimate for k4. The point is that in the proof of Lemma 3.1, if we shuffle an
arbitrary long word {iy,--- ,i,} over {1,---  d} with itself, the chance of hitting
a nonzero coefficient in the 2n-degree component of the Brownian expected sig-
nature is quite small. But to make the analysis precise, some hard combinatorics
argument for the shuffle product structure might be involved.

(2) If kg is related to certain kind of quadratic variation for the Brownian
motion, it is reasonable to expect that our main result and corollaries apply to
diffusions or even general continuous semimartingales, though there is no reason
to believe that in this case the corresponding L, will still be deterministic. For
Gaussian processes, it is even not clear that any analogous version of Es,t would
be meaningful since for instance we know that

n
lim E |Bi — Bi-1|P =0 or oo
n~>oo' n n

1=1

in probability for a fractional Brownian motion with Hurst parameter H € (0, 1),
according to whether pH > 1 or pH < 1.

(3) There is a quite subtle point in the discussion of Section 6. With probability
one, the lifting map w — B(w) is canonically well-defined. Therefore, although
Corollary 5.3 (the uniqueness result) is stated at the level of the Brownian rough
path, by projection to degree one, it also holds at the level of sample paths.
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However, it is not at all clear if the first part of Corollary 5.2 is true at the
level of Brownian sample paths. More precisely, to our best knowledge, a solution
to the following classical question for Brownian motion is not known (at least not
to us yet): does there exist a P-null set AV, such that no two sample paths outside
N can be equal up to a non-trivial reparametrization? This question is stated
for Brownian sample paths and has nothing to do with the lifting of Brownian
motion to rough paths.

It is a subtle point that the result of Corollary 5.2 does not yield an affirmative
answer easily to the above question. Indeed, if one wants to apply Corollary 5.2, a
missing point is whether the lifting operation and the reparametrization operation
are commutative outside some universal P-null set. In other words, it is not known
if there exists a P-null set AV, such that one could define a lifting map w — B(w)
for all w ¢ N, which satisfies

B. (wg) = Bg(.) (w)

for all reparametrizations o : [0,1] — [0, 1]. When defining the almost sure lifting
of Brownian motion, the P-null set comes with the given choice of approximation.
It is quite subtle (and could be false) to see if the P-null set can be chosen in a
universal way.
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