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Abstract

We explicitly construct simple, piecewise minimizing geodesic, arbi-
trarily fine interpolation of simple and Jordan curves on a Riemannian
manifold. In particular, a finite sequence of partition points can be spec-
ified in advance to be included in our construction. Then we present two
applications of our main results: the generalized Green’s theorem and the
uniqueness of signature for planar Jordan curves with finite p-variation
for 1 6 p < 2.
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1 Introduction
The classical proofs of many properties of Jordan curves (e.g. the Jordan curve
theorem) or functions on Jordan curves (e.g. Cauchy’s theorem) begin with the
consideration of polygonal Jordan curves. As part of the proof of the Jordan
curve theorem in [12], it was shown that for every planar Jordan curve, there
is a polygonal Jordan curve that approximates the original Jordan curve arbi-
trarily well. Here we shall prove a stronger and more general fact that given
a Jordan curve on a connected Riemannian manifold M and n points on the
curve, there exists a simple, piecewise minimizing geodesic, arbitrarily fine in-
terpolation which contains these n points as interpolation points. The proof
relies on another main result of this paper for non-closed simple curves. Such
case was first treated by Werness [13], in which the author used an inductive but
non-constructive method. Here we provide another proof of this result, which
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has the advantage of being explicit and constructive, and hence numerically
computable.

We would like to emphasize that our approximation, unlike that of [12]
which is a direct consequence of our result, does not rely on the flatness of the
Euclidean metric, and respects the parametrization of the curve, i.e. it is an
interpolation rather than merely an approximation in the uniform norm. The
latter is particularly important for applications in the context of rough path
theory, where we approximate continuous paths by bounded variation ones in
the p-variation metric. Such idea is fundamental to the study of the roughness
of continuous paths, and particularly of sample paths of continuous stochastic
processes (see [4], [6]).

We also give two applications of our main result.
Taking advantage of the fact that the p-variation of a piecewise linear inter-

polation of a path is bounded by the p-variation of the path itself, our approx-
imation theorem gives immediately Green’s theorem for planar Jordan curves
with finite p-variation, where 1 6 p < 2. To our best knowledge, in the rough
path literature, the only other attempt in extending Green’s theorem to non-
rectifiable curves appeared in [14], where Green’s theorem was proved for the
boundaries of α-Hölder domains for 1

3 < α < 1. Our result is a partial gener-
alization of Yam’s. Yam’s result requires the curve to be α-Hölder continuous
under the conformal parametrization whereas our result only requires the curve
to be α-Hölder continuous under some parametrization.

A long-standing open problem in rough path theory is to what extent a path
can be determined from its iterated integrals of any order. This is usually known
as the uniqueness of signature problem. Hambly and Lyons [8] proved that the
iterated integrals of a rectifiable curve vanish if and only if the path is tree-like,
based on a similar type of approximation result for tree-like paths. Using our
approximation result, we prove the uniqueness of signature for planar Jordan
curves with finite p-variations, where 1 6 p < 2. The case of non-closed simple
curves was treated in [2]. To our best knowledge this is the strongest uniqueness
of signature result so far for non-rectifiable curves.

Throughout the rest of this paper, all curves are assumed to be continuous.

2 Simple Piecewise Geodesic Interpolation of Sim-
ple and Jordan Curves

In this section, we are going to prove our main results about simple piecewise
geodesic approximation of simple and Jordan curves in Riemannian manifolds.
Although the most interesting and nontrivial case lies in the Euclidean plane, we
formulate our problems in a Riemannian geometric setting of arbitrary dimen-
sion since the proofs do not rely on Euclidean geometry (that is, the “flatness”
of Euclidean metric) at all.

Throughout this section, let M be a d-dimensional connected Riemannian
manifold (d > 2).
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The following lemma, which is an easy fact from Riemannian geometry, is
fundamental for us to formulate our main results.

Lemma 2.1. For any compact set K ⊂M , there exists some ε = εK > 0, such
that for any x, y ∈ K with

d (x, y) < ε,

there exists a unique minimizing geodesic in M joining x and y, where d (·, ·)
denotes the Riemannian distance function.

Proof. For any x ∈ K, choose δx small enough such that B (x, δx) is a geodesi-
cally convex normal ball (see [5], p. 76, Proposition 4.2). By compactness, we
have a finite covering of K :

K ⊂
k⋃
i=1

B

(
xi,

δxi

2

)
,

where x1, · · · , xk ∈ K. Let ε = 1
2 min {δx1 , · · · , δxk

} . It follows that for any
x, y ∈ K with d (x, y) < ε, there exists some 1 6 i 6 k, such that x, y ∈
B (xi, δxi

). Therefore, by geodesic convexity we know that x and y can be
joined by a unique minimizing geodesic in M which lies in B (xi, δxi

) .

Now we are in position to state our main results.
The first main result is a simple piecewise geodesic approximation theorem

for non-closed simple curves in M .

Theorem 2.1. Let γ be a non-closed simple curve in M . For all ε > 0, there
exists a finite partition

Pε : 0 = t0 < t1 < · · · < tn−1 < tn = 1

of [0, 1], such that
(1) the mesh size of the partition ‖Pε‖ = maxi=1,··· ,n (ti − ti−1) < ε;
(2) for any i = 1, · · · , n, γti−1

and γti can be joined by a unique minimizing
geodesic in M , and the piecewise geodesic interpolation (more precisely, piece-
wise minimizing geodesic interpolation, and the same thereafter) γPε of γ over
the partition points in Pε is a simple curve.

The proof of Theorem 2.1 relies on the following crucial lemma, which de-
pends heavily on properties of minimizing geodesics. In the Euclidean case, we
illustrate the lemma in Figure 1, which says that if the lengths of the straight
line segments xy and zw are both less than or equal to r, then at least one of
the four line segments xz, xw, yz, yw has length strictly less than r.

Lemma 2.2. Let x, y, z, w ∈ M and α : [0, 1]→ M (respectively, β : [0, 1]→
M) be a minimizing geodesic joining x and y (respectively, z and w). Assume
that α ([0, 1])

⋂
β ([0, 1]) 6= ∅ and for some r > 0, d (x, y) 6 r, d (z, w) 6 r.

Then at least one of d (x, z) , d (y, z) , d (x,w) , d (y, w) is strictly less than r.
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Figure 1: This figure illustrates the relative positions of the points in Lemma
2.2 in the Euclidean case. The lengths of the line segments xy and zw are less
than or equal to r. Here the length of zx is strictly less than r.

Proof. Without loss of generality, we shall assume that all geodesics are parametrized
at constant speed. Let α (u) = β (v) = p for some u, v ∈ [0, 1] . Since α and β
are minimizing geodesics, we know that

d (x, y) = d (x, p) + d (p, y) 6 r,

d (z, w) = d (z, p) + d (p, w) 6 r.

Therefore, at least one of the following four cases happens:
(1) d (x, p) 6 r

2 , d (z, p) 6
r
2 ;

(2) d (x, p) 6 r
2 , d (p, w) 6

r
2 ;

(3) d (p, y) 6 r
2 , d (z, p) 6

r
2 ;

(4) d (p, y) 6 r
2 ; d (p, w) 6

r
2 .

First assume that (1) holds. It follows that

d (x, z) 6 d (x, p) + d (z, p) 6 r.

If d (x, z) = r, then
d(x, p) = d(z, p) =

r

2
,

and hence (4) holds, which implies

d (y, w) 6 d (p, y) + d (p, w) 6 r.

If d (y, w) = r, then
d (p, y) = d (p, w) =

r

2
.

Consequently, we have u = v = 1
2 .
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Now define

α̃ (t) =

{
α (t) , t ∈

[
0, 12
]
;

β (1− t) , t ∈
[
1
2 , 1
]
.

Since
Length (α̃) = r = d (x, z) ,

α̃ is minimizing. Moreover, since any geodesic has constant speed, by definition
we know that α̃ is parametrized proportionally to arc length. It follows from
the first variation formula (see [5], p. 195, Proposition 2.4) that α̃ must be a
geodesic. However, since α̃|[0, 12 ] = α|[0, 12 ], by the uniqueness of geodesics we
have α̃ = α and hence y = z. Similarly we have x = w.

The other cases can be treated in the same way, which completes the proof
of the lemma.

With the help of Lemma 2.2, we can now prove Theorem 2.1. The key idea is
to construct a sequence of times t1, t2, . . ., such that ti+1 is the last exit time of
γ from a small geodesic ball around γti after time ti. The uniform continuity of
the inverse of the map t→ γt will guarantee that ti and ti+1 are close. We then
need to argue that adjacent geodesic segments as well as non-adjacent geodesic
segments in the approximation curve do not intersect. The latter uses Lemma
2.2. We illustrate the first step of the construction in Figure 2.

Proof of Theorem 2.1. Fix ε > 0. Since γ is a continuous and injective mapping
from the compact space [0, 1] to the Hausdorff space M, it is a homeomorphism
from [0, 1] to its image. By compactness and hence uniform continuity of γ−1
we know that there exists δε > 0 such that for any s, t ∈ [0, 1] ,

d (γs, γt) < δε =⇒ |t− s| < ε.

We further assume that δε < εγ([0,1]), where εγ([0,1]) is the positive number in
Lemma 2.1 depending on the compact set γ ([0, 1]) ⊂M. It follows from Lemma
2.1 that for any s, t ∈ [0, 1] with d (γs, γt) < δε, γs and γt can be joined by a
unique minimizing geodesic in M . Now define an increasing sequence of points
{ti}∞i=0 in [0, 1] inductively by setting t0 = 0 and

ti = sup

{
t ∈ [ti−1, 1] : γt ∈ B

(
γti−1

,
δε
2

)}
, i > 1.

We claim that there exists some l > 1, such that for all i > l, ti = 1. In fact,
if it is not the case, then for any i > 1, we have

ti−1 < ti < 1 and d
(
γti−1 , γti

)
=
δε
2
.

On the other hand, by the uniform continuity of γ, there exists some ηε > 0,
such that for any s, t ∈ [0, 1] ,

|t− s| < ηε =⇒ d (γs, γt) <
δε
2
.
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Figure 2: This figure illustrates the first step in the construction given in the
proof of Theorem 2.1. The dotted line represents the simple curve γ. The solid
geodesic segment joining the point γ0 and γt1 represents the first step in the
construction of the piecewise geodesic interpolation of γ. Note that we take t1
to be the last exit time of γ from a δε

2 -geodesic ball centered at γ0.

Therefore, for any i > 1, |ti − ti−1| > ηε, which is an obvious contradiction.
Now set

l = min {i > 1 : ti = 1} ,

and define
Pε : 0 = t0 < t1 < · · · < tl−1 < tl = 1

to be a finite partition of [0, 1] . Then it is easy to see that ‖Pε‖ < ε, where
‖Pε‖ denote the mesh size of the partition Pε.

It remains to show that the piecewise geodesic interpolation γPε of γ over
the points of Pε is a simple curve.

To see this, first notice that for adjacent intervals [ti−1, ti] , [ti, ti+1] , we
have

γPε |[ti−1,ti]

⋂
γPε |[ti,ti+1] = {γti} .

In fact, if it is not the case, then there exist s1 ∈ [ti−1, ti) and s2 ∈ (ti, ti+1]
such that

γPε
s1 = γPε

s2 6= γti .

If i < l − 1, then by applying Lemma 2.1 with x = γti and y = γPε
s1 = γPε

s2 ,
γPε |[s1,ti] is a reparametrization of the reversal of γPε |[ti,s2], which we denote as
←−−
γPε |[ti,s2]. In particular, γPε |[ti,ti+1] and

←−−
γPε |[ti−1,ti] are geodesics that starts at

the same position with the same initial velocity. By the uniqueness of geodesic,
either γPε ([ti, ti+1]) ⊆

←−−
γPε ([ti−1, ti]) or

←−−
γPε ([ti−1, ti]) ⊆ γPε ([ti, ti+1]). In

particular we have either γPε |[ti−1,ti] passes through γti+1
or γPε |[ti,ti+1] passes

through γti−1
. As

←−−
γPε |[ti−1,ti] and γPε |[ti,ti+1] are minimizing geodesics and

we have d
(
γti , γti−1

)
= d

(
γti , γti+1

)
, we conclude that γti−1

= γti+1
which

contradicts that γ is simple. Figure 3 illustrates this argument.
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Figure 3: This figure illustrates the argument in the proof of Theorem 2.1 that
two adjacent line segment of the approximation curve we constructed cannot
intersect. The straight line represents the geodesic segments in the piecewise
geodesic interpolation of γ. γti−1

, γti , γti+1
are subdivision points of the curve.

If the two adjacent line segments do intersect, as in the figure below, then γti+1

would be closer to γti−1 than to γti which would contradict our construction.

If i = l−1, then arguing as in the case i < l−1, we have either γPε ([ti, ti+1]) ⊆←−−
γPε ([ti−1, ti]) or

←−−
γPε ([ti−1, ti]) ⊆ γPε ([ti, ti+1]). However, as i = l− 1, we have

d
(
γti , γti+1

)
6 δε

2 = d
(
γti−1

, γti
)
and hence γPε ([ti, ti+1]) ⊆

←−−
γPε ([ti−1, ti]).

In particular, γPε |[ti−1,ti] passes through γti+1 . Therefore, d
(
γti−1 , γti+1

)
6

d
(
γti−1 , γti

)
which contradicts the construction of {ti}li=0.

On the other hand, if [ti−1, ti] and [tj−1, tj ] (i < j) are non-adjacent intervals
and

γPε |[ti−1,ti]

⋂
γPε |[tj−1,tj ] 6= ∅,

then by Lemma 2.2 we know that at least one of

d
(
γti−1 , γtj−1

)
, d
(
γti , γtj−1

)
, d
(
γti−1 , γtj

)
, d
(
γti , γtj

)
is strictly less than δε

2 . However, this again contradicts the construction of
{ti} li=0.

Now the proof is complete.

The same technique of proof will allow us to prove our second main result,
which is concerned with simple piecewise geodesic approximations of Jordan
curves. This result significantly strengthens Theorem 2.1.

Theorem 2.2. Let γ : [0, 1] → M be a Jordan curve. Assume that 0 < τ1 <
· · · < τk < 1 are k fixed points in [0, 1] . Then for any ε > 0, there exists a finite
partition

Pε : 0 = t0 < t1 < · · · < tn−1 < tn = 1

of [0, 1], such that
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Figure 4: This figure illustrates the relative positions of the points involved in
Lemma 2.3.

(1) τ1, · · · , τk are partition points of Pε;
(2) ‖Pε‖ < ε;
(3) for i = 1, · · · , n, γti−1

and γti can be joined by a unique minimizing
geodesic in M , and the piecewise geodesic interpolation γPε of γ over the parti-
tion points in Pε is a Jordan curve.

The proof of Theorem 2.2 relies on the following geometric fact. It is illus-
trated by Figure 4.

Lemma 2.3. Let B (p,R) be a geodesically convex normal ball centered at p ∈
M , and let q ∈ ∂B (p,R) . Assume that x, y ∈ B (p,R) c and there exists a
minimizing geodesic α : [0, 1] → M joining x and y. If α ([0, 1])

⋂
pq 6= ∅ and

d (x, y) 6 r for some 0 < r < R, where pq denotes the image of the unique
minimizing geodesic in M joining p and q, then

d (x, q) < r, d (y, q) < r.

Proof. The conclusion is obvious if q ∈ α ([0, 1]) . Otherwise, let t ∈ (0, 1) be the
unique time such that e := α (t) ∈ B (p,R) is the intersection point of α ([0, 1])
and pq. By using the fact that B (p,R) is a geodesically convex normal ball,
it is easy to show that there exists a unique u ∈ (0, t) and a unique v ∈ (t, 1) ,
such that z := α (u) and w := α (v) lie on ∂B (p,R) . Observe that e and q are
distinct, for their equality would contradict the fact that r < R. Now it follows
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from properties of minimizing geodesics that

d (x, q) 6 d (x, e) + d (e, q)

= d (x, e) + d (p, q)− d (p, e)
= d (x, e) + d (p, w)− d (p, e)
6 d (x, e) + d (e, w)

= d (x,w)

< d (x, y)

6 r.

Similarly, we have d (y, q) < r.

Now we can prove Theorem 2.2. Our proof is constructive and the idea is
as follows. Recall that the times τ1, . . . , τk should to included in our partition.
Firstly, We find small disjoint geodesic balls around the points γτi , . . . , γτk , γ1.
Secondly, we connect each point γτi by two radial minimizing geodesics to the
point where γ first enters the geodesic ball around γτi before time τi and to
the point where γ last exists the geodesic ball. Finally, we construct simple
piecewise geodesic interpolation for each piece of simple curves outside those
geodesic balls inductively, by using the algorithm in Theorem 2.1. To make
sure that those approximation curves do not intersect the geodesic segments
inside those geodesic balls, we need to use Lemma 2.3. Figure 5 illustrates the
idea when k = 2.

Proof of Theorem 2.2. Take an arbitrary τ ∈ (0, τ1) . Since γ is a Jordan curve,
we know that γτ , γτ1 , · · · , γτk , γτk+1

∈M are all distinct, where we set τk+1 = 1.
By the Hausdorff property, there exists some δ > 0 such that the closed metric
balls B (γτ1 , δ) , · · · , B

(
γτk+1

, δ
)
are all disjoint and γτ /∈

⋃k+1
i=1 B (γτi , δ).

For the moment, by periodic extension and restriction we regard γ as defined
on [τ, τ + 1] with starting and end points being γ (τ) .

Now fix ε > 0. Without loss of generality we assume that

ε < min
{
τ, τ1 − τ,

τ2 − τ1
2

, · · · , τk+1 − τk
2

}
.

First of all, by the uniform continuity of γ|−1[τ,τi]
and γ|−1[τi,τ+1], there exists

some δε > 0, such that for all i = 1, · · · , k+1, any s, t ∈ [τ, τi] or s, t ∈ [τi, τ + 1] ,

d (γs, γt) < δε =⇒ |t− s| < ε.

Now set Ui = B (γτi , δε). Here we assume that δε is small enough so that each
Ui is a geodesically convex normal ball and Lemma 2.1 holds for those γs, γt
with d (γs, γt) < 2δε. Define

ui = inf
{
t ∈ [τ, τi] : γt ∈ Ui

}
,

vi = sup
{
t ∈ [τi, τ + 1] : γt ∈ Ui

}
.
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Figure 5: This figure illustrates the idea of proving of Theorem 2.2 when k = 2.
The dotted line represents the curve γ. The solid line represents the piecewise
geodesic interpolation of γ.

To return to the original time interval [0, 1] , let v0 = vk+1 − 1. We have
|v0| < ε, |τi − ui| < ε, |vi − τi| < ε and

0 < v0 < u1 < τ1 < v1 < · · · < uk < τk < vk < uk+1 < 1,

and
γui 6= γvi , d (γτi , γui) = d (γτi , γvi) = δε.

Moreover, we have

γ|(v0,u1)∪(v1,u2)∪···∪(vk−1,uk)∪(vk,uk+1)

⋂(
k+1⋃
i=1

Ui

)
= ∅.

We will take v0, u1, τ1, v1, · · · , uk, τk, vk, uk+1 as part of the partition points
in Pε. In particular, v0 will be the first point, uk+1 will be the last point
(except 0 and 1), and ui, τi, vi will be successive points in Pε, so the piecewise
geodesic interpolation of γ over those small intervals is a finite sequence of radial
geodesics of the balls centered at γτi with radius δε for i = 1, · · · , k + 1.

For the next step, notice that γ|[v0,u1], γ|[v1,u2], · · · , γ|[vk,uk+1] are k+1 non-
closed simple curves with disjoint images. We are going to use the constructive
procedure in the proof of Theorem 2.1 to define a simple piecewise geodesic
approximation of each γ|[vi−1,ui] (i = 1, · · · , k + 1) with partition size smaller
than ε inductively, such that the resulting piecewise geodesic closed curve over
[0, 1] is simple. That will complete the proof of the theorem.

Let γ(0) be the Jordan curve such that

γ(0) = γ, on [v0, u1] ∪ [v1, u2] ∪ · · · ∪ [vk−1, uk] ∪ [vk, uk+1] ,
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and it is the minimizing geodesic (radial segment of the corresponding normal
ball) on each small interval of

[0, v0] , [u1, τ1] , [τ1, v1] , · · · , [uk, τk] , [τk, vk] , [uk+1, 1] .

By the construction in the proof of Theorem 2.1, we may find a partition

P(1)
[v0,u1]

: v0 = w
(1)
0 < w

(1)
1 < · · · < w

(1)
l1−1 < w

(1)
l1

= u1

so that
∥∥∥P(1)

[v0,u1]

∥∥∥ < ε, the geodesic interpolation γ
P(1)

[v0,u1] of γ|[v0,u1] over the

partition points in P(1)
[v0,u1]

is simple and

d
(
γ
w

(1)
i−1
, γ
w

(1)
i

)
= δ(1)ε , i = 1, · · · l1 − 1,

d

(
γ
w

(1)
l1−1

, γu1

)
6 δ(1)ε ,

for some δ(1)ε > 0.

Moreover, we may choose δ(1)ε small enough so that dist
(
γ
P(1)

[v0u1] , γ(0)|[τ1,1]
)
>

0 and δ(1)ε < δε.
Now we will show that

γ
P(1)

[v0,u1]

⋂
γ(0)|[0,v0)∪(u1,τ1] = ∅.

In fact, if γP
(1)

[v0,u1]
⋂
γ(0)|[0,v0) 6= ∅, then from the construction of

{
w

(1)
i

}
, there

exists some i > 2, such that γ
w

(1)
i−1
, γ
w

(1)
i
∈ Uk+1

c
and

γ
w

(1)
i−1
γ
w

(1)
i

⋂
γ(0)|[0,v0) 6= ∅,

where γ
w

(1)
i−1
γ
w

(1)
i

denotes the image of the unique minimizing geodesic joining

γ
w

(1)
i−1

and γ
w

(1)
i

. However, since d
(
γ
w

(1)
i−1
, γ
w

(1)
i

)
6 δ

(1)
ε < δε, we know from

Lemma 2.3 that

d
(
γv0 , γw(1)

i−1

)
< δ(1)ε , d

(
γv0 , γw(1)

i

)
< δ(1)ε ,

which is an obvious contradiction to the construction of
{
w

(1)
i

}
l1
i=0. On the

other hand, if γP
(1)

[v0,u1]
⋂
γ(0)|(u1,τ1] 6= ∅, then there exists some i 6 l1 − 1, such

that γ
w

(1)
i−1
γ
w

(1)
i

⋂
γ(0)|(u1,τ1] 6= ∅.

Since γ
w

(1)
i−1
, γ
w

(1)
i
∈ U1

c
and d

(
γ
w

(1)
i−1
, γ
w

(1)
i

)
= δ

(1)
ε < δε, we know again

from Lemma 2.3 that

d
(
γu1 , γw(1)

i−1

)
< δ(1)ε , d

(
γu1 , γw(1)

i

)
< δ(1)ε .
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But this is also a contradiction to the construction of
{
w

(1)
i

}
l1
i=0.

Therefore, the closed curve γ(1) over [0, 1] defined by

γ
(1)
t =

γP
(1)

[v0,u1]

t , t ∈ [v0, u1] ;

γ
(0)
t , t ∈ [0, 1] \ [v0, u1] ,

is a Jordan curve.
Now consider γ|[v1,u2]. The previous argument can be carried through easily

with respect to the Jordan curve γ(1), and we obtain a finite partition

P(2)
[v1,u2]

: v1 = w
(2)
0 < w

(2)
1 < · · · < w

(2)
l2−1 < w

(2)
l2

= u2,

such that
∥∥∥P(2)

[v1,u2]

∥∥∥ < ε, and the closed curve γ(2) over [0, 1] defined by

γ
(2)
t =

γP
(2)

[v1,u2]

t , t ∈ [v1, u2] ;

γ
(1)
t , t ∈ [0, 1] \ [v1, u2] ,

is a Jordan curve, where γP
(2)

[v1,u2] is the geodesic interpolation of γ|[v1,u2] over
the partition points in P(2)

[v1,u2]
. By induction, we are able to construct simple

piecewise geodesic approximation of each piece of γ outside ∪k+1
i=1 Ui and finally

obtain a finite partition Pε of [0, 1] with partition points

{0}
⋃(

k+1⋃
i=1

{
vi−1, w

(i)
1 , · · · , w(i)

li−1, ui, τi

}
,

)

such that ‖Pε‖ < ε, and the geodesic interpolation γPε (which is γ(k+1) by
induction) of γ over the points of Pε is a Jordan curve.

Now the proof is complete.

Remark 2.1. By slight modification of the proof, it is not hard to see that
Theorem 2.2 also holds for non-closed simple curves. In this case, it strengthens
the result of Theorem 2.1.

Remark 2.2. It is possible to generalize our main results to infinite dimensional
spaces with suitable geodesic properties. For technical simplicity we are not
going to present the details.

3 Applications
In this section, we shall demonstrate two applications of Theorem 2.2. Here we
assume that M = R2.

12



3.1 Green’s theorem for Jordan curves with finite p-variation
(1 6 p < 2)

We will prove a generalized Green’s theorem for planar Jordan curves with
finite p-variation, where 1 6 p < 2. First we shall briefly recall basic facts about
Young’s integration.

Definition 3.1. Let (X, d) be a metric space. We say a function γ : [0, 1]→ X
has finite p-variation if

‖γ‖p :=

(
sup
P

∑
t0<t1<...<tn

d
(
γti , γti+1

)p) 1
p

<∞,

where the supremum is taken over all finite partitions of [0, 1].

Theorem 3.1. (L.C. Young, [15], see also [11], Theorem 1.16) Let p, q > 1 be
such that 1

p + 1
q > 1. Let γ, γ̃ : [0, 1] → Rd be two continuous paths with finite

p-variation and q-variation respectively. Then the following limit exists:
ˆ 1

0

γ ⊗ dγ̃ := lim|P|→0

∑
P: 0=t0<...<tn=1

γti ⊗
(
γ̃ti+1

− γ̃ti
)
.

Moreover, the function
´ ·
0
γ ⊗ dγ̃ has finite q-variation and∥∥∥∥ˆ ·

0

γ ⊗ dγ̃

∥∥∥∥
q

6 2ζ

(
1

p
+

1

q

)
‖γ‖p ‖γ̃‖q ,

where ζ (·) is the classical Riemann zeta function.

The following lemma demonstrates the importance of piecewise linear ap-
proximation for the p-variation metric.

Lemma 3.1. Let γ : [0, 1]→ Rd be a path with finite p-variation, where p > 1.
Let f : Rd → Rd̃ be a Lipschitz function with Lipschitz constant C. Then

1. ([11], Lemma 1.12 and Lemma 1.18) ‖f (γ)‖p 6 C ‖γ‖p.
2. ([11], Proposition 1.14 and Remark 1.19) For all q > p,∥∥f (γ)− f (γP)∥∥

q
→ 0

as ‖P‖ → 0.

We now prove Green’s theorem for non-smooth Jordan curves.

Theorem 3.2. Let f, g : R2 → R be functions with continuous first order
derivatives, and let γ : [0, 1] → R2 be a positively oriented Jordan curve with
finite p-variation, where 1 6 p < 2. Let x·, y· denote the first and second
coordinate components of γ· respectively. Then

ˆ 1

0

(f (γs) dys − g (γs) dxs) =
ˆ
Int(γ)

(
∂f

∂x
+
∂g

∂y

)
dxdy,

13



where the integral on the L.H.S. is understood as the Young’s integral, and
Int (γ) denotes the interior of γ.

Proof. Fix ε > 0. According to Theorem 2.2, let Pε be a finite partition of [0, 1]
such that ‖Pε‖ < ε, and the piecewise linear interpolation γPε of γ over the
partition points in Pε is a Jordan curve. Let xPε , yPε be the first and second
components of γPε respectively. It follows from the classical Green’s theorem
for piecewise smooth Jordan curve that

ˆ 1

0

(f
(
γPε
s

)
dyPε
s − g

(
γPε
s

)
dxPε

s ) =

ˆ
Int(γPε )

(
∂f

∂x
+
∂g

∂y

)
dxdy.

For any q ∈ (p, 2), we know that∣∣∣∣ˆ 1

0

(f
(
γPε
s

)
dyPε
s −

ˆ 1

0

f (γs) dys)

∣∣∣∣
=

∣∣∣∣ˆ 1

0

(
f
(
γPε
s

)
− f (γs)

)
dyPε
s +

ˆ 1

0

f (γs) d
(
yPε
s − ys

)∣∣∣∣
6

∣∣∣∣ˆ 1

0

(
f
(
γPε
s

)
− f (γs)

)
dyPε
s

∣∣∣∣+ ∣∣∣∣ˆ 1

0

f (γs) d
(
yPε
s − ys

)∣∣∣∣
62ζ

(
2

q

)(∥∥f (γPε
·
)
− f (γ·)

∥∥
q
‖γ‖q + ‖f (γ·)‖q

∥∥γPε
· − γ·

∥∥
q

)
,

where the final inequality follows from Theorem 3.1 and Lemma 3.1. Therefore,
by Lemma 3.1, ˆ 1

0

f
(
γPε
s

)
dyPε
s →

ˆ 1

0

f (γs) dys

as ε→ 0. Similarly,
ˆ 1

0

g
(
γPε
s

)
dyPε
s →

ˆ 1

0

g (γs) dys

as ε→ 0.
On the other hand, as γ has finite p variation, it has a 1

p -Hölder parametriza-
tion. Therefore, γ has Hausdorff dimension less than 2. In particular, this means
that γ([0, 1]) has zero Lebesgue measure. By applying the bounded convergence
theorem to the integrand (

∂f

∂x
+
∂g

∂y

)
1Int(γPε ),

we have ˆ
Int(γPε )

(
∂f

∂x
+
∂g

∂y

)
dxdy →

ˆ
Int(γ)

(
∂f

∂x
+
∂g

∂y

)
dxdy

as ε→ 0.
Now the proof is complete.
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Remark 3.1. For rectifiable paths, there is a version of Green’s theorem which
works for non-simple closed curves, involving the winding number of a path.
An interesting inequality in this respect is the Banchoff-Pohl inequality (see
[1]), which generalizes the isoperimetric inequality and asserts that the winding
number of a rectifiable curve is square-integrable. The reason for the “simple
closed” condition in our version of Green’s theorem is because in general the
winding number of a non-simple non-rectifiable curve is not integrable. The
fact that we can approximate the rough Jordan curves by piecewise linear inter-
polations which are still Jordan means that the winding number of each approx-
imation is an indicator function, which is bounded by the indicator function of
a neighborhood of Int(γ).

Remark 3.2. A direct consequence of Theorem 3.2 is Cauchy’s theorem for
Jordan curves with finite p-variation where 1 6 p < 2, according to the Cauchy-
Riemann equation for holomorphic functions.

3.2 Uniqueness of signature for Jordan curves with finite
p-variation (1 6 p < 2)

The sequence of iterated integrals (formally known as the signature) of paths
plays a key role in rough path theory. A central open problem in this area is to
determine a path from its iterated integrals. In the case of bounded variation
paths, Hambly and Lyons [8] proved that two paths of bounded variation can
have the same sequence of iterated integrals if and only if they can be obtained
from each other by a ”tree-like deformation”. In [2], it was proved that for planar
simple curves with finite p-variation, the sequence of iterated integrals of the
path determines the path up to reparametrization. In the context of stochastic
processes, it was proved in [9] that the sequence of iterated Stratonovich’s inte-
grals of Brownian motion determines the Brownian sample paths almost surely.
This result was extended to diffusion processes in [7].

Here we are going to prove the uniqueness of signature for planar Jordan
curves with finite p-variation, where 1 6 p < 2 is fixed throughout the rest of
this section.

We shall follow [10] and embed the sequence of iterated integrals of a path
into the tensor algebra, which gives us a very nice algebraic structure to work
with.

Assume that
(
Rd
)⊗n is the tensor produce space equipped with the Eu-

clidean norm by identifying it with Rdn . Let

T
(
Rd
)
= ⊕∞n=0

(
Rd
)⊗n

,

and let πn : T
(
Rd
)
→

(
Rd
)⊗n denote the projection map. Assume that

{e1, . . . , ed} is the standard basis of Rd, and {e∗1, . . . , e∗d} is the correspond-
ing dual basis of Rd∗. We embed T

((
Rd
)∗) into T

(
Rd
)∗ by extending the
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relation

e∗i1 ⊗ . . .⊗ e∗in (ej1 ⊗ . . .⊗ ejk) =

{
1 if n = k and i1 = j1, · · · , ik = jk,
0 otherwise,

linearly.

Definition 3.2. Let γ : [0, 1]→ Rd be a continuous path with finite p-variation,
then the formal series of tensors

S (γ)0,1 := 1 +

∞∑
i=1

ˆ
0<s1<...<si<1

dγs1 ⊗ . . .⊗ dγsi ,

defined in terms of Young’s integrals, is called the signature of γ over [0, 1].

We will briefly recall three important properties of signature.

Proposition 3.1. Let γ : [0, 1] → Rd be a continuous path with finite p-
variation. Then

1. ([11], p. 32) Let r : [0, 1] → [0, 1] be a continuous increasing function,
then

S (γ·)0,1 = S
(
γr(·)

)
0,1
.

2. ([11], p. 32) For all a ∈ Rd,

S (a+ γ·)0,1 = S (γ·)0,1 .

3. ([11], Corollary 2.11) Let γn be a sequence of paths with finite p-variation
and

‖γ − γn‖p → 0,

as n→∞, then for each k ∈ N,∣∣∣πk (S (γn)0,1

)
− πk (S (γ))

∣∣∣→ 0

as n→∞.

It turns out that some terms in the signature of a curve can be reduced to
a single line integral. This is the key idea to prove our uniqueness of signature
result.

Proposition 3.2. Let γ be a positively oriented Jordan curve with finite p-
variation. Let x·, y· be the first and second coordinate components of γ respec-
tively. Then for any k, n > 0

e
∗⊗(k+1)
1 ⊗ e

∗⊗(n+1)
2

(
S (γ)0,1

)
=

ˆ 1

0

ˆ sn+k+2

0

. . .

ˆ s2

0

dxs1 . . . dxsk+1
dysk+2

. . . dysn+k+2

=
1

k!n!

ˆ
Int(γ)

(x− x0)k (y1 − y)n dxdy.
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Proof. Note that
ˆ 1

0

ˆ sn+k+2

0

. . .

ˆ s2

0

dxPε
s1 . . . dx

Pε
sk+1

dyPε
sk+2

. . . dyPε
sn+k+2

=
1

(k + 1)!n!

ˆ 1

0

(
xPε
sk+1
− xPε

0

)k+1 (
yPε
1 − yPε

sk+1

)n
dyPε
sk+1

=
1

k!n!

ˆ
Int(γPε )

(x− x0)k (y1 − y)n dxdy.

By Lemma 3.1,
ˆ 1

0

ˆ sn+k+2

0

. . .

ˆ s2

0

dxPε
s1 . . . dx

Pε
sk+1

dyPε
sk+2

. . . dyPε
sn+k+2

→
ˆ 1

0

ˆ sn+k+2

0

. . .

ˆ s2

0

dxs1 . . . dxsk+1
dysk+2

. . . dysn+k+2

as ε→ 0.
As in the proof of Theorem 3.2,
ˆ
Int(γPε )

(x− x0)k (y1 − y)n dxdy →
ˆ
Int(γ)

(x− x0)k (y1 − y)n dxdy

as ε→ 0. Therefore, the result follows.

Remark 3.3. The case of k = 1, n = 0 for Proposition 3.2 has been proved
by Werness [13]. The main difficulty in extending to the general case involves
mainly the interchange of iterated integrals.

The following lemma is the main reason why our result only works for Jordan
curves.

Lemma 3.2. Let γ, γ̃ : [0, 1] → R2 be two positively oriented Jordan curves
such that γ ([0, 1]) = γ̃ ([0, 1]) and γ0 = γ̃0. There exists a continuous increasing
function r : [0, 1]→ [0, 1] such that γr(t) = γ̃. In other words, γ and γ̃ are equal
up to a reparametrization.

Proof. As γ is a Jordan curve,γ([0, 1])\γ0 and γ̃([0, 1])\γ̃0 are both homeomor-
phic to (0, 1). Therefore, the function r : (0, 1) → (0, 1) defined by r (t) =
γ−1 ◦ γ̃ (t) is a homeomorphism (0, 1) → (0, 1). Hence, it is strictly mono-
tone. This implies that limt→0 r (t) exists. Moreover, it is easy to see that
limt→0 r (t) ∈ {0, 1}.

If limt→0 r (t) = 0, then r can be extended to a continuous increasing function
on [0, 1]. As γr(t) = γ̃t, we know that γ and γ̃ equal up to reparametrization. If
limt→0 r (t) = 1, then limt→1 r (t) = 0 and r (t) is decreasing. This implies that
r (1− t) is an increasing continuous function. Therefore, γ and γ̃ have opposite
orientations, which is a contradiction.

Now we are in position to state and prove our result on the uniqueness of
signature for planar Jordan curves.
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Theorem 3.3. Let γ, γ̃ : [0, 1]→ R2 be a Jordan curves with finite p-variation.
Then S (γ)0,1 = S (γ̃)0,1 if and only if γ and γ̃ is a translation and a reparametriza-
tion of each other.

Proof. Sufficiency follows from Proposition 3.1. We now consider the necessity
part.

By applying a translation we may assume that γ1 = γ0 = γ̃0 = γ̃1 = 0.
As e∗1 ⊗ e∗2

(
S (γ)0,1

)
= e∗1 ⊗ e∗2

(
S (γ̃)0,1

)
, by Proposition 3.2 we have

(−1)ε(γ)
ˆ
Int(γ)

dxdy = (−1)ε(γ̃)
ˆ
Int(γ̃)

dxdy,

where ε (γ) is 0 if γ is positively oriented and 1 otherwise. As
´
Int(γ)

dxdy

and
´
Int(γ̃)

dxdy are both positive, we must have γ and γ̃ oriented in the same
direction.

Without loss of generality, assume both γ and γ̃ are positively oriented. By
Proposition 3.2 and that S (γ)0,1 = S (γ̃)0,1, we have

ˆ
Int(γ)

(x− x0)k (y1 − y)n dxdy =

ˆ
Int(γ̃)

(x− x̃0)k (ỹ1 − y)n dxdy

for all k, n ≥ 0. Therefore,ˆ
Int(γ)

ei(λ1x+λ2y)dxdy =

ˆ
Int(γ̃)

ei(λ1x+λ2y)dxdy

for all λ1, λ2 ∈ R.
Both 1Int(γ) and 1Int(γ̃) are in L1 and by the injectivity of the Fourier trans-

form on L1, we have
1Int(γ) (x, y) = 1Int(γ̃) (x, y)

for almost every (x, y) ∈ R2. In particular, this implies that both Int (γ) \Int (γ̃) ⊂
Int (γ) \Int (γ̃) and Int (γ̃) \Int (γ) ⊂ Int (γ) \Int (γ̃) are null sets in R2. How-
ever, since both Int (γ̃) \Int (γ) and Int (γ) \Int (γ̃) are open, they must be
empty. Therefore,

Int (γ̃) = Int (γ).

By the Jordan curve theorem, we have

R2\Int (γ̃) = R2\Int (γ̃) .

Therefore, Int (γ̃) = Int (γ) and so γ([0, 1]) = γ̃([0, 1]) and by Lemma 3.2, γ and
γ̃ are equal up to reparametrization.

Remark 3.4. The proof of Theorem 3.3 gives a very explicit way of computing
the moments of the finite measure 1Int(γ) (x, y) dxdy from the signature of γ.
However, due to possible difficulty of numerically inverting the Fourier trans-
form, this is still not an explicit reconstruction scheme for a Jordan curve from
its signature. In fact, an explicit reconstruction scheme in general remains a
significant open problem in rough path theory.
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