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Abstract. Let M be a compact Riemannian manifold with smooth boundary.
We obtain the exact long time asymptotic behaviour of the heat kernel on
abelian coverings ofM with mixed Dirichlet and Neumann boundary conditions.
As an application, we study the long time behaviour of winding numbers of
reflected Brownian motions in M . In particular, we prove a Gaussian type
central limit theorem showing that when rescaled appropriately, the fluctuation
of winding number is normally distributed with an explicit covariance matrix.

1. Introduction.
In the present paper, we investigate the following two questions in depth. Let M

be a compact Riemannian manifold with smooth boundary.
(1) What is the long time asymptotic behaviour of the heat kernel on abelian

covering spaces of M , under mixed Dirichlet and Neumann boundary condi-
tions?

(2) What is the long time behaviour of the winding of trajectories for a normally
reflected Brownian motion on M?

Our main results are Theorem 2.1 and Theorem 3.2, stated in Sections 2 and 3
respectively. In this section, we survey the literature and place our work in the
context of existing results.

1.1. Long Time Behaviour of Heat Kernels on Abelian Covers. The study
of heat kernels on manifolds is a fundamental topic in the interplay between analysis,
geometry and probability. Heat kernel estimates and the short time behaviour
of heat kernels have been extensively studied in literature and is relatively well
understood (see for instance [BGV92,Gri99] and the references therein). The exact
long time behaviour, on the other hand, is subtly related to global properties of the
manifold, and our understanding of it is far from being complete. There are several
scenarios in which the exact long time asymptotics can be determined precisely.
The simplest scenario is when the underlying manifold is compact, in which case the
long time asymptotics is governed by the bottom spectrum of the Laplace-Beltrami
operator. The problem becomes highly non-trivial for non-compact manifolds.
Li [Li86] determined the exact long time asymptotics on manifolds with nonnegative
Ricci curvature, under a polynomial volume growth assumption. Lott [Lot92] and
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Kotani-Sunada [KS00] determined the long time asymptotics on abelian covers of
closed manifolds. In a very recent paper, Ledrappier-Lim [LL15] established the
exact long time asymptotics of the heat kernel of the universal cover of a negatively
curved closed manifold, generalizing the situation for hyperbolic space with constant
curvature. We also mention that for non-compact Riemannian symmetric spaces,
Anker-Ji [AJ01] established matching upper and lower bounds on the long time
behaviour of the heat kernel.

Since the work by Lott [Lot92] and Kotani-Sunada [KS00] is closely related to
ours, we describe it briefly here. Let M be a closed Riemannian manifold (i.e. a
compact Riemannian manifold without boundary), and let M̂ be an abelian cover
(i.e. a covering space whose deck transformation group is finitely generated abelian)
of M . The main idea in [Lot92,KS00] is based on an integral representation of the
heat kernel Ĥ(t, x, y) over M̂ in terms of a compact family of heat kernels Hχ(t, x, y)
over certain twisted line bundles over M :

Ĥ(t, x, y) =
∫
G
Hχ(t, x, y) dχ,

where the integral is taken over certain compact Lie group G. SinceM is compact, Hχ

decays exponentially with rate λχ,0, the principal eigenvalue of the associated twisted
Laplacian ∆χ. Thus the long time behaviour of Ĥ can be studied from the behaviour
of this family of principal eigenvalues near its global minimum. Lott [Lot92] and
Kotani-Sunada [KS00] showed that the heat kernel decays polynomially fast with
rate tk/2, where k is the rank of the deck transformation group.

In the first part of the present paper, we study abelian covers of manifolds
with boundary, and impose (mixed) Dirichlet and Neumann boundary conditions.
Our main result in this part (Theorem 2.1 below) determines the exact long time
asymptotics of the heat kernel and the convergence is shown to be uniform. Our
technique is based on the strategy developed in [Lot92,KS00]. The main difficulty
arises when Dirichlet boundary condition is imposed. Unlike the case without
boundary, the principal eigenvalue of Laplacian on M in this case is strictly positive
and the heat kernel on the abelian cover is expected to decay exponentially fast.
One needs to develop finer spectral analysis for the aforementioned perturbation
analysis for principal eigenvalues of twisted Laplacians around its global minimum.

Under suitable transformation, the required eigenvalue minimization problem can
be described in the following self-contained manner without the need of introducing
any subtle geometric constructions. This is the key ingredient of our analysis and
has a strong PDE flavor. Let ω be a harmonic 1-form onM with Neumann boundary
condition, and consider the associated eigenvalue problem

−∆φω − 4πiω · ∇φω + 4π2|ω|2φω = µωφω ,

with mixed Dirichlet and Neumann boundary conditions. The key ingredient of the
proof of our main theorem in this part lies in showing that (i) the eigenvalue µω
above attains the global minimum if and only if the integral of ω on closed loops
is integer-valued, and (ii) the minimum is non-degenerate of second order. These
properties are formulated and proved in Lemmas 4.4 and 4.5 respectively. Given
these lemmas, we show that

Ĥ(t, x, y) ≈ C ′I(x, y)
tk/2

exp
(
−µ0t−

d′I(x, y)2

t

)
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as t → ∞ uniformly in x, y ∈ M̂ , where k is the rank of the deck transformation
group and C ′I , d′I are explicitly defined functions.

1.2. The Abelianized Winding of Brownian Motion on Manifolds. The
second part of our paper turns to the study of windings of Brownian trajectories on
manifolds. This is indeed the original motivation of the present work.

The long time asymptotics of Brownian winding numbers is a classical topic
which has been investigated in depth. Winding number of Brownian motion or
random walks has a natural physical motivation in relation to the study of polymer
entanglements. The well known fundamental result along this direction is due to
Spitzer [Spi58]. To be precise, if θ(t) denotes the total winding angle of a planar
Brownian motion around the origin up to time t, then Spitzer showed that

2θ(t)
log t

w−−−→
t→∞

ξ ,

where ξ is the standard Cauchy distribution.
If one looks at exterior disk instead of the punctured plane, then Rudnick

and Hu [RH87] (see also Rogers and Williams [RW00]) showed that the limiting
distribution is of hyperbolic type instead of Cauchy. In planar domains with multiple
holes, understanding the winding of Brownian trajectories is complicated by the
fact that it is inherently non-abelian if one wants to keep track of the order of
winding around different holes. Abelianized versions of Brownian winding numbers
have been studied in [PY86,PY89,GK94,TW95], and various generalizations in
the context of positive recurrent diffusions, Riemann surfaces, as well as in higher
dimensions have been studied in [GK94,LM84,Wat00]. Among most of these works,
the techniques developed have a strong flavor of using the conformal invariance of
planar Brownian motion and are specific to two dimensions.

In the second part of our paper, we study the abelianized winding of trajectories
of normally reflected Brownian motions on compact Riemannian manifolds with
boundary. A basic example in which the intuition is mostly clear is the winding
of reflected Brownian motion in a bounded planar domain with multiple holes.
Unlike the usual approaches based on conformal invariance, we take a more general
geometric point of view which works in arbitrary dimensions. To be precise, we look
at Brownian windings on manifolds by lifting the trajectories to a covering space, and
then using the long time asymptotics of the heat kernel established in Theorem 2.1
to study the long time behaviour of Brownian winding numbers. In particular, we
measure the abelianized winding of Brownian trajectories as a Zk-valued process,
denoted by ρ = (ρ1, · · · , ρk) (the j-th component counts the total winding around
the j-th "hole"), and we show (Theorem 3.2 below) that

ρ(t)
t

p−−−→
t→∞

0 and ρ(t)√
t

w−−−→
t→∞

N (0,Σ) ,

with some explicitly computable matrix Σ. Here N (0,Σ) denotes a normally
distributed random variable with mean 0 and covariance matrix Σ. As a result, one
can for instance, determine the long time asymptotics of the abelianized winding of
Brownian trajectories around a knot in R3 (see Remark 3.4 for a discussion).

Plan of this paper. In Section 2 we state our main result concerning the long
time asymptotics of the heat kernel on abelian covers of M (Theorem 2.1). In
Section 3 we state our main result concerning the long time behaviour of winding of
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reflected Brownian motion onM (Theorem 3.2). We prove these results in Sections 4
and 5 respectively.

2. Long Time Behaviour of the Heat Kernel on Abelian Covers.
Let M be a compact Riemannian manifold with smooth boundary, and M̂ be

a Riemannian cover of M with deck transformation group G and covering map π.
We assume throughout this paper that G is a finitely generated abelian group with
rank k > 1, and M ∼= M̂/G. Let GT = tor(G) ⊆ G denote the torsion subgroup of
G, and let GF

def= G/GT . The order of GT is denoted by |GT |.
Let ∆ and ∆̂ denote the Laplace-Beltrami operator on M and M̂ respectively.

Decompose ∂M , the boundary of M , into two pieces ∂NM and ∂DM , and let
H(t, p, q) be the heat kernel of ∆ on M with Dirichlet boundary conditions on
∂DM and Neumann boundary conditions on ∂NM . Let ∂DM̂ = π−1(∂DM) and
π−1(∂NM), and let Ĥ(t, x, y) be heat kernel of ∆̂ on M̂ with Dirichlet boundary
conditions on ∂DM̂ , and Neumann boundary conditions on ∂NM̂ .

Let λ0 > 0 be the principal eigenvalue of −∆ with the above boundary conditions.
Since M is compact, the long time asymptotic behaviour of H can be obtained
explicitly using standard spectral theory. The main result of this paper obtains the
asymptotic long time behaviour of the heat kernel Ĥ on the non-compact covering
space M̂ .
Theorem 2.1. There exist explicit functions CI , dI : M̂ × M̂ → [0,∞) (defined
in (2.7) and (2.9), below), such that

(2.1) lim
t→∞

(
tk/2eλ0tĤ(t, x, y)− CI(x, y)

|GT |
exp
(
−2π2d2

I(x, y)
t

))
= 0 ,

uniformly for x, y ∈ M̂ . In particular, for every x, y ∈ M̂ , we have

lim
t→∞

tk/2eλ0tĤ(t, x, y) = CI(x, y)
|GT |

.

The definition of the functions CI and dI above requires the construction of
an inner product structure on a certain space of harmonic 1-forms over M . More
precisely, let

H1 def= {ω ∈ T ∗M | dω = 0, d∗ω = 0, and ω · ν = 0 on ∂M} ,
be the space of harmonic 1-forms on M that are tangential on ∂M . Here ν denotes
the outward pointing unit normal on ∂M , and depending on the context x ·y denotes
the dual pairing between co-tangent and tangent vectors, or the inner product given
by the Riemannian metric. By the Hodge theorem we know that H1 is isomorphic
to the first de Rham co-homology group on M .

Now define H1
G ⊆ H1 by

(2.2) H1
G =

{
ω ∈ H1

∣∣∣ ∮
γ̂

π∗(ω) = 0 for all closed loops γ̂ ⊆ M̂
}
.

It is easy to see that H1
G is naturally isomorphic1 to Hom(G,R), and hence

dim(H1
G) = k. Define an inner-product on H1

G as follows. Let φ0 be the principal
eigenfunction of −∆ with boundary conditions φ0 = 0 on ∂DM and ν · ∇ϕ0 = 0

1The isomorphism between H1
G and Hom(G;R), the dual of the deck transformation group G,

can be described as follows. Given g ∈ G, pick a base point p0 ∈M , and a pre-image x0 ∈ π−1(p0).
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on ∂NM . Let λ0 be the associated principal eigenvalue, and normalize φ0 so that
φ0 > 0 in M and ‖φ0‖L2 = 1. Define the quadratic form I : H1

G → R by

(2.3) I(ω) = 8π2
∫
M

|ω|2φ2
0 + 8π

∫
M

φ0ω · ∇gω ,

where gω is a2 solution to the equation

(2.4) −∆gω − 4πω · ∇φ0 = λ0gω ,

with boundary conditions

(2.5) gω = 0 on ∂DM , and ν · ∇gω = 0 on ∂NM .

In the course of the proof of Theorem 2.1, we will see that I arises naturally as the
quadratic form induced by the Hessian of the principal eigenvalue of a family of
elliptic operators (see Lemma 4.5, below).

Using I, define an inner-product on H1
G by

〈ω, τ〉I
def= 1

4
(
I(ω + τ)− I(ω − τ)

)
, ω, τ ∈ H1

G .

We will show (Lemma 4.5, below) that the function I(ω) is well-defined, and that
〈·, ·〉I is a positive definite inner-product on H1

G.
Under Neumann boundary conditions (i.e. if ∂DM = ∅), λ0 = 0, φ0 is constant

and λ0 = 0. In this case, 〈·, ·〉I is simply the (normalized) L2 inner-product (see
also Remark 2.2, below). The complication of I arises when Dirichlet boundary
condition is presented.

Next, to define the distance function dI : M̂ × M̂ → R appearing in Theorem 2.1,
we take x, y ∈ M̂ and define ξx,y ∈ (H1

G)∗ def= Hom(H1
G;R) by

(2.6) ξx,y(ω) def=
∫ y

x

π∗(ω) ,

where the integral is taken over any any smooth path in M̂ joining x and y. By
definition of H1

G, the above integral is independent of the choice of path joining x
and y. We will show that the function dI : M̂ × M̂ → R is given by

(2.7) dI(x, y) def= ‖ξx,y‖I∗ = sup
ω∈H1

G,
‖ω‖I=1

ξx,y(ω) , for x, y ∈ M̂ .

Here ‖·‖I∗ denotes the norm on the dual space (H1
G)∗ obtained by dualising the

inner product 〈·, ·〉I .

Now define

ϕω(g) =
∫ g(x0)

x0

π∗(ω) ,

where the integral is done over any path connecting x0 and g(x0). By definition of H1
G, the

above integral is independent of the chosen path. Moreover, since π∗(ω) is the pull-back of ω
by the covering projection, it follows that ϕω(g) is independent of the choice of p0 or x0. Thus
ω 7→ ϕω gives a canonical homomorphism between H1

G and Hom(G,R). The fact that this is an
isomorphism follows from the transitivity of the action of G on fibers.

2 Note, since λ0 manifestly belongs to the spectrum of −∆, the function gω is not unique.
Moreover, one has to verify a solvability condition to ensure that solutions to equation (2.4) exist.
We do this in Lemma 4.5, which is proved in Section 4.4, below.
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Finally, to define CI , we let

(2.8) H1
Z

def=
{
ω ∈ H1

G

∣∣∣ ∮
γ

ω ∈ Z, for all closed loops γ ⊆M
}
.

Clearly H1
Z is isomorphic to Zk, and hence we can find ω1, . . . , ωk ∈ H1

Z which form
a basis of H1

Z. We will show that CI is given by

(2.9) CI(x, y) = (2π)k/2
∣∣∣det

((
〈ωi, ωj〉I

)
16i,j6k

)∣∣∣−1/2
φ0(π(x))φ0(π(y)) .

Notice that the value of CI(x, y) doe not depend on the choice of the basis
(ω1, . . . , ωk). Indeed, if (ω′1, . . . , ω′k) is another such basis of the Z-module H1

Z, since
the change-of-basis matrix belongs to GL(k,Z), it must have determinant ±1.

Although the construction of I, CI , dI above seems to quite technical, it will
be clear that they all arise naturally in the computation developed in the proof of
Theorem 2.1.

We conclude this section by making a few remarks on simple and illustrative
special cases.

Remark 2.2 (Neumann boundary condition). If Neumann boundary conditions are
imposed on all of ∂M (i.e. ∂DM = ∅), then the definitions of CI and dI simplify
considerably. First, as mentioned earlier, under Neumann boundary conditions we
have

λ0 = 0 , and φ0 ≡ vol(M)−1/2 ,

and hence

(2.10) 〈ω, τ〉I = 8π2

vol(M)

∫
M

ω · τ ,

is a multiple of the standard L2 inner-product. Above ω ·τ denotes the inner-product
on 1-forms inherited from the metric on M . In this case

dI(x, y) =
(vol(M)

8π2

)1/2
sup
ω∈H1

G

‖ω‖L2(M)=1

∫ y

x

π∗(ω) ,

and
CI(x, y) = (2π)k/2

vol(M)

∣∣∣det
((
〈ωi, ωj〉I

)
16i,j6k

)∣∣∣−1/2

is a constant independent of x, y ∈ M̂ .
Note that under Neumann boundary conditions the heat kernel Ĥ(t, x, y) on the

covering space M̂ decays like t−k/2 as t → ∞. In contrast, if Dirichlet boundary
conditions are imposed on part of the boundary (i.e. ∂DM 6= ∅), then we know
λ0 > 0 and φ0 is not constant. In this case, 〈·, ·〉I is not a constant multiple of the
standard L2 inner product, and Ĥ(t, x, y) decays with rate t−k/2e−λ0t.

Remark 2.3 (Comparison with the Heat Kernel Decay on M). Let H is the heat
kernel of ∆ on M . Since M is compact by assumption, the spectral decomposition
of −∆ shows that

H(t, p, q) ≈ e−λ0tφ0(p)φ0(q) , for p, q ∈M , as t→∞ .

Thus, using Theorem 2.1 we see

lim
t→∞

tk/2Ĥ(t, x, y)
H(t, π(x), π(y)) = (2π)k/2

|GT |

∣∣∣det
((
〈ωi, ωj〉I

)
16i,j6k

)∣∣∣−1/2
.
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Namely, the heat kernel Ĥ(t, x, y) decays faster than H(t, p, q) by exactly the
polynomial factor t−k/2.

Remark 2.4 (Computation of ωi in planar domains). Suppose for now that M is
a bounded planar domain with k holes excised, and rank(GF ) = k. In this case,
the basis {ω1, · · · , ωk} can be constructed directly by solving some boundary value
problems. Indeed, choose (pj , qj) inside the jth excised hole and define the harmonic
form τj by

(2.11) τj
def= 1

2π

( (p− pj) dq − (q − qj) dp
(p− pj)2 + (q − qj)2

)
.

Define φj : M → R to be the solution of the PDE{ −∆φj = 0 in M ,

∂νφj = τj · ν on ∂M .

Then ωj is given by
ωj = τj + dφj .

The situation is completely explicit in the case when M is a symmetric annulus (see
Remark 3.3).

3. The Abelianized Winding of Brownian Motion on Manifolds.
We now study the asymptotic behaviour of the (abelianized) winding of tra-

jectories of reflected Brownian motion on the manifold M using the heat kernel
asymptotics given by Theorem 2.1. Although we formulate our result in the geomet-
ric setting, the intuition is mostly clear when M is a bounded planar domain with
multiple punctured holes. Abelianized winding means we are counting the winding
number of the Brownian trajectory around each hole but do not keep track of the
order of winding around different holes.

The winding of trajectories can be naturally quantified by lifting them to the
universal cover. More precisely, let M̄ be the universal cover of M , and recall
that the fundamental group π1(M) acts on M̄ as deck transformations. Fix a
fundamental domain Ū ⊆ M̄ , and for each g ∈ π1(M) define Ūg to be the image of
Ū under the action of g. Also, define ḡ : M̄ → π1(M) by

ḡ(x) = g, if x ∈ Ug,

to be the map recording which fundamental domain the current position belongs to.
Now given a reflected Brownian motion W in M with normal reflection at the

boundary, let W̄ be the unique lift of W to M̄ starting in Ū . Define ρ̄(t) = ḡ(W̄t) ∈
π1(M). Note that ρ̄(t) measures the (non-abelian) winding of the trajectory of W
up to time t.

Our main result of Theorem 2.1 will enable us to study the asymptotic behaviour
of the projection of ρ̄ to the abelianized fundamental group π1(M)ab. We know that

G
def= π1(M)ab

/
tor(π1(M)ab)

is a finitely generated free abelian group, and we let k = rank(G). Let πG : π1(M)→
G be the projection of the fundamental group of M onto G. Fix a choice of loops
γ1, . . . , γk ∈ π1(M) so that πG(γ1), . . . , πG(γk) form a basis of G.



8 GENG AND IYER

Definition 3.1. The Zk-valued winding number of W , which is denoted as ρ(t), is
the Zk-valued coordinate process of πG(ρ̄(t)) with respect to the basis πG(γ1), . . . ,
πG(γk). Explicitly, ρ(t) = (ρ1(t), . . . , ρk(t)) where

πG(ρ̄(t)) =
k∑
i=1

ρi(t)πG(γi) .

Note that the Zk-valued winding number defined above depends on the choice of
basis γ1, . . . , γk. If M is a planar domain with k holes, we can choose γi to be a
loop that only winds around the ith hole once. In this case, ρi(t) is the number of
times the trajectory of W winds around the ith hole up to time t.

Our main result concerning the asymptotic long time behaviour of ρ can be stated
as follows.

Theorem 3.2. Let W be a normally reflected Brownian motion in M , and ρ be
its Zk valued winding number (as in Definition 3.1). Then, there exists a positive
definite, explicitly computable covariance matrix Σ (defined in (3.3), below) such
that

(3.1) ρ(t)
t

p−→ 0 and ρ(t)√
t

w−→ N (0,Σ) .

Here N (0,Σ) denotes a normally distributed random variable with mean 0 and
covariance matrix Σ.

We now define the covariance matrix Σ above. Given ω ∈ H1 define the map
ϕω ∈ Hom(π1(M),R) by

ϕω(γ) =
∫
γ

ω .

It is well known that the map ω 7→ ϕω provides an isomorphism between H1 and
Hom(π1(M),R). Hence there exists a unique dual basis {ω1, . . . , ωk} in H1 such
that

(3.2)
∫
γi

ωj = δi,j .

The covariance matrix Σ appearing in Theorem 3.2 is given

(3.3) Σi,j
def= 1

volM

∫
M

ωi · ωj .

The proof of Theorem 3.2 follows quite easily from our heat kernel result of
Theorem 2.1, which will be given in Section 5 below. We remark, modulo certain
amount of technicalities, that Theorem 3.2 can also be proved by using a probabilistic
method. We sketch the argument in Section 5.3. To our best knowledge, even in
the Euclidean setting, such a result and its proof are not readily available in the
literature.

A basic example of Theorem 3.2 is the case when M is a bounded planar domain
with multiple holes. In this case, in the limiting Gaussian distribution described in
the proposition, the forms ωi can be obtained quite explicitly following Remark 2.4.
The winding of Brownian motion in planar domains is a classical topic which has
been studied extensively as discussed in the introduction. In particular, Toby and
Werner [TW95] studied the long time asymptotics of the winding number of an
obliquely reflected Brownian motion in a bounded planar domain. Under normal



HEAT KERNELS AND BROWNIAN WINDING NUMBERS 9

reflection with windings around the punctured holes, their result becomes a law of
large numbers. In this case, our result of Theorem 3.2 is a refinement of Toby and
Werner’s result, since we are able to show that the long time average of the winding
number is 0 (see Proposition 5.3 below) and we prove a Gaussian type central limit
theorem for fluctuations around the mean. A more detailed discussion about the
relation with Toby and Werner’s work is given in Section 5.2 below.

Remark 3.3 (An explicit calculation in the annulus). When M ⊆ R2 is an annulus
the covariance matrix Σ can be computed explicitly. Explicitly, for 0 < r1 < r2 and
let

A
def=
{
p ∈ R2 ∣∣ r1 < |p| < r2

}
be the annulus with inner radius r1 and outer radius r2. In this case, k = 1 and
define ρ(t) is simply the integer-valued winding number of the reflected Brownian
motion in A with respect to the inner hole. Now k = 1 and the one form ω1 can be
obtained from Remark 2.2. Explicitly, we choose p1 = q1 = 0, and define τ1 by (2.11).
Now τ1 · ν = 0 on ∂M , forcing φ1 = 0 and hence ω1 = τ1. Thus Theorem 3.2 shows
that ρ(t)/

√
t→ N (0,Σ) weakly as t→∞. Moreover equation (3.3) and (2.10) show

that Σ is the 1× 1 matrix (σ2) where

(3.4) σ2 = 1
volA

∫
A

|ω1|2 = 1
2π2(r2

2 − r2
1) log

(r2

r1

)
.

We remark, however, that in this case a finer asymptotic result is available.
Namely, Wen [Wen17] shows that for large time

Var(ρ(t)) ≈ 1
4π2

(
ln2(r2

r1

)
− ln2(r1

r0

))
+ ln(r2/r1)

2π2(r2
2 − r2

1)

(
t− r2

2 − r2
0

2 + r2
1 ln
(r2

r0

))
where r0 = |W0| is the radial coordinate of the starting point. Note Theorem 2.1
only shows Var ρ(t)/t→ σ2 as t→∞. Wen’s result above goes further by providing
explicit limit for Var ρ(t)− σ2t as t→∞.

Remark 3.4 (Winding in Knot Compliments). Another interesting example is the
winding of 3D Brownian motion around knots. Recall that a knot K is an embedding
of S1 into R3. A basic topological invariant of a knot K is the fundamental
group π1(R3 − K) which is known as the knot group of K. The study of the
fundamental group π1(R3 − K) is important for the classification of knots and
has significant applications in mathematical physics. It is well known that the
abelianized fundamental group of R3 −K is always cyclic.

Let K be a knot in R3. Consider the domain M = Ω−NK , where N is a small
tubular neighborhood of K and Ω is a large bounded domain (a ball for instance)
containing NK . Let W (t) be a reflected Brownian motion in M , and define ρ(t) to
be the Z-valued winding number of W with respect to a fixed generator of π1(M)ab.
Now ρ(t) contains information about the entanglement of W (t) with the knot K.
Theorem 3.2 applies in this context, and shows that the long time behaviour of ρ is
Gaussian with mean 0 and covariance given by (3.3).

In some cases, the generator of π1(M)ab (which was used above in defining ρ) can
be written down explicitly. For instance, consider the (m,n)-torus knot, K = Km,n,
defined by S1 3 z 7→ (zm, zn) ∈ S1 × S1 where gcd(m,n) = 1. Then π1(M) is
isomorphic to the free group with two generators a and b, modulo the relation
am = bn. Here a represents a meridional circle inside the open solid torus and b
represents a longitudinal circle winding around the torus in the exterior. In this case,
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a generator of π1(M)ab is an′bm′ , where m′, n′ are integers such that mm′+nm′ = 1.
Now an

′
bm
′ represents a unit winding around the knot K, and ρ(t) describes the

total number of windings around K.

4. Proof of the Heat Kernel Asymptotics (Theorem 2.1).
The main tool used in the proof of Theorem 2.1 is an integral representation due

to Lott [Lot92] and Kotani-Sunada [KS00]. Note that heat kernel H on M can be
easily computed in terms of the heat kernel Ĥ on the cover M̂ using the identity

(4.1) H(t, p, q) =
∑

y∈π−1(q)

Ĥ(t, x, y) ,

for any x ∈ π−1(p). Seminal work of Lott [Lot92] and Kotani-Sunada [KS00]
address an inverse representation where Ĥ(t, x, y) is expressed as the integral
of a compact family of heat kernels on twisted bundles over M . Since M is
compact, the long time behaviour of these twisted heat kernels is governed by the
principal eigenvalue of the associated twisted Laplacians. Thus, using the integral
representation in [Lot92,KS00], the long time behaviour of Ĥ can be deduced by
studying the behaviour of the above principal eigenvalues near the maximum.

In the case when only Neumann boundary conditions are imposed on ∂M (i.e.
if ∂DM = ∅), the arguments in [Lot92,KS00] can be adapted easily. The main
difficulty arises when Dirichlet boundary condition is presented in which case the
principal eigenvalue is strictly positive. In this case, it requires finer spectral analysis
of twisted Laplacians than what is available in [Lot92,KS00].

Plan of this section. In Section 4.1 we describe the Lott / Kotani-Sunada
representation of the lifted heat kernels. In Section 4.2 we use this representation
to prove Theorem 2.1, modulo two key lemmas (Lemmas 4.4 and 4.5, below)
concerning the behaviour of the principal eigenvalue of twisted Laplacians. Finally
in Sections 4.3 and 4.4 we prove Lemmas 4.4 and 4.5 respectively.

4.1. A Integral Representation of the Lifted Heat Kernel. We begin by
describing the Lott [Lot92] / Kotani-Sunada [KS00] representation of the heat kernel
Ĥ. Let S1 = {z ∈ C | |z| = 1} be the unit circle and let

G def= Hom(G,S1) ,

be the space of one dimensional unitary representations of G. We know that G is
isomorphic to (S1)k, and hence is a compact Lie group with a unique normalized
Haar measure.

For each given χ ∈ G, define an equivalence relation on M̂ × C by

(x, ζ) ∼ (g(x), χ(g)ζ) for all g ∈ G ,

and let Eχ be the quotient space M̂ × C/∼. It follows that Eχ is a complex line
bundle onM . Eχ carries a natural connection defined by usual differentiation, which
together with the Levi-Civita connection on M , induce an associated Laplacian ∆χ

acting on the space C∞(Eχ) of sections of Eχ. If we impose Dirichlet boundary
conditions on ∂DM̂ and Neumann boundary conditions on ∂NM̂ respectively, then
−∆χ is a self-adjoint and positive-definite elliptic differential operator on L2(Eχ).
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The above constructions can be easily understood in the following way. First of
all, sections of Eχ can be identified with functions s : M̂ → C satisfying the twisting
condition
(4.2) s(g(x)) = χ(g)s(x) , ∀x ∈ M̂, g ∈ G .
Define the space

Dχ
def=
{
s ∈ C∞(M̂,C)

∣∣ s satisfies (4.2) , s = 0 on ∂DM̂ ,

and ν · ∇s = 0 on ∂NM̂
}
.

(4.3)

Then ∆χ is simply the restriction of the usual Laplacian ∆̂ on M̂ , and the L2

inner-product is given by

(4.4) 〈s1, s2〉L2
def=
∫
M

s1(xp) s2(xp) dp ,

for s1, s2 ∈ Dχ. Here for each p ∈ M , xp is a any point in the fiber π−1(p) such
that the function p 7→ xp is measurable. The twisting condition (4.2) ensures that
(4.4) is independent of the choice of xp.

Remark 4.1. When χ ≡ 1 is the trivial representation, Eχ is exactly the trivial line
bundle M × C, sections of Eχ are just functions on M , and ∆χ is the standard
Laplacian ∆ on M .

Let Hχ(t, x, y) be the heat kernel of −∆χ on Eχ (see [BGV92] for the general
construction of heat kernels on vector bundles). We can view Hχ as a function on
(0,∞)× M̂ × M̂ satisfying the twisting conditions

Hχ(t, g(x), y) = χ(g)Hχ(t, x, y) and Hχ(t, x, g(y)) = χ(g)Hχ(t, x, y) .

The Lott [Lot92] and Kotani-Sunada [KS00] representation expresses Ĥ in terms of
Hχ, and allows us to use properties of Hχ to study Ĥ.

Lemma 4.2 (Lott, Kotani-Sunada). The heat kernel Ĥ on M̂ satisfies the identity

(4.5) Ĥ(t, x, y) =
∫
G
Hχ(t, x, y) dχ ,

where the integral is performed with respect to the normalized Haar measure dχ
on G.

Proof. Since a full proof can be found in [Lot92, Proposition 38], and [KS00, Lemma
3.1], we only provide a short formal derivation. Suppose Ĥ is defined by (4.5).
Clearly Ĥ satisfies the heat equation with Dirichlet boundary conditions on ∂DM̂
and Neumann boundary conditions on ∂NM̂). For the initial condition, observe

Hχ(0, x, y) =
∑
g∈G

χ(g) δg(x)(y) ,

where δg(x) denotes the Dirac delta function at g(x). Integrating over G and using
the orthogonality property ∫

G
χ(g) dχ =

{
1 g = Id
0 g 6= Id ,

we see that Ĥ(0, x, y) = δx(y), and hence Ĥ must be the heat kernel on M̂ . �
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Remark 4.3. The integral representation (4.5) is similar to Fourier transform and
inversion. Indeed, for each χ ∈ G, it is easy to see that

Hχ(t, x, y) =
∑
g∈G

χ(g)Ĥ(t, x, g(y)) .

One can view G 3 χ 7→ Hχ as some sort of Fourier transform of Ĥ, and equation (4.5)
gives the Fourier inversion formula.

4.2. Proof of the Heat Kernel Asymptotics (Theorem 2.1). The represen-
tation (4.5) allows us to study the long time behaviour of Ĥ using the long time
behaviour of Hχ. Since M is compact, the long time behaviour of the heat kernels
Hχ can be studied by spectral theory. More precisely, the twisted Laplacian ∆χ

admits a sequence of eigenvalues
0 6 λχ,1 6 λχ,2 6 · · · 6 λχ,j 6 · · · ↑ ∞,

and a corresponding sequence of eigenfunctions {sχ,j | j > 0} ⊆ Dχ which forms an
orthonormal basis of L2(Eχ). According to perturbation theory, λχ,j is smooth in
χ, and up to a normalization sχ,j can be chosen to depend smoothly on χ. The
heat kernel Hχ(t, x, y) can now be written as

(4.6) Hχ(t, x, y) =
∞∑
j=0

e−λχ,jtsχ,j(x)sχ,j(y) .

Note that since M is compact, the above heat kernel expansion is uniform in
x, y ∈ M̂ provided the boundary is smooth. This can be seen from the fact that
the eigenfunction sχ,j is uniformly bounded by a polynomial power of eigenvalue
λχ,j , together with Weyl’s law on the growth the eigenvalues. Combining (4.6) with
Lemma 4.2, we have

(4.7) Ĥ(t, x, y) =
∞∑
j=0

∫
G
e−λχ,jtsχ,j(x)sχ,j(y)dχ .

From (4.7), it is natural to expect that the long time behaviour of Ĥ is controlled
by the initial term of the series expansion. In this respect, there are two key
ingredients for proving Theorem 2.1. The first key point, which is the content
of Lemma 4.4, will allow us to see that the integral

∫
G e
−λχ,0tsχ,0(x)sχ,0(y)dχ

concentrates at the trivial representation χ = 1 when t is large. Having such
concentration property, the second key point, which is the content of lemma 4.5,
will then allow us to determine the long time asymptotics of Ĥ precisely from the
rate at which λχ,0 → λ0 as χ→ 1 ∈ G. Note that when χ = 1, the corresponding
eigenvalue λ1,0 is exactly λ0, the principal eigenvalue of −∆ on M .

Lemma 4.4 (Minimizing the principal eigenvalue). The function χ 7→ λχ,0 attains
a unique global minimum on G at the trivial representation χ = 1.

We prove Lemma 4.4 in Section 4.3 below. Note that when χ = 1, ∆χ is
simply the standard Laplacian ∆ acting on functions on M . If Neumann boundary
conditions are imposed on all of ∂M (i.e. when ∂DM = ∅), λ1,0 = 0. In this case,
the proof of Lemma 4.4 can be adapted from the arguments in [Sun89] (see also a
direct proof in Section 4.3 in the Neumann boundary case). If, however, Dirichlet
boundary conditions are imposed on a portion of ∂M (i.e. ∂DM 6= ∅), then λ1,0 > 0
and the proof of Lemma 4.4 requires some work.
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In view of (4.7) and Lemma 4.4, to determine the long time behaviour of Ĥ we
also need to understand the rate at which λχ,0 approaches the global minimum as
χ→ 1. When G is torsion free, the problem can be reduced to the linear space H1

G.
To be precise, H1

G can be identified as the Lie algebra of G in which the exponential
map is given by

(4.8) H1
G 3 ω 7→ χω(g) = exp

(
2πi

∫ g(x0)

x0

π∗(ω) ∈ G
)
,

where x0 is some base point and the integral is taken over any smooth path in M̂
joining x0 and g(x0).

Now the rate at which λχ,0 → λ0 as χ→ 1 ∈ G can be obtained from the rate at
which λχω,0 → λ0 as ω → 0 ∈ H1

G. In fact, we claim that the quadratic form induced
by the Hessian of the map ω 7→ λχω,0 at ω = 0 is precisely I(ω) defined by (2.3),
and this determines the rate at which λχω,0 approaches the global minimum λ0.

Lemma 4.5 (Positivity of the Hessian). For any ε > 0, there exists δ > 0 such
that if 0 < |ω| < δ we have

(4.9)
∣∣∣λχω,0 − λ0 −

I(ω)
2

∣∣∣ < ε‖ω‖2L2(M) ,

where I(ω) is defined in (2.3). Moreover, the map ω 7→ I(ω) is a well defined
quadratic form, and induces a positive definite inner product on H1

G.

We point out that the positivity of the quadratic form I(ω) is crucial. As
mentioned earlier (Remark 2.2), if only Neumann boundary condition is imposed on
∂M , I(ω) is simply a multiple of the standard L2 inner product on 1-forms over M ,
and the positivity is straight forward. The main difficulty again lies in the case of
Dirichlet boundary condition. We prove Lemma 4.5 in Section 4.4.

Assuming Lemma 4.4 and Lemma 4.5 for the moment, we can now prove The-
orem 2.1. We first consider the case when G is torsion free, and will later show
how this implies the general case. The main technical care is given to proving the
uniform convergence.

Proof of Theorem 2.1 when G is torsion free. Note first that Lemma 4.4 allows us
to localize the integral in (4.7) to an arbitrarily small neighborhood of the trivial
representation 1. More precisely, we claim that for any open neighborhood R of
1 ∈ G, there exist constants C1 > 0, such that

(4.10) sup
x,y∈M̂

∣∣∣eλ0tĤ(x, y, t)−
∫
R

exp
(
−(λχ,0 − λ0)t

)
sχ,0(x)sχ,0(y) dχ

∣∣∣ 6 e−C1t.

This in particular implies that the long time behaviour of Ĥ(t, x, y) is determined
by the long time behaviour of the integral representation around an arbitrarily small
neighborhood of 1 ∈ G.

To establish (4.10), recall that Rayleigh’s principle and the strong maximum
principle guarantee that λ1,0 is simple. Standard perturbation theory (c.f. [RS78],
Theorem XII.13) guarantees that when χ is sufficiently close to 1, the eigenvalue
λχ,0 is also simple (i.e. λχ,0 < λχ,1). Now, by Lemma 4.4, we observe

λ′
def= min

{
inf{λχ,1 | χ ∈ G} , inf{λχ,0 | χ ∈ G −R}

}
> λ0.

Hence by choosing C1 ∈ (0, λ′ − λ0), we have
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sup
x,y∈M̂

(∣∣∣ ∞∑
j=1

∫
G
e−(λχ,j−λ0)tsχ,j(x)sχ,j(y) dχ

∣∣∣
+
∣∣∣∫
G−R

e−(λχ,0−λ0)tsχ,0(x)sχ,0(y)dχ
∣∣∣) 6 e−C1t

for all t sufficiently large. This immediately implies (4.10).
For any small neighborhood R of 1 as before, our next task is to convert the

integral over R in (4.10) to an integral over a neighborhood of 0 in H1
G (the Lie

algebra of G) using the exponential map (4.8). To do this, recall {ω1, . . . , ωk} was
chosen to be a basis of H1

Z ⊆ H1
G. Identifying H1

G with Rk using this basis, we let
dω denote the pullback of the Lebesgue measure on Rk to H1

G. Equivalently, dω is
the Haar measure on H1

G normalized so that the parallelogram with sides ω1, . . . ,
ωk has measure 1. Clearly

(4.11)
∫
R

exp
(
−(λχ,0 − λ0)t

)
sχ,0(x)sχ,0(y) dχ

=
∫
T

exp
(
−(µω − λ0)t

)
sχω,0(x)sχω,0(y) dω ,

where µω
def= λχω,0 and T is the inverse image of R under the map ω 7→ χω.

Recall that the eigenfunctions sχω,0 appearing above are sections of the twisted
bundle Eχω . They can be converted to functions on M using some canonical section
σω. Explicitly, let x0 ∈ M̂ be a fixed base point. For given ω ∈ H1

G, define
σω : M̂ → C by

(4.12) σω(x) def= exp
(

2πi
∫ x

x0

π∗(ω)
)
,

where π∗(ω) is the pullback of ω to M̂ via the covering projection π, and the integral
is taken along any smooth path in M̂ joining x0 and x. Observe that for any g ∈ G,
we have

(4.13) σω(g(x)) = σω(x) exp
(

2πi
∫ g(x)

x

π∗(ω)
)

= χω(g)σω(x) ,

where χω ∈ G is defined in equation (4.8). Thus σω satisfies the twisting condi-
tion (4.2) and hence can be viewed as a section of Eχω . Now define

φω
def= σω sχω,0.

Then φω(g(x)) = φω(x) for all g ∈ G, and thus φω can be viewed as a smooth
function on M .

We can now rewrite (4.11) as

(4.14)
∫
R

exp
(
−(λχ,0 − λ0)t

)
sχ,0(x)sχ,0(y) dχ

=
∫
T

exp
(
−(µω − µ0)t− 2πiξx,y(ω)

)
φω(x)φω(y) dω .

where ξx,y(ω) is defined in (2.6). Thus, using (4.10), we have

(4.15) sup
x,y∈M̂

∣∣∣eλ0tĤ(x, y, t)− I1
∣∣∣ 6 e−C1t , for t sufficiently large .
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Here
I1

def=
∫
T

exp
(
−(µω − µ0)t− 2πiξx,y(ω)

)
φω(x)φω(y) dω ,

and C1 is the constant appearing in (4.10), and depends on the neighborhood R.
By making the neighborhood R (and hence also T ) small, we can ensure that φω

close to φ0. Moreover, when ω is close to 0, Lemma 4.5 implies µω − µ0 ≈ I(ω)/2.
We claim that for any η > 0, the neighborhood R 3 1 can be chosen such that

(4.16) lim sup
t→∞

sup
x,y∈M̂

tk/2(I1 − I2) < η ,

where
I2

def=
∫
H1
G

exp
(
−1

2I(ω)t− 2πiξx,y(ω)
)
φ0(x)φ0(y) dω .

To avoid breaking continuity, we momentarily postpone the proof of (4.16). Now
we see that (4.15) and (4.16) combined imply

(4.17) lim
t→∞

(
tk/2eλ0tĤ(t, x, y)− tk/2I2

)
= 0

Therefore, to complete the proof, we only need to evaluate I2 and express it in the
form in (2.1).

To do this, write ω =
∑
cnωn ∈ H1

G and

I(ω) =
k∑

m,n=1
am,ncmcn ,

where am,n
def= 〈ωm, ωn〉I . Let A be the matrix (am,n), and a−1

m,n be the (m,n) entry
of the matrix A−1. Then

I2 = φ0(x)φ0(y)·∫
c∈Rk

exp
(
−

k∑
m,n=1

am,ncmcnt− 2πi
k∑

m=1
cmξx,y(ωm)

)
dc1 · · · dck

= φ0(x)φ0(y) (2π)k/2

tk/2 det(am,n)1/2 exp
(
−2π2

t

k∑
m,n=1

a−1
m,nξx,y(ωm)ξx,y(ωn)

)
= φ0(x)φ0(y) (2π)k/2

tk/2 det(am,n)1/2 exp
(
−2π2

t
‖ξx,y‖2I∗

)
,

where the second equality follows from the formula for the Fourier transform of
Gaussian distribution. Note that φ0 is real, and therefore

I2 = t−k/2CI(x, y) exp
(
−2π2d2

I(x, y)
t

)
,

where CI is defined by (2.9). Combined with (4.17), this finishes the proof of
Theorem 2.1 when G is torsion free.

It remains to prove (4.16). Since ω 7→ φω is continuous, there exists a neighbor-
hood T 3 0 such that

(4.18) sup
x∈M̂

∣∣φω(x)− φ0(x)
∣∣ < η for all ω ∈ T .
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Now we know that (4.15) holds with some constant C1 = C1(η) > 0 when t is large.
Write

tk/2(I1 − I2) = J1 + J2 + J3 ,

where

J1
def= tk/2

∫
T

(
e−(µω−µ0)t − e−I(ω)t/2

)
exp
(
−2πiξx,y(ω)

)
φω(x)φω(y) dω ,

J2
def= tk/2

∫
T

exp
(
−1

2I(ω)t− 2πiξx,y(ω)
)(
φω(x)φω(y)− φ0(x)φ0(y)

)
dω ,

and
J3

def= tk/2
∫
H1
G
−T

exp
(
−1

2I(ω)t− 2πiξx,y(ω)
)
φ0(x)φ0(y) dω .

First, by Lemma 4.5, I(ω) is a positive definite quadratic form, and hence the
Gaussian tail estimate shows there exists C2 = C2(η) > 0, such that

|J3| 6 e−C2t

uniformly in x, y ∈ M̂ , when t is sufficiently large.
Next, by (4.18) and the positivity of the quadratic form I(ω), we have

|J2| 6 C3ηt
k/2
∫
T

e−I(ω)t/2 dω = C3η

∫
√
t·T

e−I(v)/2 dv 6 C4η ,

uniformly in x, y ∈ M̂ .
Finally, to estimate J1, first choose K ⊆ H1

G compact such that∫
H1
G
−K

exp
(
−1

4I(v)
)
dv < η .

By using the same change of variables v =
√
tω, we write

J1 = J ′1 + J ′′1 ,

where

J ′1
def=
∫
K

(
exp
(
−
(
µv/t1/2 − µ0

)
t
)
− exp

(
−1

2I(v)
))

· exp
(
−2πi√

t
ξx,y(v)

)
φv/t1/2(x)φv/t1/2(y) dv

and

J ′′1
def=
∫
√
t·T−K

(
exp
(
−
(
µv/t1/2 − µ0

)
t
)
− exp

(
−1

2I(v)
))

· exp
(
−2πi√

t
ξx,y(v)

)
φv/t1/2(x)φv/t1/2(y) dv

respectively. By Lemma 4.5, we know that

lim
t→∞

(
µv/t1/2 − µ0

)
t = 1

2I(v) ,

for every v ∈ H1
G. Therefore, by the dominated convergence theorem, we have

lim
t→∞

sup
x,y∈M̂

|J ′1| = 0 .
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To estimate J ′′1 , choose ε > 0 such that
1
4I(ω) > ε‖ω‖2L2(M) , for all ω ∈ H1

G .

For this ε, Lemma 4.5 allows us to further assume that T is small enough so that

ω ∈ T =⇒ µω − µ0 >
1
2I(ω)− ε‖ω‖2L2(M) >

1
4I(ω).

In particular, we have

v ∈
√
t · T =⇒

(
µv/t1/2 − µ0

)
t >

1
4I(v).

It follows that

J ′′1 6 C5

∫
√
t·T−K

(
exp
(
−
(
µv/t1/2 − µ0

)
t
)

+ exp
(
−1

2I(v)
))

dv

6 2C5

∫
√
t·T−K

exp
(
−1

4I(v)
)
dv

6 2C5

∫
H1
G
−K

exp
(
−1

4I(v)
)
dv

6 2C5η ,

uniformly in x, y ∈ M̂ .
Combining the previous estimates, we conclude

lim
t→∞

sup
x,y∈M̂

(
tk/2(I1 − I2)

)
6 (C4 + 2C5)η ,

and η with η/(C4 + 2C5) yields (4.16) as claimed. �

When G is has a torsion subgroup, we prove Theorem 2.1 by factoring through
an intermediate finite cover.

Proof of Theorem 2.1 when G has a torsion subgroup. Since G can be (non-canoni-
cally) expressed as a direct sum GT ⊕GF , we define M1 = M̂/GF . This leads to
the covering factorization

(4.19)
M̂ M1

def= M̂/GF

M ,

πF

π
πT

where πT and πF have deck transformation groups GT and GF respectively, and
M1 is compact.

Recall that λ0 is the principal eigenvalue of −∆ onM , and φ0 is the corresponding
L2 normalized eigenfunction. Let Λ0 be the principal eigenvalue of −∆1 on M1, and
Φ0) be the corresponding L2 normalized eigenfunction. (Here ∆1 is the Laplacian
on M1.)

Notice that π∗Tφ0, the pull back of φ0 to M1, is an eigenfunction of −∆1 and
‖π∗Tφ0‖L2(M) = |GT |1/2. Thus

(4.20) Λ0 = λ0 and Φ0 = π∗Tφ0

|GT |1/2
.
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Let I1(ω1) be the analogue of I (defined in equation (2.3)) for the manifold M1.
Explicitly,

I1(ω1) = 8π2
∫
M1

|ω1|2Φ2
0 + 8π

∫
M1

Φ0 ω1 · ∇g1 ,

where g1 is a solution of

−∆g1 − 4πω1 · ∇Φ0 = Λ0g1 ,

with Dirichlet boundary conditions on π−1
T (∂DM) and Neumann boundary con-

ditions on π−1
T (∂NM). Note that given ω1 ∈ H1

G(M1) we can find ω ∈ H1
G(M)

such that π∗T (ω) = ω1. Indeed, since dim(H1
G(M)) = dim(H1

G(M1)) = k and
π∗T : H1

G(M)→ H1
G(M1) is injective linear map, it must be an isomorphism.

Now using (4.20), we observe that up to an addition of a scalar multiple of Φ0,
we have

g1 = π∗T g

|GT |1/2
,

where g = gω is defined in (2.4). Therefore,

I1(ω1) = 8π2|GT |
∫
M

|ω|2 φ2
0

|GT |
+ 8π|GT |

∫
M

φ0

|GT |1/2
ω · ∇

( g

|GT |1/2
)

= 8π2
∫
M

|ω|2φ2
0 + 8π

∫
M

φ0 ω · ∇g = I(ω) .(4.21)

Since the deck transformation group of M̂ as a cover of M1 is torsion free, we
can apply Theorem 2.1 to M1. Thus, we have

(4.22) lim
t→∞

(
tk/2eΛ0tĤ(t, x, y)− CI1(x, y) exp

(
−

2π2d2
I1

(x, y)
t

))
uniformly on M̂ . Now using (4.20) and (4.21), we see that

dI1 = dI , CI1(x, y) = 1
|GT |

CI(x, y) ,

and hence the proof is complete. �

The rest of this section is devoted to the proofs of Lemma 4.4 and Lemma 4.5.

4.3. Minimizing the Principal Eigenvalue (Proof of Lemma 4.4). Our aim
in this subsection is to prove Lemma 4.4, which asserts that the function χ 7→ λχ,0
attains a unique global minimum at χ = 1. The Neumann boundary case is
conceptually simpler and we first provide an independent proof for this case. The
full proof of Lemma 4.4 under mixed Dirichlet and Neumann boundary conditions
will be given later.

Proof of Lemma 4.4 under Neumann boundary conditions. In this case we know
that λ0 = λ1,0 = 0, and the corresponding eigenfunction s1,0 is constant. Thus to
prove the lemma it suffices to show that λχ,0 > 0 for all χ 6= 1.

To see this given χ ∈ G let s = sχ,0 ∈ Dχ be the principal eigenfunction of
−∆χ, and λ = λχ,0 be the principal eigenvalue. We claim that for any fundamental
domain U ⊆ M̂ , the eigenvalue λ satisfies

(4.23) λ

∫
U

|s|2 dx =
∫
U

|∇s|2 dx .
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Once (4.23) is established, one can quickly see that λ > 0 when χ 6= 1. Indeed,
if χ 6= 1, s(g(x)) = χ(g)s(x) forces the function s to be non-constant, and now
equation (4.23) forces λ > 0.

To prove (4.23) observe

(4.24) λ

∫
U

|s|2 = −
∫
U

s̄∆χs =
∫
U

|∇s|2 −
∫
∂U

s̄ ∂νs .

Here, ∂νs = ν · ∇s is the outward pointing normal derivative on ∂U . We will show
that the twisting condition (4.2) ensures that the boundary integral above vanishes.

Decompose ∂U as

∂U = Γ1 ∪ Γ2 , where Γ1
def= ∂U ∩ ∂M̂, and Γ2

def= ∂U − Γ1 .

Note Γ1 is the portion of ∂U contained in ∂M̂ , and Γ2 is the portion of ∂U that
is common to neighboring fundamental domains. Clearly, the Neumann boundary
condition (4.25) implies ∫

Γ1

s̄ ∂νs = 0 .

For the integral over Γ2, let (e1, . . . , ek) be a basis of G and note that Γ2 can be
expressed as the disjoint union

Γ2 =
k⋃
j=1

(
Γ+

2,j ∪ Γ−2,j
)
,

where the Γ±2,j are chosen so that Γ+
2,j = ej(Γ−2,j). Using the twisting condition (4.2)

and the fact that the action of ej reverses the direction of the unit normal on Γ−2,j ,
we see ∫

Γ+
2,j

s(x) ∂νs(x) dx = −
∫

Γ−2,j
s
(
ej(y)

)
∂νs
(
ej(y)

)
dy

= −
∫

Γ−2,j
χ(ej)χ(ej) s(y)

(
∂νs(y)

)
dy

= −
∫

Γ−2,j
s(y) ∂νs(y) dy ,

Consequently, ∫
Γ2

s ∂νs =
k∑
j=1

(∫
Γ+

2,j

+
∫

Γ−2,j

)
s ∂νs = 0 .

and hence the boundary integral in (4.24) vanishes. Thus (4.23) holds, and the
proof is complete. �

In the general case when ∂DM 6= ∅, λχ,0 > 0 for every χ ∈ G, and all eigenfunc-
tions are non-constant. This causes the previous argument to break down and the
proof involves a different idea. Before beginning the proof, we first make use of a
canonical section to transfer the problem to the linear space H1

G.
Let Ω be the space of C-valued smooth functions f : M → C such that f = 0 on

∂DM and 〈∇f, ν〉 = 0 on ∂NM . Let f̂ = f ◦ π : M̂ → C. Now given ω ∈ H1
G, let

σω (defined in (4.13)) be the canonical section and χω ∈ G be the exponential as
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defined in (4.8). Notice that the function σω f̂ ∈ Dχω is a section on Eχω . Clearly
σω f̂ = 0 on ∂DM̂ . Moreover, since ω · ν = 0 on ∂M we have
(4.25) ν · ∇σω = 0 on ∂M̂ .

and hence ν · ∇(σω f̂) = 0 on ∂NM̂ . Thus σω f̂ ∈ Dχω , where Dχω is defined in
equation (4.3), and the map f 7→ f̂σω defines a unitary isomorphism between
Ω ⊆ L2(M) and Dχω ⊆ L2(Eχω ) respecting the imposed boundary conditions.

Now, since ω and ω̂ def= ω ◦ π are both harmonic, we compute
∆χω (f̂σω) = ((Hωf) ◦ π)σω ,

where Hω is the self-adjoint operator on Ω ⊆ L2(M) defined by

(4.26) Hωf
def= ∆f + 4πi ω · ∇f − 4π2|ω|2f .

Here we used the Riemannian metric to identify the 1-form ω with a vector field.
The above shows that ∆χω is unitarily equivalent to Hω. In particular, eigenvalues

of −Hω, denoted by µω,j are exactly λχω,j , the eigenvalues of −∆χω . Moreover, the
corresponding eigenfunctions, denoted by φω,j , are given by

(4.27) φω,j = sχω,j
σω

, j > 0 .

Note that φω,j is a well-defined function on M that satisfies Dirichlet boundary
conditions on ∂DM and Neumann boundary conditions on ∂NM .

We will now prove the general case of Lemma 4.4 by minimizing eigenvalues of
the operator −Hω.

Proof of Lemma 4.4. Let ω ∈ H1
G and let χω = exp(ω) ∈ G be the corresponding

representation defined by (4.8). Let µω = µω,0 = λχω,0 and φω = φω,0 where φω,0 is
the principal eigenfunction of −Hω as defined in (4.27) above. Using (4.26) we see

−∆φω − 4πiω · ∇φω + 4π2|ω|2φω = µωφω ,(4.28)
−∆φ0 = µ0φ0 ,(4.29)

with Dirichlet boundary conditions on ∂DM̂ and Neumann boundary conditions on
∂NM̂ . Here µ0 and φ0 denote the principal eigenvalue and eigenfunction respectively
when ω ≡ 0. Note that when ω ∈ H1

Z, the corresponding representation χω is the
trivial representation 1. We will show that µω above achieves a global minimum
precisely when ω ∈ H1

Z and χω = 1.
Now let ε > 0 and write

φω = (φ0 + ε)f where f def= φω
φ0 + ε

.

Multiplying both sides of (4.28) by φω = (φ0 + ε)f and integrating over M gives

−
∫
M

(∆φω)(φ0 + ε)f =
∫
M

∇φω ·
(
(φ0 + ε)∇f + f∇φ0

)
+
∫
∂M

B1

=
∫
M

(φ0 + ε)∇φω · ∇f

−
∫
M

φω
(
∇f · ∇φ0 + f∆φ0

)
+
∫
∂M

B2

=
∫
M

(
(φ0 + ε)∇φω − φω∇φ0

)
· ∇f
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+ µ0

∫
M

fφ0φω +
∫
∂M

B2 ,

where Bi : ∂M → C are boundary functions that will be combined and written
explicitly below (equation (4.31)). (We clarify that even though the functions above
are C-valued, the notation ∇φω ·∇f denotes

∑
i ∂iφω∂if , and not the complex inner

product.)
Similarly, using the fact that ω is harmonic, we have

− 4πi
∫
M

(φ0 + ε)fω · ∇φω

= −2πi
∫
M

(φ0 + ε)f∇φω · ω

+ 2πi
∫
M

φω
(
(φ0 + ε)∇f + f∇φ0

)
· ω +

∫
∂M

B3

= −2πi
∫
M

(
(φ0 + ε)∇φω − φω∇φ0

)
· (fω)

+ 2πi
∫
M

(φ0 + ε)φω∇f · ω +
∫
∂M

B3 .

Combining the above, we have

(4.30) µω − µ0

∫
M

fφ0φω =
∫
M

(
(φ0 + ε)∇φω − φω∇φ0

)
·
(
∇f − 2πifω

)
+
∫
M

(φ0 + ε)φω
(
4π2|ω|2f + 2πi∇f · ω

)
+
∫
∂M

B0 ,

where

(4.31) B0 = −φω∂νφω + φωf∂νφ0 − 2πi(φ0 + ε)φωfω · ν .

The boundary conditions imposed ensure that B0 = 0 on both ∂DM and ∂NM .
Since f = φω/(φ0 + ε), we have

∇f = (φ0 + ε)∇φω − φω∇φ0

(φ0 + ε)2 .

Substituting this into the right hand side of (4.30), we obtain a perfect square:

(4.32) µω − µ0

∫
M

fφ0φω =
∫
M

∣∣∣2πφωω − i((φ0 + ε)∇φω − φω∇φ0)
φ0 + ε

∣∣∣2 .
In particular,

µω − µ0

∫
M

fφ0φω = µω − µ0

∫
M

φ0

φ0 + ε
|φω|2 > 0.

Sending ε→ 0, we obtain µω > µ0, and so the function G 3 χ 7→ λχ,0 attains global
minimum at χ = 1.

To see that χ = 1 is the unique global minimum point, suppose that λχ = λ0
for some χ ∈ G. Writing χ = χω for some ω ∈ H1

G, this means µω = µ0. Fatou’s
lemma and (4.32) imply∫

M

∣∣∣2πφωω − i
(
φ0∇φω − φω∇φ0

)
φ0

∣∣∣2
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6 lim inf
ε→0

∫
M

∣∣∣2πφωω − i
(
(φ0 + ε)∇φω − φω∇φ0

)
φ0 + ε

∣∣∣2
= µω − µ0 = 0 ,

by assumption. Hence

(4.33) 2πφωω −
i(φ0∇φω − φω∇φ0)

φ0
= 0 in M .

Since φω = sχ,0/σω, we compute

∇φω = σω∇sχ,0 − 2πiσωsχ,0ω
σ2
ω

.

Substituting this into (4.33), we see
φ0∇sχ,0 = sχ,0∇φ0,

which implies that
∇
(sχ,0
φ0

)
= 0.

Therefore, sχ,0 = cφ0 for some non-zero constant c. However, the twisting condi-
tions (4.2) for φ0 and sχ,0 require

φ0(g(x)) = φ0(x) and sχ,0(g(x)) = χ(g)sχ,0(x) ,
for every g ∈ G. This is only possible if χ(g) = 1 for all g ∈ G, showing χ is the
trivial representation 1. �

4.4. Positivity of the Hessian (Proof of Lemma 4.5). In this subsection we
prove Lemma 4.5. The main difficulty is proving positivity, which we postpone to
the end.

Proof of Lemma 4.5. Given ω ∈ H1
G, define

ϕt = φtω and ht = µtω ,

where φtω = φtω,0 is the principal eigenfunction of −Htω (equation (4.27)) and µtω
is the corresponding principal eigenvalue. We claim that
(4.34) h′0 = 0 , h′′0 = I(ω) and Re(ϕ′0) = 0 ,
where h′, ϕ′ denote the derivatives of h and ϕ respectively with respect to t. This
will immediately imply that at ω = 0 the quadratic form induced by the Hessian of
the map ω 7→ µω is precisely I(ω), hence proving (4.9) in the lemma.

To establish (4.34), we first note that (4.28) implies

(4.35) −∆ϕt − 4πitω · ∇ϕt + 4π2t2|ω|2ϕt = htϕt .

Conjugating both sides of (4.35) gives

(4.36) −∆ϕt − 4πi(−t)ω · ∇ϕt + 4π2(−t)2|ω|2ϕt = htϕt .

In other words, ϕt is an eigenfunction of −H−tω with eigenvalue ht. Since ht = µtω is
the principal eigenvalue, this implies h−t 6 ht. By symmetry, we see that h−t = ht,
and hence h′0 = 0.

To see that ϕ′0 is purely imaginary, recall ht is a simple eigenvalue of −Htω when
t is small. Thus
(4.37) ϕt = ζtϕ−t ,
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for some S1 valued function ζt, defined for small t. Changing t to −t, we get
ϕ−t = ζ−tϕt = ζ−tζtϕ−t .

Therefore, ζ−tζt = 1, which implies that ζ−t = ζt. In particular, ζ ′0 = 0. Differenti-
ating (4.37) and using the fact that ζ0 = 1, we get

ϕ′0 = −ϕ′0 ,
showing that ϕ′0 is purely imaginary as claimed.

To compute h′′0 , we differentiate (4.35) twice with respect to t. At t = 0 this gives
(4.38) −∆ϕ′0 − 4πiω · ∇ϕ0 = λ0ϕ

′
0,

and
(4.39) −∆ϕ′′0 − 8πiω · ∇ϕ′0 + 8π2|ω|2φ0 = h′′0φ0 + λ0ϕ

′′
0 ,

since ϕ0 = φ0. Multiplying both sides of (4.39) by φ0 and integrating over M gives

(4.40) h′′0 =
∫
M

(
8π2|ω|2φ2

0 − 8πiφ0ω · ∇ϕ′0
)
.

Recalling that ϕ′0 is purely imaginary, we let gω be the real valued function
defined by gω = −iϕ′0. Now equation (4.38) shows that gω satisfies (2.4). Moreover
since ϕ0 = 0 on ∂DM and ν ·∇ϕ0 = 0 on ∂NM , the function gω satisfies the boundary
conditions (2.5). Therefore, (4.40) reduces to (2.3), showing that h′′0 = I(ω) as
claimed.

Finally, we show that ω 7→ I(ω) defined by (2.3) is a well defined positive definite
quadratic form on H1

G. To see that I is well defined, we first note that in order
for (2.4) to have a solution, we need to verify the solvability condition∫

M

φ0
(
4πω · ∇φ0

)
= 0 .

This is easily verified as

(4.41)
∫
M

φ0ω · ∇φ0 = 1
2

∫
M

ω · ∇φ2
0 = 0 .

Hence gω is uniquely defined up to the addition of a scalar multiple of φ0 (the kernel
of ∆ + λ0). Now, using (4.41) again, we see that replacing gω with gω + αφ0 does
not change the value of I(ω). Thus, I(ω) is a well defined function. The fact that
I is a quadratic form (2.3) and the fact that

gτ+ω = gτ + gω (mod φ0) .
It remains to show that I is positive definite. Note that, in view of Lemma 4.4,

we already know that I induces a positive semi-definite quadratic form on H1
G.

For the convenience of notation, let g = gω = −iϕ′0 as above. As before we write

g = (φ0 + ε)fε , where fε
def= g

φ0 + ε
,

and will multiplying both sides of (2.4) by (φ0 +ε)fε and integrating. In preparation
for this we compute

−
∫
M

(φ0 + ε)fε∆g =
∫
M

∇g ·
(
fε∇φ0 + (φ0 + ε)∇fε

)
= λ0

∫
M

φ0fεg −
∫
M

g∇fε · ∇φ0 +
∫
M

(φ0 + ε)∇fε · ∇g ,
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and

4π
∫
M

(φ0 + ε)fεω · ∇(φ0 + ε) = 2π
∫
M

fεω · ∇(φ0 + ε)2

= −2π
∫
M

(φ0 + ε)2∇fε · ω .

We remark that when integrating by parts above, the boundary terms that arise
all vanish because of the boundary conditions imposed. Thus, multiplying (2.4) by
(φ0 + ε)fε and integrating gives

λ0

∫
M

g2
(

1− φ0

φ0 + ε

)
=
∫
M

(φ0 + ε)∇fε · ∇g −
∫
M

g∇fε · ∇(φ0 + ε)

+ 2π
∫
M

(φ0 + ε)2∇fε · ω .(4.42)

Writing τ def= 2πω and adding the integral

Jε
def=
∫
M

(φ0 + ε)τ · ∇g −
∫
M

gτ · ∇(φ0 + ε) +
∫
M

(φ0 + ε)2|τ |2

to both sides of (4.42), we obtain

(4.43) Jε + λ0

∫
M

g2
(

1− φ0

φ0 + ε

)
=
∫
M

(φ0 + ε)(∇fε + τ) · ∇g

−
∫
M

g(∇fε + τ) · ∇(φ0 + ε) +
∫
M

(φ0 + ε)2(∇fε + τ) · τ .

Now, since g = (φ0 + ε)fε, we compute
∇g = fε∇(φ0 + ε) + (φ0 + ε)∇fε .

Substituting this into (4.43) gives

(4.44) Jε + λ0

∫
M

g2
(

1− φ0

φ0 + ε

)
=
∫
M

(φ0 + ε)2|∇fε + τ |2 > 0 .

Using (2.3) we see

(4.45) I(ω) = 8π2
∫
M

|ω|2φ2
0 + 4π

∫
M

φ0ω · ∇g − 4π
∫
M

gω · ∇φ0 ,

and hence it follows that
lim
ε→0

Jε = 1
2I(ω) .

Also by the dominated convergence theorem, the second term on the left hand side
of (4.44) goes to zero as ε→ 0. This shows I(ω) > 0.

It remains to show I(ω) > 0 if ω 6= 0. Note that if I(ω) = 0, then Fatou’s lemma
and (4.44) imply∫

M

φ2
0|∇f + τ |2 6 lim inf

ε→0

(
Jε + λ0

∫
M

g2
(

1− φ0

φ0 + ε

))
= 0 ,

where f def= g/φ0. Therefore ∇f + τ = 0 in M and hence ω = −∇f/(2π). Since
ω ∈ H1

G ⊆ H1, this forces
∆f = 0 in M , and ν · ∇f = 0 on ∂M .

Consequently ∇f = 0, which in turn implies ω = 0. This completes the proof of the
positivity of I. �
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5. Proof of the Winding Number Asymptotics (Theorem 3.2).
In this section, we study the long time behaviour of the abelianized winding num-

ber of reflected Brownian motion on a manifold M . We begin by using Theorem 2.1
to prove Theorem 3.2 (Section 5.1). Next, in Section 5.2 we discuss the connection
of our results with the work by Toby and Werner [TW95]. Finally, in Section 5.3,
modulo certain amount of technicalities which need to be verified, we propose a
(sketched) independent probabilistic proof of Theorem 3.2.

5.1. Proof of Theorem 3.2. We obtain the long time behaviour of the abelianized
winding of reflected Brownian motion in M by applying Theorem 2.1 in this context.
Let M̂ be a covering space of M with deck transformation group3 π1(M)ab. In view
of the covering factorization (4.19), we may, without loss of generality, assume that
tor(π1(M)ab) = {0}. Note that since the deck transformation group G = π1(M)ab
by construction, we have H1

G = H1. Given n ∈ Zk (k = rank(G)), define gn ∈ G by

gn
def=

k∑
i=1

niπG(γi) , where n = (n1, . . . , nk) ∈ Zk ,

where {πG(γ1), . . . , πG(γk)} is the basis of G chosen in Section 3. Clearly n 7→ gn is
an isomorphism between G and Zk.

Lemma 5.1. For any x, y ∈ M̂ and n ∈ Zk we have
dI(x, gn(y))2 = (A−1n) · n+O(|n|) ,

where A is the matrix (ai,j) defined by

(5.1) ai,j
def= 〈ωi, ωj〉I = 8π2

vol(M)

∫
M

ωi · ωj .

Proof. Given ω ∈ H1 we compute

(5.2) ξx,gn(y)(ω) =
∫ y

x

π∗(ω) +
∫ gn(y)

y

π∗(ω) ,

where the integrals are taken along any smooth path in M̂ connecting the endpoints.
Note that the integrals are well defined, and the second one is independent of y.
Therre, if for any g ∈ G we define ψg : H1 → R by

ψg(ω) =
∫ g(y)

y

π∗(ω) ,

then (5.2) becomes
ξx,gn(y)(ω) = ξx,y(ω) + ψgn(ω) .

It follows that

dI(x, gn(y))2 = dI(x, y)2 +
k∑
i=1

ni〈ψπG(γi), ξx,y〉I∗ +
k∑

i,j=1
nini〈πG(γi), πG(γj)〉I∗ .

Since {ω1, . . . , ωk} is the dual basis to {πG(γ1), . . . , πG(γj)}, we have

〈πG(γi), πG(γj)〉I∗ = (A−1)i,j .

3 The existence of such a cover is easily established by taking the quotient of the universal
cover M̄ by the action of the commutator of π1(M).



26 GENG AND IYER

Therefore, the result follows. Note that the second equality of (5.1) follows from
(2.10) under Neumann boundary condition. �

Now we prove Theorem 3.2.

Proof of Theorem 3.2. Recall in Section 3 we decomposed the universal cover M̄ as
the disjoint union of fundamental domains Ūg indexed by g ∈ π1(M). Projecting
these domains to the cover M̂ we write M̂ as the disjoint union of fundamental
domains Ūg indexed by g ∈ G. Let Ŵ be the lift of the trajectory of W to M̂ , and
observe that if Ŵ (t) ∈ Ûgn , then ρ(t) = n.

We use this to compute the characteristic function of ρ(t)/
√
t as follows. Since

the generator of Ŵ is 1
2∆, its transition density is given by Ĥ(t/2, ·, ·). Hence, for

any z ∈ Rk we have

Ex

[
exp
( iz · ρ(t)

t1/2

)]
=
∑
n∈Zk

exp
( iz · n
t1/2

)
P x(Ŵ (t) ∈ Ûgn)

=
∑
n∈Zk

∫
Ûgn

Ĥ
( t

2 , x, y
)

exp
( iz · n
t1/2

)
dy .

By Theorem 2.1 and Remark 2.2, this means that uniformly in x ∈ M̂ we have

lim
t→∞

Ex

[
exp
( iz · ρ(t)

t1/2

)]
= CI lim

t→∞

∑
n∈Zk

∫
Ûgn

2k/2

tk/2
exp
(
−4π2dI(x, gn(y))2

t
+ iz · n

t1/2

)
dy

= CI lim
t→∞

∑
n∈Zk

2k/2

tk/2
exp
(
−4π2(A−1n) · n

t
+ iz · n

t1/2

)
,

where the last equality followed from Lemma 5.1 above. Observe that the last term
is the Riemann sum of a standard Gaussian integral. Therefore,

lim
t→∞

Ex

[
exp
( iz · ρ(t)

t1/2

)]
= 2k/2CI

∫
ζ∈Rk

exp
(
−4π2(A−1ζ) · ζ + iz · ζ

)
dζ .

This shows that as t → ∞, ρ(t)/
√
t converges to a normally distributed random

variable with mean 0 and covariance matrix A/(8π2). By (3.3) and (5.1) we see
that Σ = A/(8π2), which completes the proof of the second assertion in (3.1) of
the theorem. The first assertion follows immediately from the second assertion and
Chebychev’s inequality. �

5.2. Relation to the Work of Toby and Werner. Toby and Werner [TW95]
studied the long time behaviour of the winding of an obliquely reflected Brownian
motion in bounded planar domains. In this case, we describe their result and relate
it to Theorem 3.2.

Let Ω ⊆ R2 be a bounded domain with k holes V1, · · · , Vk of positive volume.
Let Wt be a reflected Brownian motion in Ω with a non-tangential reflecting vector
field u ∈ C1(∂Ω). Let p1, · · · , pk be k distinct points in R2. For 1 6 j 6 k, define
ρ(t, pj) to be the winding number of Wt with respect to the point pj .
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Theorem 5.2 (Toby and Werner, 1995). There exist constants ai, bi, depending
on the domain Ω, such that

(5.3) 1
t

(
ρ(t, p1), · · · , ρ(t, pk)

) w−−−→
t→∞

(
a1C1 + b1, · · · , akCk + bk

)
,

where C1, . . . , Ck are standard Cauchy variables. Moreover, for any j such that
pj /∈ Ω, aj must be equal to zero.

When pj ∈ Ω, the process W can wind a large number of times around pj in a
short period as it approaches pj . This is why the heavy-tailed Cauchy distribution
arises in Theorem 5.2, and the limiting process is non-degenerate precisely when
each pj ∈ Ω. This is exactly the situation when Theorem 5.2 is sharp.

On the other hand, if pj ∈ Vj , we have aj = 0 and (5.3) becomes a law of large
numbers. In the case with normal reflection, Theorem 3.2 provides the central limit
theorem for the fluctuation around the mean. Therefore, in this case our result is a
refinement of Theorem 5.2.

It is not pointed out nor can be easily seen from [TW95] why the mean bj = 0 in
the normal reflection case with pj ∈ Vj . For completeness, we give a proof of this
fact below.

Recall that (see for instance Stroock-Varadhan [SV71]) reflected Brownian motion
has the semi-martingale representation

(5.4) Wt = βt +
∫ t

0
u(Ws) dLs ,

where βt is a two dimensional Brownian motion, u is the reflecting vector field on
∂Ω, and Lt is a continuous increasing process which increases only when Wt ∈ ∂Ω.
We also know that the process Wt has a unique invariant measure, which is denoted
by µ. From [TW95], the constants bj are given by

(5.5) bj = 1
2π

∫
p∈Ω

Ep
[∫ 1

0
uj(Ws)dLs

]
dµ(p) ,

where uj : ∂Ω→ R is defined by

uj(p)
def= u(p) · (p− pj)⊥

|p− pj |
,

and q⊥ def= (−q2, q1) for q = (q1, q2) ∈ R2.

Proposition 5.3. Let Wt be a normally reflected Brownian motion in Ω, and
pj ∈ Vj for each j. Then bj = 0 for all j, and consequently

lim
t→∞

ρ(t, pj)
t

p−→ 0 .

Proof. Fix 1 6 j 6 k. Let w(t, p) be the solution to the following initial-boundary
value problem:

(5.6)


∂tw −

1
2∆w = 0 in (0,∞)× Ω ,

ν · ∇w = −uj on (0,∞)× ∂Ω ,

lim
t→0

w(t, ·) = 0 in Ω ,
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where ν is the outward pointing unit normal on the boundary. By applying Itô’s
formula to the process [0, t− ε] 3 s 7→ w(t− s,Ws) and using the semi-martingale
representation (5.4) of Wt, we get

w(t, p)−Ep
[
w(ε,Wt−ε)

]
= −Ep

[∫ t−ε

0
ν · ∇w(Ws, t− s)dLs

]
= Ep

[∫ t−ε

0
uj(Ws)dLs

]
,

where in the last identity we have used the fact that dLs is carried by the set
{s > 0 : Ws ∈ ∂Ω}. Since P (Bt ∈ ∂U) = 0, sending ε→ 0 and using the dominated
convergence theorem gives

w(t, p) = Ep
[∫ t

0
uj(Ws)dLs

]
.

On the other hand, according to Harrison, Landau and Shepp [HLS85], Theorem
2.8, the invariant measure µ of Wt is the unique probability measure on the closure
Ω̄ of Ω that µ(∂Ω) = 0 and∫

Ω
∆f(p) dµ(p) 6 0 for all f ∈ C2(Ω̄) with ν · ∇f 6 0 on ∂Ω.

Stokes’ theorem now implies µ is the normalized Lebesgue measure on Ω. Conse-
quently,

bj = 1
2π vol(Ω)

∫
Ω
Ep
[∫ 1

0
uj(Ws) dLs

]
dp = 1

2π vol(Ω)

∫
Ω
w(1, p) dp .

Integrating (5.6) over Ω and using the boundary conditions yields

0 = ∂t

∫
Ω
w dp−

∫
Ω

∆w dp

= ∂t

∫
Ω
w dp+

∫
∂Ω
uj(p) dp

= ∂t

∫
Ω
w dp−

∫
∂Ω
ν · (p− pj)⊥

|p− pj |
dp .

Since when pj ∈ Vj the vector field p 7→ (p− pj)⊥/|p− pj | is a divergence free vector
field on Ω̄, the last integral above above vanishes. Thus

∂t

∫
Ω
w dp = 0 ,

and since w = 0 when t = 0, w = 0 for all t > 0, and hence bj = 0. �

5.3. A Probabilistic Proof of Theorem 3.2. As mentioned earlier, Theorem 3.2
can also be proved by using a probabilistic argument. Modulo certain technicalities,
we sketch this argument below.

First suppose γ : [0,∞) → M is a smooth path. Let ρ(t, γ) be the Zk-valued
winding number of γ, as in Definition 3.1. Namely, let γ̄ be the lift of γ to the
universal cover of M , and let ρ(t, γ) = (n1, . . . , nk) if

πG
(
ḡ(γ̄(t))

)
=

k∑
i=1

niπG(γi) .
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By our choice of (ω1, . . . , ωk) we see that ρi(t, γ), the ith component of ρ(t, γ), is
precisely the integer part of θi(t, γ), where

(5.7) θi(t, γ) def=
∫
γ([0,t])

ωi =
∫ t

0
ωi(γ(s)) γ′(s) ds .

If M is a planar domain with k holes, and the forms ωi are chosen as in Remark 2.4,
then 2πθi(t, γ) is the total angle γ winds around the kth hole up to time t.

In the case when γ is not smooth, the theory of rough paths can be used to give
meaning to the above path integrals. In particular, when γ is the trajectory of
semimartingale on M , we know that the integral obtained via the theory of rough
paths agrees with the Stratonovich integral. To fix notation, let W be a reflected
Brownian motion in M , and ρ(t) = (ρ1(t), · · · , ρk(t)) to be the Zk-valued winding
number of W as in Definition 3.1. Then we must have ρi(t) = bθi(t)c, where θi(t) is
the rough path integral, or equivalently, the Stratonovich integral

(5.8) θi(t) =
∫ t

0
ωi(Ws) ◦ dWs .

In Euclidean domains, the long time behaviour of this integral can be obtained as
follows. The key point to note is that the forms ωi are chosen to be harmonic in M
and tangential on ∂M . Consequently, using the semi-martingale decomposition (5.4),
we see that θ is a martingale with quadratic variation given by

(5.9) 〈θi, θj〉t =
∫ t

0
ωi(Ws) · ωj(Ws) ds .

Moreover, by Harrison et. al. [HLS85], the unique invariant measure of Wt is the
normalized Lebesgue measure. Therefore, according to the ergodic theorem,

lim
t→∞

1
t
〈θi, θj〉t = 1

vol(M)

∫
M

ωi · ωj

for almost surely. Now we can conclude from the martingale central limit theorem
(see [PS08, Theorem 3.33 and Corollary 3.34]) that

θt√
t

t→∞−−−→
w
N (0,Σ) ,

where the covariance matrix Σ is given by (3.3).

To extend the above argument to the geometric setting, one first needs to establish
the analogue of the semi-martingale decomposition (5.4) on manifolds with boundary.
While this should be a technical adaptation of [SV71], there is no easily available
reference. In addition, one needs to to show that θi is a martingale with quadratic
variation (5.9). This might be done through a localization argument by breaking
the Stratonovich integral defining θi (equation (5.8)) into pieces that are entirely
contained in local coordinate charts, and using the analogue of (5.4) together with
the fact that ω ∈ H1. Now the other parts of the argument should be the same as
the Euclidean case.
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