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Abstract The present article is devoted to the study of sample paths of G-Brownian
motion and stochastic differential equations (SDEs) driven by G-Brownian motion
from the view of rough path theory. As the starting point, by using techniques in
rough path theory, we show that quasi-surely, sample paths of G-Brownian motion
can be enhanced to the second level in a canonical way so that they become geo-
metric rough paths of roughness 2 < p < 3. This result enables us to introduce the
notion of rough differential equations (RDEs) driven by G-Brownian motion in the
pathwise sense under the general framework of rough paths. Next we establish the
fundamental relation between SDEs and RDEs driven by G-Brownian motion. As
an application, we introduce the notion of SDEs on a differentiable manifold driven
by G-Brownian motion and construct solutions from the RDE point of view by using
pathwise localization technique. This is the starting point of developing G-Brownian
motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin.
The last part of this article is devoted to such construction for a wide and interesting
class of G-functions whose invariant group is the orthogonal group. In particular,
we establish the generating nonlinear heat equation for such G-Brownian motion on
a Riemannian manifold. We also develop the Euler-Maruyama approximation for
SDEs driven by G-Brownian motion of independent interest.
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1 Introduction

The classical Feynman-Kac formula (see [14], [15]) provides us with a way to rep-
resent the solution of a linear parabolic PDE in terms of the conditional expectation
of certain functional of a diffusion process (solution of an SDE). However, it works
only for the linear case, mainly due to the linear nature of diffusion processes. To
understand nonlinear parabolic PDEs from the probabilistic point of view, Peng and
Pardoux (see [21], [22], [23]) initiated the study of backward stochastic differen-
tial equations (BSDEs) and showed that the solution of a certain type of quasilinear
parabolic PDEs can be expressed in terms of the solution of BSDE. This result
suggests that BSDE reveals a certain type of nonlinear dynamics, and was made
explicit by Peng [24]. More precisely, Peng introduced a notion of nonlinear expec-
tation called the g-expectation in terms of the solution of BSDE which is filtration
consistent. However, it was developed under the framework of classical Itô calculus
and did not capture the fully nonlinear situation.

Motivated from the study of fully nonlinear dynamics, Peng [25] introduced the
notion of G-expectation in an intrinsic way which does not rely on any particular
probability space. It reveals the probability distribution uncertainty in a fundamen-
tal way which is crucial in many situations such as modeling risk uncertainty in
mathematical finance. The underlying mechanism corresponding to such kind of
uncertainty is a fully nonlinear parabolic PDE. In [25], [26], he also introduced the
concept of G-Brownian motion which is generated by the so-called nonlinear G-heat
equation and related stochastic calculus such as G-Itô integral, G-Itô formula, SDEs
driven by G-Brownian motion, etc. One of the major significance of such theory
is the corresponding nonlinear Feynman-Kac formula proved by Peng [27], which
gives us a way to represent the solution of a fully nonlinear parabolic PDE via the
solution of a forward-backward SDE under the framework of G-expectation.

On the other hand, motivated from the study of integration against irregular paths
and differential equations driven by rough signals, Lyons [17] proposed a theory of
rough paths which reveals the fundamental way of understanding the roughness of a
continuous path. He pointed out that to understand the evolution of a system whose
input signal (driven path) is rough, a finite sequence of “iterated integrals” (higher
levels) of the driving path which satisfy a certain type of algebraic relation (Chen
identity) should be specified in advance. Such point of view is fundamental, if we
look at the Taylor expansion for the solution of an ODE whose driving path is of
bounded variation (see (6) and a more detailed introduction in the next section).
In other words, it is essential to regard a path as an object valued in some tensor
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algebra which records the information of higher levels if we wish to understand the
“differential” of the path. Moreover, Lyons [17] proved the so-called universal limit
theorem (see Theorem 6 in the next section), which allows us to introduce the notion
of differential equations driven by rough paths (simply called RDEs) in a rigorous
way. The theory of rough paths has significant applications in classical stochastic
analysis, as we can prove that the sample paths of many stochastic processes we’ve
encountered are essentially rough paths with certain roughness. According to Lyons’
universal limit theorem, we are able to establish RDEs driven by the sample paths
of those stochastic processes in a pathwise manner. It provides us with a new way to
understand SDEs, especially when the driving process is not the classical Brownian
motion in which case a well-developed Itô SDE theory is still not available.

The case of classical Brownian motion is quite special, since we have a complete
SDE theory in the L2-sense, as well as the notion of Stratonovich type integrals and
differential equations. The fundamental relation between the two types of stochastic
differentials (one-dimensional case) can be expressed by

X ◦dY = XdY +
1
2

dX ·dY.

It is proved in the rough path theory (see [9], [19], and also [13], [28] from the
view of Wong-Zakai type approximation) that the Stratonovich type integrals and
differential equations are equivalent to the pathwise integrals and RDEs in the sense
of rough paths. In other words, the following to types of differential equations driven
by Brownian motion

dXt =
d

∑
α=1

Vα(Xt)dW α
t +b(Xt)dt, (Itô type SDE)

dYt =
d

∑
α=1

Vα(Yt)dW α
t +(b(Yt)−

d

∑
α=1

1
2

DVα(Yt) ·Vα(Yt))dt, (RDE)

which are both well-defined under some regularity assumptions on the generating
vector fields, are equivalent in the sense that if their solutions Xt and Yt satisfy X0 =
Y0, then X = Y almost surely.

Under the framework of G-expectation, SDEs driven by G-Brownian motion in-
troduced by Peng, can be regarded as nonlinear diffusion processes in Euclidean
spaces. The idea of constructing G-Itô integrals and SDEs driven by G-Brownian
motion is similar to the classical Itô calculus, which is also an L2-theory but un-
der the G-expectation instead of probability measures. What is missing is the no-
tion of Stratonovich type integrals, mainly due to the reason that the theory of G-
martingales is still not well understood. In particular, we don’t have the correspond-
ing nonlinear Doob-Meyer type decomposition theorem and the notion of quadratic
variation processes for G-martingales. However, by the key observation in the classi-
cal case that the Stratonovich type integrals and the pathwise integrals are essentially
equivalent in the sense of rough paths, we can study the sample paths of G-Brownian
motion and SDEs driven by G-Brownian motion from the view of rough path the-
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ory, once we prove that the sample paths of G-Brownian motion can be regarded as
objects in some rough path space with certain roughness. This is in fact what the
present article is mainly focused on. The basic language to describe path structure
under the G-expectation is quasi-sure analysis and capacity theory, which was de-
veloped by Denis, Hu and Peng [7]. They generalized the Kolmogorov continuity
theorem and studied sample path properties of G-Brownian motion. In particular,
they also studied the relation between G-expectation and upper expectation associ-
ated to a family of probability measures which defines a Choquet capacity and the
relation between the corresponding two types of Lp-spaces. The pathwise properties
and homeomorphic flows for SDEs driven by G-Brownian motion in the quasi-sure
setting was studied by Gao [10].

There are two main goals of the present article. This first one is to study the
geometric rough path nature of sample paths of G-Brownian motion so that we
can define RDEs driven by G-Brownian motion (the Stratonovich counterpart in the
classical case) in the pathwise sense, and establish the fundamental relation between
two types of differential equations driven by G-Brownian motion. The second one
is to understand nonlinear diffusion processes in a (Riemannian) geometric setting,
from the view of paths and distributions (the generating nonlinear PDE).

The present article is organized in the following way. Section 2 is a basic review
of the theory of G-expectation and rough paths, which provides us with the general
framework and basic tools for our study. In Section 3 we study the Euler-Maruyama
approximation scheme for SDEs driven by G-Brownian motion. In Section 4 we
show that for quasi-surely, the sample paths of G-Brownian motion can be enhanced
to the second level in a canonical way so that they become geometric rough paths
of roughness 2 < p < 3 by using techniques in rough path theory. In Section 5 we
establish the fundamental relation between SDEs and RDEs driven by G-Brownian
motion by using rough Taylor expansions. In section 6 we introduce the notion of
SDEs on a differentiable manifold driven by G-Brownian motion from the RDE
point of view by using pathwise localization technique. In the last section, we study
the infinitesimal diffusive nature and the generating PDE for nonlinear diffusion
processes in a (Riemannian) geometric setting, which leads to the construction of
G-Brownian motion on a Riemannian manifold. We restrict ourselves to compact
manifolds only, although the general case can be treated in a similar way with more
technical complexity.

Throughout the rest of this article, we will use standard geometric notation for
differential equations. Moreover, we will use the Einstein convention of summa-
tion, that is, when an index α appears as both subscript and superscript in the same
expression, summation over α is taken automatically.
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2 Preliminaries on G-expectation and Rough Path Theory

2.1 G-expectation and Related Stochastic Calculus

We first introduce some fundamentals on G-expectation and related stochastic cal-
culus. For a systematic introduction, see [25], [26], [27].

Let Ω be a nonempty set, and H be a vector space of functionals on Ω such
that H contains all constant functionals and for any X1, · · · ,Xn ∈H and any ϕ ∈
Cl,Lip(Rn),

ϕ(X1, · · · ,Xn) ∈H ,

where Cl,Lip(Rn) denotes the space of functions ϕ on Rn satisfying

|ϕ(x)−ϕ(y)|6C(1+ |x|m + |y|m)(|x− y|), ∀x,y ∈ Rn,

for some constant C > 0 and m ∈ N depending on ϕ . H can be regarded as the
space of random variables.

Definition 1. A sublinear expectation E on (Ω ,H ) is a functional E : H → R
such that

(1) if X 6 Y, then E[X ]6 E[Y ];
(2) for any constant c, E[c] = c;
(3) for any X ,Y ∈H , E[X +Y ]6 E[X ]+E[Y ];
(4) for any λ > 0 and X ∈H , E[λX ] = λE[X ].

The triple (Ω ,H ,E) is called a sublinear expectation space.
The relation between sublinear expectations and linear expectations, which was

proved by Peng [27], is contained in the following representation theorem.

Theorem 1. Let (Ω ,H ,E) be a sublinear expectation space. Then there exists a
family of linear expectations (linear functionals) {Eθ : θ ∈Θ} on H , such that

E[X ] = sup
θ∈Θ

Eθ [X ], ∀X ∈H .

Under the frame work of sublinear expectation space, we also have the notion of
independence and distribution (law).

Definition 2. (1) A random vector Y ∈ H n is said to be independent from an-
other random vector X ∈H m under the sublinear expectation E, if for any ϕ ∈
Cl,Lip(Rm×Rn),

E[ϕ(X ,Y )] = E[E[ϕ(x,Y )]x=X ].

(2) Given a random vector X ∈H n, the distribution (or the law) of X is defined
as the sublinear expectation

FX [ϕ] := E[ϕ(X)], ϕ ∈Cl,Lip(Rn),
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on (Rn,Cl,Lip(Rn)). By saying that two random vectors X ,Y (possibly defined on
different sublinear expectation spaces) are identically distributed, we mean that their
distributions are the same.

Now we introduce the notion of G-distribution, which is the generalization of de-
generate distributions and normal distributions. It captures the uncertainty of prob-
ability distributions and plays a fundamental role in the theory of sublinear expec-
tation.

Let S(d) be the space of d× d symmetric matrices, and let G : Rd × S(d)→ R
be a continuous and sublinear function monotonic in S(d) in the sense that:

(1) G(p+ p̄,A+ Ā)6 G(p,A)+G(p̄, Ā), ∀p, p̄ ∈ Rd , A, Ā ∈ S(d);
(2) G(λ p,λA) = λG(p,A), ∀λ > 0;
(3) G(p,A)6 G(p, Ā), ∀A 6 Ā.

Definition 3. Let X ,η ∈H d be two random vectors. (X ,η) is called G-distributed
if for any ϕ ∈Cl,Lip(Rd×Rd), the function

u(t,x,y) := E[ϕ(x+
√

tX ,y+ tη)], (t,x,y) ∈ [0,∞)×Rd×Rd ,

is a viscosity solution of the following parabolic PDE (called a G-heat equation):

∂tu−G(Dyu,D2
xu) = 0, (1)

with Cauchy condition u|t=0 = ϕ .

Remark 1. From the general theory of viscosity solutions (see [4], [27]), the G-heat
equation (1) has a unique viscosity solution. By solving the G-heat equation (1) (in
some special cases, it is explicitly solvable), we can compute the sublinear expec-
tation of some functionals of a G-distributed random vector. The case of convex
functionals, for instance, the power function |x|k, is quite interesting.

It can be proved that for such a function G, there exists a bounded, closed and
convex subset Γ ⊂ Rd×Rd×d , such that G has the following representation:

G(p,A) = sup
(q,Q)∈Γ

{1
2

tr(AQQT )+ 〈p,q〉}, ∀(p,A) ∈ Rd×S(d).

The set Γ captures the uncertainty of probability distribution (mean uncertainty and
variance uncertainty) of a G-distributed random vector.

In particular, if G only depends on p ∈ Rd , then there exists some bounded,
closed and convex subset Λ ⊂ Rd , such that

G(p) = sup
q∈Λ

〈p,q〉.

In this case a G-distributed random vector η is called maximal distributed and is
denoted by η ∼ N(Λ ,{0}). Similarly, if G only depends on A ∈ S(d), then there
exists some bounded, closed and convex subset Σ ⊂ S+(d) (the space of symmetric
and nonnegative definite matrices) such that



G-Brownian Motion as Rough Paths 7

G(A) =
1
2

sup
B∈Σ

tr(AB), ∀A ∈ S(d). (2)

A G-distributed random vector X for such G is called G-normal distributed and is
denoted by X ∼ N({0},Σ).

Now we introduce the concept of G-Brownian motion and related stochastic cal-
culus.

From now on, let G : S(d)→ R be a function given by (2).

Definition 4. A d-dimensional process Bt is called a G-Brownian motion if
(1) B0(ω) = 0, ∀ω ∈Ω ;
(2) for each s, t > 0, Bt+s−Bt ∼ N({0},sΣ) and is independent from

(Bt1 , · · · ,Btn)

for any n > 1 and 0 6 t1 < · · ·< tn 6 t.

Similar to the classical situation, a G-Brownian motion can be constructed ex-
plicitly on the canonical path space by using independent G-normal random vectors.
We refer the readers to [27] for a detailed construction.

In summary, let Ω =C0([0,∞);Rd) be the space of Rd-valued continuous paths
starting at the origin, and let Bt(ω) := ωt be the coordinate process. For any T > 0,
define

Lip(ΩT ) := {ϕ(Bt1 , · · · ,Btn) : n > 1, t1, · · · , tn ∈ [0,T ],ϕ ∈Cl,Lip(Rd×n)},

and

Lip(Ω) :=
∞⋃

n=1

Lip(Ωn).

Then on (Ω ,Lip(Ω)) we can define the canonical sublinear expectation E such that
the coordinate process Bt becomes a G-Brownian motion, which is usually called
the G-expectation and denoted by EG. (Ω ,Lip(Ω),EG) is also called the canonical
G-expectation space. Throughout the rest of this article, we will restrict ourselves
on the canonical G-expectation space and its completion (to be defined later on).

On (Ω ,Lip(Ω),EG) we can introduce the notion of conditional G-expectation.
More precisely, for

X = ϕ(Bt1 ,Bt2 −Bt1 , · · · ,Btn −Btn−1) ∈ Lip(Ω),

where 0 6 t1 < t2 < · · ·< tn, the G-conditional expectation of X under Ωt j is defined
by

EG[X |Ωt j ] := ψ(Bt1 ,Bt2 −Bt1 , · · · ,Bt j −Bt j−1),

where

ψ(x1, · · · ,x j) := EG[ϕ(x1, · · · ,x j,Bt j+1 −Bt j , · · · ,Btn −Btn−1)], x1, · · · ,x j ∈ Rd .
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The conditional G-expectation EG[·|Ωt ] has the following properties: for any X ,Y ∈
Lip(Ω),

(1) if X 6 Y, then EG[X |Ωt ]6 EG[Y |Ωt ];
(2) EG[X +Y |Ωt ]6 EG[X |Ωt ]+EG[Y |Ωt ];
(3) for any η ∈ Lip(Ωt),

EG[η |Ωt ] = η ,

EG[ηX |Ωt ] = η
+EG[X |Ωt ]+η

−E[−X |Ωt ];

(4) EG[EG[X |Ωt ]|Ωs] = EG[X |Ωt∧s]. In particular, EG[EG[X |Ωt ]] = EG[X ].
For any p > 1, let Lp

G (respectively, Lp
G(Ωt))) be the completion of Lip(Ω) (re-

spectively, Lip(Ωt)) under the semi-norm ‖X‖p := (EG[|X |p])
1
p . Then EG can be

continuously extended to a sublinear expectation on Lp
G(Ω) (respectively, Lp

G(Ωt)),
still denoted by EG.

For t < T 6 ∞, the conditional G-expectation EG[·|Ωt ] : Lip(ΩT )→ Lip(Ωt) is a
continuous mapping under ‖ · ‖1 and can be continuously extended to a mapping

EG[·|Ωt ] : L1
G(ΩT )→ L1

G(Ωt),

which can still be interpreted as the conditional G-expectation. It is easy to show that
the properties (1) to (4) for the conditional G-expectation still hold true on L1

G(ΩT )
as long as it is well-defined.

Now we introduce the related stochastic calculus for G-Brownian motion and
(Itô type) stochastic differential equations (SDEs) driven by G-Brownian motion.

First of all, similar to the idea in the classical case, we still have the notion of
Itô integral with respect to a 1-dimensional G-Brownian motion. More precisely,
consider d = 1, we can first define Itô integral of simple processes and then pass
limit under the G-expectation EG in some suitable functional spaces. Let Mp,0

G (0,T )
be the space of simple processes ηt(ω) on [0,T ] of the form

ηt(ω) =
N

∑
k=1

ξk−1(ω)1[tk−1,tk)(t),

where πN
T := {t0, t1, · · · , tN} is a partition of [0,T ] and ξk ∈ Lp

G(Ωtk), and introduce
the semi-norm

‖η‖Mp
G(0,T )

:= (EG[

ˆ T

0
|ηt |pdt])

1
p

on Mp,0
G (0,T ). Let Mp

G(0,T ) be the completion of Mp,0
G (0,T ) under ‖ · ‖Mp

G(0,T )
. It

is straight forward to define Itô integral
´ T

0 ηtdBt of simple processes. Moreover,
such an integral operator is linear and continuous under ‖ · ‖Mp

G(0,T )
and hence can

be extended to a bounded linear operator

I : M2
G(0,T )→ L2

G(0,T ).
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The operator I is defined as the Itô integral operator with respect to a G-Brownian
motion. For 0 6 s < t 6 T, define

ˆ t

s
ηudBu :=

ˆ T

0
1[s,t](u)ηudBu.

We list some important properties of G-Itô integral in the following.

Proposition 1. Let η ,θ ∈M2
G(0,T ) and let 0 6 s 6 r 6 t 6 T. Then

(1) ˆ t

s
ηudBu =

ˆ r

s
ηudBu +

ˆ t

r
ηudBu;

(2) if α is bounded in L1
G(Ωs), then

ˆ t

s
(αηu +θu)dBu = α

ˆ t

s
ηudBu +

ˆ t

s
θudBu;

(3) for any X ∈ L1
G(Ω),

EG[X +

ˆ T

r
ηudBu|Ωs] = EG[X |Ωs];

(4)

σ
2EG[

ˆ T

0
η

2
t dt]6 EG[(

ˆ T

0
ηtdBt)

2]6 σ
2EG[

ˆ T

0
η

2
t dt],

where σ
2 := EG[B2

1] and σ2 :=−EG[−B2
1].

Secondly, we have the notion of quadratic variation process of G-Brownian mo-
tion. In the case of 1-dimensional G-Brownian motion, the quadratic variation pro-
cess 〈B〉t is defined as

〈B〉t := B2
t −2

ˆ t

0
BsdBs,

which can be regarded as the L2
G-limit of the sum ∑

kN
j=1(BtN

j
−BtN

j−1
)2 as µ(πN

t )→ 0,

where πN
t := {tN

j }
kN
j=0 is a sequence of partitions of [0, t] and

µ(πN
t ) := max{tN

j − tN
j−1 : j = 1,2, · · · ,kN}.

It follows that 〈B〉t is an increasing process with 〈B〉0 = 0.
Similar to the definition of G-Itô integral, we can define the integration with re-

spect to 〈B〉t where Bt is a 1-dimensional G-Brownian motion. We refer the readers
to [27] for a detailed construction but we remark that the integral operator with
respect to 〈B〉t is a continuous linear mapping

Q0,T : M1
G(0,T )→ L1

G(ΩT ).
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The following identity can be regarded as the G-Itô isometry.

Proposition 2. Let η ∈M2
G(0,T ), then

EG[(

ˆ T

0
ηtdBt)

2] = EG[

ˆ T

0
η

2
t d〈B〉t ].

Now consider the multi-dimensional case. Let Bt is a d-dimensional G-Brownian
motion, and for any v ∈ Rd , denote

Bv
t := 〈v,Bt〉,

where 〈·, ·〉 is the Euclidean inner product. Then for a,a ∈ Rd , the cross variation
process 〈Ba,Ba〉t is defined as

〈Ba,Ba〉t =
1
4
(〈Ba+a,Ba+a〉t −〈Ba−a,Ba−a〉t).

Similar to the case of quadratic variation process, we have

〈Ba,Ba〉t = (L2
G−) lim

µ(πN
t )→0

kN

∑
j=1

(Ba
tN
j
−Ba

tN
j−1

)(Ba
tN
j
−Ba

tN
j−1

)

= Ba
t Ba

t −
ˆ t

0
Ba

s dBa
s −
ˆ t

0
Ba

s dBa
s .

Note that unlike the classical case, the cross variation process is not determinis-
tic. The following results characterizes the distribution of 〈B〉t := (〈Bα ,Bβ 〉t)d

α,β=1,

where Bt is a d-dimensional G-Brownian motion and Bα
t is the α-th component of

Bt .

Proposition 3. Recall that the function G has the representation (2). Then 〈B〉t ∼
N(tΣ ,{0}).

As in the classical case, we also have the important G-Itô formula under G-
expectation, which takes a similar form to the classical one. The main difference
is that dBα

t · dBβ

t should be d〈Bα ,Bβ 〉t instead of δαβ dt. We are not going to state
the full result of G-Itô formula here. See [27] for a detailed discussion.

Now we introduce the notion of SDEs driven by G-Brownian motion.
For p > 1, let Mp

G(0,T ;Rn) be the completion of Mp,0
G (0,T ;Rn) under the norm

‖η‖Mp
G(0,T ;Rn) := (

ˆ T

0
EG[|ηt |p]dt)

1
p .

It is easy to see that Mp
G(0,T ;Rn)⊂Mp

G(0,T ;Rn).
Consider the following N-dimensional SDE driven by G-Brownian motion over

[0,T ]:
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dXt = b(t,Xt)dt +
d

∑
α,β=1

hαβ (t,Xt)d〈Bα ,Bβ 〉t +
d

∑
α=1

Vα(t,Xt)dBα
t (3)

with initial condition ξ ∈ RN . Here we assume that the coefficients bi,hi
αβ

,V i
α are

Lipschitz functions in the space variable, uniformly in time. A solution of (3) is a
process in M2

G(0,T ;RN) satisfying the equation (3) in its integral form.
The existence and uniqueness of (3) was studied by Peng [27].

Theorem 2. There exists a unique solution X ∈M2
G(0,T ;RN) to the SDE (3).

Finally, we introduce the notion of quasi-sure analysis for G-expectation. It plays
an important role in studying pathwise properties of stochastic processes under the
framework of G-expectation.

First of all, on the canonical sublinear expectation space (Ω ,Lip(Ω),EG), we
can prove a refinement of Theorem 1: there exists a weakly compact family P of
probability measures on (Ω ,B(Ω)), such that for any X ∈ Lip(Ω) and P ∈P ,
EP[X ] is well-defined and

EG[X ] = max
P∈P

EP[X ], ∀X ∈ Lip(Ω),

where “max” means that the supremum is attainable (for each X). Moreover, there is
an explicit characterization of the family P . Let G be represented in the following
way:

G(A) =
1
2

sup
Q∈Γ

tr(AQQT ),

for some bounded, closed and convex subset Γ ⊂Rd×d , and let AΓ be the collection
of all Γ -valued {FW

t : t > 0}-adapted processes on [0,∞), where {FW
t : t > 0} is

the natural filtration of the coordinate process on Ω . Let P0 be the collection of
probability laws of the following classical Itô integral processes with respect to the
standard Wiener measure:

Bγ

t :=
ˆ t

0
γsdWs, t > 0, γ ∈ AΓ .

Then P = P0. For the proof of this result, please refer to [7].
For this particular family P, define the set function c by

c(A) := sup
P∈P

P(A), A ∈B(Ω).

Then we have the following result.

Theorem 3. The set function c is a Choquet capacity (for an introduction of capac-
ity theory, see [3], [6]). In other words,

(1) for any A ∈B(Ω), 0 6 c(A)6 1;
(2) if A⊂ B, then c(A)6 c(B);
(3) if An is a sequence in B(Ω), then c(∪nAn)6 ∑n c(An);
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(4) if An is increasing in B(Ω), then c(∪An) = limn→∞ c(An).

For any B(Ω)-measurable random variable X such that EP[X ] is well-defined
for all P ∈P, define the upper expectation

Ê[X ] := sup
P∈P

EP[X ].

Then we can prove that for any 0 6 T 6 ∞ and X ∈ L1
G(ΩT ),

EG[X ] = Ê[X ].

For a detailed discussion and other related properties, please refer to [7].
The following Markov inequality and Borel-Cantelli lemma under the capacity c

are important for us.

Theorem 4. (1) For any X ∈ Lp
G(Ω) and λ > 0, we have

c(|X |> λ )6
EG[|X |p]

λ p .

(2) Let An be a sequence in B(Ω) such that

∞

∑
n=1

c(An)< ∞.

Then
c(limsupAn) = 0.

Definition 5. A property depending on ω ∈Ω is said to hold quasi-surely, if it holds
outside a B(Ω)-measurable subset of zero capacity.

2.2 Rough Path Theory and Rough Differential Equations

Now we introduce some fundamentals in the theory of rough paths and rough dif-
ferential equations. For a systematic introduction, please refer to [9], [18], [19].

For n > 1, define
T (∞)(Rd) :=⊕∞

k=0(Rd)⊗k

to be the infinite tensor algebra and

T (n)(Rd) :=⊕n
k=0(R

d)⊗k

to be the truncated tensor algebra of order n, equipped with the Euclidean norm. Let
∆ be the triangle region {(s, t) : 0 6 s < t 6 1}. A functional X : ∆ → T (n)(Rd) of
order n is called multiplicative if for any s < u < t,
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Xs,t = Xs,u⊗Xu,t .

Such a multiplicative structure is called the Chen identity. It describes the (nonlin-
ear) additive structure of integrals over different intervals.

A control function ω is a nonnegative continuous function on ∆ such that for any
s < u < t,

ω(s,u)+ω(u, t)6 ω(s, t),

and for any t ∈ [0,1], ω(t, t) = 0. An example of control function ω(s, t) is the
1-variation norm over [s, t] of a path with bounded variation.

Let p > 1 be a fixed constant. A continuous and multiplicative functional

Xs,t = (1,X1
s,t , · · · ,Xn

s,t)

of order n has finite p-variation if for some control function ω ,

|X i
s,t |6 ω(s, t)

i
p , ∀i = 1,2, · · · ,n, (s, t) ∈ ∆ . (4)

X has finite p-variation if and only if for any i = 1,2, · · · ,n,

sup
D

∑
l
|X i

tl−1,tl |
p
i < ∞,

where supD runs over all finite partitions of [0,1]. We can also introduce the notion
of finite p-variation for multiplicative functionals in T (∞)(Rd) by allowing 1 6 i <
∞ in (4). A continuous and multiplicative functional X of order [p] with finite p-
variation is called a rough path with roughness p. The space of rough paths with
roughness p is denoted by Ωp(Rd).

The following Lyons lifting theorem (see [17]) shows that the higher levels of a
rough path X with roughness p are uniquely determined by X itself.

Theorem 5. Let X be a rough path with roughness p. Then X can be uniquely
extended to a continuous and multiplicative functional in T (∞)(Rd) with finite p-
variation.

One of the motivation of introducing the concept of rough paths is to develop the
theory of differential equations driven by rough signals.

If an Rd-valued path X has bounded variation, we know that the Picard iteration
for the following differential equation converges:

dYt =V (Yt)dXt , (5)

where V = (V1, · · · ,Vd) is a family of Lipschitz vector fields. Another way to con-
sider (5) is to use the Euler scheme, which can be regarded as the Taylor expansion
of functional of paths. Namely, we can write informally that

Yt −Ys ∼
∞

∑
n=1

d

∑
α1,··· ,αn=1

Vα1 · · ·Vαn I(Ys)

ˆ
s<u1<···<un<t

dXα1
u1
· · ·dXαn

un . (6)
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From (6) we can see that the sequence

Xs,t := (1,Xt −Xs,

ˆ
s<u<v<t

dXu⊗dXv, · · · ,
ˆ

s<u1<···<un<t
dXu1 ⊗·· ·⊗dXun , · · ·)

contains exactly all the information to determine the solution Y. On the other hand, it
can be proved that X is multiplicative and of finite 1-variation. Since X has bounded
variation, it follows from Theorem 5 that X is the unique enhancement of X . This
is the fundamental reason why we don’t need to see the higher levels when solving
equation (5)-all information about X, which uniquely determines the solution of (5),
is incorporated in the first level.

If the driven signal is rougher, the situation becomes different. The same thing
is that the information to determine the solution lies in the multiplicative structure
in T (∞)(Rd), while the difference is that, unlike the case of paths with bounded
variation, the classical path itself may not be able to determine the higher levels
which are crucial to characterize the solution of a differential equation. In other
words, we need to specify higher levels of the classical path in order to make sense
of differential equations. According to Theorem 5, we know that the higher levels
(levels above [p]) of a rough path X with roughness p are uniquely determined by
X itself. Therefore, to establish differential equations driven by signals rougher than
paths of bounded variation, we need to interpret the driven signal as a rough path
with certain roughness p, that is, the driving signal should be an element in the space
Ωp(Rd).

When the driving signal X is in some smaller space of Ωp(Rd) in which X can
be approximated by paths of bounded variation in some sense, we are able to use
a natural approximation procedure to introduce the notion of differential equations.
But first we need to introduce a certain kind of topology.

Define the p-variation distance dp(·, ·) on Ωp(Rd) by

dp(X,Y) := max
16i6[p]

sup
D
(∑

l
|X i

tl−1,tl −Y i
tl−1,tl |

p
i )

i
p .

Then (Ωp(Rd),dp) is a complete metric space.
A continuous path X ∈C([0,1];Rd) is called smooth if it has bounded variation.

Let

Ω
∞
p (Rd) := {X : X is the unique enhancement of X in T ([p])(Rd), for smooth X}

be the subspace of enhanced smooth paths of order [p]. The closure of Ω ∞
p (Rd)

under the p-variation distance dp, denoted by GΩp(Rd), is called the space of geo-
metric rough paths with roughness p.

The following theorem, proved by Lyons [17], which is usually known as the
universal limit theorem, enables us to introduce the notion of differential equations
driven by geometric rough paths.
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Theorem 6. Let V1, · · · ,Vd ∈C[p]+1
b (Rd) be given vector fields on RN . For a given

y ∈ Rd , define the mapping

F(y, ·) : Ω
∞
p (Rd)→Ω

∞
p (RN)

in the following way. For any X ∈ Ω ∞
p (Rd), let X be the smooth path associated

with X starting at the origin (i.e., projection of X onto the first level), and Y be the
unique smooth path which is the solution of the following ODE:

dYt =Vα(Yt)dXα
t

with Y0 = y. F(y,X) is defined to be the enhancement of Y in Ω ∞
p (Rd). Then the

mapping F(y, ·) is continuous with respect to the corresponding p-variation distance
dp.

According to Theorem 6, there exists a unique continuous extension of F(y, ·) on
GΩp(Rd). The extended mapping

F(y, ·) : GΩp(Rd)→ GΩp(RN),

is called the Itô-Lyons mapping. Such a mapping defines the (unique) solution in
the space GΩp(Rd) to the following differential equation:

dYt =V (Yt)dXt , (7)

with initial value y. Equation (7) is called a rough differential equation driven by X
(or simply called an RDE), and the solution Y is called the full solution of (7). If we
are only interested in classical paths, then

Yt := y+π1(Y), t ∈ [0,1],

is called the solution of (7) with initial value y.

3 The Euler-Maruyama Approximation for SDEs Driven by
G-Brownian Motion

In this section, we are going to establish the Euler-Maruyama approximation for
SDEs driven by G-Brownian motion.

This result can be used to establish the Wong-Zakai type approximation which
reveals the relation between SDEs (in the sense of L2

G(Ω ;RN) by S. Peng) and RDEs
(in the sense of rough paths by Lyons) driven by G-Brownian motion. In Section 5,
the study of such relation will be our main focus. However, based on the result in
the next section which reveals the rough path nature of G-Brownian motion, we are
going to use the rough Taylor expansion in the theory of RDEs instead of developing
the Wong-Zakai type approximation to show that the solution of an SDE solves
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some associated RDE with a correction term in terms of the cross variation process
of multidimensional G-Brownian motion. Such approach reveals the natural of G-
Brownian motion and differential equations in the sense of rough paths in a more
fundamental way.

We also believe that there will be other interesting applications of the Euler-
Maruyama approximation, such as in numerical analysis under G-expectation, and
in mathematical finance under uncertainty.

Consider the following N-dimensional SDE driven by the canonical d-dimensional
G-Brownian motion over [0,1] on the sublinear expectation space (Ω ,L2

G(Ω),EG)
which is the L2

G-completion of the canonical path space (Ω ,Lip(Ω),EG):

dXt = b(Xt)dt +hαβ (Xt)d〈Bα ,Bβ 〉t +Vα(Xt)dBα
t , (8)

with initial condition X0 = ξ ∈ RN , where the coefficients bi,hi
αβ

,V i
α are bounded

and uniformly Lipschitz. The existence and uniqueness of solution is studied by
Peng [27].

The Euler-Maruyama approximation of the solution Xt of (8) is defined as fol-
lows.

For n > 1, consider the dyadic partition of the time interval [0,1], i.e.,

tn
k =

k
2n , k = 0,1, · · · ,2n.

Define Xn
t to be the approximation of Xt in the following evolutive way:

Xn
0 = ξ ,

and for t ∈ [tn
k−1, t

n
k ],

(Xn
t )

i = (Xn
k−1)

i +V i
α(X

n
k−1)∆

n
k Bα +bi(Xn

k−1)∆ tn +hi
αβ

(Xn
k−1)∆

n
k 〈Bα ,Bβ 〉,

where

Xn
k−1 := Xn

tn
k−1

, ∆
n
k Bα := Bα

tn
k
−Bα

tn
k−1

, ∆ tn :=
1
2n ,

∆
n
k 〈Bα ,Bβ 〉 := 〈Bα ,Bβ 〉tn

k
−〈Bα ,Bβ 〉tn

k−1
.

In this section, we are going to prove that Xn
t converges to the solution Xt of (8)

in L2
G(Ω ;RN) with convergence rate 0.5, which coincides with the classical case

when Bt reduces to a classical Brownian motion.
First of all, the following lemmas is useful for us.

Lemma 1. Let ηt be a bounded process in M2
G(0,1). Then for any v ∈ Rd , 0 6 s <

t 6 1,

EG[(

ˆ t

s
ηud〈Bv〉u)2]6 σ

2
v(t− s)EG[

ˆ t

s
η

2
u d〈Bv〉u],
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where σ
2
v := 2G(v · vT ) and Bv := 〈v,B〉, in which 〈·, ·〉 denotes the Euclidean inner

product of Rd .

Proof. By approximation, it suffices to consider

ηu =
k

∑
j=1

ζ j−11[u j−1,u j),

where s = u0 < u1 < · · · < uk = t and ζ j ∈ Lip(Ωu j) are bounded. In this case, by
definition ˆ t

s
ηud〈Bv〉u =

k

∑
j=1

ζ j−1(〈Bv〉u j −〈B
v〉u j−1),

and ˆ t

s
η

2
u d〈Bv〉u =

k

∑
j=1

ζ
2
j−1(〈Bv〉u j −〈B

v〉u j−1),

which are both defined in the pathwise sense for step functions. Since 〈Bv〉 is in-
creasing, the Cauchy-Schwarz inequality yields that

(

ˆ t

s
ηud〈Bv〉u)2 6 (〈Bv〉t −〈Bv〉s) ·

ˆ t

s
η

2
u d〈Bv〉u.

Since ζ j are bounded, if we use M to denote an upper bound of η2
u , it follows that

for any c > σ
2
v ,

(

ˆ t

s
ηud〈Bv〉u)2 6 M(〈Bv〉t −〈Bv〉s− c(t− s))+(〈Bv〉t −〈Bv〉s)

+c(t− s)
ˆ t

s
η

2
u d〈Bv〉u.

Let ϕ(x) = (x−c(t−s))+x. Since 〈Bv〉t−〈Bv〉s is N([σ2
v ,σ

2
v ]×{0})-distributed,

it follows that

EG[ϕ(〈Bv〉t −〈Bv〉s)] = sup
σ2

v6x6σ
2
v

ϕ(x(t− s))

= (t− s)2 sup
σ2

v6x6σ
2
v

(x− c)+x

= 0.

Therefore, by the sub-linearity of G, we have

EG[(

ˆ t

s
ηud〈Bv〉u)2]6 c(t− s)EG[

ˆ t

s
η

2
u d〈Bv〉u], c > σ

2
v .

Now the proof is complete.
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Now we are in position to state and prove our main result of this section.

Theorem 7. We have the following error estimate for the Euler-Maruyama approx-
imation:

sup
t∈[0,1]

EG[|Xn
t −Xt |2]6C∆ tn,

where C is some positive constant only depending on d,N,G and the coefficients of
(8). In particular,

lim
n→∞

sup
t∈[0,1]

EG[|Xn
t −Xt |2] = 0.

Proof. For t ∈ [tn
k−1, t

n
k ], by construction we have

X i
t − (Xn

t )
i = Ii

1 + Ji
1 +Ki

1 + Ii
2 + Ji

2 +Ki
2,

where

Ii
1 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(V i
α(Xs)−V i

α(X
n
s ))dBα

s +

ˆ t

tn
k−1

(V i
α(Xs)−V i

α(X
n
s ))dBα

s ,

Ji
1 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(bi(Xs)−bi(Xn
s ))ds+

ˆ t

tn
k−1

(bi(Xs)−bi(Xn
s ))ds,

Ki
1 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s

+

ˆ t

tn
k−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s,

Ii
2 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(V i
α(X

n
s )−V i

α(X
n
l−1))dBα

s +

ˆ t

tn
k−1

(V i
α(Xs)−V i

α(X
n
l−1))dBα

s ,

Ji
2 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(bi(Xn
s )−bi(Xn

l−1))ds+
ˆ t

tn
k−1

(bi(Xs)−bi(Xn
l−1))ds,

Ki
2 =

k−1

∑
l=1

ˆ tn
l

tn
l−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s

+

ˆ t

tn
k−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s.

It follows that

(X i
t − (Xn

t )
i)2 6 6((Ii

1)
2 +(Ji

1)
2 +(Ki

1)
2 +(Ii

2)
2 +(Ji

2)
2 +(Ki

2)
2). (9)

Throughout the rest of this section, we will always use the same notation C to
denote constants only depending on d,N,G and the coefficients of (8), although
they may be different from line to line.

Now the following estimates are important for further development.
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(1) From the G-Itô isometry, the distribution of 〈Bα〉 and the Lipschitz property,
we have,

EG[(

ˆ u

tn
l−1

(V i
α(Xs)−V i

α(X
n
s ))dBα

s )
2]6C

ˆ u

tn
l−1

EG[|Xs−Xn
s |2]ds, ∀u ∈ [tn

l−1, t
n
l ].

(2) Similarly, by Cauchy-Schwarz inequality, we have

EG[(

ˆ u

tn
l−1

(bi(Xs)−bi(Xn
s ))ds)2]6C(u− tn

l−1)

ˆ u

tn
l−1

EG[|Xs−Xn
s |2]ds, ∀u ∈ [tn

l−1, t
n
l ].

By the definition of 〈Bα ,Bβ 〉 and Lemma 1, we also have for any u ∈ [tn
l−1, t

n
l ],

EG[(

ˆ u

tn
l−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s)2]6C(u− tn

l−1)

ˆ u

tn
l−1

EG[|Xs−Xn
s |2]ds.

(3) By construction and similar arguments to (1), (2), we have

EG[(

ˆ u

tn
l−1

(V i
α(X

n
s )−V i

α(X
n
l−1))dBα

s )
2] 6 C(u− tn

l−1)
2,

EG[(

ˆ u

tn
l−1

(bi(Xn
s )−bi(Xn

l−1))ds)2] 6 C(u− tn
l−1)

3,

EG[(

ˆ u

tn
l−1

(hi
αβ

(Xs)−hi
αβ

(Xn
s ))d〈Bα ,Bβ 〉s)2] 6 C(u− tn

l−1)
3,

for all u ∈ [tn
l−1, t

n
l ].

(4) By conditioning and from the properties of Itô integral with respect to G-
Brownian motion, we know that the G-expectation of each “cross term” in (Ii

1)
2 and

in (Ii
2)

2 is zero.
Combining (1) to (4) and applying the following elementary inequality to (Ji

1)
2,

(Ji
2)

2, (Ki
1)

2 and (Ki
2)

2:

(a1 + · · ·+am)
2 6 m(a2

1 + · · ·+a2
m),

it is not hard to obtain that

EG[‖Xt −Xn
t ‖2]6C

ˆ t

0
EG[‖Xs−Xn

s ‖2]ds+C(∆ tn), ∀t ∈ [0,1].

By using Gronwall inequality, we arrive at

EG[‖Xt −Xn
t ‖2]6C(∆ tn),

which completes the proof of the theorem.
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4 G-Brownian Motion as Rough Paths and RDEs Driven by
G-Brownian Motion

In this section, we are going to study the nature of sample paths of G-Brownian
motion under the framework of rough path theory. More precisely, we are going to
show that: on the canonical path space, outside a Borel-measurable set of capacity
zero, the sample paths of G-Brownian motion can be enhanced to the second level
in a canonical way so that they become geometric rough paths with roughness 2 <
p < 3. As pointed out before, such a result will enable us to establish RDEs driven
by G-Brownian motion in the space of geometric rough paths.

Recall that (Ω ,Lip(Ω),EG) is the canonical path space associated with the func-
tion G, on which the coordinate process

Bt(ω) := ωt , t ∈ [0,1],

is a d-dimensional G-Brownian motion with continuous sample paths.
By the following moment inequality for Bt :

EG[|Bt −Bs|2q]6Cq(t− s)q, ∀0 6 s < t 6 1, q > 1, (10)

and the generalized Kolmogorov criterion (see [27] for details), we know that for
quasi-surely, the sample paths of Bt are α-Hölder continuous for any α ∈ (0, 1

2 ).
Therefore, if the sample paths of Bt can be regarded as objects in the space of geo-
metric rough paths, the correct roughness should be 2< p< 3 (so we should look for
the enhancement of Bt to the second level); or in other words, the right topology we
should work with is the p-variation topology induced by the p-variation distance dp
on the space of geometric rough paths with roughness 2 < p < 3. The situation here
is the same as the classical Brownian motion, and the fundamental reason behind
lies in the distribution of Bt (or more precisely, the moment inequality (10)), which
yields the same kind of Hölder continuity for sample paths of Bt as the classical one.

From now on, we will assume that p ∈ (2,3) is some fixed constant.
As in the last section, for n> 1, k = 0,1, · · · ,2n, let tn

k =
k

2n be the dyadic partition
of [0,1], and let Bn

t be the piecewise linear approximation of Bt over the partition
points {tn

0 , t
n
1 , · · · , tn

2n}. Since the sample paths of Bn
t are smooth, Bn

t has a unique
enhancement

Bn
s,t = (1,Bn,1

s,t ,B
n,2
s,t ), 0 6 s < t 6 1,

to the space GΩp(Rd) of geometric rough paths with roughness p (in fact, for any
p > 1) determined by iterated integrals.

Our goal is to show that for quasi-surely, Bn is a Cauchy sequence under the
p-variation distance dp. It follows that for quasi-surely, the sample paths of Bt can
be enhanced to the second level as geometric rough paths with roughness p, which
are defined as limits of Bn under dp. Such an enhancement can be regarded as a
canonical lifting by using dyadic approximations.
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Throughout the rest of this section, we will use ‖ · ‖q to denote the Lq-norm
under the G-expectation EG. Moreover, we will use the same notation C to denote
constants only depending on d,G, p, although they may be different from line to
line.

The following estimates are crucial for the proof of the main result of this section.

Lemma 2. Let m,n > 1, and k = 1,2, · · · ,2n. Then
(1)

‖Bm, j
tn
k−1,t

n
k
‖ p

j
6

C( 1
2

n
2
) j, n 6 m;

C( 2
m
2

2n ) j, n > m,

where j = 1,2.
(2)

‖Bm+1,1
tn
k−1,t

n
k
−Bm,1

tn
k−1,t

n
k
‖p 6

{
0, n 6 m;

C 2
m
2

2n , n > m,

‖Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
‖ p

2
6

{
C 1

2
m
2 2

n
2
, n 6 m;

C 2m

22n , n > m.

Here ‖ · ‖q denotes the Lq-norm under the G-expectation EG, and C is some
positive constant not depending on m,n,k.

Proof. (1) The first level.
If n 6 m, then

Bm,1
tn
k−1,t

n
k
= Btn

k
−Btn

k−1
.

It follows from the moment inequality (10) that

EG[|Bm,1
tn
k−1,t

n
k
|p]6C

1

2
np
2
,

and thus
‖Bm,1

tn
k−1,t

n
k
‖p 6C

1
2

n
2
.

Also it is trivial to see that

Bm+1,1
tn
k−1,t

n
k
−Bm,1

tn
k−1,t

n
k
= (Btn

k
−Btn

k−1
)− (Btn

k
−Btn

k−1
) = 0.

If n > m, then by construction we know that

Bm,1
tn
k−1,t

n
k
=

2m

2n (Btm
l
−Btm

l−1
),

where l is the unique integer such that [tn
k−1, t

n
k ]⊂ [tm

l−1, t
m
l ]. Therefore,

‖Bm,1
tn
k−1,t

n
k
‖p =

2m

2n ‖Btm
l
−Btm

l−1
‖p 6C

2
m
2

2n .
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On the other hand, if [tn
k−1, t

n
k ]⊂ [tm+1

2l−2, t
m+1
2l−1], then

Bm+1,1
tn
k−1,t

n
k
−Bm,1

tn
k−1,t

n
k
=

2m+1

2n (Btm+1
2l−1
−Btm+1

2l−2
)− 2m

2n (Btm
l
−Btm

l−1
)

=
2m

2n ((B 2l−1
2m+1
−B 2l−2

2m+1
)− (B 2l

2m+1
−B 2l−1

2m+1
)).

It follows that

‖Bm+1,1
tn
k−1,t

n
k
−Bm,1

tn
k−1,t

n
k
‖p 6C

2
m
2

2n .

Similarly, if [tn
k−1, t

n
k ]⊂ [tm+1

2l−1, t
m+1
2l ], we will obtain the same estimate.

(2) The second level.
Since p

2 < 2, by monotonicity it suffices to establish the desired estimates under
the L2-norm.

First consider the term Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
.

If n 6 m, by the construction of Bm,2
s,t , we have

Bm,2;α,β
tn
k−1,t

n
k

=

ˆ
tn
k−1<u<v<tn

k

dBα
u dBβ

v

=

ˆ tn
k

tn
k−1

Bm,1;α
tn
k−1,v

dBm,1;β
v

=
2m−nk

∑
l=2(m−n)(k−1)+1

∆ m
l Bβ

∆ tm

ˆ tm
l

tm
l−1

(
v− tm

l−1

∆ tm Bα

tm
l
+

tm
l − v
∆ tm Bα

tm
l−1
−Bα

tn
k−1

)dv

=
2m−nk

∑
l=2(m−n)(k−1)+1

(
Bα

tm
l−1

+Bα

tm
l

2
−Bα

tn
k−1

)∆ m
l Bβ .

Therefore,

Bm+1,2;α,β
tn
k−1,t

n
k

−Bm,2;α,β
tn
k−1,t

n
k

=
2m+1−nk

∑
l=2(m+1−n)(k−1)+1

(
Bα

tm+1
l−1

+Bα

tm+1
l

2
−Bα

tn
k−1

)∆ m
l Bβ

−
2m−nk

∑
l=2(m−n)(k−1)+1

(
Bα

tm
l−1

+Bα

tm
l

2
−Bα

tn
k−1

)∆ m
l Bβ

=
2(m−n)k

∑
l=2(m−n)(k−1)+1

((
Bα

tm+1
2l−2

+Bα

tm+1
2l−1

2
−Bα

tn
k−1

)∆ m+1
2l−1Bβ +(

Bα

tm+1
2l−1

+Bα

tm+1
2l

2
−Bα

tn
k−1

)

·∆ m+1
2l Bβ − (

Bα

tm+1
2l−2

+Bα

tm+1
2l

2
−Bα

tn
k−1

)(∆ m+1
2l−1Bβ +∆

m+1
2l Bβ ))
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=
1
2

2m−nk

∑
l=2m−n(k−1)+1

(∆ m+1
2l−1Bα

∆
m+1
2l Bβ −∆

m+1
2l Bα

∆
m+1
2l−1Bβ ).

By using the notation of tensor products, we have

Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
=

1
2

2m−nk

∑
l=2m−n(k−1)+1

(∆ m+1
2l−1B⊗∆

m+1
2l B−∆

m+1
2l B⊗∆

m+1
2l−1B).

It follows that

EG[|Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
|2]

=
1
4
EG[|

2m−nk

∑
l=2m−n(k−1)+1

(∆ m+1
2l−1B⊗∆

m+1
2l B−∆

m+1
2l B⊗∆

m+1
2l−1B)|2]

6 C ∑
α 6=β

α,β=1,··· ,d

EG[|∑
l
(∆ m+1

2l−1Bα
∆

m+1
2l Bβ −∆

m+1
2l Bα

∆
m+1
2l−1Bβ )|2]

6 C ∑
α 6=β

∑
l,r

EG[(∆ m+1
2l−1Bα

∆
m+1
2l Bβ −∆

m+1
2l Bα

∆
m+1
2l−1Bβ )

·(∆ m+1
2r−1Bα

∆
m+1
2r Bβ −∆

m+1
2r Bα

∆
m+1
2r−1Bβ )]

6 C ∑
α 6=β

∑
l,r
(EG[∆ m+1

2l−1Bα
∆

m+1
2r−1Bα

∆
m+1
2l Bβ

∆
m+1
2r Bβ ]

+EG[∆ m+1
2l Bα

∆
m+1
2r Bα

∆
m+1
2l−1Bβ

∆
m+1
2r−1Bβ ]

+EG[−∆
m+1
2l−1Bα

∆
m+1
2r Bα

∆
m+1
2r−1Bβ

∆
m+1
2l Bβ ]

+EG[−∆
m+1
2r−1Bα

∆
m+1
2l Bα

∆
m+1
2l−1Bβ

∆
m+1
2r Bβ ]),

where the summation over l and r is taken from 2m−n(k−1)+1 to 2m−nk. Here we
have used the sublinearity of E. Now we study every term separately. If l < r, by the
properties of conditional G-expectation and the distribution of Bt , we have

EG[∆ m+1
2l−1Bα

∆
m+1
2l Bβ

∆
m+1
2r−1Bα

∆
m+1
2r Bβ ]

= EG[E[∆ m+1
2l−1Bα

∆
m+1
2l Bβ

∆
m+1
2r−1Bα

∆
m+1
2r Bβ |Ωtm+1

2r−1
]]

= EG[η+E[∆ m+1
2r Bβ |Ωtm+1

2r−1
]+η

−E[−∆
m+1
2r Bβ |Ωtm+1

2r−1
]]

= 0,

where η = ∆
m+1
2l−1Bα ∆

m+1
2l Bβ ∆

m+1
2r−1Bα . Similarly, we can prove that for any l 6= r,

EG[∆ m+1
2l−1Bα

∆
m+1
2r−1Bβ

∆
m+1
2l Bβ

∆
m+1
2r Bβ ]

=EG[(∆ m+1
2l Bα

∆
m+1
2r Bα

∆
m+1
2l−1Bβ

∆
m+1
2r−1Bβ )]
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=EG[(−∆
m+1
2l−1Bα

∆
m+1
2r Bα

∆
m+1
2r−1Bβ

∆
m+1
2l Bβ )]

=EG[(−∆
m+1
2r−1Bα

∆
m+1
2l Bα

∆
m+1
2l−1Bβ

∆
m+1
2r Bβ )]

=0.

On the other hand, if l = r, it is straight forward that

EG[(∆ m+1
2l−1Bα)2(∆ m+1

2l Bβ )2] 6
1
2
(EG[(∆ m+1

2l−1Bα)4]+EG[(∆ m+1
2l Bβ )4])6C

1
22m ,

and similarly,

EG(−∆
m+1
2l−1Bα

∆
m+1
2l−1Bβ

∆
m+1
2l Bα

∆
m+1
2l Bβ ) 6

1
4
(EG[(∆ m+1

2l−1Bα)4]+EG[(∆ m+1
2l−1Bβ )4]

+EG[(∆ m+1
2l Bα)4]+EG[(∆ m+1

2l Bβ )4])

6 C
1

22m .

Combining all the estimates above, we arrive at

EG[|Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
|2] 6 C ∑

α 6=β

2m−nk

∑
l=2m−n(k−1)+1

1
22m 6C

1
2m2n ,

and hence
‖Bm+1,2

tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
‖2 6C

1
2

m
2 2

n
2
.

If n > m, by construction we have

Bm,2;α,β
tn
k−1,t

n
k

=

ˆ
tn
k−1<u<v<tn

k

d(Bm)α
u d(Bm)β

v

=

ˆ tn
k

tn
k−1

Bm,1;α
tn
k−1,v

d(Bm)β
v

=
∆ m

l Bα ∆ m
l Bβ

(∆ tm)2

ˆ tn
k

tn
k−1

(v− tn
k−1)dv

=
1
2

22(m−n)
∆

m
l Bα

∆
m
l Bβ ,

where l is the unique integer such that [tn
k−1, t

n
k ]⊂ [tm

l−1, t
m
l ]. In other words, we have

Bm,2
tn
k−1,t

n
k
=

1
2

22(m−n)(∆ m
l B)⊗2,

It follows that
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Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k

=

{
22(m−n)+1(∆ m+1

2l−1B)⊗2−22(m−n)−1(∆ m
l B)⊗2, [tn

k−1, t
n
k ]⊂ [tm+1

2l−2, t
m+1
2l−1];

22(m−n)+1(∆ m+1
2l B)⊗2−22(m−n)−1(∆ m

l B)⊗2, [tn
k−1, t

n
k ]⊂ [tm+1

2l−1, t
m+1
2l ].

By using the Minkowski inequality, the Cauchy-Schwarz inequality and the sublin-
earity of E, it is easy to obtain that

‖Bm+1,2
tn
k−1,t

n
k
−Bm,2

tn
k−1,t

n
k
‖2 6C

2m

22n .

Now consider the term Bm,2
tn
k−1,t

n
k
.

If n > m, by using
Bm,2

tn
k−1,t

n
k
= 22(m−n)−1(∆ m

l B)⊗2,

we can proceed in the same way as before to obtain that

‖Bm,2
tn
k−1,t

n
k
‖2 6C

2m

22n .

If n < m, then

Bm,2
tn
k−1,t

n
k
=

m

∑
l=n+1

(Bl,2
tn
k−1,t

n
k
−Bl−1,2

tn
k−1,t

n
k
)+Bn,2

tn
k−1,t

n
k
.

It follows that

‖Bm,2
tn
k−1,t

n
k
‖2 6

m

∑
l=n+1

‖Bl,2
tn
k−1,t

n
k
−Bl−1,2

tn
k−1,t

n
k
‖2 +‖Bn,2

tn
k−1,t

n
k
‖2

6 C(
1

2
n
2

∞

∑
l=n+1

1

2
l
2
+

1
2n )

6 C
1
2n .

Now the proof is complete.

In order to study the behavior of Bm in the space GΩp(Rd), we may need to
control the p-variation distance dp in a suitable way. For w, w̃ ∈ GΩ(Rd), define

ρ j(w, w̃) := (
∞

∑
n=1

nγ
2n

∑
k=1
|w j

tn
k−1,t

n
k
− w̃ j

tn
k−1,t

n
k
|

p
j )

j
p , j = 1,2, (11)

where γ > p− 1 is some fixed universal constant. The functional ρ j was initially
introduced by Hambly and Lyons [11] to construct the stochastic area process asso-
ciated with the Brownian motion on the Sierpinski gasket. We use ρ j(w) to denote
ρ j(w, w̃) with w̃ = (1,0,0).

The following result, which is important for us, is proved in [19].
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Proposition 4. There exists some positive constant R = R(p,γ), such that for any
w, w̃ ∈ GΩ(Rd),

dp(w, w̃)6 Rmax{ρ1(w, w̃),ρ1(w, w̃)(ρ1(w)+ρ1(w̃)),ρ2(w, w̃)}.

Now let

I(w, w̃) := max{ρ1(w, w̃),ρ1(w, w̃)(ρ1(w)+ρ1(w̃)),ρ2(w, w̃)}, (12)

and observe that

{ω : Bm is not Cauchy under dp} ⊂ {ω :
∞

∑
m=1

dp(Bm,Bm+1) = ∞}

⊂ limsup
m→∞

{ω : dp(Bm,Bm+1)>
R

2mβ
}

⊂ limsup
m→∞

{ω : I(Bm,Bm+1)>
1

2mβ
}. (13)

where β is some positive constant to be chosen. Notice that the R.H.S. of (13) is
B(Ω)-measurable so its capacity is well-defined. Therefore, in order to prove that
for quasi-surely, Bm is a Cauchy sequence under dp, it suffices to show that the
R.H.S. of (13) has capacity zero. This can be shown by using the Borel-Cantelli
lemma.

According to (12), we may first need to establish estimates for

c(ρ j(Bm,Bm+1)> λ ), j = 1,2,

and
c(ρ1(Bm)> λ ),

where m > 1 and λ > 0. They are contained in the following lemma.

Lemma 3. For m > 1, λ > 0, we have the following estimates.
(1)

c(ρ1(Bm)> λ )6Cλ
−p.

(2) Let θ ∈ (0, p
2 −1) be some constant such that

nγ+1 6C
2n(p−1)

2n(p−θ−1) , ∀n > 1.

Then we have

c(ρ j(Bm,Bm+1)> λ )6Cλ
− p

j
1

2m( p
2−θ−1)

, j = 1,2.

Proof. First consider
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c(ρ1(Bm)> λ ) = c(
∞

∑
n=1

nγ
2n

∑
k=1
|Bm,1

tn
k−1,t

n
k
|p > λ

p).

Define

AN = {ω :
N

∑
n=1

nγ
2n

∑
k=1
|Bm,1

tn
k−1,t

n
k
|p > λ

p} ∈B(Ω),

and

A = {ω :
∞

∑
n=1

nγ
2n

∑
k=1
|Bm,1

tn
k−1,t

n
k
|p > λ

p} ∈B(Ω).

It is obvious that AN ↑ A. By the properties of the capacity c, we have

c(A) = lim
N→∞

c(AN).

On the other hand, by the sublinearity of EG, the Chebyshev inequality for the ca-
pacity c and Lemma 10, we have

c(AN) 6 λ
−p

N

∑
n=1

nγ
2n

∑
k=1

E[|Bm,1
tn
k−1,t

n
k
|p]

6 Cλ
−p[

m

∑
n=1

nγ 2n 1

2
np
2
+

∞

∑
n=m+1

nγ 2n 2
mp
2

2np ]

= Cλ
−p[

m

∑
n=1

nγ 1

2n( p
2−1)

+2
mp
2

∞

∑
n=m+1

nγ 1
2n(p−1) ]

6 Cλ
−p.

It follows that
c(ρ1(Bm)> λ ) = c(A)6Cλ

−p.

Now consider

c(ρ1(Bm,Bm+1)> λ ) = c(
∞

∑
n=1

nγ
2n

∑
k=1
|B(m+1),1

k−1
2n , k

2n
−B(m),1

k−1
2n , k

2n
|p > λ

p).

By similar reasons we will have

c(ρ1(Bm,Bm+1)> λ ) 6 λ
−p

∞

∑
n=1

nγ
2n

∑
k=1

E[|Bm+1,1
tn
k−1,t

n
k
−Bm,1

tn
k−1,t

n
k
|p]

6 Cλ
−p(

∞

∑
n=m+1

nγ 2n 2
mp
2

2np )

= Cλ
−p2

mp
2

∞

∑
n=m+1

nγ 1
2n(p−1) .
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Since θ ∈ (0, p
2 −1) is such that

nγ+1 6C
2n(p−1)

2n(p−θ−1) , ∀n > 1,

we arrive at
c(ρ1(Bm,Bm+1)> λ )6Cλ

−p 1

2m( p
2−θ−1)

.

Finally, consider the second level part. By similar reasons, we have

c(ρ2(Bm,Bm+1)> λ ) 6 Cλ
− p

2 [
m

∑
n=1

nγ 2n 1

2
mp
4 2

np
4
+2

mp
2

∞

∑
n=m+1

nγ 2n 1
2np ]

= Cλ
− p

2 [
1

2
mp
4

m

∑
n=1

nγ 2n(1− p
4 )+2

mp
2

∞

∑
n=m+1

nγ 1
2n(p−1) ]

6 Cλ
− p

2 [
1

2
mp
4

mγ+12m(1− p
4 )+2

mp
2

1
2m(p−θ−1) ]

6 Cλ
− p

2
1

2m( p
2−θ−1)

.

Now we are in position to prove the main result of this section.

Theorem 8. Outside a B(Ω)-measurable set of capacity zero, Bm is a Cauchy se-
quence under the p-variation distance dp. In particular, for quasi-surely, the sample
paths of Bt can be enhanced to be geometric rough paths

Bs,t = (1,B1
s,t ,B

2
s,t), 0 6 s < t 6 1,

with roughness p, which are defined as the limit of sample (geometric rough) paths
of Bm in GΩp(Rd) under the p-variation distance dp.

Proof. By Lemma 3, we have

c(I(Bm,Bm+1)>
1

2mβ
) 6

2

∑
j=1

c(ρ j(Bm,Bm+1)>
1

2mβ
)

+c(ρ1(Bm,Bm+1)(ρ1(Bm)+ρ1(Bm+1))>
1

2mβ
)

6 2c(ρ1(Bm,Bm+1)>
1

22mβ
)+ c(ρ2(Bm,Bm+1)>

1
2mβ

)

+c(ρ1(Bm)>
2mβ

2
)+ c(ρ1(Bm+1)>

2mβ

2
)

6 C[
1

2mβ p +
1

2m( p
2−θ−2β p−1)

+
1

2m( p
2−θ− β p

2 −1)
],

where θ ∈ (0, p
2 −1) is some fixed constant.

If we choose β such that
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0 < β <
p−2θ −2

4p
,

then
∞

∑
m=1

c(I(Bm,Bm+1)>
1

2mβ
)< ∞.

By the Borel-Cantelli lemma, we have

c(limsup
m→∞

{ω : I(Bm,Bm+1)>
1

2mβ
}) = 0,

and the result follows from the inclusion (13).

With the help of Theorem 8 and the smoothness of 〈Bα ,Bβ 〉t (by definition the
sample paths of 〈Bα ,Bβ 〉t are smooth), we are able to apply the universal limit
theorem in rough path theory to define RDEs driven by G-Brownian motion in the
pathwise sense. More precisely, consider the following N-dimensional RDE in the
sense of rough paths:

dYt = b̃(Yt)dt + h̃αβ (Yt)d〈Bα ,Bβ 〉t +Vα(Yt)dBα
t , (14)

with initial condition Y0 = x, where b̃, h̃αβ ,Vα are C3
b-vector fields on RN . Then

outside a B(Ω)-measurable set of capacity zero, (14) has a unique full solution Y in
GΩp(RN). Y is constructed as the limit of the enhancement of Y n

t in GΩp(RN) under
the p-variation distance, where Y n

t is the unique classical solution of the following
ordinary differential equation:

dY n
t = b̃(Y n

t )dt + h̃αβ (Y
n

t )d〈Bα ,Bβ 〉t +Vα(Y n
t )d(B

n)α
t , (15)

with Y n
0 = x, in which Bn

t is the dyadic piecewise linear approximation of Bt .
If we only consider solutions instead of full solutions (i.e., only consider the first

level), then for quasi-surely, (14) has a unique solution Yt ∈C([0,1];RN), which is
constructed as the uniform limit of the solution of (15) with initial condition Y n

0 = x.
Before the end of this section, we are going to give an explicit description of the

second level B2
s,t of Bt defined in Theorem 8, which reveals the nature of B2

s,t it-
self. Such result is fundamental to understand the relation between SDEs and RDEs
driven by G-Brownian motion.

Lemma 4. Assume that Xn converges to X in L2
G(Ω) and converges to Y quasi-

surely. Then for quasi-surely, X = Y.

Proof. By the Chebyshev inequality for the capacity, we have

c(|Xn−X |> ε)6
1
ε2E

G[|Xn−X |2], ∀ε > 0.

Since
Xn→ X in L2

G(Ω),
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we can extract a subsequence Xnk , such that for any k > 1,

EG[|Xnk −X |2]6 1
k4 .

It follows that
c(|Xnk −X |> 1

k
)6

1
k2 , ∀k > 1,

and
∞

∑
k=1

c(|Xnk −X |> 1
k
)< ∞.

By the Borel-Cantelli lemma for the capacity, we arrive at for quasi-surely, Xnk
converges to X . By assumption it follows that for quasi-surely, X = Y.

The following result shows the nature of the second level of Bt . In the case when
Bt reduces to the classical Brownian motion, it is essentially the relation between
Stratonovich and Itô integrals.

Proposition 5. Let Bs,t = (1,B1
s,t ,B

2
s,t) be the quasi-surely defined enhancement of

Bt in Theorem 8. Then for any 0 6 s < t 6 1, for quasi-surely, we have

B2;α,β
s,t =

ˆ t

s
Bα

s,udBβ
u +

1
2
〈Bα ,Bβ 〉s,t , (16)

where the integral on the R.H.S. of (16) is the Itô integral.

Proof. We know from Theorem 8 that for quasi-surely,

lim
n→∞

dp(Bn,B) = 0.

From the definition of dp, it is straight forward that for quasi-surely, Bn,2
s,t converges

uniformly to B2
s,t .

Without lost of generality, we assume that s, t are both dyadic points in [0,1]. It
follows that when n is large enough,

Bn,2;α,β
s,t =

ˆ
s<u<v<t

d(Bn)α
u d(Bn)β

v

=

ˆ t

s
(Bn)α

s,vd(Bn)β
v

= ∑
k:[tn

k−1,t
n
k ]⊂[s,t]

∆ n
k Bβ

∆ tn

ˆ tn
k

tn
k−1

(
v− tn

k−1

∆ tn Bα
k +

tn
k − v
∆ tn Bα

k−1−Bα
s )dv

= ∑
k:[tn

k−1,t
n
k ]⊂[s,t]

(
Bα

k−1 +Bα
k

2
−Bα

s )∆
n
k Bβ

= ∑
k:[tn

k−1,t
n
k ]⊂[s,t]

(Bα
k−1−Bα

s )∆
n
k Bβ +

1
2 ∑

k
∆

n
k Bα

∆
n
k Bβ .
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From properties of Itô integral and the cross-variation 〈Bα ,Bβ 〉t , we know that the
R.H.S. of the above equality converges to

´ t
s Bα

s,udBβ
u + 1

2 〈B
α ,Bβ 〉s,t in L2

G(Ω).

Consequently, by Lemma 4 B2
s,t must coincide with

´ t
s Bα

s,udBβ
u + 1

2 〈B
α ,Bβ 〉s,t

quasi-surely.

5 The Fundamental Relation between SDEs and RDEs Driven
by G-Brownian Motion

So far we already know that there are two types of well-defined differential equa-
tions driven by G-Brownian motion: SDEs which are defined in the L2

G-sense with
respect to the G-expectation EG, and RDEs which are quasi-surely defined in the
pathwise sense. This section is devoted to the study of the fundamental relation
between these two types of differential equations.

Consider the following N-dimensional SDE driven by G-Brownian motion on
(Ω ,L2

G(Ω),E) :

dXt = b(Xt)dt +hαβ (Xt)d〈Bα ,Bβ 〉t +Vα(Xt)dBα
t , (17)

with initial condition X0 = x ∈ RN . Here we assume that b,hαβ ,Vα are C3
b-vector

fields on RN .
Our aim is to find the correct RDE of the form (14) whose strong solution coin-

cides with Xt quasi-surely in the pathwise sense.
Let’s first illustrate the idea in an informal way. We are going to use the rough

Taylor expansion in the theory of RDEs (see Corollary 12.8 in [9]) and Proposition
5 to find the correct form of the RDE we are looking for.

Consider the following general RDE:

dYt = b̃(Yt)dt + h̃αβ (Yt)d〈Bα ,Bβ 〉t +Ṽα(Yt)dBα
t , (18)

with initial condition Y0 = x, where b̃, h̃αβ ,Ṽα are C3
b-vector fields on RN . By the

smoothness of the cross variation process 〈Bα ,Bβ 〉, and the roughness of Bt stud-
ied in the last section, we know from the rough Taylor expansion theorem that for
quasi-surely, for some control function ω(s, t), the solution Yt of (18) satisfies, when
ω(s, t)6 1,

|Ys,t − b̃(Ys)(t− s)− h̃αβ (Ys)〈Bα ,Bβ 〉s,t −Ṽα(Ys)B
1;α
s,t −DṼβ (Ys) ·Ṽα(Ys)B

2;α,β
s,t |

6Cω(s, t)θ , (19)

where ω(s, t)C and θ > 1 are two constants not depending on s, t. Note that inequal-
ity (19) reveals the local behavior of the solution Yt . It follows from Proposition 5
that for quasi-surely,

|Ys,t − Ĩs,t |6Cω(s, t)θ ,
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where

Ĩs,t : = b̃(Ys)(t− s)+(h̃αβ (Ys)+
1
2

DṼβ (Ys) ·Ṽα(Ys))d〈Bα ,Bβ 〉t +Ṽα(Ys)B
1;α
s,t

+DṼβ (Ys) ·Ṽα(Ys)

ˆ t

s
Bα

s,udBβ
u . (20)

Now if we consider the global behavior of Yt , we may sum up inequality (20) over
dyadic intervals [tn

k−1, t
n
k ] and then take limit (in L2

G(Ω ;RN)) to obtain that for quasi-
surely,

Ys,t =

ˆ t

s
b̃(Yu)du+

ˆ t

s
(h̃αβ (Yu)+

1
2

DṼβ (Yu) ·Ṽα(Yu))d〈Bα ,Bβ 〉u +
ˆ t

s
Ṽα(Yu)dBα

u

+(L2
G−) lim

n→∞
∑

k:[tn
k−1,t

n
k ]⊂[s,t]

DṼα(Ytn
k−1

) ·Ṽβ (Ytn
k−1

)

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u , (21)

where the integrals with respect to Bt are interpreted as Itô integrals. On the other
hand, by the distribution of Bt and properties of G-Itô integral, it is not hard to prove
that the L2

G-limit in the last term of the above identity is zero. Therefore, we know
that Yt solves the SDE

dXt = b̃(Xt)dt +(h̃αβ (Xt)+
1
2

DṼβ (Xt) ·Ṽα(Xt))d〈Bα ,Bβ 〉t +Ṽα(Xt)dBα
t .

In other words, if Xt is the solution of the SDE (17), it is natural to expect that for
quasi-surely, Xt is the solution of the following RDE:

dYt = b(Yt)dt +(hαβ (Yt)−
1
2

DVβ (Yt) ·Vα(Yt))d〈Bα ,Bβ 〉+Vα(Yt)dBα
t , (22)

with the same initial condition.
In the remaining of this section, we are going to prove this claim in a rigorous

way.
From now on, assume that Xt is the solution of the SDE (17) and Yt is the solu-

tion of the RDE (22) with the same initial condition x ∈ RN , where the coefficients
b,hαβ ,Vα are C3

b-vector fields on RN . For simplicity we will also use the same no-
tation to denote constants only depending on d,N,G, p and the coefficients of (17),
although they may be different from line to line.

The following lemma enables us to show that the L2
G-limit in the last term of the

identity (21) is zero.

Lemma 5. Let f ∈Cb(RN), and s < t be two dyadic points in [0,1] (i.e., s = tm
k and

t = tm
l for some m and k < l). Then for any α,β = 1,2, · · · ,d,

lim
n→∞

EG[( ∑
k:[tn

k−1,t
n
k ]⊂[s,t]

f (Ytn
k−1

)

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u )

2] = 0.
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Proof. From direct calculation, we have

EG[( ∑
k:[tn

k−1,t
n
k ]⊂[s,t]

f (Ytn
k−1

)

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u )

2]

6 ‖ f‖2
∞ ∑

k:[tn
k−1,t

n
k ]⊂[s,t]

EG[(

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u )

2]

+2 ∑
k<l

[tn
k−1,t

n
k ],[t

n
l−1,t

n
l ]⊂[s,t]

EG[ f (Ytn
k−1

)(

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u ) f (Ytn

l−1
)(

ˆ tn
l

tn
l−1

Bα

tn
l−1,u

dBβ
u )]

6 C‖ f‖2
∞ ∑

k:[tn
k−1,t

n
k ]⊂[s,t]

(∆ tn)2

+2 ∑
k<l

[tn
k−1,t

n
k ],[t

n
l−1,t

n
l ]⊂[s,t]

(EG[( f (Ytn
k−1

)(

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u ) f (Ytn

l−1
))+

·EG[

ˆ tn
l

tn
l−1

Bα

tn
l−1,u

dBβ
u |Ωtn

l−1
]]+EG[( f (Ytn

k−1
)(

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u ) f (Ytn

l−1
))−

·EG[−
ˆ tn

l

tn
l−1

Bα

tn
l−1,u

dBβ
u |Ωtn

l−1
]])

6 C‖ f‖2
∞∆ tn,

and the result follows easily.

Now we are in position to prove our main result of this section.

Theorem 9. For quasi-surely,

Xt = Yt , ∀t ∈ [0,1].

Proof. Since the coefficients of the RDE (22) are in C3
b(R

N), for quasi-surely define
the following pathwise control: for 0 6 s < t 6 1,

ω(s, t) := (‖V‖2,∞‖B‖p−var; [s, t])
p +‖b‖1,∞(t− s)

+‖h− 1
2

DV ·V‖1,∞‖〈B,B〉‖1−var;[s,t],

where ‖ · ‖m,∞ denotes the maximum of uniform norms of derivatives up to order
m. It follows from the rough Taylor expansion (Corollary 12.8 [9]) that for quasi-
surely, there exists some positive constant θ > 1, such that for 0 6 s < t 6 1, when
ω(s, t)6 1, we have

|Ys,t − Is,t |6Cω(s, t)θ ,

where
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Is,t = b(Ys)(t− s)+(hαβ (Ys)−
1
2

DVβ (Ys) ·Vα(Ys))〈Bα ,Bβ 〉s,t +Vα(Ys)B
1;α
s,t

+DVβ (Ys) ·Vα(Ys)B
2;α,β
s,t

By Proposition 5, we have for quasi-surely,

|Ys,t −b(Ys)(t− s)−hαβ (Ys)〈Bα ,Bβ 〉s,t −Vα(Ys)B
1;α
s,t

−DVβ (Ys) ·Vα(Ys)

ˆ t

s
Bα

s,udBβ
u |6Cω(s, t)θ . (23)

Now consider fixed s < t being two dyadic points in [0,1]. When n is large
enough, by applying inequality (23) on each small dyadic interval [tn

k−1, t
n
k ] ⊂ [s, t]

and summing up through the triangle inequality, we obtain that for quasi-surely,

|Ys,t − In
s,t | 6 C∑ω(tn

k−1, t
n
k )

θ

6 Cω(s, t) max{ω(tn
k−1, t

n
k )

θ−1 : [tn
k−1, t

n
k ]⊂ [s, t]},

where

In
s,t = ∑b(Ytn

k−1
)∆ tn +∑hαβ (Ytn

k−1
)∆ n

k 〈Bα ,Bβ 〉+∑Vα(Ytn
k−1

)∆ n
k Bα

+∑DVβ (Ytn
k−1

) ·Vα(Ytn
k−1

)

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u ,

and each sum is over all k such that [tn
k−1, t

n
k ]⊂ [s, t]. It follows that for quasi-surely,

In
s,t → Ys,t , n→ ∞.

On the other hand, the following convergence in L2
G(Ω ;RN) holds:

∑b(Ytn
k−1

)∆ tn →
ˆ t

s
b(Yu)du,

∑hαβ (Ytn
k−1

)∆ n
k 〈Bα ,Bβ 〉 →

ˆ t

s
hαβ (Yu)d〈Bα ,Bβ 〉u,

∑Vα(Ytn
k−1

)∆ n
k Bα →

ˆ t

s
Vα(Yu)dBα

u ,

as n→ ∞.
The reason is the following. For simplicity we only consider the third one, as the

first two are similar (and in fact easier). It is straight forward that

ˆ 1

0
|Vα(Yt)−

2n

∑
k=1

Vα(Ytn
k−1

)1[tn
k−1,t

n
k )
(t)|2dt
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=
2n

∑
k=1

ˆ tn
k

tn
k−1

|Vα(Yt)−Vα(Ytn
k−1

)|2dt

6 C
2n

∑
k=1

ˆ tn
k

tn
k−1

|Yt −Ytn
k−1
|2dt

6 C
2n

∑
k=1
‖Y‖2

p−var;[tn
k−1,t

n
k ]

∆ tn

6 C(
2n

∑
k=1
‖Y‖p

p−var;[tn
k−1,t

n
k ]

∆ tn)
2
p

6 C(∆ tn)
2
p ‖Y‖2

p−var;[0,1],

where C depends only on Vα . Therefore, it suffices to show that ‖Y‖p−var;[0,1] ∈
L2

G(Ω), as it will imply the G-Itô integrability of Vα(Yt) and the desired convergence
in L2

G(Ω ;RN) will hold. For simplicity we assume that Yt is the solution of the
following RDE

dYt =Vα(Yt)dBα
t

with Y0 = ξ (there is no substantial difference because dt and d〈Bα ,Bβ 〉t are more
regular than dBt ), then by Theorem 10.14 in [9], we know that

‖Y‖p−var;[0,1] 6C‖B‖p−var;[0,1]∨‖B‖
p
p−var;[0,1].

Therefore, we only need to show that ‖B‖p
p−var;[0,1] ∈ L2

G(Ω). For this purpose, we
use Proposition 4 to control the p-variation norm by the functions ρ1,ρ2 defined in
(11). It follows that

‖B‖p−var 6C(1+ρ1(B)2 +ρ2(B)).

Therefore, it remains to show that ρ1(B)2p,ρ2(B)p ∈ L1
G(Ω). First consider level

one. By the distribution of Bt , we have

‖
∞

∑
n=1

nγ
2n

∑
k=1
|B1

tn
k−1,t

n
k
|p‖2 6

∞

∑
n=1

nγ
2n

∑
k=1
‖|B1

tn
k−1,t

n
k
|p‖2

6
∞

∑
n=1

nγ(∆ tn)
p
2−1

< ∞,

and we know that ρ1(B)2p ∈ L1
G(Ω). Now consider level two. By Proposition 5 and

the distribution of Bt and 〈B,B〉t , we have

‖
∞

∑
n=1

nγ
2n

∑
k=1
|B2

tn
k−1,t

n
k
|

p
2 ‖2 = ‖

∞

∑
n=1

nγ
2n

∑
k=1
|
ˆ tn

k

tn
k−1

Btn
k−1,u
⊗dBu +

1
2
〈B,B〉tn

k−1,t
n
k
|

p
2 ‖2



36 X. Geng, Z. Qian and D. Yang

6
∞

∑
n=1

nγ
2n

∑
k=1
‖|
ˆ tn

k

tn
k−1

Btn
k−1,u
⊗dBu +

1
2
〈B,B〉tn

k−1,t
n
k
|

p
2 ‖2

6 C
∞

∑
n=1

nγ(∆ tn)
p
2−1

< ∞.

It follows that ρ2(B)p ∈ L1
G(Ω). Therefore, the desired L2

G-convergence holds.
In addition, by Lemma 5 we also have the following L2

G-convergence:

∑DVβ (Ytn
k−1

) ·Vα(Ytn
k−1

)

ˆ tn
k

tn
k−1

Bα

tn
k−1,u

dBβ
u → 0, n→ ∞.

Consequently, in L2
G(Ω ;RN),

In
s,t →

ˆ t

s
b(Yu)du+

ˆ t

s
hαβ (Yu)d〈Bα ,Bβ 〉u +

ˆ t

s
Vα(Yu)dBα

u ,

as n→ ∞.
From Lemma 4, we conclude that for quasi-surely,

Ys,t =

ˆ t

s
b(Yu)du+

ˆ t

s
hαβ (Yu)d〈Bα ,Bβ 〉u +

ˆ t

s
Vα(Yu)dBα

u .

Since Xt and Yt are both quasi-surely continuous, it follows that X coincides with Y
quasi-surely.

Remark 2. As we mentioned at the beginning of Section 2, it is possible to prove
Theorem 9 by establishing the Wong-Zakai type approximation. More precisely, if
we let Xn

t to be the Euler-Maruyama approximation of the SDE (17) and let Y n
t to

be the unique classical solution of the following ODE:

dY n
t = b(Y n

t )dt +(hαβ (Y
n

t )−
1
2

DVβ (Y
n

t ) ·Vα(Y n
t ))d〈Bα ,Bβ 〉t +Vα(Y n

t )d(B
n)α

t

with Xn
0 = Y n

0 = ξ , where Bn
t is the dyadic piecewise linear approximation of Bt ,

then by using our main result in Section 2 and establishing related L2
G-estimates, we

can prove that
sup

t∈[0,1]
EG[|Xn

t −Y n
t |2]6C

√
1+ξ 2(∆ tn)

1
2 .

In other words, Y n
t converges to the solution Xt of the SDE (17) in the L2

G-sense.
However, we know that for quasi-surely, Y n

t converges uniformly to the solution Yt
of the RDE(22). Again by Lemma 4 and continuity, we conclude that for quasi-sure,
X coincides with Y.

From the above discussion, if we forget about the RDE (22) and only consider
the L2

G-limit of Y n
t , it seems that there is nothing to do with rough paths at all as

everything is well-defined in the classical sense. However, the fundamental point of
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understanding the convergence of Y n
t in the pathwise sense lies in the crucial fact

that Bt can be regarded as geometric rough paths (i.e., the enhancement defined in
Section 3) with approximating sequence in GΩp(Rd) being the enhancement of the
natural dyadic piecewise linear approximation Bn

t . This is exactly what the universal
limit theorem tells us.
Remark 3. From the RDE point of view, it is possible to reduce the regularity as-
sumptions on the coefficients. In particular, since the regularity of t and 〈Bα ,Bβ 〉t
are both “better” than Bt , the regularity assumptions on the coefficients of dt and
d〈Bα ,Bβ 〉t can be weaker than the one imposed on the coefficient of dBt . However,
we are not going to present the results under such generality. Please refer to [9] for
general existence and uniqueness results of RDEs.

6 SDEs on a Differentiable Manifold Driven by G-Brownian
Motion

Our main result in Section 5 can be used to establish SDEs on a differentiable man-
ifold driven by G-Brownian motion, which will be the main focus of this section.
The development is based on the idea in the classical case, for which one may refer
to [8], [12], [13]. This part is the foundation of developing G-Brownian motion on
a Riemannina manifold in the next section.

In classical stochastic analysis, SDEs on a manifold is established under the
Stratonovich type formulation, which can be regarded as a pathwise approach. The
reason of using Stratonovich type formulation instead of the Itô type one is the fol-
lowing. First of all, the notion of SDE can be introduced by using test functions
on the manifold from an intrinsic point of view, which is consistent with ordinary
differential calculus and invariant under diffeomorphisms. Moreover, when we con-
struct solutions extrinsically, we can prove that for almost surely, the solution of the
extended SDE which starts from the manifold will always live on it. This reveals the
intrinsic nature of ordinary differential equations.

In the setting of G-expectation, we will adopt the same idea for the development.
However, there is a major difficulty here. The method of constructing solutions in
the classical case from the extrinsic point of view depends heavily on the localiza-
tion technique, which is not available in the setting of G-expectation, mainly due
to the reason that concepts of information flows and stopping times are not well
understood. To get around with this difficulty, we will use our main result in Sec-
tion 5 to obtain a pathwise construction. The advantage of such approach is that we
can still use localization arguments but don’t need to care about measurability and
integrability under G-expectation.

Now assume that M is a differentiable manifold. For technical reasons we further
assume that M is compact (it is not necessary if we impose more restrictive regular-
ity assumptions on the generating vector fields). Let {b,hαβ ,Vα : α,β = 1,2, · · · ,d}
be a family of C3-vector fields on M, and let Bt be the canonical d-dimensional G-
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Brownian motion on the path space (Ω ,L2
G(Ω),EG), where G is a function given

by (2).
Consider the following symbolic Stratonovich type SDE over [0,1]:{

dXt = b(Xt)dt +hαβ (Xt)d〈Bα ,Bβ 〉t +Vα(Xt)◦dBα
t ,

X0 = ξ ∈M,
(24)

on M.

Definition 6. A solution Xt of the SDE (24) is an M-valued continuous stochastic
process such that for any f ∈C∞(M), and any α,β = 1,2, · · · ,d,

{hαβ f (Xt) : t ∈ [0,1]} ∈M1
G(0,1), {Vα f (Xt) : t ∈ [0,1]} ∈M2

G(0,1),

and the following equality holds on [0,1] :

f (Xt) = f (ξ )+
ˆ t

0
b f (Xs)ds+

ˆ t

0
hαβ f (Xs)d〈Bα ,Bβ 〉s+

ˆ t

0
Vα f (Xs)◦dBα

s , (25)

where the last term is defined as
ˆ t

0
Vα f (Xs)◦dBα

s :=
ˆ t

0
Vα f (Xs)dBα

s +
1
2

ˆ t

0
VβVα f (Xs)d〈Bα ,Bβ 〉s.

Remark 4. Definition 6 is intrinsic. It is easy to see that Definition 6 is consistent
with the Euclidean case.

Now we are going to construct the solution of (24) from the extrinsic point of
view.

According to the Whitney embedding theorem (see [5]), M can be embedded into
some ambient Euclidean space RN as a submanifold such that the image i(M) of M
is closed in RN . We simply regard M as a subset of RN .

Let F1, · · · ,FN ∈C∞(M) be the coordinate functions on M. The following result
is easy to prove. It is similar to the classical case.

Proposition 6. Xt is a solution of (24) if and only if for any i = 1,2, · · · ,N, α,β =
1,2, · · · ,d,

{hαβ F i(Xt) : t ∈ [0,1]} ∈M1
G(0,1), {Vα F i(Xt) : t ∈ [0,1]} ∈M2

G(0,1),

and for any t ∈ [0,1],

F i(Xt) = F i(ξ )+

ˆ t

0
bF i(Xs)ds+

ˆ t

0
hαβ F i(Xs)d〈Bα ,Bβ 〉s +

ˆ t

0
Vα F i(Xs)◦dBα

s .

(26)

Proof. Necessity is obvious since F i ∈C∞(M) for any i = 1,2, · · · ,N.

Now consider sufficiency. Let f ∈ C∞(M), and choose a C∞-extension f̃ of f
with compact support in RN (it is possible since M is compact). Then for any x∈M,



G-Brownian Motion as Rough Paths 39

f (x) = f̃ (F1(x), · · · ,FN(x)),

and thus
f (Xt) = f̃ (F1(Xt), · · · ,FN(Xt)), ∀t ∈ [0,1].

Since M is compact and f̃ is smooth with compact support, it follows from the G-Itô
formula that for t ∈ [0,1],

f̃ (F1(Xt), · · · ,FN(Xt)) = f (ξ )+
ˆ t

0

∂ f̃
∂yi (bF i(Xs)ds+hαβ F i(Xs)d〈Bα ,Bβ 〉s

+Vα F i(Xs)◦dBα
s )

= f (ξ )+
ˆ t

0
(b f (Xs)ds+hαβ f (Xs)d〈Bα ,Bβ 〉s

+Vα f (Xs)◦dBα
s ),

where we have used the simple fact that for any C1-vector field V on M,

V f =
N

∑
i=1

∂ f̃
∂yi V F i.

By Definition 6, we know that Xt is a solution of the SDE (24).

Now we are going to prove the existence and uniqueness of (24) by using the
main result of Section 5, namely, a pathwise approach based on the associated RDE.

Let b̃, h̃αβ ,Ṽα be C3
b-extensions (not unique) of the vector fields b,hαβ ,Vα . Con-

sider the following Stratonovich type SDE in the ambient space RN :

dXt = b̃(Xt)dt + h̃αβ (Xt)d〈Bα ,Bβ 〉t +Ṽα(Xt)◦dBα
t (27)

with X0 = x ∈ RN , which is interpreted as the following Itô type SDE:

dXt = b̃(Xt)dt +(h̃αβ (Xt)+
1
2

DṼα(Xt) ·Ṽβ (Xt))d〈Bα ,Bβ 〉t +Ṽα(Xt)dBα
t .

According to Section 5, we can alternatively interpret (27) as an RDE which is
pathwisely defined. Both the SDE and the RDE has a unique solution, and according
to Theorem 9 they coincide quasi-surely. Our aim is to show that for quasi-surely,
the solution Xt of (27) never leaves M and it is the unique solution of (24).

The following result is important to prove the existence and uniqueness of the
SDE (24) on the manifold M.

Proposition 7. Let xt be a path of bounded variation in Rd . Let W1, · · · ,Wd be
a family of C1-vector fields on M and W̃1, · · · ,W̃d be their C1

b-extensions to RN .
Consider the following ODE in the ambient space RN over [0,1] :

dyt = W̃α(yt)dxα
t (28)
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with y0 = x ∈ M. Then the solution yt ∈ M for all t ∈ [0,1]. Moreover, yt does not
depend on extensions of the vector fields.

Proof. Let F(x) := d(x,M)2 be the squared distance function to the submanifold
M. It follows that F is smooth in an open neighborhood of M. By using the cut-
off function we may assume that F ∈C∞

b (M). Now we are able to choose an open
neighborhood U of M, such that for any x ∈ U, F(x) = 0 if and only if x ∈ M.
Moreover, since W̃α (α = 1,2, · · · ,d) are tangent vector fields of M when restricted
on M, U can be chosen such that for any x ∈U and α = 1,2, · · · ,d,

|W̃α F(x)|6CF(x), (29)

for some positive constant C depending on U. The function F(x) was used in [12]
to construct SDEs on M driven by classical Brownian motion.

Since xt is a path of bounded variation and y0 = ξ ∈M, by the change of variables
formula in ordinary calculus, we have

F(yt) =

ˆ t

0
W̃α F(ys)dxα

s , ∀t ∈ [0,1].

Define τ := inf{t ∈ [0,1] : yt /∈U}. It follows from (29) that

F(yt)6C
ˆ t

0
F(ys)d|x|s, ∀t ∈ [0,τ],

where |x|t is the total variation of the path xt .
By iteration and Fubini theorem, on [0,τ] we have

F(yt) 6 C2
ˆ t

0
(

ˆ s

0
F(yu)d|x|u)d|x|s

= C2
ˆ t

0
(|x|t −|x|s)F(ys)d|x|s.

By induction, it is easy to see that for any k > 1,

F(yt)6Ck
ˆ t

0

(|x|t −|x|s)k−1

(k−1)!
F(ys)d|x|s, ∀t ∈ [0,τ].

Since F is bounded, we obtain further that for any k > 1,

F(yt)6 ‖F‖∞

Ck(|x|t −|x|0)k

k!
, ∀t ∈ [0,τ].

By letting k→ ∞, it follows that F(yt) ≡ 0 on [0,τ], which implies that yt ∈M for
any t ∈ [0,τ]. Since yt is continuous, the only possibility is that yt never leaves M
on [0,1].

If we rewrite the ODE (28) in its integral form:



G-Brownian Motion as Rough Paths 41

yt = ξ +

ˆ t

0
W̃α(ys)dxα

s , t ∈ [0,1], (30)

we know from previous discussion that equation (30) depends only on the values of
W̃α on M, that is, of Wα (α = 1,2, · · · ,d). In other words, if Ŵα is another extension
of Wα and ŷt is the solution of the corresponding ODE with the same initial condi-
tion, ŷt is also a solution of (28). By uniqueness, we have y = ŷ. Therefore, yt does
not depend on extensions of the vector fields.

With the help of Proposition 7, we can prove the following existence and unique-
ness result.

Theorem 10. Let b,hαβ ,Vα be C3-vector fields on M. Then the Stratonovich type
SDE (24) has a solution Xt which is unique quasi-surely.

Proof. Fix C3
b-extensions b̃, h̃αβ ,Ṽα of b,hαβ ,Vα , and let Xt be the solution of the

Stratonovich type SDE (27) in RN over [0,1]. By Theorem 9, for quasi-surely Xt
coincides with the solution of (27) when it is interpreted as an RDE. Since M is
closed in RN , it follows from Proposition 7 and Theorem 6 (the universal limit
theorem) that for quasi-surely, Xt never leaves M over [0,1]. In this case, (27) is
equivalent to (26), which implies from Proposition 6 that Xt is a solution of (24).
On the other hand, if Yt is another solution of (24), then it is a solution of (27)
(interpreted as an SDE or an RDE). By the uniqueness of RDEs, we know that
X = Y quasi-surely.

Remark 5. It is possible to formulate uniqueness in the L2
G-sense when M is regarded

as a closed submanifold of RN . However, we use the quasi-sure formulation because
the notion itself is intrinsic although the proof is developed from the extrinsic point
of view.

7 G-Brownian Motion on a Compact Riemannian Manfold and
the Generating Nonlinear Heat Equation

In this section, we are going to introduce the notion of G-Brownian motion on a
Riemannian manifold for a wide and interesting class of G-functions, based on
Eells-Elworthy-Malliavin’s horizontal lifting construction (see [8], [12], [13] for
the construction of Brownian motion on a Riemannian manifold and related top-
ics). Roughly speaking, we will “roll” an Euclidean G-Brownian motion up to a
Riemannian manifold “without slipping” via a proper frame bundle (for the class of
G-functions we are interested in, such bundle is the orthonormal frame bundle).

In the classical case, we know that the law of a d-dimensional Brownian motion
Bt is invariant under orthogonal transformations on Rd . This is a crucial point to
obtain a linear parabolic PDE (in fact, the standard heat equation associated with
the Bochner horizontal Laplacian ∆O(M)) on the orthonormal frame bundle O(M)
over a Riemannian manifold M governing the law of the horizontal lifting ξt of Bt to
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O(M), which is invariant under orthogonal transformations along fibers. It is such
an invariance that enables us to “project” the PDE onto the base manifold M and
obtain the standard heat equation associated with the Laplace-Beltrami operator ∆M
on M. This heat equation governs the law of the development Xt = π(ξt) of Bt to
the Riemannian manifold M via the horizontal lifting ξt . As a stochastic process on
M, although Xt depends on the initial orthonormal frame ξ at x as well as the initial
position x ∈M, the law of Xt depends only on the initial position x, and it is charac-
terized by the Laplace-Beltrami operator ∆M via the heat equation. Equivalently, it
can be shown that the law of Xt is the unique solution of the martingale problem on
M associated with ∆M starting at x. Xt is called the Brownian motion on M starting
at x in the sense of Eells-Elworthy-Malliavin.

It is quite natural to expect that the Brownian sample paths Xt on M will depend
on the initial orthonormal frame ξ at x if we look back into the Euclidean case, in
which we actually fix the standard orthonormal basis in advance and define Brown-
ian motion in the corresponding coordinate system. If we use another orthonormal
basis, we obtain a process (still a Brownian motion) which is an orthogonal trans-
formation of the original Brownian motion. Therefore, it is the law, which is char-
acterized by the Laplace operator on Rd , rather than the sample paths that captures
the intrinsic nature of the Brownian motion, and such nature can be developed in a
Riemannian geometric setting.

It should be remarked that in a pathwise manner, we can lift Bt horizontally to the
total frame bundle F (M) instead of O(M) by solving the same SDE generating by
the horizontal vector fields but using a general frame instead of an orthonormal one
as initial condition. Moreover, we can write down the generating heat equation on
F (M) which takes the same form of the one on O(M). The key difference here is
that although the horizontal lifting of Bt can be projected onto M, the heat equation
on F (M) cannot. In other words, the heat equation is not invariant under nonde-
generate linear transformations along fibers. This becomes uninteresting to us, as
we are not able to obtain an intrinsic law of the development of Bt on M which
is independent of initial frames. The fundamental reason of using the orthonormal
frame bundle is that the Laplace operator on Rd is invariant exactly under orthogonal
transformations.

The case of G-Brownian motion can be understood in a similar manner. From the
last section we are able to solve SDEs on a differentiable manifold (in particular, on
F (M)) driven by an Euclidean G-Brownian motion Bt . By projection we obtain the
development Xt of Bt to M. As we’ve pointed out before, such development is of
no interest unless we are able to prove that the law of Xt depends only on the initial
position x rather than the initial frame. In fact, if the law of Xt depends on the initial
frame, we might not be able to write down the generating PDE of Xt intrinsically on
M although it is possible on F (M). Therefore, for a given G-function, it is crucial
to identify a proper frame bundle over M with a specific structure group such that
parallel transport preserves fibers and the generating PDE (associated with G) of
the horizontal lifting ξt of Bt to such frame bundle is invariant under actions by the
structure group along fibers. From this, the law of Xt will be independent of initial
frames in the fibre over x (x is the starting point of Xt ) and we might be able to obtain
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the generating PDE of Xt , which is associated with G and intrinsically defined on
M.

As we shall see, such idea depends on a crucial algebraic quantity associated with
the G-function called the invariant group I(G) of G, which will be defined later on.
In this article, we are interested in the case when I(G) is the orthogonal group. We
will see that it contains a wide class of G-functions. In particular, one example is the
generalization of the one-dimensional Barenblatt equation to higher dimensions.

The concept of the invariant group of G is motivated from the study of infinites-
imal diffusive nature of SDEs driven by G-Brownian motion and their generating
PDEs, which will be discussed below.

We first consider the Euclidean case.
From now on, we always assume that G : S(d)→ R is a given continuous, sub-

linear and monotonic function. Equivalently, from Section 2 we know that G is
represented by

G(A) =
1
2

sup
B∈Σ

tr(AB), ∀A ∈ S(d), (31)

where Σ is some bounded, closed and convex subset of S+(d). Let Bt be the standard
d-dimensional G-Brownian motion on the path space.

Assume that V1, · · · ,Vd are C3
b -vector fields on RN . Consider the following N-

dimensional Stratonovich type SDE over [0,1]:{
dXt,x =Vα(Xt,x)◦dBα

t ,

X0,x = x,
(32)

which is either interpreted as an RDE or the associated Itô type SDE{
dXt,x =Vα(Xt,x)dBα

t + 1
2 DVα(Xt,x)Vβ (Xt,x)〈Bα ,Bβ 〉t ,

Xt,x = x,

according to the main result of Section 5.
The following result characterizes the generator of the SDE (32) in terms of G.

It describes the infinitesimal diffusive nature of (32). One might compare it with the
case of linear diffusion processes.

Proposition 8. For any p ∈ RN , A ∈ S(N),

lim
δ→0+

1
δ
EG[〈p,Xδ ,x− x〉+ 1

2
〈A(Xδ ,x− x),Xδ ,x− x〉]

=G((
1
2
〈p,DVα(x)Vβ (x)+DVβ (x)Vα(x)〉+ 〈AVα(x),Vβ (x)〉)16α,β6d). (33)

Proof. From the distribution of Bt we know that

G(A) =
1
2
EG[〈AB1,B1〉] =

1
2t
EG[〈ABt ,Bt〉], ∀t > 0.
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Therefore, the R.H.S. of (33) is equal to

Iδ =
1

2δ
EG[(〈p,DVα(x)Vβ (x)〉+ 〈AVα(x),Vβ (x)〉)Bα

δ
Bβ

δ
],

for any δ > 0.
Since

Xδ ,x− x =
ˆ

δ

0
Vα(Xs,x)dBα

s +
1
2

ˆ
δ

0
DVα(Xs,x)Vβ (Xs,x)d〈Bα ,Bβ 〉s,

by the properties of EG and the distribution of Bt , we have

| 1
δ
EG[〈p,Xδ ,x− x〉+ 1

2
〈A(Xδ ,x− x),Xδ ,x− x〉]− Iδ |

6| 1
2δ

EG[

ˆ
δ

0
〈p,DVα(Xs,x) ·Vβ (Xs,x)〉d〈Bα ,Bβ 〉s

+ 〈A
ˆ

δ

0
Vα(Xs,x)dBα

s ,

ˆ
δ

0
Vβ (Xs,x)dBβ

s 〉]−
1

2δ
EG[〈p,DVα(x) ·Vβ (x)〉〈Bα ,Bβ 〉δ

+ 〈AVα(x)Bα

δ
,Vβ (x)B

β

δ
〉]|+Cδ

1
2 +Cδ

6
1

2δ
(C
ˆ

δ

0

√
EG[|Xs,x− x|2]ds+C

ˆ
δ

0
EG[|Xs,x− x|2]ds+

Cδ
1
2

√ˆ
δ

0
EG[|Xs,x− x|2]ds)+Cδ

1
2 +Cδ ,

where we’ve also used the fact that G-Itô integrals and Bα

δ
Bβ

δ
−〈Bα ,Bβ 〉δ have zero

mean uncertainty. Here C always denotes positive constants independent of δ .
Now the result follows easily from the fact that

EG[|Xt,x− x|2]6Ct, ∀t ∈ [0,1].

The infinitesimal diffusive nature of (32) characterized by Proposition 8 enables
us to establish the generating PDE of (32) in terms of viscosity solutions. The under-
standing of this PDE, especially its intrinsic nature, is essential for the development
in a geometric setting.

Theorem 11. Let ϕ ∈C∞
b (RN), and define

u(t,x) = EG[ϕ(Xt,x)], (t,x) ∈ [0,1]×RN .

Then u(t,x) is the unique viscosity solution of the following nonlinear parabolic
PDE: {

∂u
∂ t −G((V̂αVβ u)16α,β6d) = 0,
u(0,x) = ϕ(x),

(34)
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where V̂αVβ denotes the symmetrization of the second order differential operator
VαVβ , that is,

V̂αVβ =
1
2
(VαVβ +VβVα).

Proof. The continuity of u in t and x can be shown in a standard way by using the
Lipschitz continuity of ϕ (in fact, u is Lipchitz in x and 1

2 -Hölder continuous in t).
Here the proof is omitted.

Fix (t0,x0) ∈ (0,1)×RN . Let v(t,x) ∈ C2,3
b ([0,1]×RN) be a test function such

that
u(t0,x0) = v(t0,x0)

and
u(t,x)6 v(t,x), ∀(t,x) ∈ [0,1]×RN .

For 0 < δ < t0, by the uniqueness of the SDE (32) and the fact that Bt and 〈Bα ,Bβ 〉t
have independent and identically distributed increments, we know that

EG[ϕ(Xt0,x0)|Ωδ ] = EG[ϕ(Xδ ,x0 +

ˆ t0

δ

Vα(Xs,x0)dBα
s

+
1
2

ˆ t0

δ

DVα(Xs,x0) ·Vβ (Xs,x0)d〈B
α ,Bβ 〉s)|Ωδ ]

= EG[ϕ(Xt0−δ ,y)]|y=Xδ ,x0
.

Therefore,

v(t0,x0) = EG[ϕ(Xt0,x0)]

= EG[EG[ϕ(Xt0,x0)|Ωδ ]]

= EG[u(t0−δ ,Xδ ,x0)]

6 EG[v(t0−δ ,Xδ ,x0)].

It follows that

0 6 EG[v(t0−δ ,Xδ ,x0)− v(t0,x0)]

= EG[v(t0−δ ,Xδ ,x0)− v(t0,Xδ ,x0)+ v(t0,Xδ ,x0)− v(t0,x0)]

= EG[−δ

ˆ 1

0

∂v
∂ t

(t0− (1−α)δ ,Xδ ,x0)dα + 〈∇v(t0,x0),Xδ ,x0 − x0〉

+

ˆ 1

0

ˆ 1

0
〈∇2v(t0,x0 +αβ (Xδ ,x0 − x0))(Xδ ,x0 − x0),Xδ ,x0 − x0〉αdαdβ ]

6 −δ
∂v
∂ t

(t0,x0)+EG[〈∇v(t0,x0),Xδ ,x0 − x0〉

+
1
2
〈∇2v(t0,x0)(Xδ ,x0 − x0),Xδ ,x0 − x0〉]+EG[|Iδ |]+EG[|Jδ |],
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where

Iδ = −δ

ˆ 1

0
(

∂v
∂ t

(t0− (1−α)δ ,Xδ ,x0)−
∂v
∂ t

(t0,x0))dα,

Jδ =

ˆ 1

0

ˆ 1

0
〈(∇2v(t0,x0 +αβ (Xδ ,x0 − x0))

−∇
2v(t0,x0))(Xδ ,x0 − x0),Xδ ,x0 − x0〉αdαdβ .

By a standard argument one can easily show that

EG[|Iδ |]+EG[|Jδ |]6Cδ
3
2 ,

where C is a positive constant independent of δ . On the other hand, the R.H.S. of
(33) applying to

p = ∇v(t0,x0), A = ∇
2v(t0,x0),

is exactly the same as G((V̂αVβ v(t0,x0))16α,β6d). Therefore, by Proposition 8, we
arrive at

∂v
∂ t

(t0,x0)−G((V̂αVβ v(t0,x0))16α,β6d)6 0.

Consequently, u(t,x) is a viscosity subsolution of (34).
Similarly, one can show that u(t,x) is a viscosity supersolution of (34). Therefore,

u(t,x) is a viscosity solution of (34).
The reason of uniqueness is the following. Define a function F : RN ×RN ×

S(N)→ R by the R.H.S. of (33), that is,

F(x, p,A) = G((
1
2
〈p,DVα(x) ·Vβ (x)+DVβ (x) ·Vα(x)〉+ 〈AVα(x),Vβ (x)〉)16α,β6d),

for (x, p,A) ∈ RN ×RN ×S(N). It is easy to prove that F is sublinear in (p,A) and
monotonically increasing in S(N), due to the same properties held by G. Moreover,
F satisfies the continuity condition (Assumption (G) in Appendix C of [27]) for the
uniqueness of the associated nonlinear PDE, due to the regularity of the given vector
fields Vα . In other words, all properties of G to ensure uniqueness are preserved in
F, and the space dependence of F coming out are uniformly controlled. Therefore,
according to the uniqueness results (see [4], [27]), the parabolic PDE has a unique
viscosity solution, which is given by u(t,x).

Example 1. An example which motivates the study of G-Brownian motion on a Rie-
mannian manifold is the following.

Let Q ∈GL(d,R), where GL(d,R) is the group of d×d real invertible matrices.
Define BQ

t = QBt , and for ϕ ∈C∞
b (Rd), define

u(t,x) = EG[ϕ(x+BQ
t )], (t,x) ∈ [0,1]×Rd .

Then u(t,x) is the unique viscosity solution of the PDE:
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∂u
∂ t −G(QT ·∇2u ·Q) = 0,
u(0,x) = ϕ(x).

In fact, it follows directly from Theorem 11 if we regard x+BQ
t as the solution of

the SDE over [0,1]: {
dXt,x = Qα ◦dBα

t ,

X0,x = x,
(35)

where Q = (Q1, · · · ,Qd), and each Qα is a constant vector field on Rd (so the SDE
(35) coincides exactly with the Itô type one).

The result of Theorem 34 is similar to the discussion of nonlinear Feynman-
Kac formula in [27], in which the solution of a forward-backward SDE is used to
represent the viscosity solution of an associated nonlinear backward parabolic PDE.
In our case, the intrinsic nature of (34) is fundamental and should be emphasized
below in order to develop G-Brownian motion on a Riemannian manifold.

It is not hard to see that the nonlinear second order differential operator

G((V̂αVβ ·)16α,β6d)

is intrinsically defined on RN , since V1, · · · ,Vd are vector fields independent of co-
ordinates. Moreover, in local coordinates it preserves the same properties of the G-
function which is defined under the standard coordinate system of Rd . In particular,
it shares the same ellipticity as G. Therefore, when the vector fields Vα are regular
enough, from our results in Section 6, we are able to establish the generating PDE
of a nonlinear diffusion process on a differentiable manifold. As in the last section,
for technical simplicity we restrict ourselves to compact manifolds.

Assume that M is a compact manifold, and V1, · · · ,Vd are C3-vector fields on M.
According to Section 6, the Stratonovich type SDE over [0,1]{

dXt,x =Vα(Xt,x)◦dBα
t ,

X0,x = x ∈M,
(36)

has a unique solution. The following result is immediate from Theorem 11.

Theorem 12. Let ϕ ∈C∞(M), and define

u(t,x) = EG[ϕ(Xt,x)], (t,x) ∈ [0,1]×M,

then u(t,x) is the unique viscosity solution of the following nonlinear parabolic PDE
on M: {

∂u
∂ t −G((V̂αVβ u)16α,β6d) = 0,
u(0,x) = ϕ(x),

(37)
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where V̂αVβ is the symmetrization of VαVβ , defined in the same way as in Theorem
11. Here the notion of viscosity solutions for the PDE (37) can be defined in the
same way as in the Euclidean case by using test functions (see [1]).

Proof. The result follows easily from an extrinsic point of view.
In fact, assume that M is embedded into an ambient Euclidean space RN as a

closed submanifold, and take a C3-extension Ṽα of Vα with compact support. Con-
sider the following Stratonovich type SDE over [0,1]:{

dXt,x = Ṽα(Xt,x)◦dBα
t ,

X0,x = x ∈ RN .

Let ϕ̃ be a C∞-extension of ϕ with compact support, and define

ũ(t,x) = EG[ϕ̃(Xt,x)], (t,x) ∈ [0,1]×RN .

It follows from Theorem 11 that ũ(t,x) is the unique viscosity solution of the non-
linear parabolic PDE generated by the vector fields Ṽα .

According to Section 6, if x ∈M, Xt,x will never leave M quasi-surely. Therefore,
when restricted on M, ũ = u. In particular, we know that u is continuous. To see that
u is a viscosity subsolution of (37), let (t0,x0)∈ (0,1)×M, and v(t,x)∈C2,3([0,1]×
M) be a test function such that

v(t0,x0) = u(t0,x0)

and
u(t,x)6 v(t,x), ∀(t,x) ∈ [0,1]×M.

Take an C2,3
b -extension ṽ of v such that

ũ(t,x)6 ṽ(t,x), ∀(t,x) ∈ [0,1]×RN .

It follows from previous discussion that

∂ ṽ
∂ t

(t0,x0)−G((̂̃VαṼβ ṽ(t0,x0))16α,β6d)6 0.

Since
Ṽα |M =Vα , ṽ|M = v,

from the intrinsic nature of the generating PDE, we know that

∂ ṽ
∂ t

(t0,x0) =
∂v
∂ t

(t0,x0)

and
G((̂̃VαṼβ ṽ(t0,x0))16α,β6d) = G((V̂αVβ v(t0,x0))16α,β6d).

It follows that
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∂v
∂ t

(t0,x0)−G((V̂αVβ v(t0,x0))16α,β6d)6 0.

Therefore, u(t,x) is a viscosity subsolution of (37). Similarly we can show that it is
a viscosity supersolution as well, and thus a viscosity solution.

The uniqueness of (37) follows from the same reason as in the proof of Theorem
11 once we notice that the second order differential operator G((V̂αVβ ·)16α,β6d)
on M shares exactly the same properties as G (in particular, the same ellipticity),
which can be seen either from an extrinsic way or via local computation. Another
way to see the uniqueness is to use the results in [1] as long as we assign a complete
Riemannian metric on M, which is always possible according to [20]. In this case

G((V̂αVβ u)16α,β6d) = G((
1
2
〈∇u,∇Vα

Vβ +∇Vβ
Vα〉+Hessu(Vα ,Vβ ))16α,β6d),

where ∇ is the Levi-Civita connection corresponding to the Riemannian metric. The
uniqueness of (37) follows from Theorem 5.1 in [1] directly, as the assumptions in
the theorem are verified by the properties of G. Note that we don’t need the Ricci
curvature condition in [1] due to the compactness of M and uniform continuity of
G((V̂αVβ ·)16α,β6d).

Remark 6. The study of the SDE (36) as a nonlinear diffusion process on M does not
require a Riemannian metric or a connection on M. The fundamental reason is that
(36) is defined in the pathwise sense as an RDE generated by the vector fields Vα on
M. Such an RDE only depends on the differential structure of M. The infinitesimal
diffusive nature of (36) can be studied by local computation.

Now we turn to the study of G-Brownian motion on a Riemannian manifold. The
Riemannian structure (the Levi-Civita connection) is used to “roll” the Euclidean
G-Brownian motion up to the manifold “without slipping” by solving an SDE gen-
erated by the fundamental horizontal vector fields on a proper frame bundle (known
as horizontal lifting). This is the fundamental idea of Eells-Elworthy-Malliavin on
the construction of Brownian motion on a Riemannian manifold.

As is pointed out at the beginning of this section, the essential point of such
development is the invariance of the generating PDE on the frame bundle under
actions by the structure group along fibers. The key of capturing such invariance is
Theorem 34 and Example 1, which leads to the following important concept.

Definition 7. The invariant group I(G) of G is defined by

I(G) = {Q ∈ GL(d,R) : ∀A ∈ S(d), G(QT AQ) = G(A)}.

It is easy to check the I(G) is a group, and hence a subgroup of GL(d,R).
By using the representation (31) of G, we have the following equivalent charac-

terization of the invariant group I(G).

Proposition 9. Let G be represented by

G(A) =
1
2

sup
B∈Σ

tr(AB), ∀A ∈ S(d),
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where Σ is some bounded, closed and convex subset of S+(d). Then Σ is uniquely
determined by G and the invariant group I(G) of G is given by

I(G) = {Q ∈ GL(d,R) : QΣQT = Σ}. (38)

Proof. It suffices to show the uniqueness of Σ , and (38) will follow immediately
from the commutativity of the trace operator and the uniqueness of Σ . Note that for
any Q ∈ GL(d,R), QΣQT is also a bounded, closed and convex subset of S+(d).

Introduce a symmetric bilinear form 〈·, ·〉tr on the finite dimensional vector space
S(d) by

〈A1,A2〉tr = tr(A1A2), A1,A2 ∈ S(d).

It is easy to check that 〈·, ·〉tr is indeed an inner product, thus (S(d),〈·, ·〉tr) is a finite
dimensional Hilbert space. The form ‖ · ‖tr induced by 〈·, ·〉tr is equivalent to any
other matrix norm on S(d) since S(d) is finite dimensional.

Let Σ1,Σ2 be two bounded, closed and convex subsets of S+(d), such that

sup
B∈Σ1

tr(AB) = sup
B∈Σ2

tr(AB), ∀A ∈ S(d).

If Σ1 6= Σ2, without loss of generality assume that B0 ∈ Σ2\Σ1. According to the
Mazur separation theorem in functional analysis (see [29]), there exists a bounded
linear functional f ∈ S(d)∗ and some α ∈ R, such that

f (B)< α < f (B0), ∀B ∈ Σ1.

By the Riesz representation theorem, there exists a unique A∗ ∈ S(d), such that

f (B) = 〈A∗,B〉tr = tr(A∗B), ∀B ∈ S(d).

It follows that
sup
B∈Σ1

tr(A∗B)6 α < tr(A∗B0)6 sup
B∈Σ2

tr(A∗B),

which is a contradiction. Therefore, Σ1 = Σ2.

We list some examples for the invariant groups I(G) of different G-functions.

Example 2. If Σ = {0}, then it is obvious that I(G) = GL(d,R), which is a noncom-
pact group.

Example 3. It is possible that I(G) is a finite group.
Consider Σ is the set of diagonal matrices

Λ = diag(λ1, · · · ,λd)

such that each λα ∈ [0,1], then Σ is a bounded, closed and convex subset of S+(d).
We claim that

I(G) = {(±eσ(1), · · · ,±eσ(d)) : σ is a permutation of order d}, (39)
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where {e1, · · · ,ed} is the standard orthonormal basis of Rd , each ei being regarded
as a column vector.

In fact, if Q ∈ GL(d,R) has the form (39), by direct computation one can show
easily that

QΣQT = Σ . (40)

Conversely, if Q satisfies (40), by choosing

Λ = diag(1,0, · · · ,0),

we know that
(QΛQT )α

β
= Qα

1 Qβ

1 .

Therefore, if QΛQT ∈ Σ , the first column of Q must contain exactly one nonzero
element q1 such that q2

1 6 1. Similarly for other columns of Q. Moreover, the corre-
sponding nonzero elements in any two different columns of Q must be in different
rows, otherwise Q will be degenerate. Consequently, Q has the form

Q = (q1eσ(1), · · · ,qdeσ(d))

with q2
i 6 1 (i = 1,2, · · · ,d). On the other hand, for the identity matrix Id , there

exists Λ ∈ Σ , such that
QΛQT = Id .

By taking determinants on both sides, we have

q2
1 · · ·q2

ddet(Λ) = 1,

which implies that qα =±1 (α = 1,2, · · · ,d). Therefore, Q has the form of (39).
Note that in this case I(G) is a finite subgroup of the orthogonal group O(d) with

order 2dd!. Moreover, G is given by

G(A) =
1
2

d

∑
α=1

(Aα
α)

+, ∀A ∈ S(d).

Example 4. Now we give some examples of G such that I(G) = O(d). Such case
will be our main interest in this article.

(1) Σ = {Id}.
Obviously (40) is equivalent to Q ∈ O(d).
This corresponds to the case of classical Brownian motion, in which

G(A) =
1
2

tr(A)

and the generator is 1
2 ∆ .

(2) Σ is given by the segment joining λ Id and µId , where 0 6 λ < µ.
If Q ∈ GL(d,R) such that (40) holds, then
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µQQT = tId ,

for some t ∈ [λ ,µ]. On the other hand, there exists some t ′ ∈ [λ ,µ] such that

t ′QQT = µId .

The only possibility is that QQT = Id , which means Q ∈ O(d). The converse is
trivial.

In this case, G is given by

G(A) =
1
2
(µ(trA)+−λ (trA)−).

The corresponding G-heat equation can be regarded as the generalization of the
one-dimensional Barenblatt equation to higher dimensions.

(3) Σ is given by the subset of matrices B ∈ S+(d) such that the eigenvalues of B
lie in the bounded interval [λ ,µ], where 0 6 λ < µ. Equivalently,

Σ = {B ∈ S+(d) : λ 6 xT Bx 6 µ, ∀x ∈ Rd with |x|= 1}.

It follows that Σ is a bounded, closed and convex subset of S+(d).
Since Σ is characterized by eigenvalues, and the eigenvalues of a symmetric ma-

trix is preserved under change of orthonormal basis, it follows that for any Q∈O(d),
(40) holds. Conversely, let Q ∈ GL(d,R) with (40). Then there exists B1,B2 ∈ Σ ,
such that

µQQT = B1, QB2QT = µId .

It follows that all eigenvalues of QQT lie in [ λ

µ
,1], and

det(QQT )det(B2) = µ
d .

Therefore, the only possibility is that all eigenvalues of QQT are equal to 1, which
implies that Q is an orthogonal matrix.

In this case G can be expressed by

G(A) =
1
2

sup
B∈Σ

tr(AB)

=
1
2

sup
P∈O(d)

sup
λ6c1,··· ,cd6µ

tr(APT diag(c1, · · · ,cd)P)

=
1
2

sup
P∈O(d)

sup
λ6c1,··· ,cd6µ

tr(PAPT diag(c1, · · · ,cd))

=
1
2

sup
P∈O(d)

sup
λ6c1,··· ,cd6µ

d

∑
α=1

cα(PAPT )α
α

=
1
2

sup
P∈O(d)

d

∑
α=1

(µ((PAPT )α
α)

+−λ ((PAPT )α
α)
−).
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Similar to Example 4, for those Σ ’s characterized by eigenvalues, we can con-
struct a large class of G such that I(G) = O(d).

Remark 7. If Σ has at least one nondegenerate element, that is, there exists some
positive definite matrix B0 ∈Σ , then I(G) is a compact group. In fact, if we introduce
a matrix norm ‖ · ‖B0 on the space Mat(d,R) of real d×d matrices by

‖A‖B0 =
√

tr(AB0AT ), A ∈Mat(d,R),

it follows that

sup
Q∈I(G)

‖Q‖B0 = sup
Q∈I(G)

√
tr(QB0QT )6 sup

B∈Σ

√
tr(B)< ∞,

since Σ is bounded. It is obvious that I(G) is closed. Therefore, it is compact.
Now assume that (M,g) is a d-dimensional compact Riemannian manifold. If

we allow explosion of a nonlinear diffusion process at some finite time, then the
arguments below will carry through on a noncompact Riemannian manifold as long
as the time scope is restricted from 0 up to the explosion. Here we only consider the
compact case, in which explosion is not possible.

We first recall some basics about frame bundles, which is the central concept in
the horizontal lifting construction. For a systematic introduction please refer to [2],
[16].

Let F (M) be the total frame bundle over M defined by

F (M) = ∪x∈MFx(M),

where the fibre Fx(M) is the set of all frames (bases of the tangent space Tx(M))
at x. A frame ξ = (ξ1, · · · ,ξd) ∈ Fx(M) can be equivalently regarded as a linear
isomorphism from Rd to TxM (also denoted by ξ ) if we let

ξ (eα) = ξα , α = 1,2, · · · ,d,

and extend linearly to Rd , where we always fix {e1, · · · ,ed} to be the standard or-
thonormal basis of Rd . F (M) is a principal bundle with structure group GL(d,R)
acting along fibers from the right.

Fix a frame ξ ∈Fx(M). A vector X ∈ Tξ F (M) is called vertical if it is tangent
to the fibre Fx(M). The space of vertical vectors at ξ is called the vertical subspace,
and it is denoted by Vξ F (M). Vξ F (M) is a d2-dimensional vector space, which is
independent of the Riemannian structure.

A smooth curve ξt = (ξ1,t · · · ,ξd,t) ∈F (M) is called horizontal if ξα,t is a paral-
lel vector field along the projection curve xt = π(ξt) for each α = 1,2, · · · ,d. Given
a smooth curve xt ∈M and a frame ξ0 = (ξ1, · · · ,ξd) ∈Fx0(M), by solving a first
order linear ODE, we can determine a unique parallel vector field ξα,t along xt with
ξα,0 = ξα for each α = 1,2, · · · ,d. The smooth curve

ξt = (ξ1,t , · · · ,ξd,t) ∈F (M)
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is then the unique horizontal curve with xt = π(ξt) and initial position ξ0. ξt is called
the horizontal lifting of xt from ξ0. A vector X ∈ Tξ F (M) is called horizontal if it
is tangent to a horizontal curve through ξ . The space of horizontal vectors at ξ is
called the horizontal subspace, and it is denoted by Hξ F (M). It is a d-dimensional
vector space characterized by the Levi-Civita connection ∇.

As ξ varies, Vξ F (M) (respectively, Hξ F (M)) determines a vertical (respec-
tively, horizontal) subspace field on M. The following result reveals the fundamental
structure of F (M).

Theorem 13. The horizontal subspace field HF (M), which is determined by ∇,
has the following properties.

(1) For each ξ ∈Fx(M), the tangent space Tξ F (M) has the decomposition

Tξ F (M) = Hξ F (M)⊕Vξ F (M).

Moreover, Hξ F (M) is isomorphic to TxM under the canonical projection π :
F (M)→M.

(2) HF (M) is invariant under actions by the structure group GL(d,R). More
precisely, for any ξ ∈F (M), Q ∈ GL(d,R),

Q∗(Hξ F (M)) = Hξ QF (M).

It should be pointed out that given any horizontal subspace field HF (M) satis-
fying the two properties in Theorem 13, there exists an affine connection ∇H such
that HF (M) is the horizontal subspace field determined by ∇H .

On F (M) there is a canonical way to define a frame field globally, which is not
always possible on a general Riemannian manifold. This makes F (M) simpler than
the base space M in some sense. Fix w∈Rd . For any ξ ∈Fx(M) regarded as a linear
isomorphism ξ : Rd → TxM, ξ (w) is a tangent vector in TxM. By Theorem 13 (1),
ξ (w) corresponds to a unique vector Hw(ξ )∈Hξ F (M). It follows that Hw is a glob-
ally defined horizontal vector field on F (M). If we take w = eα (α = 1,2, · · · ,d),
then we obtain a family of horizontal vector fields {He1 , · · · ,Hed} as a basis of the
horizontal subspace Hξ F (M) at each frame ξ ∈F (M). {He1 , · · · ,Hed} are called
the fundamental horizontal fields of F (M), simply denoted by {H1, · · · ,Hd}.

Now we introduce the concept of development and anti-development (see [12]),
which is crucial in the construction of G-Brownian motion on M. Assume that xt ∈
M is a smooth curve and ξt is the horizontal lifting of xt from ξ0. Then we can
determine a smooth curve

wt =

ˆ t

0
ξ
−1
s ẋsds ∈ Rd

starting from 0 (wt is regarded as a column vector in Rd). wt is called the anti-
development of xt in Rd with respect to ξ0. If ξt and ηt are two horizontal lift-
ings of xt with ξ0 = η0Q for some Q ∈ GL(d,R), then the two corresponding anti-
developments are related by

wη

t = Qwξ

t .
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The fundamental relation between the anti-development wt of xt and the horizontal
lifting ξt is the following ODE on F (M) :

dξt = Hα(ξt)dwα
t . (41)

Conversely, given a smooth curve wt ∈ Rd starting from 0, by solving the ODE
(41) on F (M) with initial frame ξ0, we obtain a horizontal curve ξt ∈F (M). The
projection xt = π(ξt) is called the development of wt in M with respect to ξ0. If
we use another initial frame η0 = ξ0Q−1 and the driven process vt = Qwt ∈ Rd , by
solving (41) from η0 and projection onto M we obtain the same curve xt . In this way,
we obtain a one-to-one correspondence of the Euclidean curve wt and the manifold
curve xt via the horizontal curve ξt in F (M), which depends on the initial frame ξ0.
The procedure of getting xt from wt is usually known as “rolling without slipping”.

A crucial point should be emphasized here is that such procedure is carried out
by solving the ODE (41) in the pathwise sense, which fits well in the context of
rough paths if the Euclidean curve wt is interpreted as a rough path. In this case,
(41) should be interpreted as an RDE. This is an important reason why we need to
develop the notion of Stratonovich type SDEs on a differentiable manifold.

For a general Euclidean G-Brownian motion Bt , from Section 6 we are able to
solve (41) pathwisely if the driven curve dwt is replaced by dBt in the Stratonovich
sense (or in the RDE sense). By projecting the solution ξt ∈F (M) to the manifold
M, we obtain a process Xt ∈M pathwisely which depends on the initial position x0
and the initial frame ξ0 ∈Fx0(M). A disadvantage of using the total frame bundle
F (M) is that in this way it is not possible to write down the generating PDE govern-
ing the law of Xt intrinsically on M, which does not depend on the initial frame ξ0.
Note that the generating PDE of ξt is well-defined on F (M) according to Theorem
12, which takes the form

∂u
∂ t
−G((Ĥα Hβ u)16α,β6d) = 0. (42)

The main reason for such disadvantage is that the PDE (42) is not invariant under
actions by GL(d,R) along fibers, since the G-function does not have such kind of
invariance.

To fix this issue, a possible way is to use the invariant group I(G) of G as the
structure group, so that the generating PDE will be invariant under actions by I(G)
along fibers due to the form (42) it takes. Therefore, we need to use a proper frame
bundle (a submanifold of F (M) which is a principal bundle over M with structure
group I(G) and fibers being a suitable class of frames) instead of F (M). The fibers
of such frame bundle should be preserved by parallel transport so the fundamental
horizontal fields can be restricted on it and we are able to solve the RDE

dξt = Hα(ξt)◦dBα
t

on the frame bundle. It will turn out that we are able to establish the generating PDE
of the projection process Xt = π(ξt) intrinsically on M, which does not depend on
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the initial frame. Therefore, although as a process the sample paths of Xt depends on
the initial frame (this is not surprising since in the Euclidean case we also don’t have
a canonical Brownian motion if we do not fix the frame {e1, · · · ,ed} in advance),
the law of Xt will not. In this way we obtain a canonical PDE on M associated with
the original G-function, which can be regarded as the generating PDE governing
the law of Xt . The process Xt can be defined as a G-Brownian motion on M and the
generating PDE will play the role of the canonical Wiener measure (the solution of
the martingale problem for the operator 1

2 ∆M) on M in the nonlinear setting.
The construction of such frame bundle for a G-function with an arbitrary invari-

ant group I(G) is not clear to us at the moment. However, in the case when I(G)
is the orthogonal group O(d), which contains a wide and interesting class of G-
functions, there is a very natural frame bundle serving us well for the purpose: the
orthonormal frame bundle O(M).

From now on, let G be given by (31) with I(G) = O(d).
The orthonormal frame bundle O(M) over M is defined by

O(M) = ∪x∈MOx(M),

where the fibre Ox(M) is the set of orthonormal bases of TxM. Since M is compact,
O(M) is a compact submanifold of F (M). Moreover, since the Levi-Civita con-
nection is compatible with the Riemannian metric g, parallel transport preserves the
fibers of O(M). Therefore, statements about F (M) before on the horizontal aspect
can be carried through in the case of O(M) directly. In particular, the fundamental
horizontal fields Hα can be restricted to O(M). The only difference is in the vertical
direction: the fibre becomes orthonormal frames, and the structure group which acts
on fibers becomes the orthogonal group; the dimension in the vertical direction is
reduced to d(d−1)

2 .
For ξ ∈ Ox(M), according to Section 6, let Ut,ξ ∈ O(M) be the unique solution

of the following RDE over [0,1]:{
dUt,ξ = Hα(Ut,ξ )◦dBα

t ,

U0,ξ = ξ .
(43)

Let Xt,ξ = π(Ut,ξ ) be the projection of Ut,ξ onto M.

Definition 8. Xt,ξ is called a G-Brownian motion on the Riemannian manifold M
with respect to the the initial orthonormal frame ξ ∈ Ox(M), and Ut,ξ is called a
horizontal G-Brownian motion in O(M) starting from ξ .

For any ϕ ∈CLip(M) (under the Riemannian distance), define

u(t,ξ ) = EG[ϕ(Xt,ξ )], (t,ξ ) ∈ [0,1]×O(M).

Let ϕ̂ = ϕ ◦π be the lifting of ϕ to O(M). It is obvious that

u(t,ξ ) = EG[ϕ̂(Ut,ξ )].
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By Theorem 12, we know that u(t,ξ ) is the unique viscosity solution of the follow-
ing nonlinear parabolic PDE:{

∂u
∂ t −G((Ĥα Hβ u)16α,β6d) = 0,
u(0,ξ ) = ϕ̂(ξ ),

(44)

on O(M).
The following result tells us that the law of Xt,ξ depends only on the initial posi-

tion x.

Proposition 10. If ξ ,η ∈ Ox(M), then

u(t,ξ ) = u(t,η).

Proof. For any fixed orthogonal matrix Q ∈ O(d), let B̃t = QBt , which is an or-
thogonal transformation of the original G-Brownian motion Bt , and let Wt,ζ be the
pathwise solution of the following RDE over [0,1]:{

dWt,ζ = Hα(Wt,ζ )◦dB̃α
t ,

W0,ζ = ζ ∈ O(M),
(45)

on O(M). If we regard B̃t as the solution of the SDE

dB̃t = Qα dBα
t

starting from 0 with constant coefficients, then the RDE (45) is equivalent to{
dWt,ζ = Hβ (Wt,ζ )Q

β

α ◦dBα
t ,

W0,ζ = ζ ,

in which the generating vector fields are Hβ Qβ

α . Since the invariant group I(G) of G
is the orthogonal group, by Theorem 12 we know that the function

v(t,ζ ) = EG[ϕ̂(Wt,ζ )], (t,ζ ) ∈ [0,1]×O(M)

is the unique viscosity solution of the same PDE (44) on O(M). Therefore,

u(t,ζ ) = v(t,ζ ), ∀(t,ζ ) ∈ [0,1]×O(M).

Now since ξ ,η ∈Ox(M), there exists some Q ∈ O(d) such that ξ = ηQ. Define
Wt,ζ as before. By the previous discussion on the relation between different anti-
developments, we know that

Xt,ξ = π(Ut,ξ ) = π(Wt,η), ∀t ∈ [0,1].

Therefore,
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u(t,ξ ) = EG[ϕ ◦π(Ut,ξ )]

= EG[ϕ ◦π(Wt,η)]

= v(t,η)

= u(t,η).

From Proposition 10, we know that u(t,ξ ) is invariant along each fibre. There-
fore, the law of Xt,ξ depends only on the initial position x ∈M but not on the initial
frame ξ . We use u(t,x) to denote u(t,ξ ), where x is the base point of ξ . In this situ-
ation it is possible to establish the PDE for u(t,x) intrinsically on M by “projecting
down” (44), which should become the generating PDE governing the law of Xt,ξ .

For any u ∈C∞(M), take an orthonormal frame ξ = (ξ1, · · · ,ξd) ∈ Ox(M), and
consider the quantity

G((Hessu(ξα ,ξβ ))16α,β6d).

Since I(G) = O(d), it is easy to see that the above quantity is independent of the
orthonormal frame ξ ∈ Ox(M). In other words, G can be regarded as a functional
of the Hessian, and the nonlinear second order differential operator G(Hess(·)) is
globally well-defined on M.

Now we have the following result.

Theorem 14. u(t,x) is the unique viscosity solution of the following nonlinear heat
equation on M : {

∂u
∂ t −G(Hessu) = 0,
u(0,x) = ϕ(x).

(46)

Proof. It suffices to show that: if f ∈ C∞(M), and f̂ = f ◦ π is the lifting of f to
O(M), then for any ξ = (ξ1, · · · ,ξd) ∈ Ox(M),

Hess f (ξα ,ξβ )(x) = Hα Hβ f̂ (ξ ).

Note that uniqueness follows from the same reason as pointed out in the proof of
Theorem 12 by using results in [1].

In fact, for any ξ = (ξ1, · · · ,ξd) ∈ Ox(M), let ξt be a horizontal curve through
ξ such that Hβ (ξ ) is tangent to ξt at t = 0, and let xt be its projection onto M. It
follows that the tangent vector of xt at t = 0 is ξβ , and

Hβ f̂ (ξ ) =
d f̂ (ξt)

dt
|t=0

=
d f (xt)

dt
|t=0

= 〈ξβ ,∇ f (x)〉g.

Therefore, if now assume that ξt is a horizontal curve through ξ with tangent vector
Hα(ξ ) at ξ and still xt = π(ξt), then
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Hα Hβ f̂ (ξ ) = Hα〈ξβ ,∇ f (π(ξ ))〉g

=
d
dt
|t=0〈ξβ ,t ,∇ f (xt)〉g

= 〈
Dξβ ,t

dt
|t=0,∇ f (x)〉g + 〈ξβ ,∇ξα

∇ f (x)〉g

= Hess f (ξα ,ξβ )(x),

where we’ve used the fact that ξβ ,t is parallel along xt .

Since Xt,ξ is the projection of Ut,ξ and Ut,ξ is the solution of the RDE (43) which
is equivalent to an Itô type SDE from an extrinsic point of view, by Theorem 14 we
can see that as a process on M the law of the G-Brownian motion Xt,ξ is character-
ized by the nonlinear parabolic PDE (46).

Example 5. When G is given by a functional of trace, as in Example 4 (1), (2), the
generating PDE (46) takes a more explicit form in terms of the Laplace-Beltrami
operator ∆M on M. This is due to the fact that

∆M = tr(Hess).

For instance, if G(A) = 1
2 tr(A), then (46) becomes the classical heat equation on M:

∂u
∂ t
− 1

2
∆Mu = 0,

which governs the law of classical Brownian motion on M (see [12], [13]). If G is
given by

G(A) =
1
2
(µ(trA)+−λ (trA)−),

where 0 6 λ < µ, then (46) becomes

∂u
∂ t
− 1

2
(µ(∆Mu)+−λ (∆Mu)−) = 0.

It is a generalization of the one-dimensional Barenblatt equation to higher dimen-
sions in a Riemannian geometric setting.

As pointed out before, as a process the G-Brownian motion Xt,ξ on M depends
on the initial orthonormal frame ξ and hence there is not a canonical choice of a
particular one. However, if we consider the path space W (M) = C([0,1];M), then
for each x ∈M, it is possible to define a canonical sublinear expectation Ex on the
space H (M) of functionals on W (M) of the form

f (xt1 , · · · ,xtn),

where 0 6 t1 < · · · < tn 6 1 and f ∈ CLip(M), such that under Ex the law of the
coordinate process is characterized by the PDE (46) with Ex[ϕ(x0)] = ϕ(x) for any
ϕ ∈CLip(M).
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To see this, we will define Ex explicitly. We use uϕ(t,x) to denote the solution
of (46), emphasizing the dependence on ϕ. For a functional of the form f (xt), we
simply define

Ex[ f (xt)] := u f (t,x).

For a functional of the form f (xs,xt), Ex f (xs,xt) should be defined by EG[ f (Xs,ξ ,Xt,ξ )],
where Xt,ξ is a G-Brownian motion on M with respect to an initial orthonormal
frame ξ ∈ Ox(M). Similar to the proof of Theorem 11 we know that

EG[ f (Xs,ξ ,Xt,ξ )] = EG[EG[ f (Xs,ξ ,Xt,ξ )|Ωs]]

= EG[EG[ f (π(Us,ξ ),π(Ut,ξ ))|Ωs]]

= EG[EG[ f (π(η),Xt−s,η)]|η=Us,ξ ].

But since the law of Xt−s,η does not depend on the initial orthonormal frame η , we
obtain that

EG[ f (π(η),Xt−s,η)]|η=Us,ξ = u f (Xs,ξ ,·)(t− s,Xs,ξ ).

Therefore, we define

Ex[ f (xs,xt)] := EG[ f (Xs,ξ ,Xt,ξ )] = ug(s,x),

where
g(y) := u f (y,·)(t− s,y), y ∈M.

Inductively, assume that

u(n)f (t1, · · · , tn,x) = Ex[ f (xt1 , · · · ,xtn)]

is already defined. For a functional of the form f (xt1 , · · · ,xtn+1), define

Ex[ f (xt1 , · · · ,xtn+1)] := ug(t1,x),

where
g(y) := u(n)f (y,·,··· ,·)(t2− t1, · · · , tn+1− t1,y), y ∈M.

Then Ex is the desired sublinear expectation on H (M).

Remark 8. As we’ve pointed out before, for noncompact Riemannian manifolds, the
RDE (43) may possibly explode at some finite time and so may the corresponding G-
Brownian motion as well. An interesting question is the study of explosion criterion.
It might depend on the curvature and topology of the Riemannian manifold.

On the other hand, for those G-functions with the same invariant group, they
may have some special features in common; while for those with different invariant
groups, their structure should be very different. The study of classification of G-
functions in terms of the invariant group is interesting, and it might give us some
hints on generalizing our results to the case when I(G) 6= O(d). We believe that in
some cases it is still possible to construct a proper frame bundle with structure group
I(G) on which we can apply similar techniques in this section. But in some extreme
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cases, for instance when I(G) is a finite group as in Example 3, it seems difficult
to proceed along this direction unless we have a globally defined frame field over
the Riemannian manifold M, which is usually not true. We might need some very
different methods for those extreme cases.

8 Conclusion

To summarize, the motivation of the present article is to understand nonlinear diffu-
sion processes from the view of rough path theory, and in particular, to understand
the intrinsic and geometric nature of the nonlinear heat flow. Along this direction,
the pathwise approach under the framework of rough paths seems to be a right tool,
since it is not natural to use Itô’s formulation from the geometric point of view, and
localization technique from Itô’s perspective is not well understood in the nonlinear
situation.

In this article, we study the geometric rough path nature of sample paths of G-
Brownian motion, which enables us to establish differential equations driven by
G-Brownian motion in a pathwise sense. Furthermore, we establish the fundamen-
tal relation between the two types of differential equations driven by G-Brownian
motion. Such relation enables us to develop nonlinear diffusion processes on a dif-
ferentiable manifold and G-Brownian motion on a Riemannian manifold from the
pathwise point of view. The pathwise approach seems to be quite natural if we aim
at understanding the intrinsic and geometric nature of nonlinear diffusion processes.
Finally, we establish the generating nonlinear heat equation of G-Brownian motion
on a Riemannian manifold and construct the associated canonical sublinear expec-
tation on the path space for a class of nonlinear G-functions whose invariant group
is the orthogonal group. Although such class of G-functions contains the most im-
portant and interesting examples so far, it remains an open problem for the general
case (in particular, the singular case) where the use of orthogonal frame bundle is
no longer applicable.
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