1. Determine the antiderivative.
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2. Evaluate

3. Consider

dx

(a) Explain why we would not apply long division in an attempt to sim-
plify the integrand.

(b) Write out the form of the partial fraction decomposition. Do not
determine the numerical values of the coefficients.

4. Give a formula for
/ sin® z cos™ zdx

where n is any nonnegative integer.

/ sin® zdx

5. Determine the antiderivative.

6. Determine the antiderivative.
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7. (a) Use an illustration and explain the Left Endpoint Rule for approxi-

mating a proper definite integral f: f(z)dz. Derive the formula for
the Left Endpoint Rule.

(b) Under what condition will the Left Endpoint Rule give an overesti-
mate of f; f(x)dx? Nlustrate with a picture.

(¢) Suppose f(z) > 0 and f”(z) < 0 for all = € [a,b]. Explain why the
Trapezoidal Rule will give an underestimate of f; f(x)dx.
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8. Evaluate



9. In each part below, evaluate the integral, or demonstrate that the integral
does not exist.

10. Recall that if f is a twice-differentiable function on an interval [a, b} and n

subintervals are used for a Trapezoidal Rule approximation to / f(x)dx,

and f” is known to be bounded, then the error associated with the approx-
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which |f”(z)| < K for all z in [a,b]. Determine a number of subintervals
which would guarantee accuracy to within 0.001 = in a Trapezoidal

imation is no greater than , where K is any positive number for
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11. Determine the antiderivative: /;C—?\/ 9— 22 dx
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12. Determine the antiderivative using the partial fractions technique: /

13. Determine whether the integral exists. If so, find its value.
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14. (a) Compute the Trapezoidal Rule approximation to Vzsinz dx

with six subintervals. Simplify the result. "

(b) Recall the error bound theorem for the Trapezoidal Rule: If n subin-
b

tervals are used to approximate / f(x)dx by the Trapezoidal Rule,

a
and if K is any positive number for which |[f”(z)] < K for all
€ [a,b], then the error in the approximation is no greater than
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. Show that the error in your approximation in part (a) is
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(a) Clearly explain the distinction between a proper integral and an im-
proper integral.

(b) Suppose an improper integral exists. Explain why one must know
how to evaluate proper Riemann integrals in order to find the value
of the improper integral.

(¢) Explain why some improper integrals do not exist and therefore can-
not be assigned a numerical value.

Recall the error bound theorem for the Midpoint Rule: If n subintervals
b

are used to approximate / f(x)dx by the Midpoint Rule, and if K is any
positive number for which |f"(z)] < K for all = € [a,b], then the error
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in the approximation is no greater than %. Let I; and I be the
n

following integrals:
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Suppose it is desired to find the values of I; and I, accurate to six decimal
places using the Midpoint Rule. Which integral will likely require more
subintervals to guarantee the specified accuracy?

Determine the antiderivative: / sec® ztan'z dx

Determine the antiderivative: / dx
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Determine the antiderivative: /
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Determine the antiderivative: / x a: 8z +25 dxr
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Using one or more illustrations and a verbal argument, explain how the

following may occur: A function f is increasing on an interval [a, b], and the
b

Trapezoidal Rule will yield an underestimate to f(z) dz, no matter

a
how many subintervals of [a, b] are used for the approximation.



