Part 4

  1. Find the interval of convergence (you must test endpoints, if applicable) of the following series.

    \begin{displaymath}\sum_{n=0}^{\infty }
2^{-n} \left( 2x-1 \right )^n
\end{displaymath}

    Solution: $-1/2 < x < 3/2 $

  2. Find a power series representation, and the interval on which it represents the function, for

    \begin{displaymath}
f(x)= \frac{x^2}{4-x^2}
\end{displaymath}

    Solution: $\sum_{n=0}^{\infty} \frac{x^{2n+2}}{4^{n+1}
}$, $-2<x<2$

  3. Find the Taylor series centered at $a=8$ for

    \begin{displaymath}
f(x)=\sqrt[3]{x}
\end{displaymath}

    Solution:

    \begin{displaymath}2 +\frac{1}{12} (x-8) +\sum_{n=2}^{\infty} \frac{(-1)^{n-1}2\cdot 5 \cdots (3n-4)}{3^n 2^{3n-1} n! } (x-8)^n \end{displaymath}

  4. Using Taylor's Inequality, determine an upper bound for the error in approximating $f(x)=e^{-2x}$ by its Taylor polynomial $T_2(x)$, centered at $a=0$, on the interval $[-1/4,1/4]$.

    Solution: $\frac{\sqrt e}{48}$



Timothy J Flaherty 2006-05-10