Part 1

  1. Integrate and simplify your result.

    \begin{displaymath}
\int_{0}^{\pi/3} \cos^4 t \sin^2 t  dt
\end{displaymath}

    Solution: $ \pi/48+\sqrt{3}/64 $.

  2. Integrate

    \begin{displaymath}
\int \frac{dx}{x^2\sqrt{9-x^2} }
\end{displaymath}

    Solution: $-\frac{\sqrt{9-x^2}}{9x}+C $

  3. Integrate

    \begin{displaymath}
\int \frac{1}{x^2(x^2+4)}  dx
\end{displaymath}

    Solution: $-\frac{1}{4x} -\frac{1}{8} \arctan \frac{x}{2} +C $

  4. Determine if the following integral converges or diverges, and evaluate the integral if it converges.

    \begin{displaymath}
\int_{0}^{\infty} x^2 e^{-x^3}  dx
\end{displaymath}

    Solution: Converges, to $\frac{1}{3}$



Timothy J Flaherty 2006-05-10