Part 4

  1. Find the interval of convergence (you must test endpoints, if applicable) of the following series.

    \begin{displaymath}\sum_{n=0}^{\infty }
2^{-n} \left( 2x-1 \right )^n
\end{displaymath}

  2. Find a power series representation, and the interval on which it represents the function, for

    \begin{displaymath}
f(x)= \frac{x^2}{4-x^2}
\end{displaymath}

  3. Find the Taylor series centered at $a=8$ for

    \begin{displaymath}
f(x)=\sqrt[3]{x}
\end{displaymath}

  4. Using Taylor's Inequality, determine an upper bound for the error in approximating $f(x)=e^{-2x}$ by its Taylor polynomial $T_2(x)$, centered at $a=0$, on the interval $[-1/4,1/4]$.



Timothy J Flaherty 2006-05-10