Practice Exam 2

  1. Explain what occurs when you aaply Newton's Method to find the root of $f(x)=\sqrt[3]{x}$ with $x_1=1$.

  2. How many terms of a partial sum are required so that the approximation of the following series is accurate to within $0.05$?

    \begin{displaymath}
\sum_{n=0}^{\infty} \frac{ 1}{2^n n!}
\end{displaymath}

  3. How many terms of a partial sum are required so that the approximation of the following series is accurate to within $0.05$?

    \begin{displaymath}
\sum_{n=1}^{\infty} \frac{ (-1)^{n-1}}{n^2}
\end{displaymath}

  4. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n \ln n}
\end{displaymath}

  5. Determine if the following series converges or diverges.

    \begin{displaymath}
\sum_{n=1}^{\infty} \ln \left( \frac{2n}{1+n} \right)
\end{displaymath}

  6. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=1}^{\infty}
\frac{(-\pi)^n}{n+n!}
\end{displaymath}

  7. Determine if the following series converges or diverges.

    \begin{displaymath}\sum_{n=1}^{\infty} \frac {\sqrt {n+1} }{1-n+n^2}
\end{displaymath}

  8. Determine if the following series converges or diverges.

    \begin{displaymath}
\sum_{n=0}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots
(3n+1)}{2 \cdot 5 \cdot 8 \cdots (3n+2)}
\end{displaymath}



Timothy J Flaherty 2006-04-14