Name: \qquad Class: \qquad Date: \qquad
$\mathbf{1}^{\text {Let the function }} f$ be defined by the equation $y=f(x)$, where x and $f(x)$ are real numbers. Find the domain of the function

$$
f(x)=\sqrt{25 x^{2}-11}
$$

${ }^{2}$ Let the function f be defined by the equation $y=f(x)$, where x and $f(x)$ are real numbers. Find the range of the function

$$
f(x)=\frac{10 x+4}{x-24}
$$

$\mathbf{3}^{2}$ Let the function f be defined by the equation $y=f(x)$, where x and $f(x)$ are real numbers. Find the domain of the function

$$
f(x)=\frac{14 x+35}{x-25}
$$

4 Let the function f be defined by $y=f(x)$, where x and $f(x)$ are real numbers. Find $f(8)$.

$$
f(x)=30 x-20
$$

5 Let the function f be defined by $y=f(x)$, where x and $f(x)$ are real numbers. Find $f(7)$.

$$
f(x)=91-44 x^{2}
$$

6 Let the function f be defined by $y=f(x)$, where x and $f(x)$ are real numbers. Find $f(2)$.

$$
f(x)=\frac{17}{x^{2}+15}
$$

7 Let the function f be defined by $y=f(x)$, where x and $f(x)$ are real numbers. Find $f(3)$.

$$
f(x)=\sqrt{2 x^{2}+18}
$$

8 Evaluate the difference quotient for the function.

$$
f(x)=6 x-5
$$

\qquad Class: \qquad
\qquad
9 Evaluate the difference quotient for the function.

$$
f(x)=7 x^{2}-7
$$

10 Graph the function.

$$
f(x)=3 x+2
$$

11 Graph the function.
$f(x)=-|x|-3$

Name: \qquad Class: \qquad Date: \qquad
12 Graph the function.

$$
f(x)=|x-2|
$$

13 Graph the function.

$$
f(x)=\sqrt{2 x-4}
$$

14 Give the domain of the function.

$$
f(x)=\sqrt{6 x-6}
$$

15 Give the range of the function.

$$
f(x)=\sqrt[3]{4 x-6}
$$

16 Give the domain of the function.

$$
f(x)=-\sqrt[3]{17 x+26}
$$

17 The velocity of a falling object is a linear function of the time t it has been falling. If $v=18$ when $t=0$ and $v=130$ when $t=16$, express v as a function of t.

18 The amount A of money on deposit for t years in an account earning simple interest is a linear function of t. Express that function as an equation if $A=\$ 96$ when $t=3$ and $A=\$ 116$ when $t=5$.
\qquad
\qquad
\qquad
19 Find the vertex of the parabolic graph of the equation.

$$
y=2(x-3)^{2}+7
$$

20 Graph the quadratic function.
$f(x)=x^{2}+2 x$

21 Graph the quadratic function.

$$
f(x)=-3 x^{2}+4
$$

\qquad
\qquad
\qquad
22 Graph the quadratic function.
$f(x)=-\frac{1}{2} x^{2}+3$

23 Graph the quadratic function.
$f(x)=-x^{2}-4 x+1$

24 Find the vertex of the parabola.

$$
y=-8 x^{2}+4
$$

25 Find the vertex of the parabola.

$$
y=x^{2}+2 x+1
$$

\qquad Class: \qquad
\qquad
26 Find the vertex of the parabola.

$$
y=x^{2}-18 x+81
$$

27 Find the vertex of the parabola.

$$
y=-x^{2}+12 x-32
$$

28 Find the vertex of the parabola.

$$
y=4 x^{2}+12 x+14
$$

29 An object is thrown from the origin of a coordinate system with the x-axis along the ground and the y-axis vertical. Its path, or trajectory, is given by the equation $y=296 x-16 x^{2}$. Find the object's maximum height. Enter your answer as a number without units.

30 The rectangular garden in the illustration has a width of x and a perimeter of 100 feet. Find x such that the area of the rectangle is maximum.

$a=100$
\qquad Class: \qquad Date: \qquad
31 A farmer wants to partition a rectangular feed storage area in a corner of his barn. The barn walls form two sides of the stall, and the farmer has 34 feet of partition for the remaining two sides.

$a=34$

What dimensions will maximize the area of the partition?

32 A 16-inch-wide sheet of metal is to be bent into a rectangular trough with the cross section.

$a=16$

Find the dimensions that will maximize the amount of water the trough can hold. That is, find the dimensions that will maximize the crosssectional area.

33 A wholesaler of appliances finds that she can sell $(1200-4 p)$ television sets each week when the price is p dollars. What price will maximize revenue?

34 A 270 -room hotel is two-thirds filled when the nightly room rate is $\$ 90$. Experience has shown that each $\$ 15$ increase in cost results in 30 fewer occupied rooms. Find the nightly rate that will maximize income.

Name: \qquad Class: \qquad Date: \qquad
35 At a time t seconds after an object is tossed vertically upward, it reaches a height s in feet given by the equation:

$$
s=100 t-16 t^{2}
$$

How many seconds does it take the object to reach its maximum height?

36 At a time t seconds after an object is tossed vertically upward, it reaches a height s in feet given by the equation:

$$
s=224 t-16 t^{2}
$$

What is the maximum height reached by the object?

37 What is degree of the function

$$
y=f(x)=x^{7}-4
$$

38 Graph the polynomial function

$$
f(x)=x^{3}+x^{2}
$$

\qquad
\qquad
39 Graph the polynomial function

$$
y=-x^{3}+1
$$

40 Graph the polynomial function

$$
f(x)=x^{4}-2 x^{2}+1
$$

\qquad
\qquad
\qquad
41 Tell where the function is increasing.

42 Tell where the function is decreasing.

43 Tell where the function is increasing.

$$
y=49-x^{2}
$$

\qquad
\qquad
44 Graph the piecewise-defined function.

$$
y=f(x)= \begin{cases}x+2 & \text { if } x<0 \\ 2 & \text { if } x \geq 0\end{cases}
$$

45 Graph the piecewise-defined function.

$$
y=f(x)=\left\{\begin{aligned}
-x & \text { if } \quad x<0 \\
x^{2} & \text { if } \quad x \geq 0
\end{aligned}\right.
$$

\qquad
\qquad
\qquad
46 Graph the piecewise-defined function.

$$
y=f(x)=\left\{\begin{aligned}
|x| & \text { if } \quad x<0 \\
\sqrt{x} & \text { if } x \geq 0
\end{aligned}\right.
$$

47 Graph the piecewise-defined function.

$$
y=f(x)=\left\{\begin{aligned}
0 & \text { if } x<0 \\
x^{2} & \text { if } 0 \leq x \leq 2 \\
4-2 x & \text { if } x>2
\end{aligned}\right.
$$

\qquad
\qquad
\qquad
48 Graph the piecewise-defined function.

$$
y=f(x)= \begin{cases}2 & \\ 2 & \text { if } x<0 \\ x & \\ \text { if } 0 \leq x<2 \\ & \text { if } x \geq 2\end{cases}
$$

49 Graph the function.
$y=[[2 x]]$

\qquad Class: \qquad Date: \qquad
50 Graph the function.

$$
y=[[x-1]]
$$

51 A taxicab company charges $\$ 3$ for a trip up to 1 mile, and $\$ 2$ for every extra mile (or portion of a mile). Graph the ordered pairs (m, c), where m represents the miles traveled and c represents the cost.

52 A plumber charges $\$ 30$, plus $\$ 40$ per hour (or fraction of an hour), to install a new bathtub. Graph the points (t, c), where t is the time it takes to do the job and c is the cost.

\qquad
\qquad
53
Graph the function defined by $y=\frac{|x|}{x}$

54 Graph the function.

$$
y=x+|x|
$$

55 Graph the function

$$
g(x)=x^{2}-2
$$

\qquad
\qquad
\qquad
56 Graph the function

$$
g(x)=(x+3)^{2}
$$

57 Graph the function

$$
h(x)=(x+1)^{2}+2
$$

\qquad
\qquad
\qquad
58 Graph the function

$$
h(x)=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}
$$

59 Graph the function

$$
g(x)=(x-2)^{3}
$$

\qquad
\qquad
\qquad
60 Graph the function

$$
h(x)=(x-2)^{3}-3
$$

61 Graph the function

$$
y-7=(x-5)^{3}
$$

\qquad
\qquad
\qquad
62 Graph the function

$$
h(x)=-x^{3}
$$

63 Graph the function
$f(x)=(-x-1)^{2}$

\qquad
\qquad
\qquad
64 Graph the function

$$
f(x)=2 x^{2}
$$

65 Graph the function

$$
f(x)=\left(\frac{1}{2} x\right)^{3}
$$

\qquad Class: \qquad Date: \qquad
66 Graph the equation

$$
f(x)=|x-2|+1
$$

67 Graph the equation

$$
g(x)=|3 x|
$$

\qquad
\qquad
\qquad
68 Graph the equation

$$
h(x)=\sqrt{x-2}+1, \quad x \geq 2
$$

69 Graph the equation

$$
f(x)=2 \sqrt{x}+3, \quad x \geq 0
$$

\qquad Class: \qquad Date: \qquad
70 Graph the equation

$$
f(x)=-2|x+3|
$$

71 Find y-intercept of the function

$$
f(x)=\frac{5 x-5}{x-1}
$$

72 Graph the function

$$
f(x)=\frac{3 x+2}{x^{2}-4}
$$

73 Find x-intercepts of the function
$g(x)=\frac{x^{2}-9}{x^{2}-7}$
\qquad
\qquad
\qquad
74 Graph the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}-4 x+3}
$$

75 Graph the function

$$
f(x)=\frac{x^{2}+2 x-3}{x^{3}-4 x}
$$

\qquad
\qquad
\qquad
76 Graph the function

$$
f(x)=\frac{x^{2}-9}{x^{2}}
$$

77 Graph the function

$$
f(x)=\frac{x+1}{x^{2}(x-2)}
$$

\qquad Class: \qquad Date: \qquad
78 Graph the function

$$
y=\frac{x}{x^{2}+1}
$$

79 Graph the function

$$
h(x)=\frac{x^{2}-2 x-8}{x-1}
$$

\qquad Class: \qquad
\qquad
80 Graph the function

$$
f(x)=\frac{x^{2}}{x}
$$

Note that the numerator and denominator of the fraction share a common factor.

81 Graph the function
$f(x)=\frac{x^{3}+x}{x}$

Note that the numerator and denominator of the fraction share a common factor.

\qquad
\qquad
\qquad
82 Graph the function

$$
f(x)=\frac{x^{2}-2 x+1}{x-1}
$$

Note that the numerator and denominator of the fraction share a common factor.

83 Graph the function
$f(x)=\frac{x^{3}-1}{x-1}$

Note that the numerator and denominator of the fraction share a common factor.

84 A service club wants to publish a directory of its members. An investigation shows that the cost of typesetting and photography will be $\$ 600.00$, and the cost of printing each directory will be $\$ 1.00$. Find the mean cost per directory if 300 directories are printed.

85 An electric company charges $\$ 7.50$ per month plus $\$ 0.07$ for each kilowatt hour (kwh) of electricity used. Find a linear function $f(n)$ that gives the total cost of n kwh of electricity.

86 An electric company charges $\$ 6.50$ per month plus $\$ 0.11$ for each kilowatt hour (kwh) of electricity used. Find a rational function $f(n)$ that gives the average cost per kwh when using n kwh.
\qquad Class: \qquad
\qquad
87 Let $f(x)=2 x-1, g(x)=3 x-2$. Find the domain of the function.
$(f-g)(x)$
88 Let $f(x)=2 x+1, g(x)=3 x-2$. Find the function.
$(f-g)(x)$
89 Let $f(x)=x^{2}-1, g(x)=3 x-2$. Find the value of the function.
$(f+g)(5)$
90 Let $f(x)=2 x-5, g(x)=5 x-2$. Find the value of the function.
$(g \circ g)(-4)$
91 Let $f(x)=3 x^{2}-2, g(x)=4 x+4$. Find the value of the function.
$(f \circ g)(5)$
92 Let $f(x)=3 x, g(x)=x+1$. Find the composite function.
$(f \circ g)(x)$
93 Let $f(x)=x^{2}, g(x)=2 x$. Find the composite function $(g \circ g)(x)$.
${ }^{94}$ Let $f(x)=\sqrt{x}, g(x)=x+1$. Find the composite function.
$(f \circ g)(x)$
${ }^{95}$ Let $f(x)=\sqrt{x}, g(x)=x+1$. Find the domain of the composite function.
$(g \circ f)(x)$
Please express the answer in interval notation.
${ }^{96}$ Let $f(x)=\sqrt{x+1}, g(x)=x^{2}-1$. Find the domain of the composite function.
$(g \circ g)(x)$
Please express the answer in interval notation .
${ }^{97}$ Let $f(x)=\sqrt{x+1}, g(x)=x^{2}-1$. Find the composite function.
$(g \circ f)(x)$
${ }^{98}$ Let $f(x)=\frac{1}{x-1}, g(x)=\frac{1}{x-2}$. Find the domain of the composite function.
$(g \circ g)(x)$
\qquad
99 When the temperature of a pot in a kiln is $1607^{\circ} \mathrm{F}$, an artist turns off the heat and leaves the pot to cool at a controlled rate of $99^{\circ} \mathrm{F}$ per hour. Express the temperature of the pot in degrees Celsius as a function of the time t (in hours) since the kiln was turned off.
${ }^{100}$ Let $g(x)=\frac{4 x}{3 x-1}$. Find the composite function.
$(g \circ g)(x)$
101 Use the horizontal line test to determine whether the graph represents a one-to-one function.

102 Find the inverse of the one-to-one function.
$y=5 x$
103 Find the inverse of the one-to-one function.
$y=9 x+2$
104 Find the inverse of the one-to-one function.
$y=\frac{1}{7 x}$

Name: \qquad Class: \qquad Date: \qquad
105 Find the inverse of this one-to-one function and graph both the function and its inverse on the same set of coordinate axes.

$$
y=2 x
$$

106 Find the inverse of this one-to-one function and graph both the function and its inverse on the same set of coordinate axes.

$$
2 x+y=4
$$

\qquad Class: \qquad Date: \qquad
107 Find the inverse of the one-to-one function and graph both the function and its inverse on the same set of coordinate axes.
$f(x)=\frac{1}{2 x}$

108 The function $f(x)=x^{2}-8$ is one-to-one on the domain $x \leq 0$. Find $f^{-1}(x)$.

109 The function $f(x)=\frac{10}{x^{2}}$ is one-to-one on the domain $x>0$. Find $f^{-1}(x)$.

110 The function $f(x)=\sqrt{x^{2}-6}$ is one-to-one on the domain $x \leq-\sqrt{6}$. Find $f^{-1}(x)$.

111
Find the range of the function $f(x)=\frac{7 x}{x-6}$ by finding the domain of $f^{-1}(x)$.

112
Find the range of the function $f(x)=\frac{7}{x}-3$ by finding the domain of $f^{-1}(x)$.

113 A pizzeria charges $\$ 11.00$ plus $\$ 0.60$ per topping for a large pizza. Find a linear function that expresses the cost y of a large pizza in terms of the number of toppings x.

114 A pizzeria charges $\$ 8.50$ plus $\$ 0.65$ per topping for a large pizza. Find the cost of a pizza that has 2 toppings.

115 A phone company charges $\$ 10.00$ per month plus $\$ 0.02$ per call. Find a rational function that expresses the average cost y of a call in a month when x calls were made.

Name:
Class:
Date:
116 A phone company charges $\$ 11.90$ per month plus $\$ 0.04$ per call. How many calls can be made for an average cost of $\$ 0.14$ per call?

Name: Class: \qquad Date: \qquad

1. $\left(-\infty, \frac{-\sqrt{11}}{5}\right] \cup\left[\frac{\sqrt{11}}{5}, \infty\right)$
x in $(-\mathrm{inf},-\operatorname{sqr}(11.00000000000000000000 / 25.00000000000000000000)]$ cup $[\operatorname{sqr}(11.00000000000000000000 /$ 25.00000000000000000000),+ inf)
2. $(-\infty, 10) \cup(10, \infty)$
3. $(-\infty, 25) \cup(25, \infty)$
4. 220
$\mathrm{f}(8)=220$
5. -2065
$\mathrm{f}(7)=-2065$
$\frac{17}{19}$
6. $\mathrm{f}(2)=\frac{17}{19}$
7. $\begin{aligned} & 6 \\ & \mathrm{f}(3)=6\end{aligned}$
8. 6
9. $14 \mathrm{x}+7 \mathrm{~h}$
10.

11.

12.

Name: \qquad Class: \qquad Date: \qquad
13.

14. $[1, \infty)$
$x \in[1.0000, \infty)$
15. $(-\infty, \infty)$
16. $(-\infty, \infty)$
. $\mathrm{x} \in(-\infty, \infty)$
17. $v=7 t+18$
$v(t)=7 t+18$
18. $A=10 t+66$
18. $A(t)=10 t+66$
19. $(3,7)$
20.

21.

22.

Name:
Class: \qquad Date: \qquad
23.

24. $(0,4)$
25. $(-1,0)$
26. $(9,0)$
27. $(6,4)$
28. $(-1.5,5)$
29. 1369
30. 25
31. 17,17
32. 4,8

8,4
33. 150
34. 90
35. 3.125
36. 784
37. 7
38.

Name:
Class: \qquad Date: \qquad
40.

41. $(0, \infty)$
42. $(0, \infty)$
43. $(-\infty, 0)$
44.

45.

46.

Name: \qquad Date: \qquad
48.

49.

50.

51.

Name: Class:

Date: \qquad
53.

54.

55.

Name:
Class: \qquad Date: \qquad
56.

57.

58.

59.

60.

Date: \qquad
61.

62.

63.

64.

65.

Date: \qquad
67.

68.

69.

70.

71. $(0,5)$

PAGE 9

Name:
Class: \qquad Date: \qquad
72.

73. $(3,0),(-3,0)$
74.

75.

76.

77.

Date: \qquad
78.

79.

80.

81.

82.

ANSWER KEY

Name:
Class: \qquad Date: \qquad
83.

84. 3.00
85. $f(n)=0.07 n+7.50$
$0.07 \mathrm{n}+7.50$
$f(n)=\frac{0.105 n+6.500}{n}$
86. $0.105 n+6.500$
n
87. $(-\infty, \infty)$
88. $-x+3$
89. 37
90. -112
91. 1726
92. $3 x+3$
93. $4 x$
94. $\sqrt{\mathrm{x}+1}$
95. $[0, \infty)$
96. $(-\infty, \infty)$
97. x
98. $(-\infty, 2) \cup(2,2.5) \cup(2.5, \infty)$
99. $\mathrm{T}=875-55 \mathrm{t}$
100. $\frac{16 x}{(9 x+1)}$
101. 0
102. $\frac{\mathrm{x}}{5}$
$y=\frac{x}{5}$
$\frac{(x-2)}{9}$
103.
$y=\frac{(x-2)}{9}$
104. $\frac{1}{(7 x)}$
$\frac{1}{7 x}$
\qquad Date: \qquad
106.

107.

108. $-\sqrt{\mathrm{x}+8}$
$-\sqrt{8+x}$
109. $\sqrt{\frac{\sqrt{\frac{10}{x}}}{\sqrt{\mathrm{x}}}}$
$\sqrt{x^{2}+6}$
$-\sqrt{6+x^{2}}$
111. $\mathrm{f}(\mathrm{x}) \neq 7$
$(-\infty, 7) \cup(7, \infty)$
112. $f(x) \neq-3$
113. $y=0.6 x+11.0$
114.9.8
115. $y=0.02+\frac{10}{x}$
116. 119

