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We consider here the problem of phase separation in copolymer melts. The
Ohta–Kawasaki density functional theory gives rise to a nonlocal Cahn–Hilliard-
like functional, promoting the use of ansatz-free mathematical tools for the
investigation of minimizers. In this article we re-derive this functional as an
offspring of the self-consistent mean field theory, connecting all parameters to
the fundamental material parameters and clearly identifying all the approxima-
tions used. As a simple example of an ansatz-free investigation, we calculate
the surface tension in the strong segregation limit, independent of any phase
geometry.
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1. INTRODUCTION

A diblock copolymer is a linear-chain molecule consisting of two subchains
joined covalently to each other. One of the subchains is made of monomers
of type A and the other of type B. Below a critical temperature, even a
weak repulsion between unlike monomers A and B induces a strong repul-
sion between the subchains, causing the subchains to segregate. A macro-
scopic segregation whereby the subchains detach from one another can not
occur because the chains are chemically bonded. Rather, in a system of
many such macromolecules, the immisibility of these monomers drives the
system to form structures which minimize contacts between the unlike
monomers and this tendency to separate the monomers into A and B-rich
domains is counter balanced by the entropy cost associated with chain



stretching. Because of this energetic competition, a phase separation on a
mesoscopic scale with A-rich and B-rich domains emerges. The mesoscopic
domains which are observed are highly regular periodic structures; for
example lamellar, bcc centered spheres, circular tubes, and bicontinuous
gyroids (see for example refs. 4 and 18). These ordered structures are key
to the material properties which make diblock copolymers of great tech-
nological importance.

Various mean field theories have been introduced to model and
capture aspects of the phase separation (see refs. 4 and 13 and the refer-
ences therein). In particular, they have successfully predicted both the
phase diagram as well as scaling laws for the length scale of the separation.
In all these theories, one must accurately sum the competing energetic con-
tributions of the interaction energy and elastic energy due to chain stretch-
ing. The latter is usually modeled via a phase space for the n polymer
chains (continuous function curves) which is equipped with a product
measure consisting of n-copies of Wiener measure; therefore highly coiled
chains are favored over straight ones. With this state space, one introduces
a Hamiltonian based upon the monomer interactions. At this point
approximations must be made as seeking the Gibbs canonical distribution
and the free energy is far too complicated due to the interactions between
the copolymer chains. One of the most successful ‘‘approximate’’ theories is
the self-consistent mean field theory (SCMFT) developed and applied over
the years by several researchers including Leibler, Helfand, Wasserman,
Hong, Noolandi, Matsen, and Schick (cf. refs. 23, 25–28, 30, 35). Here one
simulates the effect of monomer interactions via external fields acting sep-
arately on the A and B monomers. Approximations are used,3 allowing for

3 We view this approximation via a variational principle (cf. Proposition 3.1).

the computation of the free energy via an integration over external fields
and the macroscopic densities they generate. From this SCMFT, Matsen
and Schick (ref. 35) introduced a spectral method which yields predictions
with striking resemblances to experiments.

There are three dimensionless material parameters involved in the
microphase separation: q, the Flory–Huggins interaction parameter mea-
suring the incompatibility of the two monomers; N, the index of polymeri-
zation measuring the number of monomers per macromolecule; and a,
measuring the relative length of the A-monomer chain compared with the
length of the whole macromolecule. In the mean field approximation,
where thermal fluctuations are ignored, one finds that the microphase sep-
aration depends only on the two quantities qN and a. The phase diagram
(either theoretically or experimentally constructed) indicates several regimes
for the phase separation. In particular, for a fixed value of a one finds with
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increasing qN; a disordered regime wherein the melt exhibits no observable
phase separation, the weak segregation regime (WSR) where the size of the
A and B-rich domains are of roughly of the same order as the interfacial
(overlapping) regions around the bonding points, an intermediate segrega-
tion regime, and the strong segregation regime (SSR) wherein the domain
size is much larger than the interfacial length. In the SSR, it has been
observed (cf. refs. 19–21) that the domain size scales like q

1
6N

2
3 where as the

interfacial length scales like q−1
2. We remark that most experiments take

place at temperatures which place one in the intermediate segregation
regime (cf. ref. 18).

In refs. 29 and 40, Ohta and Kawasaki derived a density functional
theory4 (DFT) which uses several approximations to write the free energy

4 Many other ‘‘density functional theories’’ have been proposed; see, for example, refs. 31 and
33 and the survey article. (13) See also related work in refs. 47 and 48.

exclusively in terms of the (averaged) macroscopic monomer density. This
idea was first used by Leibler (ref. 30) who focused on the WSR. In the
Ohta–Kawasaki DFT one is left with the following free energy of a single
order parameter k measuring the difference between the average A and B
monomer densities:

E(k) :=F
W

|Nk|2 dx+q F
W

W(k) dx

+a F
W

F
W

(k(x) − m)(k(y) − m) G(x, y) dx dy, (1.1)

where W … R3 is the physical domain of the melt, a is inversely proportional
to N2, and W is a double-well energy with zeroes at k= ± 1 only. The
average over W of order parameter k is constrained to equal m (thus
m=2a − 1). G(x, y) is the Green’s function of the Laplacian operator with
the Neumann boundary condition. A similar functional to (1.1) has been
studied by Bahiana and Oono (ref. 2), and Liu and Goldenfeld (ref. 32, see
also Section 8.4 of ref. 16).5

5 See also the recent work of Muratov. (36)

Dividing the energy by q and rescaling space to focus on the shape
effects, one arrives at a nonlocal Cahn–Hilliard-like (cf. ref. 6) functional of
the form

EE, s(k) :=
E2

2
F

D
|Nk|2 dx

+F
D
W(k) dx+

s

2
F

D
F

D
(k(x) − m) (k(y) − m) G(x, y) dx dy,

(1.2)
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where D is a domain of unit volume, E represents the interfacial thickness
(suitably rescaled) at the A and B monomer intersections, and s is again
inversely proportional to N2. The exact relationship between E, s and the
parameters q, N, a, |W| are given in Section 5. The average of k over D is
again constrained to equal m. This form of the energy was first written
by Nishiura and Ohnishi in ref. 37 who noted that the DFT of Ohta–
Kawasaki provides an ideal setting for a deeper mathematical analysis. The
main advantage for the application of more sophisticated mathematical
tools is that they can help in addressing a generic criticism about the anal-
ysis of domain structures via the minimization of a free energy. This has
been well articulated by Bates and Fredrickson in Physics Today (ref. 4)
who, in the context of mean field theories for microphase separation of
copolymers, noted that ‘‘A limitation of current theoretical techniques is that
they proceed by assuming a periodic structure, computing its free energy and
then comparing that free energy to the free energy of other candidate struc-
tures. Such calculations run the risk of overlooking complex three-dimensional
microphases that have not been previously identified.’’ 6

6 There have recently been several attempts to address this criticism, see, for example, refs. 11
and 5.

Recently there has been a series of mathematical articles on the mini-
mization of (1.2), both from the perspective of the analysis of partial dif-
ferential equations (refs. 31, 41–47), and based upon some direct methods
(refs. 1, 7, and 8) which apply in any space dimension. These types of
analysis can allow one to draw certain conclusions, such as scaling laws,
without any pre-assigned bias for the domain structures: that is, they allow
for an analysis of minimizing structures within the framework of all struc-
tures. These results seem encouraging in terms of building ansatz-free
techniques which successfully capture properties for minimizers of (1.2).

Mathematical results pertaining to (1.2) can only be meaningful if they
are complemented with an understanding of where this functional comes
from, and perhaps more importantly, a framework for addressing the
extent to which (1.2) captures the essential physics of the problem (even if it
is only qualitative information which remains). Questions have remained
regarding the validity of the functional (1.1) (and hence (1.2)). For
example, where as this DFT has successfully predicted observed scaling
laws in the SSR (domain size ’ q

1
6N

2
3 ), questions have been raised (ref. 18)

as to its validity in the SSR where certain approximations are not rigor-
ously valid. Ohta et al. (ref. 39) have argued that while the expression of
the free energy (1.1) is approximate, there are many indications which
suggest that the essential physics of the ordered phases is captured by this
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model. Matsen and Bates have noted in ref. 34 that while this theory makes
qualitatively accurate predictions, ‘‘it is difficult to assess all the approxi-
mations in this DFT and others like it.’’

With these comments in mind, the purpose of the present article is
two-fold:

1. Re-examine the derivation of the Ohta–Kawasaki DFT theory,
clearly presenting it as an offspring of the well-established SCMFT and
clearly identifying the approximations used.

2. Provide a derivation of Nishiura and Ohnishi’s nonlocal Cahn–
Hilliard-like functional (1.2) which is accessible to applied mathematicians
and clearly illustrates the connection to the fundamental material param-
eters q, N, and a.

Notation. For clarity, we provide a brief summary of some of our
notation.

• W … R3 is the physical domain with volume |W| on which the melt
lives and D is a normalized physical domain of unit volume. We use x, y, z
to denote points in R3 with dx (or dy, dz) in reference to a volume integral.

• Fields with super and sub indices of A and B will be used to denote
reference to the A and B monomers respectively. We often use k and m as
variables taking on the values of either A or B.

• The index of polymerization is denoted by the integer N. For a
copolymer chain parametrized by either y or t ¥ [0, N], we let IA=[0, NA]
denote the interval occupied by the A-monomers and IB=[NA, N] denote
the interval occupied by the B-monomers. We let NB :=N − NA. The
molecular weight of the A and B monomers are denoted by a and b respec-
tively (hence, a=NA/N, b=NB/N with a+b=1).

• r=(r1,..., rn) denotes an n-tuple of copolymer chains (continuous
functions from [0, N] to R3). Associated to these n-tuples is an n-product
Wiener measure denoted by dm (see Section 2 for a precise definition). H(r)
and D(r) denote respectively the interaction Hamiltonian and the Gibbs
canonical distribution associated with the interacting chains. Z denotes the
associated partition function. See Section 2 for more detailed definitions.

• U=(UA, UB) denotes an external field acting respectively on the A
and B monomers, and O ·PU denotes the expectation with respect to DU, the
Gibbs canonical distribution induced by U. For a field U acting at a point
y, we define U(y, t)=Uk, if t ¥ Ik.

• r(x, r) will denote a microscopic monomer density field. OrPU, u and
k will denote different macroscopic density fields. An exception to this
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convention will be in the second half of Section 4 where for convenience we
temporarily use just r(x) to denote the macroscopic density field.

• VAB, VAA, and VBB denote the monomer interaction parameters and
q is the Flory–Huggins interaction parameter given by (4.22).

• l (NOT a!) denotes the Kuhn statistical length. The Boltzmann con-
stant has been normalized to unity and b denotes the reciprocal of the
absolute temperature measured in units of (energy)−1.

• W and W will denote double-well potentials for the macroscopic
monomer density fields. F, I, and E will denote free energies for certain
order parameters.

• Finally, the summation convention of matching super and sub
indices is frequently used over A and B. For example,

dkek := C
k=A, B

dkek, dkmekfm := C
k=A, B

C
m=A, B

dkmekfm.

2. INTERACTING MOLECULAR CHAINS

The statistical physics of block copolymers is built on the fundamental
work of de Gennes, (9) Edwards, (12) and Lifshitz. (17) A single ideal chain r1 of
N total monomers is a Brownian process in the function space

C1=C([0, N], R3).

If we write every r1 ¥ C([0, N], R3) as r1=r1(0)+(r1 − r1(0)), the space is
decomposed into

C([0, N], R3) — R3 × {r1 ¥ C([0, N], R3) : r1(0)=0]}.

Let dP0] be the Wiener measure of the standard Brownian motion, scaled
by a factor l/ `3, on {r1 ¥ C([0, N], R3) : r1(0)=0]}. l is the Kuhn statis-
tical length (9, 17) that measures the average distance between two adjacent
monomers. In this paper we only consider the situation when this l is
independent of the types of the adjacent monomers. P0] reminds us the
probabilistic origin of this measure and the fact that r1(0)=0]. This Wiener
measure is often written formally as

dP0] ’ exp 1 −
3

2l2 F
N

0

1dr1(y)
dy

22

dy2 dr1.

Then the space C([0, N], R3) is equipped with the measure

dm1=dx × dP0] .
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The A (B respectively) monomers occupy the interval (0, NA) ((NA, N)
respectively).

With n chains in the material, the phase space is

C={r=(r1,..., rn) : ri ¥ C([0, N], R3)}

equipped with the product measure

dm=dm1 × dm1 × · · · × dm1z
n

.

Were quantum indistinguishability effect taken into consideration, we
would include a factor of 1/n! in this measure. It would also address the
issue of extensivity of the system. In this paper we will not need this factor.

An external potential

PW(x)=˛0, x ¥ W

., x ¨ W

exists to confine the molecules in W … R3. With n chains of polymerization
index N, there are nN monomers. Inside W the average monomer number
density is r0=nN/|W|. The interaction between monomers gives another
two particle energy term so the Hamiltonian, ignoring the nonessential
kinetic energy, takes the form

H(r)=C
i, j

C
k, m

Vkm

2r0
F
Ik

F
Im

d(ri(y) − rj(t)) dy dt+C
i

F
N

0
PW(ri(y)) dy. (2.1)

Here we assume that the interaction is short ranged in the use of the
d-function, and repulsive by taking Vkm > 0. We deliberately use the super
index for Vkm for the practice of the summation convention later. This also
indicates a conjugacy relation between the energy and the number density
defined in (2.2). The Gibbs canonical distribution is

D(r)=
1
Z

exp(−bH(r)), Z=F
C

exp(−bH(r)) dm

which describes the thermal equilibrium. Here we use the energy unit to
measure the absolute temperature so the Boltzmann constant is 1 and b is
the reciprocal of the absolute temperature. Note that the free energy of the
system is − b−1 log Z.

If we define the microscopic density fields

rk(x, r)= C
n

i=1
F
Ik

d(x − ri(y)) dy, k=A, B,
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then under this distribution the expectations

Ork(x)P=F
C

rk(x, r) D(r) dm, k=A, B (2.2)

give the macroscopic densities of the monomer units. In terms of rk(x, r)
the Hamiltonian (2.1) becomes

H(r)=F
W

Vkm

2r0
rk(x, r) rm(x, r) dx.

3. THE SELF-CONSISTENT MEAN FIELD THEORY

It is hopeless to find Ork(x)P directly from D due to the complexity of
the interaction V. However D satisfies a variational principle (cf. ref. 3,
Vol. 1, Section 4.2.2):

Proposition 3.1. For any other distribution DŒ (i.e., DŒ ] D),

b F
C

H(r) DŒ(r) dm − S(DŒ) > − log Z.

If DŒ is replaced by D on the left side, the inequality becomes an equality.

Here S(DŒ) denotes the statistical entropy associated with the distri-
bution DŒ, i.e.,

S(DŒ)=−F DŒ log DŒ dm.

An approximation method comes into play based on Proposition 3.1.
Consider a smaller class of distributions DŒ, and define

F(DŒ)=F
C

H(r) DŒ(r) dm − b−1S(DŒ).

F(DŒ) may be considered as an approximate free energy of the original
system under DŒ. Assume that in the smaller class F(DŒ) is easier to
compute and minimize. Then the minimizer within this smaller class
approximates the true distribution D.

In the self-consistent field theory (see Helfand, (23) Helfand and
Wasserman, (25–27) Hong and Noolandi, (28) Matsen and Schick (35)—the latter
two being formulated in the context of diblock copolymers), we choose the
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class of distributions to be those generated by a pair of external fields
U=(UA, UB), acting on the A and B monomers respectively. There is no
interaction between the monomers. We assume that

C
k

Ik

N
F

W

Uk(x) dx=0. (3.1)

The condition (3.1) may be achieved by adding a suitable constant to all Uk.
The addition of such an overall constant only introduces an additive con-
stant in the energy and does not affect the Gibbs canonical distribution
that U induces. We impose the restriction that for every x ¨ W, Uk(x)=.

(k=A, B), to accommodate PW. The Hamiltonian on C of such a system is

HU(r)= C
n

i=1
C
k

F
Ik

Uk(ri(y)) dy.

It induces a Gibbs canonical distribution

DU(r)=
1

ZU
exp(−bHU(r)), ZU=F

C

exp(−bHU(r)) dm.

We use O ·PU to denote the expectation with respect to DU(r) dm. Clearly if
x ¨ W, O(rk(x)PU=0.

The average internal energy under DU is

OHPU :=F
C

H(r) DU(r) dm=F
W

Vkm

2r0
Ork(x)PU Orm(x)PU dx. (3.2)

The entropy of DU is

S(DU)=log ZU − b
“

“b
log ZU

=log ZU+
b

ZU
F

C

exp(−bHU(r)) 5C
i, k

F
Ik

Uk(ri(y)) dy6 dm

=log ZU+b F
C

5C
i, k

F
Ik

Uk(ri(y)) dy6 DU(r) dm

=log ZU+bn F
C

5C
k

F
Ik

Uk(r1(y)) dy6 DU(r) dm

=log ZU+b F
W

Uk(x)Ork(x)PU dx (3.3)
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We now regard the approximate free energy F as a functional of the
external fields U=(UA, UB).

F(U)=F
W

5Vkm

2r0
Ork(x)PU Orm(x)PU − Uk(x)Ork(x)PU

6 dx −
1
b

log ZU. (3.4)

Note that only >C H(r) DU(r) dm relates the artificial external fields to the
real interaction V.

The calculation of F(U) is done by the Feynman–Kac integration
theory (See ref. 15, Chap. 6). We note that because of the presence of
PW that confines the molecules in W, Uk(x)=. if x ¨ W. Therefore the
Dirichlet boundary condition on “W × (0, N) is imposed on the backward
and forward parabolic partial differential equations associated with the
Feynman–Kac integration theory. Let QU(y, y, z, t) be the fundamental
solution of the backward equation

(QU)y+(l2/6) DyQU − bUQU=0, QU(y, t, z, t)=d(y − z),

where U(y, y)=Uk(y) if y ¥ Ik (k=A, B). Set qU to be the solution of

(qU)y+(l2/6) DqU − bUqU=0, qU(y, N)=1, (y, y) ¥ W × (0, N)

and qg
U to be the solution of the forward equation

(qg
U)y − (l2/6) Dqg

U+bUqg
U=0, qg

U(y, 0)=1, (y, y) ¥ W × (0, N).

Note that

qU(y, y)=F
W

QU(y, y, z, N) dz, qg
U(y, y)=F

W

QU(z, 0, y, y) dz.

Using the probabilistic notation so Ey is the expectation conditioned
on r1(0)=y, we find the partition function under U

ZU=F
C

exp(−bHU(r)) dm

=3F
C1

exp 1−b C
k

F
Ik

Uk(r1(y)) dy2 dm1
4n

=3F
W

5Ey exp 1−b C
k

F
Ik

Uk(r1(y)) dy26 dy4
n

=3F
W

qU(y, 0) dy4
n

=3F
W

qg
U(y, N) dy4

n

.
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Next we compute Ork(x)PU.

Ork(x)PU=
1

ZU
F

C

5C
i

F
Ik

d(ri(y) − x) dy6 exp(−bHU(r)) dm

=
n

Z1/n
U

F
C1

5F
Ik

d(r1(y) − x) dy6 exp 1 − b C
k

F
Ik

Uk(r1(y)) dy2 dm1

=
n

Z1/n
U

F
W

3Ey F
Ik

d(r1(y) − x) dy exp 1 − b F
N

0
U(r1(y), y) dy24 dy

For any fixed y ¥ Ik,

Ey
3d(r1(y) − x) exp 1 − b F

N

0
U(r1(t), t) dt2 4

=Ey
3d(r1(y) − x) exp 1 − b F

y

0
U(r1(t), t) dt2

× Er1(y) exp 1 − b F
N

y

U(r1(t), t) dt24

=Ey
3d(r1(y) − x) exp 1 − b F

y

0
U(r1(t), t) dt2 qU(r1(y), y)4

=qU(x, y) Ey
3d(r1(y) − x) exp 1 − b F

y

0
U(r1(t), t) dt24

=qU(x, y) QU(y, 0, x, y).

After integrating over y and y we obtain

Ork(x)PU=
n

Z1/n
U

F
Ik

qU(x, y) qg
U(x, y) dy. (3.5)

This way ZU, Ork(x)PU, and most importantly F(U) may be computed.

4. ORDER PARAMETERS OOrk(x)PP AND THE DFT

In the expression F(U)=OHPU − b−1S(DU) the OHPU term (3.2)
depends on Uk through Ork(x)PU. We naturally take Ork(x)PU as order
parameters, and invert (3.5) to express Uk and eventually F in terms of
Ork(x)PU. This idea was used in Leibler. (30)

To turn the − b−1S(DU) term in F as a functional of Ork(x)PU we will
do some simplification. We start with calculating the derivative of F at
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U: f Q FŒ(U) f where f=(fA, fB). It is done by differentiating the free
energy of the perturbation Uk+Efk with respect to E. Defining f(y, t) the
way that U(y, t) is defined, we set p and pg to be the solutions of

py+(l2/6) Dp − bUp=bfqU, p(x, N)=0,

pg
y − (l2/6) Dpg+bUpg=−bfqg

U, pg(x, 0)=0
(4.1)

which can be written as

p(x, y)= − b F
N

y

F
W

QU(x, y, y, t) qU(y, t) f(y, t) dy dt

pg(x, y)= − b F
y

0
F

W

QU(y, t, x, y) qg
U(y, t) f(y, t) dy dt.

Then we deduce

d(−log ZU+Ef)
dE, E=0

= −
n

Z1/n
U

“

“E, E=0
F

W

qU+Ef(y, 0) dy

= −
n

Z1/n
U

F
W

p(y, 0) dy

=
bn

Z1/n
U

F
W

F
N

0
qU(z, y) qg

U(z, y) f(z, y) dy dz

=b F
W

Ork(z)PU fk(z) dz. (4.2)

Moreover

d
dE, E=0

(−b) F
W

(U+Ef)k (x)Ork(x)PU+Ef dx

= − b F
W

Ork(x)PU fk(x) dx − b F
W

Uk(x)
“Ork(x)PU+Ef

“E, E=0
dx.

Therefore

d(−S(DU+Ef))
dE, E=0

= − b F
W

Uk(x)
“Ork(x)PU+Ef

“E, E=0
dx.
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On the other hand we have

dOHPU+Ef

dE, E=0
=F

W

Vkm

r0
Ork(x)PU

“Orm(x)PU+Ef

“E, E=0
dx,

and hence

FŒ(U) f=F
W

1Vkm

r0
Orm(x)PU − Uk(x)2 “Ork(x)PU+Ef

“E, E=0
dx.

So it all comes down to finding

“Ork(x)PU+Ef

“E, E=0
= − Z−1+n

n
U

“ZU+Ef

“E, E=0
F
Ik

qU(x, y) qg
U(x, y) dy

+
n

Z1/n
U

F
Ik

(p(x, y) qg
U(x, y)+pg(x, y) qU(x, y)) dy

=
bOrk(x)PU

n
F

W

O rm(y)PU fm(y) dy

+
n

Z1/n
U

F
Ik

(p(x, y) qg
U(x, y)+pg(x, y) qU(x, y)) dy. (4.3)

At this point, one easily derives the self-consistent equations (cf. ref. 35).7

7 Traditionally the diblock copolymer is assumed incompressible, i.e.,

OrA(x)PU+OrB(x)PU=r0, -x ¥ W. (4.4)

Under this constraint, any extremal of F satisfies the Euler–Lagrange equation

dF
dU

=
d

dU
F

W

l(x) C
k
Ork(x)PU dx,

where l(x) is the Lagrange multiplier from (4.4). The earlier calculation of FŒ(U) f yields

F
W

1Vkm

r0
Orm(x)PU − Uk(x)2 “Ork(x)PU+Ef

“E, E=0
dx=F

W

l(x) C
k

Ork(x)PU+Ef

“E, E=0
dx.

We see that a sufficient condition for the equation to hold is

Vkm

r0
Orm(x)PU − Uk(x)=l(x), k=A, B. (4.5)

The two equations in (4.5) constitute two of the five self-consistent equations. The other three
are (3.5) (for k=A, B) and the incompressibility (4.4). In these five equations there are five
unknown functions: OrAPU, OrBPU, UA, UB, and l.
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The Eqs. (4.2) and (3.3) imply that − S(DU) as a functional of OrPU is
the Legendre transform of − log ZU as a functional of bU. This is consis-
tent with the conjugacy relation between OrPU and bU. Consequently

d(−S(DU))
d(OrPU)

=−bU. (4.6)

So if we can express bU in terms of OrPU, then by integrating bU with
respect to OrPU, we find S(DU).

We first study the reversed relation of OrPU as a function of bU. Here
we employ one of the several approximation steps in the paper. We
linearize this dependence around b=0,8 i.e.,

8 See the Discussion of Section 6.

Ork(x)PU % Ork(x)P0+
“Ork(x)P0+EU

“E
:
E=0

. (4.7)

This linearization will lead to S(DU) as a quadratic functional of OrPU. We
compute from (3.5) as in (4.2) and (4.3),

“Ork(x)PEU

“E
:
E=0

= − Z−1+n
n

0

“ZEU

“E
:
E=0

F
Ik

q0(x, y) qg
0 (x, y) dy

+
n

Z1/n
0

F
Ik

(p(x, y) qg
0 (x, y)+pg(x, y) q0(x, y)) dy

=
Ork(x)P0

n
F

W

Orm(y)P0 bUm(y) dy

+
n

Z1/n
0

F
Ik

(p(x, y) qg
0 (x, y)+pg(x, y) q0(x, y)) dy. (4.8)

Note that in the above context, p(x, y) is the solution to (4.1) wherein
‘‘the U’’ is taken to be 0 and ‘‘the f’’ is taken to be U (cf. (4.3)).

Next we use another approximation: the thermodynamic limit of the
system. We assume W Q R3, the entire space, and n Q . while keeping
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n
|W|=

r0
N unchanged in the process. This approximation is justified by the fact

that |W|1/3 ± l. In this limit, we have

Q0(y, y, z, N) 0K(y − z, y − t) :=14pl2 |y − t|
6

2−3/2

exp 1 −
6 |y − z|2

4l2 |y − t|
2 ,

(4.9)

where K is the heat kernel on R3. Consequently

q0 and qg
0 0 1,

n
Z1/n

0

0

r0

N
, Ork(x)P0 0 r̄k :=

Nkr0

N
. (4.10)

By (3.1) we deduce

Ork(x)P0

n
F

W

Orm(y)P0 bUm(y) dy 0 0. (4.11)

Moreover

p(x, y) 0 − F
N

y

[K( · , y − t) f bU( · , t)](x) dt,

pg(x, y) 0 − F
y

0
[K( · , y − t) f bU( · , t)](x) dt.

(4.12)

Define

Rkm(z) :=F
Ik

F
im

K(z, y − t) dt dy. (4.13)

Using (4.8)–(4.12), the linear approximation (4.7) becomes

OrkPU % r̄m −
r0

N
Rkm f (bUm). (4.14)

Since the Fourier transform of K is

K̂(t) :=F
R3

K(x, t) e−2pit · x dx=exp 1 −
4p2l2 |t| |t|2

6
2 ,
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the Fourier transform of Rkm in (4.13) is

R̂km(t)=˛2 12pl |t|

`6
2−4

h 14p2l2 |t|2 Nk

6
2 if k=m

12pl |t|

`6
2−4

g 14p2l2 |t|2 Nk

6
,

4p2l2 |t|2 Nm

6
2 if k ] m

where

h(s1)=e−s1+s1 − 1 and g(s1, s2)=(1 − e−s1)(1 − e−s2).

To compute the inverse T̂ of R̂ we make the following approximation.
This is the third approximation we use in this section. The long and short
wave expansions

h(s1) % s1, g(s1, s2) % 1 if s1, s2 ± 1

h(s1) %
s2

1

2
−

s3
1

6
, g(s1, s2) % 1 s1 −

s2
1

2
21 s2 −

s2
2

2
2 if s1, s2 ° 1,

lead to

T̂(t) %
(2pl |t|)2

6N
K+

6
(2pl |t|)2 N3 L,

wherein setting a=NA/N and b=NB/N,

K=
1
2
ra−1 0

0 b−1
s , L=

3
2
r a−2 − (ab)−1

− (ab)−1 b−2
s . (4.15)

This type of expansion of T̂ was first used in Ohta and Kawasaki. (40) Recall
that our goal here is to invert the dependence of OrkPU on U. For conve-
nience of notation, we temporarily set rk=OrkPU. After performing the
inverse Fourier transform to T̂ and inverting (4.14), we find bU expressed
in terms of r:

bUk(x) % −
N
r0

Tkm (rm − r̄m)(x), (4.16)
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where

T=
l2

6N
(−D) K+

6
l2N3 (−D)−1 L.

Note that the operator − D comes from the term (2p |t|)2 and (−D)−1 from
1/(2p |t|)2.

Based upon (4.6), we integrate (4.16) to obtain9

9 Note that (−D)−1 (rk − r̄k) can be written as an integral:

(−D)−1 (rk − r̄k)(x)=F
R3

rk(y) − r̄k

4p |x − y|
dy

where 1
4p |x − y| is the Green function of − D in space.

− S(DU)+S(D0)

%
N

2r0
F

R3
(Tkm(rk − r̄k))(rm − r̄m) dx

=
1

2r0
F

R3
5l2Kkk

6
|Nrk |2+

6Lkm

l2N2 ((−D)−1 (rk − r̄k))(rm − r̄m)6 dx. (4.17)

Note that in completing the integration by parts above, we have neglected
the boundary terms at infinity.

Finally we return from the thermodynamic limit on R3 to the bounded
domain W. There are some choices of boundary conditions for (−D)−1 on a
bounded W: The Dirichlet, the Neumann, and the periodic boundary con-
ditions are the most obvious ones. They lead to different Green functions
on W. However the interior of the material is not significantly affected by
the choice of the boundary condition. Here we take the Neumann bound-
ary condition as an example. Denote the Green function by G(x, y). Then
(4.17) becomes

− S(DU)+S(D0) %
1

2r0
F

W

5l2Kkk

6
|Nrk(x)|2

+
6Lkm

l2N2
1F

W

G(x, y)(rk(y) − r̄k) dy2 (rm(x) − r̄m)6 dx.

(4.18)
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A more elegant way to express the above expression is to introduce the
nonlocal operator10 (−D)−1/2; thus

10 Precisely, this is the square root of the inverse of

− D: {g ¥ W2, 2(W) : “ng=0 on “W, ḡ=0} 0 {h ¥ L2(W) : h̄=0}.

Here ḡ= 1
|W| >W g dx is the average of g and h̄ is the average of h. “ng is the outward normal

derivative of g.

F
W

5F
W

G(x, y)(rk(y) − r̄k) dy(rm(x) − r̄m)6 dx

=F
W

((−D)−1/2 (rk − r̄k)) ((−D)−1/2 (rm − r̄m)) dx.

Combining (3.2) to (3.4) with (4.18), we find after dropping the unim-
portant constant S(D0):

F(r)=F
W

5 l2Kkk

12br0
|Nrk |2+

3Lkm

l2N2br0
(−D)−1

2 (rk − r̄k)(−D)−1
2 (rm − r̄m)

+
Vkm

2r0
rk(x) rm(x)6 dx. (4.19)

To separate the size effect of W from the shape effect of W, we scale W

to D={x: |W|1/3 x ¥ W}, whose 3-dimensional Lebesgue measure is 1. In the
mean time introduce relative densities uk(x)=rk(|W|1/3 x)/r0, and let u=
(uA, uB)T and ū=(ūA, ūB)T, where ūk :=>D uk(x) dx denotes the average
of uk. Hereinafter the superscript T denotes the transpose operation on a
vector. The relative densities turn (4.19) to a dimensionless form for
I=bF/(r0 |W|)—the relative free energy per monomer:

I(u)=F
D

5 l2 Kkk

12 |W|2/3 |Nuk |2

+
3Lkm |W|2/3

l2N2 (−D)−1
2 (uk − ūk)(−D)−1

2 (um − ūm)+W(u)6 dx. (4.20)

Here W is defined by (4) below, The first and second terms in (4.20) form
the entropy part of the free energy. Since the total number of A
(B respectively) monomers in W is nNA=nNa (nNb respectively), we have
the monomer number constraints

ūA=a, ūB=b, (a+b=1). (4.21)
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The W term comes from the internal energy (3.2): i.e.,

W(u)=
bVkm

2
ukum.

The four entries of V are all positive. In general we assume that

q=bVAB − (b/2)(VAA+VBB) > 0. (4.22)

The constant q is called the Flory–Huggins parameter (9, 17) in polymer
science. It is positive because in a block copolymer, dislike monomers repel
each other more than like ones do.

Traditionally one assumes that the material is incompressible in the
sense

uA(x)+uB(x)=1, -x ¥ D. (4.23)

This condition11 may be viewed as a consequence of the assumption that

11 Alternatively and perhaps more naturally, one may replace the hard incompressibility con-
dition (4.23) with a soft condition: that is extend the function W from (4.25) to a function
defined on R2 which satisfies (i) W is smooth on R2. (ii) The second derivative matrices at
(1, 0) and (0, 1) are positive definite. (iii) W(u) Q . quadratically as |u| Q ..

W(u)=˛bVkm

2
ukum if uA+uB=1, uA \ 0, uB \ 0

. otherwise.
(4.24)

It is often more convenient to subtract a linear term from (4.24) so that W
attains global minimum 0 at (1, 0) and (0, 1):

W(u)=˛bVkm

2
ukum −

bVkk

2
uk if uA+uB=1, uA \ 0, uB \ 0

. otherwise.
(4.25)

Because of the constraints (4.21), subtracting a linear term from W only
changes I by a constant, not affecting any minimization operation. This
new W satisfies W(u) \ 0 for all u and W(u)=0 if and only if u=(1, 0) or
u=(0, 1).
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5. THE OHTA-KAWASAKI AND NONLOCAL CAHN–HILLIARD-LIKE

FUNCTIONAL

We now reduce to a scalar order parameter and derive the Ohta–
Kawasaki functional (1.1) as well as the rescaled nonlocal Cahn–Hilliard-
like functional (1.2). Because of the incompressibility constraint, we may
work only with uA (i.e., uB=1 − uA). Using (4.15) with a+b=1, we rewrite
each term in (4.19) in terms of uA and nondimensionalize as in (4.20). We
obtain

I(uA)=C1 F
W

|NuA |2 dx+C2 F
W

(−D)−1
2 (uA − a)

· (−D)−1
2 (uA − a) dx+F

W

W(uA) dx, (5.1)

where following (4.25) and (4.22), W(uA)=q uA(1 − uA) for 0 [ uA [ 1, and

C1=
l2

24a(1 − a)
C2=

9
2l2N2a2(1 − a)2 .

Setting k=uA − uB=1 − 2uA and m=1 − 2a we may rewrite I above in
terms of k, without affecting the minimization process, obtaining essen-
tially the Ohta–Kawasaki functional (1.1).

To derive (1.2) in terms of the order parameter k, we rescale space (as
in (4.20)) to separate size effects from shape effects; normalizing the
domain to unit volume. We also rescale the energy by 1/q. We arrive at

EE, s(k) :=
E2

2
F

D
|Nk|2 dx+F

D
W(k) dx

+
s

2
F

D
F

D
(k(x) − m) (k(y) − m) G(x, y) dx dy, (5.2)

where W(k)=1
4 (1 − k2) for |k| [ 1, and the dimensionless quantities E and

s are given by

E2=
l2

3 a (1 − a) q |W|2/3 s=
36 |W|2/3

a2(1 − a)2 l2qN2 .

This is the form of the Ohta–Kawasaki functional first considered by
Nishiura and Ohnishi (ref. 37). The parameter E is a rescaled interfacial
thickness, i.e.,

E |W|1/3=
l

`3a(1 − a) q
,
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consistent with the fact that in the SSR, the interfacial thickness scales like
1/`q.

We also remark that, neglecting the dependencies on a, the regime
E ° s is equivalent to q1/6 N2/3 l ° |W|1/3. As previously noted, in the
SSR both experiments and several models (including this DFT) predict
that the domain size scales like q1/6 N2/3 l. Hence the latter inequality may
be viewed as a self-consistency requirement enabling the formation of
domains on this scale. In particular, working in the regime E ° s places
one in the SSR (cf. refs. 7, 37, and 41).

6. DISCUSSION

We have re-derived the Ohta–Kawasaki DFT from the statistical
physics of interacting chains using the SCMFT as our starting point. This
process involved several approximations. The first (cf. Proposition 3.1) is
the basis for the SCMFT and amounts to replacing the true free energy
stemming from the interacting monomers with the minimum over all fields
U of the expression (3.4). This approximation is essentially equivalent to
the more frequently used approximation whereby functional integrals are
replaced with extremal values of the integrand. The latter process is often
dubbed ‘‘the Random Phase Approximation’’ (cf. ref. 40). As mathemati-
cians, we view the variational principle as more natural but, of course, are
unable to determine the accuracy of this approximation.

The other three approximations come from the inversion process in
Section 4, whereby all fields are calculated in terms of the order param-
eter OrP. The basic step here is the linerization about b=0 of the depen-
dence of OrPU on U. The accuracy is dependent on the size of b12 which is

12 Note that b has dimensions of energy−1. The associated units of energy are naturally those
of the Vkm (which are also the units of the external fields Uk ). Thus small b means q ° 1.

inversely proportional to temperature. Herein lies the skepticism for the
application of this DFT in the SSR. Moreover, it is also difficult to assess
its accuracy in the intermediate segregation regime wherein most experi-
ments take place. As previously mentioned, this DFT does give accurate
predictions for the domain size scaling law in the SSR. It would perhaps be
more interesting to determine whether or not it can also predict all the
observed structures in the weak and intermediate segregation regimes
which were previously predicted by the SCMFT, for example the double-
gyroid phase (cf. ref. 35). Very recently, Teramoto and Nishiura (49) used the
Ohta–Kawasaki DFT to show numerically that within a very small param-
eter regime, energy minimization leads to the double gyroid phase. Ohta
et al. have also recently implemented simulations of this phase (ref. 38).
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APPENDIX A

Here we calculate the interfacial energy associated with A-B monomer
interfaces. We use the powerful notion of variational convergence (dubbed
Gamma-convergence) which was introduced by Ennio De Giorgi (ref. 10).
After a suitable rescaling in space, one is able to rigorously determine the
asymptotic behavior (as the relative interfacial thickness tends to zero) of
minimizers via the asymptotic behavior of the functionals they minimize.
As a consequence of this procedure, the interfacial energy density (or
surface tension) is determined in terms of the relevant material parameters.
We will omit the details of the proof of Gamma-convergence, which may
easily be inferred from a related result in ref. 44. The reader not familiar
with this type of mathematical analysis (or the spaces BV and W1, 2)
may either skip to formula (A.3) or see ref. 10 for more details. Our main
point here is to illustrate that this technique allows one to calculate the
surface tension without any a priori assumptions on the phase geometry.

We work with the vector-valued order parameter u and the free energy
given by (4.20). We choose the size of W in a rather special way so that
|W|1/3 ’ N2/3l. We introduce the following notation:

e=
l

`6 |W|1/3
, l=

6 `6 |W|

l3N2
. (A.1)

As a consequence l ’ 1 is a fixed positive constant. This choice of |W|1/3

will later facilitate the use of the Gamma-convergence theory. Regarding e

we assume that e Q 0, a consequence of |W|1/3 ’ N2/3l and N Q .: Thus we
are considering the strong segregation limit.

After rescaling space so that W transforms to a unit domain, I in (4.20)
becomes a family of functionals parameterized by e:

Ie(u)=F
D

5e2

2
Kkk |Nuk |2

+
e l

2
Lkm (−D)−1

2 (uk − uk) (−D)−1
2 (um − um)+W(u)6 dx. (A.2)

Ie is initially defined on X={(uA, uB)T: uA, uB ¥ W1, 2(D), ūA=a, ūB=b}
but for technically reasons we extend its domain to X̂={(uA, uB)T:
uA, uB ¥ L2(D), ūA=a, ūB=b}, by trivially setting Ie(u)=. if u ¥ X̂0X.
One can prove that minimizers of e−1Ie (and their energies) converge to
minimizers (and their respective energies) of a sharp interface variational
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problem involving the functional J. This is accomplished, in part, by
proving that e−1Ie Gamma-converges to J. The functional J is defined by:

J(u)=cAB ||D1Eu
|| (D)+

l

2
F

D
Lkm (−D)−1

2 (uk − uk) (−D)−1
2 (um − um) dx,

if u is in

X0={(uA, uB)T ¥ X̂ : uA, uB ¥ BV(D), (uA, uB)=(1, 0) or (0, 1) a.e.}

and J(u)=. if u ¥ X̂0X0. 1Eu
is the characteristic function of the set

Eu :={x ¥ D : u(x)=(1, 0)}. Since it has bounded variation, its derivative
D1Eu

is a vector of two signed measures. The total variation of the two
measures is the positive measure ||D1Eu

||. In particular, ||D1Eu
|| (D) is simply

the total surface area of interface between the A and B domains. The
constant cAB (the surface tension) is defined by

cAB=inf 3`2 F
1

0
`W(g(t))(KgŒ(t) · gŒ(t)) dt : g ¥ L4

where L={g ¥ C1([0, 1], R2) : g(0)=(1, 0)T, g(1)=(0, 1)T}. To interpret
cAB in terms of bVkm in (4.25), we note that the optimal choice of g(t) is
g(t)=(1, 0)T (1 − t)+(0, 1)T t. The function W we use is (4.25). From these
g and W we deduce

cAB=1F
1

0
`(1 − t) t dt2 =q 11

a
+

1
1 − a

2=
p

8
= q

a(1 − a)
. (A.3)

Note that it is the Flory–Huggins parameter q which appears in cAB.
If we return to the original sample W and recall I=bF/(r0 |W|),

b=1/(kT) and (A.1), then (A.3) implies that the interfacial free energy per
unit area is

r0lkT

`6

p

8
= q

a(1 − a)
. (A.4)

In Helfand and Tagami (24) the interfacial free energy is calculated from the
self-consistent mean field theory. The result there is

= q

6
r0lkT. (A.5)

(A.5) does not involve a. Otherwise (A.4) and (A.5) differ by a numerical
factor.
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