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Abstract
We present the first of two articles on the small volume fraction limit of a nonlocal

Cahn-Hilliard functional introduced to model microphase separation of diblock copoly-
mers. Here we focus attention on the sharp-interface version of the functional and con-
sider a limit in which the volume fraction tends to zero but the number of minority phases
(called particles) remains O(1). Using the language of Γ-convergence, we focus on two
levels of this convergence, and derive first and second order effective energies, whose en-
ergy landscapes are simpler and more transparent. These limiting energies are only finite
on weighted sums of delta functions, corresponding to the concentration of mass into
‘point particles’. At the highest level, the effective energy is entirely local and contains
information about the structure of each particle but no information about their spatial
distribution. At the next level we encounter a Coulomb-like interaction between the par-
ticles, which is responsible for the pattern formation. We present the results here in both
three and two dimensions.

Key words. Nonlocal Cahn-Hilliard problem, Gamma-convergence, small volume-
fraction limit, diblock copolymers.
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1 Introduction

This paper and its companion paper [13] are concerned with asymptotic properties of two
energy functionals. In either case, the order parameter u is defined on the flat torus Tn =
Rn/Zn, i.e. the square [−1

2 ,
1
2 ]n with periodic boundary conditions, and has two preferred

states u = 0 and u = 1. We will be concerned with both n = 2 and n = 3. The nonlocal
Cahn-Hilliard functional is defined on H1(Rn) and is given by

Eε(u) := ε

∫
Tn
|∇u|2 dx +

1
ε

∫
Tn
u2(1− u2) dx + σ ‖u− −

∫
u‖2H−1(Tn). (1.1)

Its sharp interface limit (in the sense of Γ-convergence), defined on BV (Tn; {0, 1}) (charac-
teristic functions of finite perimeter), is given by [29]

E(u) :=
∫
Tn
|∇u| + γ ‖u− −

∫
u‖2H−1(Tn). (1.2)
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In both cases we wish to explore the behavior of these functionals, including the structure of
their minimizers, in the limit of small volume fraction −

∫
Tn u. The present article addresses the

sharp interface functional (1.2); the diffuse-interface functional Eε is treated in the companion
article [13].

1.1 The diblock copolymer problem

The minimization of these nonlocal perturbations of standard perimeter problems are natural
model problems for pattern formation induced by competing short and long-range inter-
actions [35]. However, these energies have been introduced to the mathematics literature
because of their connection to a model for microphase separation of diblock copolymers [6].

A diblock copolymer is a linear-chain molecule consisting of two sub-chains joined cova-
lently to each other. One of the sub-chains is made of NA monomers of type A and the
other consists of NB monomers of type B. Below a critical temperature, even a weak repul-
sion between unlike monomers A and B induces a strong repulsion between the sub-chains,
causing the sub-chains to segregate. A macroscopic segregation where the sub-chains detach
from one another cannot occur because the chains are chemically bonded. Rather, a phase
separation on a mesoscopic scale with A and B-rich domains emerges. Depending on the ma-
terial properties of the diblock macromolecules, the observed mesoscopic domains are highly
regular periodic structures including lamellae, spheres, cylindrical tubes, and double-gyroids
(see for example [6]).

The functional is a rescaled version of a functional (1.1) introduced by Ohta and Kawasaki
[25] (see also [24]) to model microphase separation of diblock copolymers. first proposed by
Ohta and Kawasaki [25]. The long-range interaction term is associated with the connectivity
of the sub-chains in the diblock copolymer macromolecule:1 Often this energy is minimized
under a mass or volume constraint

−
∫
Tn
u = M. (1.3)

Here u represents the relative monomer density, with u = 0 corresponding to a pure-A region
and u = 1 to a pure-B region; the interpretation of M is therefore the relative abundance
of the A-parts of the molecules, or equivalently the volume fraction of the A-region. The
constraint (1.3) of fixed average M reflects that in an experiment the composition of the
molecules is part of the preparation and does not change during the course of the experiment.
In (1.1) the incentive for pattern formation is clear: the first term penalizes oscillation, the
second term favors separation into regions of u = 0 and u = 1, and the third favors rapid
oscillation. Under the mass constraint (1.3) the three can not vanish simultaneously, and the
net effect is to set a fine scale structure depending on ε, σ and M .

1.2 Small volume fraction regime of the diblock copolymer problem

The precise geometry of the phase distributions (i.e. the information contained in a minimizer
of (1.1)) depends largely on the volume fraction M . In fact, as explained in [12], the two
natural parameters controlling the phase diagram are ε3/2√σ and M . When ε3/2√σ is small
and M is close to 0 or 1, numerical experiments [12] and experimental observations [6] reveal

1See [14] for a derivation and the relationship to the physical material parameters and basic models for
inhomogeneous polymers. Usually the wells are taken to be ±1 representing pure phases of A and B-rich
regions. For convenience, we have rescaled to wells at 0 and 1.
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Figure 1: Top: an AB diblock copolymer macromolecule of minority A composition. Bottom:
2D schematic of two possible physical scenarios for the regime considered in this article. Left:
microphase separation of very long diblock copolymers with minority A composition. Right:
phase separation in a mixture/blend of diblock copolymers and homopolymers of another
monomer species having relatively weak interactions with the A and B monomers.

structures resembling small well-separated spherical regions of the minority phase. We often
refer to such small regions as particles, and they are the central objects of study of this paper.

Since we are interested in a regime of small volume fraction, it seems natural to seek
asymptotic results. It is the purpose of this article and its companion article [13] to give a
rigorous asymptotic description of the energy in a limit wherein the volume fraction tends to
zero but where the number of particles in a minimizer remains O(1). That is, we examine
the limit where minimizers converge to weighted Dirac delta point measures and seek effec-
tive energetic descriptions for their positioning and local structure. Physically, our regime
corresponds to diblock copolymers of very small molecular weight (ratio of B monomers to
A), and we envisage either a melt of such diblock copolymers (cf. Figure 1, bottom left) or a
mixture/blend2 of diblocks with homopolymers of type A (cf. Figure 1, bottom right).

This regime is captured by the introduction of a small parameter η and the appropriate
rescaling of the free energy. To this end, we fix a mass parameterM reflecting the total amount
of minority phase mass in the limit of delta measures. We introduce a small coefficient to M ,
and consider phase distributions u such that∫

Tn
u = ηnM, (1.4)

where n is either 2 or 3. We rescale u as follows:

v :=
u

ηn
, (1.5)

so that the new preferred values of v are 0 and 1/ηn. We now write our free energy (either
(1.1) or (1.2)) in terms of v and rescale in η so that the minimum of the free energy remains
O(1) as η → 0. In this article, we focus our attention on the sharp interface functional (1.2):
that is, we assume that we have already passed to the limit as ε→ 0, and therefore consider
the small-volume-fraction asymptotics of (1.2). In [13] we will show how to extend the results

2A similar nonlocal Cahn-Hilliard-like functional models a blend of diblocks and homopolymers [15].

3



of this paper to the diffuse-interface functional (1.1), via a diagonal argument with a suitable
slaving of ε to η.

In Section 3, we consider a collection of small particles, determine the scaling of the H−1-
norm, and choose an appropriate scaling of γ in terms of η so as to capture a nontrivial limit
as η tends to 0. This analysis yields

E(u) =


η E2d

η (v) if n = 2

η2 E3d
η (v) if n = 3,

where

E2d
η (v) := η

∫
T2

|∇v|+ |log η|−1
∥∥v − −∫T2 v

∥∥2

H−1(T2)
defined for v ∈ BV

(
T2; {0, 1/η2}

)
(1.6)

and

E3d
η (v) := η

∫
T3

|∇v|+ η
∥∥v − −∫T3 v

∥∥2

H−1(T3)
defined for v ∈ BV

(
T3; {0, 1/η3}

)
. (1.7)

In both cases, E2d
η (v),E3d

η (v) remain O(1) as η → 0.
The aim of this paper is to describe the behavior of these two energies in the limit η → 0.

This will be done in terms of a Γ-asymptotic expansion [5] for E2d
η (v) and E3d

η (v). That is, we
characterize the first and second term in the expansion of, for example, E3d

η of the form

E3d
η = E3d

0 + η F3d
0 + higher order terms.

Our main results characterize these first- and second-order functionals E2d
0 ,F

2d
0 (respec-

tively E3d
0 ,F

3d
0 ) and show that:

• At the highest level, the effective energy is entirely local, i.e., the energy focuses sep-
arately on the energy of each particle, and is blind to the spatial distribution of the
particles. The effective energy contains information about the local structure of the
small particles. This is presented in three and two dimensions by Theorems 4.3 and 6.1
respectively.

• At the next level, we see a Coulomb-like interaction between the particles. It is this
latter part of the energy which we expect enforces a periodic array of particles.3 This
is presented in three and two dimensions by Theorems 4.5 and 6.4 respectively.

The paper is organized as follows. Section 2 contains some basic definitions. In Section 3
we introduce the small parameter η, and begin with an analysis of the small-η behavior of the
H−1 norm via the basic properties of the fundamental solution of the Laplacian in three and
two dimensions. We then determine the correct rescalings in dimensions two and three, and
arrive at (1.6) and (1.7). In Section 4 we state the Γ-convergence results in three dimensions,
together with some properties of the Γ-limits. The proofs of the three-dimensional results are
given in Section 5. In Section 6 we state the analogous results in two dimensions and describe
the modifications in the proofs. We conclude the paper with a discussion of our results in
Section 7.

3Proving this is a non-trivial matter; see Section 7
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2 Some definitions and notation

Throughout this article, we use Tn = Rn/Zn to denote the n-dimensional flat torus of unit
volume. For the use of convolution we note that Tn is an additive group, with neutral element
0 ∈ Tn (the ‘origin’ of Tn). For v ∈ BV (Tn; {0, 1}) we denote by∫

Tn
|∇v|

the total variation measure evaluated on Tn, i.e. ‖∇u‖(Tn) [4]. Since v is the characteristic
function of some set A, it is simply a notion of its perimeter. Let X denote the space of
Radon measures on Tn. For µη, µ ∈ X, µη ⇀ µ denotes weak-∗ measure convergence, i.e.∫

Tn
f dµη →

∫
Tn
f dµ

for all f ∈ C(Tn). We use the same notation for functions, i.e. when writing vη ⇀ v0, we
interpret vη and v0 as measures whenever necessary.

We introduce the Green’s function GTn for −∆ in dimension n on Tn. It is the solution
of

−∆GTn = δ − 1, with
∫
Tn
GTn = 0,

where δ is the Dirac delta function at the origin. In two dimensions, the Green’s function
GT2 satisfies

GT2(x) = − 1
2π

log |x| + g(2)(x) (2.1)

for all x = (x1, x2) ∈ R2 with max{|x1|, |x2|} ≤ 1/2, where the function g(2) is continuous on
[−1/2, 1/2]2 and C∞ in a neighborhood of the origin. In three dimensions, we have

GT3(x) =
1

4π|x|
+ g(3)(x) (2.2)

for all x = (x1, x2, x3) ∈ R3 with max{|x1|, |x2|, |x3|} ≤ 1/2, where the function g(3) is again
continuous on [−1/2, 1/2]3 and smooth in a neighbourhood of the origin.

For µ ∈ X such that µ(Tn) = 0, we may solve

−∆v = µ,

in the sense of distributions on Tn. If v ∈ H1(Tn), then µ ∈ H−1(Tn), and

‖µ‖2H−1(Tn) :=
∫
Tn
|∇v|2 dx.

In particular, if u ∈ L2(Tn) then
(
u− −

∫
u
)
∈ H−1(Tn) and

‖u− −
∫
u‖2H−1(Tn) =

∫
Tn

∫
Tn
u(x)u(y)GTn(x− y) dx dy.

Note that on the right-hand side we may write the function u rather than its zero-average
version u− −

∫
u, since the function GTn itself is chosen to have zero average.

We will also need an expression for the H−1 norm of the characteristic function of a set
of finite perimeter on all of R3. To this end, let f be such a function and define

‖f‖2H−1(R3) =
∫
R3

|∇v|2 dx,

where −∆v = f on R3 with |v| → 0 as |x| → ∞.
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3 The small parameter η, degeneration of the H−1-norm, and
the rescaling of (1.2)

We introduce a new parameter η controlling the vanishing volume. That is, we consider the
total mass to be ηnM , for some fixed M , and rescale as

vη =
u

ηn
.

This will facilitate the convergence to Dirac delta measures of total mass M and will lead
to functionals defined over functions vη : Tn → {0, 1/ηn}. Note that this transforms the
characteristic function u of mass ηnM to a function vη with mass M , i.e.,∫

Tn
u = ηnM while

∫
Tn
vη = M.

On the other hand, throughout our analysis with functions taking on two values {0, 1/ηn},
we will often need to rescale back to characteristic functions in a way such that the mass is
conserved. To this end, let us fix some notation which we will use throughout the sequel.
Consider a collection vη : Tn → {0, 1/ηn} of components of the form

vη =
∑
i

viη, viη =
1
ηn
χAi , (3.1)

where the Ai are disjoint, connected subsets of Tn. Moreover, we will always be able to
assume4 without loss of generality that the Ai have a diameter5 less than 1/2. Thus by
associating the torus Tn with [−1/2, 1/2]n, we may assume that the Ai do not intersect the
boundary ∂[−1/2, 1/2]n and hence we may trivially extend viη to Rn by defining it to be zero
for x 6∈ Ai. In this extension the total variation of viη calculated on the torus is preserved
when calculated over all of Rn. We may then transform the components viη, to functions
ziη : Rn → R by a mass-conservative rescaling that maps their amplitude to 1, i.e., set

ziη(x) := ηnviη(ηx). (3.2)

We first consider the case n = 3. Consider a sequence of functions vη of the form (3.1).
The norm ‖vη − −

∫
vη‖2H−1 can be split up as

‖vη − −
∫
vη‖2H−1(T3) =

∞∑
i=1

∫
T3

∫
T3

viη(x)viη(y)GT3(x− y) dxdy

+
∞∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dxdy. (3.3)

4We will show in the course of the proofs that this basic Ansatz of separated connected sets of small
diameter is in fact generic for a sequence of bounded mass and energy (cf. Lemma 5.2).

5For the definition of diameter, we first note that the torus Tn has an induced metric

d(x, y) := min{|x− y − k| : k ∈ Zn} for x, y ∈ Tn.

The diameter of a set is then defined in the usual way,

diamA := sup{d(x, y) : x, y ∈ A}.
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As we shall see (cf. the proof of Theorem 4.3), in the limit η → 0 it is the first sum, containing
the diagonal terms, that dominates. For these terms we have

‖viη − −
∫
viη‖2H−1(T3) =

∫
T3

∫
T3

viη(x)viη(y)GT3(x− y) dxdy

=
∫
T3

∫
T3

viη(x)viη(y)
1

4π
|x− y|−1 dxdy +

∫
T3

∫
T3

viη(x)viη(y) g(3)(x− y) dxdy

= η−6

∫
R3

∫
R3

ziη(x/η)ziη(y/η)
1

4π
|x− y|−1 dxdy +

+
∫
T3

∫
T3

viη(x)viη(y) g(3)(x− y) dxdy

= η−1

∫
R3

∫
R3

ziη(ξ)z
i
η(ζ)

1
4π
|ξ − ζ|−1 dξdζ +

∫
T3

∫
T3

viη(x)viη(y) g(3)(x− y) dxdy

= η−1‖ziη‖2H−1(R3) +
∫
T3

∫
T3

viη(x)viη(y) g(3)(x− y) dxdy. (3.4)

This calculation shows that if the transformed components ziη converge in a ‘reasonable’ sense,
then the dominant behavior of the H−1-norm of the original sequence v is given by the term

1
η

∑
i

‖ziη‖2H−1(R3) = O
(1
η

)
.

This argument shows how in the leading-order term only information about the local behavior
of each of the separate components enters. The position information is lost, at this level; we
will recover this in the study of the next level of approximation.

Turning to the energy, we calculate

E(u) =
∫
T3

|∇u| + γ ‖u− −
∫
u‖2H−1(T3)

= η3

∫
T3

|∇v| + γ η6 ‖v − −
∫
v‖2H−1(T3)

= η2

(
η

∫
T3

|∇v| + γ η4 ‖v − −
∫
v‖2H−1(T3)

)
. (3.5)

Note that if vη consists of N = O(1) particles of typical size O(η), then

η

∫
T3

|∇v| ∼ O(1).

Prompted by (3.4), we expect to make both terms in (3.5) of the same order by setting

γ =
1
η3
.

Therefore we define

E3d
η (v) :=

1
η2
E(u) =

{
η
∫
T3 |∇v|+ η ‖v − −

∫
v‖2H−1(T3) if v ∈ BV (T3; {0, 1/η3})

∞ otherwise.
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We now switch to the case n = 2. Here the critical scaling of the H−1 in two dimensions
causes a different behavior:∫

T2

∫
T2

viη(x)viη(y)GT2(x− y) dxdy =

= − 1
2π

∫
T2

∫
T2

viη(x)viη(y) log |x− y| dxdy +
∫
T2

∫
T2

viη(x)viη(y) g(2)(x− y) dxdy

= − 1
2π

∫
R2

∫
R2

ziη(x)ziη(y) log
∣∣η(x− y)

∣∣ dxdy +
∫
T2

∫
T2

viη(x)viη(y) g(2)(x− y) dxdy

= − 1
2π

(∫
R2

ziη

)2

log η − 1
2π

∫
R2

∫
R2

ziη(x)ziη(y) log |x− y| dxdy

+
∫
T2

∫
T2

viη(x)viη(y) g(2)(x− y) dxdy

=
1

2π

(∫
R2

ziη

)2

|log η| − 1
2π

∫
R2

∫
R2

ziη(x)ziη(y) log |x− y| dxdy

+
∫
T2

∫
T2

viη(x)viη(y) g(2)(x− y) dxdy. (3.6)

By this calculation we expect that the dominant behavior of the H−1-norm of the original
sequence v is given by the term∑

i

1
2π

(∫
R2

ziη

)2

|log η| =
|log η|

2π

∑
i

(∫
T2

viη

)2

. (3.7)

Note how, in contrast to the three-dimensional case, only the distribution of the mass of v
over the different components enters in the limit behavior. Note also that the critical scaling
here is |log η|.

Following the same line as for the three-dimensional case, and setting

v =
u

η2
, (3.8)

we calculate

E(u) =
∫
T2

|∇u| + γ ‖u− −
∫
u‖2H−1(T2)

= η2

∫
T2

|∇v| + γ η4 ‖v − −
∫
v‖2H−1(T2)

= η

(
η

∫
T2

|∇v| + γ η3 ‖v − −
∫
v‖2H−1(T2)

)
.

Following (3.6), (3.7), in order to capture a nontrivial limit we must choose

γ =
1

|log η| η3
.

With this choice of γ, we define

E2d
η (v) :=

1
η
E(u) =

{
η
∫
T2 |∇v|+ |log η|−1 ‖v − −

∫
v‖2H−1(T2) if v ∈ BV (T2; {0, 1/η2})

∞ otherwise.
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4 Statement of the main results in three dimensions

We now state precisely the Γ-convergence results for E3d
η in three dimensions. Both our Γ-

limits will be defined over countable sums of weighted Dirac delta measures
∑∞

i=1m
iδxi . We

start with the first-order limit. To this end, let us introduce the function

e3d
0 (m) := inf

{∫
R3

|∇z|+ ‖z‖2H−1(R3) : z ∈ BV (R3; {0, 1}),
∫
R3

z = m

}
. (4.1)

We also define the limit functional6

E3d
0 (v) :=

{∑∞
i=1 e

3d
0 (mi) if v =

∑∞
i=1m

iδxi , {xi} distinct, and mi ≥ 0
∞ otherwise.

Remark 4.1. Under weak convergence multiple point masses may join to form a single
point mass. The functional E3d

0 is lower-semicontinuous under such a change if and only if
the function e3d

0 satisfies the related inequality

e3d
0

( ∞∑
i=1

mi
)
≤

∞∑
i=1

e3d
0 (mi). (4.2)

The function e3d
0 does satisfy this property, as can be recognized by taking approximating

functions zi with bounded support, and translating them far from each other; the sum
∑

i z
i is

admissible and its limiting energy, in the limit of large separation, is the sum of the individual
energies.

Remark 4.2. The minimization problem of e3d
0 need not have a solution: if the mass

m is too large, we expect that for any minimizing sequence the mass will divide into small
particles that spread out over R3 — but we have no proof yet for this statement. Also
the exact structure of mass-constrained minimizers of E3d

0 , when they do exist, is a subtle
question. We briefly discuss these issues in the last section.

Having introduced the limit functional E3d
0 , we are now in a position to state the first

main result of this paper.

Theorem 4.3. Within the space X, we have

E3d
η

Γ−→ E3d
0 as η → 0.

That is,
6The definition of E3d

0 requires the point mass positions xi to be distinct, and the reader might wonder why
this is necessary. Consider the following functional, which might be seen as an alternative,

fE3d
0 (v) :=

(P∞
i=1 e

3d
0 (mi) if v =

P∞
i=1m

iδxi with mi ≥ 0,

∞ otherwise.

This functional is actually not well defined: the function v will have many representations (of the type δ =
aδ + (1 − a)δ, for any a ∈ (0, 1)) that will not give rise to the same value of the functional. Therefore the

functional fE3d
0 is a functional of the representation, not of the limit measure v. The restriction to distinct xi

eliminates this dependence on representation.
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• (Condition 1 – the lower bound and compactness) Let vη be a sequence such that the
sequence of energies E3d

η (vη) is bounded. Then (up to a subsequence) vη ⇀ v0, supp v0

is countable, and
lim inf
η→0

E3d
η (vη) ≥ E3d

0 (v0). (4.3)

• (Condition 2 – the upper bound) Let E3d
0 (v0) <∞. Then there exists a sequence vη ⇀ v0

such that
lim sup
η→0

E3d
η (vη) ≤ E3d

0 (v0).

Note that the compactness condition which usually accompanies a Gamma-convergence
result has been built into Condition 1 (the lower bound). The fact that sequences with
bounded energy E3d

η converge to a collection of delta functions is partly so by construction:
the functions vη are positive, have uniformly bounded mass, and only take values either 0 or
1/η3. Since η → 0, the size of the support of vη shrinks to zero, and along a subsequence vη
converges in the sense of measures to a limit measure; in line with the discussion above, this
limit measure is shown to be a sum of Dirac delta measures (Lemma 5.1).

We have the following properties of e3d
0 whose proofs are presented in Section 5.4.

Lemma 4.4. 1. For every a > 0, e3d
0
′ is non-negative and bounded from above on [a,∞).

2. e3d
0 is strictly concave on [0, 2π].

3. If {mi}i∈N with
∑

im
i <∞ satisfies

∞∑
i=1

e3d
0 (mi) = e3d

0

( ∞∑
i=1

mi
)
, (4.4)

then only a finite number of mi are non-zero.

4. If z achieves the infimum in the definition (4.1) of e3d
0 , then supp z is bounded.

The value of E3d
0 is independent of the positions xi of the point masses. In order to capture

this positional information, we consider the next level of approximation, by subtracting the
minimum of E3d

0 and renormalizing the result. To this end, note that among all measures of
mass M , the global minimizer of E3d

0 is given by

min
{

E3d
0 (v) :

∫
T3

v = M

}
= e3d

0 (M).

We recover the next term in the expansion as the limit of E3d
η − e3d

0 , appropriately rescaled,
that is of the functional

F3d
η (vη) := η−1

[
E3d
η (vη)− e3d

0

(∫
T3

vη

)]
.

If this second-order energy remains bounded in the limit η → 0, then the limiting object
v0 =

∑
im

iδxi necessarily has two properties:

1. The limiting mass weights {mi} satisfy (4.4);
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2. For each mi, the minimization problem defining e3d
0 (mi) has a minimizer.

The first property above arises from the condition that E3d
η (vη) converges to its minimal value

as η → 0. The second is slightly more subtle, and can be understood by the following formal
scaling argument.

In the course of the proof we construct truncated versions of vη, called viη, each of which is
localized around the corresponding limiting point xi and rescaled as in (3.2) to a function ziη.
For each i the sequence ziη is a minimizing sequence for the minimization problem e3d

0 (mi),
and the scaling of F3d

η implies that the energy E3d
η (vη) converges to the limiting value at a rate

of at least O(η). In addition, since viη converges to a delta function, the typical spatial extent
of supp viη is of order o(1), and therefore the spatial extent of supp ziη is of order o(1/η). If the
sequence ziη does not converge, however, then it splits up into separate parts; the interaction
between these parts is penalized by the H−1-norm at the rate of 1/d, where d is the distance
between the separating parts. Since d = o(1/η), the energy penalty associated with separation
scales larger than O(η), which contradicts the convergence rate mentioned above.

This is no coincidence; the scaling of F3d
η has been chosen just so that the interaction

between objects that are separated by O(1)-distances in the original variable x contributes an
O(1) amount to this second-level energy. If they are asymptotically closer, then the interaction
blows up. Motivated by these remarks we define the set of admissible limit sequences

M :=
{
{mi}i∈N : mi ≥ 0, satisfying (4.4), such that e3d

0 (mi) admits a minimizer for each i
}
.

The limiting energy functional F3d
0 can already be recognized in the decomposition given

by (3.3) and (3.4). We show in the proof in Section 5 that the interfacial term in the energy
E3d
η is completely cancelled by the corresponding term in e3d

0 , as is the highest-order term in
the expansion of ‖vη − −

∫
vη‖2H−1 . What remains is a combination of cross terms,
∞∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dxdy,

and lower-order self-interaction parts of the H−1-norm.
∞∑
i=1

∫
T3

∫
T3

viη(x)viη(y)g(3)(x− y) dxdy.

With these remarks we define

F3d
0 (v) :=



∞∑
i=1

g(3)(0) (mi)2 +

∑
i 6=jm

imj GT3(xi − xj) if v =
n∑
i=1

miδxi with {xi} distinct, {mi} ∈ M

∞ otherwise.

We have:

Theorem 4.5. Within the space X, we have

F3d
η

Γ−→ F3d
0 as η → 0.

That is, Conditions 1 and 2 of Theorem 4.3 hold with E3d
η and E3d

0 replaced with F3d
η and F3d

0 .

11



The interesting aspects of this limit functional F3d
0 are

• In contrast to E3d
0 , the functional F3d

0 is only finite on finite collections of point masses,
which in addition satisfy two constraints: the collection should satisfy (4.4), and each
weight mi should be such that the corresponding minimization problem (4.1) is achieved.
In Section 7 we discuss these properties further.

• The main component of F3d
0 is the two-point interaction energy∑

i,j: i 6=j
mimjGT3(xi − xj).

This two-point interaction energy is known as a Coulomb interaction energy, by reference
to electrostatics. A similar limit functional also appeared in [31].

5 Proofs of Theorems 4.3 and 4.5

5.1 Concentration into point measures

Lemma 5.1 (Compactness). Let vη be a sequence in BV (T3; {0, 1/η3}) such that both
∫
T3 vη

and E3d
η (vη) are uniformly bounded. Then there exists a subsequence such that vη ⇀ v0 as

measures, where

v0 :=
∞∑
i=1

mi δxi , (5.1)

with mi ≥ 0 and xi ∈ T3 distinct.

Note that we often write “a sequence vη” instead of “a sequence ηn → 0 and a sequence vn”
whenever this does not lead to confusion. The essential tool to prove convergence to delta
measures is the Second Concentration Compactness Lemma of Lions [21].

Proof. The functions wη := ηvη satisfy wη → 0 in L1(T3), and |∇wη| = η |∇vη| bounded in
L1(T3). On the other hand, since wη and vη are essentially characteristic functions with equal
support, one has w3/2

η = vη which is bounded in L1(T3). Hence we extract a subsequence
such that vη ⇀ v0 as measures. Lemma I.1 (i) of [21] (with m = p = 1, q = 3/2) then implies
that v0 has the structure (5.1).

The proof of the two lower-bound inequalities uses a partition of supp vη into disjoint sets
with positive pairwise distance. This division implies the equality∫

T3

|∇vη| =
∑
i

∫
T3

|∇viη|,

and is a crucial step towards the separation of local and global effects in the functionals. The
following lemma provides this partition into disjoint particles. It states that for the lower
bounds, it suffices to assume that a sequence with bounded energy and mass satisfies the
ansatz of well-separated small inclusions assumed in our calculations of Section 3.

Lemma 5.2. (i) Suppose that for every sequence vη satisfying:

12



1. E3d
η (vη) and

∫
T3 vη are bounded;

2. for some n ∈ N, vη =
∑n

i=1 v
i
η with w-liminfη→0 v

i
η ≥ miδxi as measures,

dist(supp viη, supp vjη) > 0 for all i 6= j, and diam supp viη < 1/4;

we have

lim inf
η→0

E3d
η (vη) ≥ E3d

0

(
n∑
i=1

miδxi

)
.

Then for every sequence vη satisfying 1. with vη ⇀ v0, we have

lim inf
η→0

E3d
η (vη) ≥ E3d

0 (v0).

(ii) Suppose that for every sequence vη satisfying:

1. F3d
η (vη) and

∫
T3 vη are bounded;

2. for some n ∈ N, vη =
∑n

i=1 v
i
η with viη ⇀miδxi, dist(supp viη, supp vjη) > 0 for all i 6= j,

and diam supp viη < 1/4;

3. there exist ξiη ∈ T3 and a constant Ci > 0 such that∫
T3

|x− ξiη|2viη(x) dx ≤ Ciη2; (5.2)

we have

lim inf
η→0

F3d
η (vη) ≥ F3d

0

(
n∑
i=1

miδxi

)
.

Then for every sequence vη satisfying 1. with vη ⇀ v0, we have

lim inf
η→0

F3d
η (vη) ≥ F3d

0 (v0).

The proof of Lemma 5.2 is given in detail in Section 5.4. A central ingredient is the
following truncation lemma. Here Ω is either the torus T3 or an open bounded subset of R3.

Lemma 5.3. Let n ∈ N be fixed, let ak →∞, and let uk ∈ BV (Ω; {0, ak}) satisfy∫
Ω
|∇uk| = o(ak), (5.3)

and converges weakly in X to a weighted sum

∞∑
i=1

miδxi ,

where mi ≥ 0 and the xi ∈ Ω are distinct. Then there exist components uik ∈ BV (Ω; {0, ak}),
i = 1 . . . n, satisfying diam suppuik ≤ 1/4, infk infi 6=j dist(suppuik, suppujk) > 0, and

w-liminf
k→∞

uik ≥ miδxi , (5.4)

in the sense of distributions. In addition, the modified sequence ũk =
∑

i u
i
k satisfies

13



1. ũk ≤ uk for all k;

2. lim supk→∞
∫

(uk − ũk) ≤
∑∞

i=n+1m
i;

3. There exists a constant C = C(n) > 0 such that for all k∫
|∇ũk| ≤

∫
|∇uk| − C‖uk − ũk‖L3/2(Ω). (5.5)

The essential aspects of this lemma are the construction of a new sequence which again
lies in BV (Ω; {0, ak}), and the quantitative inequality (5.5) relating the perimeters.

5.2 Proof of Theorem 4.3

Proof. (Lower bound) Let vη be a sequence such that the sequences of energies E3d
η (vη)

and masses
∫
T3 vη are bounded. By Lemma 5.1, a subsequence converges to a limit v0 of the

form (5.1). By Lemma 5.2 it is sufficient to consider a sequence (again called vη) such that vη =∑n
i=1 v

i
η with w-liminfη→0 v

i
η ≥ mi

0δxi , supp viη ⊂ B(xi, 1/4), and dist(supp viη, supp vjη) > 0
for all i 6= j. Then, writing

ziη(y) := η3viη
(
xi + ηy), (5.6)

we have ∫
T3

viη =
∫
R3

ziη and
∫
T3

|∇viη| = η−1

∫
R3

|∇ziη|,

and by (3.4)

‖viη − −
∫
viη‖2H−1(T3) = η−1‖ziη‖2H−1(R3) +

∫
T3

∫
T3

viη(x)viη(y)g(3)(x− y) dx dy.

For future use we introduce the shorthand

mi
η :=

∫
T3

viη =
∫
R3

ziη.

Then

E3d
η (vη) =

n∑
i=1

E3d
η (viη) + η

n∑
i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dx dy

=
n∑
i=1

[∫
R3

|∇ziη| + ‖ziη‖2H−1(R3)

]

+ η
n∑
i=1

∫
T3

∫
T3

viη(x)viη(y)g(3)(x− y) dx dy + η
n∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dx dy

≥
n∑
i=1

e3d
0

(
mi
η

)
+ η inf g(3)

n∑
i=1

(
mi
η

)2 + η inf GT3

n∑
i,j=1
i 6=j

mi
ηm

j
η. (5.7)
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Since the last two terms vanish in the limit, the continuity and monotonicity of e3d
0 (a conse-

quence of Lemma 4.4) imply that

lim inf
η→0

E3d
η (vη) ≥

n∑
i=1

e3d
0

(
lim inf
η→0

mi
η

)
≥

n∑
i=1

e3d
0 (mi) ≥ E3d

0 (v0).

(Upper bound) Let v0 satisfy E3d
0 (v0) < ∞. It is sufficient to prove the statement for

finite sums

v0 =
n∑
i=1

mi δxi ,

since an infinite sum v0 =
∑∞

i=1m
i δxi can trivially be approximated by finite sums, and in

that case

E3d
0

(
n∑
i=1

mi δxi

)
=

n∑
i=1

e3d
0 (mi) ≤

∞∑
i=1

e3d
0 (mi) = E3d

0 (v0).

To construct the appropriate sequence vη ⇀ v0, let ε > 0 and let zi be near-optimal in
the definition of e3d

0 (mi), i.e.,∫
R3

|∇zi| + ‖zi‖2H−1(R3) ≤ e3d
0 (mi) +

ε

n
. (5.8)

By an approximation argument we can assume that the support of zi is bounded. We then
set

viη(x) := η−3zi(η−1(x− xi)), (5.9)

so that ∫
T3

viη = mi and viη ⇀miδxi .

Since the diameters of the supports of the viη tend to zero, and since the xi are distinct,
vη :=

∑
i v
i
η is admissible for E3d

η when η is sufficiently small.
Following the argument of (5.7), we have

E3d
η (vη) =

n∑
i=1

[∫
R3

|∇zi| + ‖zi‖2H−1(R3)

]

+ η
n∑
i=1

∫
T3

∫
T3

viη(x)viη(y)g(3)(x− y) dx dy + η
n∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dx dy

and thus
lim sup
η→0

E3d
η (vη) ≤ E3d

0 (v0) + ε.

The result now follows by taking a diagonal sequence with respect to ε→ 0.
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5.3 Proof of Theorem 4.5

Proof. (Lower bound) Let vη =
∑n

i=1 v
i
η be a sequence with bounded energy F3d

η (vη) as
given by Lemma 5.2, converging to a v0 of the form

v0 =
n∑
i=1

miδxi ,

where mi
0 ≥ 0 and the xi are distinct. Again we use the rescaling (5.6) and we set

mi
η :=

∫
T3

viη =
∫
R3

ziη.

Following the second line of (5.7) we have

F3d
η (vη) = η−1

[
E3d
η (vη)− e3d

0

(∫
T3

vη

)]
=

1
η

n∑
i=1

[∫
R3

|∇ziη|+ ‖ziη‖2H−1(R3) − e
3d
0

(
mi
η

)]
+

1
η

[
n∑
i=1

e3d
0

(
mi
η

)
− e3d

0

(
n∑
i=1

mi
η

)]

+
n∑
i=1

∫
T3

∫
T3

viη(x) viη(y) g(3)(x− y) dx dy +
n∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x) vjη(y)GT3(x− y) dx dy.

(5.10)

Since the first two terms are both non-negative, the boundedness of F3d
η (vη) and continuity

of e3d
0 imply that

0 ≤
n∑
i=1

e3d
0 (mi)− e3d

0

(
n∑
i=1

mi

)
= lim

η→0

[
n∑
i=1

e3d
0

(
mi
η

)
− e3d

0

(∫
T3

vη

)]
≤ 0,

and therefore the sequence {mi} satisfies (4.4).
By the condition (5.2) the sequence ziη is tight, and since it is bounded in BV (R3; {0, 1}),

a subsequence converges in L1(R3) to a limit zi0 (see for instance Corollary IV.26 of [8]). We
then have

0 ≤
∫
R3

|∇zi0|+ ‖zi0‖2H−1(R3) − e
3d
0

(
mi
)

≤ lim inf
η→0

[∫
R3

|∇ziη|+ ‖ziη‖2H−1(R3)

]
− lim
η→0

e3d
0

(
mi
η

) (5.10)
= 0,

which implies that zi0 is a minimizer for e3d
0 (mi).

Finally we conclude that

lim inf
η→0

F3d
η (vη) ≥ lim inf

η→0

(
n∑
i=1

∫
T3

∫
T3

viη(x) viη(y) g(3)(x− y) dxdy

+
n∑

i,j=1
i 6=j

∫
T3

∫
T3

viη(x) vjη(y)GT3(x− y) dx dy

)

= g(3)(0)
n∑
i=1

(mi)2 +
n∑

i,j=1
i 6=j

mimj GT3(xi − xj) = F3d
0 (v0).
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(Upper bound) Let

v0 =
n∑
i=1

miδxi ,

with the xi distinct and {mi} ∈ M. By the definition ofM we may choose zi that achieve the
minimum in the minimization problem defining e3d

0 (mi); by part 4 of Lemma 4.4 the support
of zi is bounded.

Setting viη by (5.9), for η sufficiently small the function vη :=
∑n

i=1 v
i
η is admissible for

F3d
η , and vη ⇀ v0. Then following (5.10) we have

lim
η→0

F3d
η (vη) = F3d

0 (v0).

5.4 Proofs of Lemmas 5.2 and 5.3

For the proof of Lemma 5.2 we first state and prove two lemmas. Throughout this section, if
B is a ball in R3 and λ > 0, then λB is the ball in R3 obtained by multiplying B by λ with
respect to the center of B; B and λB therefore have the same center.

Lemma 5.4. Let w ∈ BV (BR; {0, 1}). Choose 0 < r < R, and set A := BR \ Br. Then for
any r ≤ ρ ≤ R we have

H2(∂Bρ ∩ suppw)
H2(∂Bρ)

≤ 1
H2(∂Br)

∫
A
|∇w|+−

∫
A
w

Proof. Let P be the projection of R3 onto Br. For any closed set D ⊂ R3 with finite
perimeter, the projected set P (A ∩D) is included in Eb ∪ Er, where the two set are:

• The projected boundary Eb := P (A ∩ ∂D); since P is a contraction, H2(Eb) ≤ H2(A ∩
∂D);

• The set of projections of full radii Er := {x ∈ ∂Br : λx ∈ D for all 1 ≤ λ ≤ R/r}, for
which

H2(Er) =
H2(∂Br)
L3(A)

L3({λx : x ∈ Er, 1 ≤ λ ≤ R/r}) ≤
H2(∂Br)
L3(A)

L3(D ∩A).

Applying these estimates to D = suppw we find

H2(∂Bρ ∩ suppw)
H2(∂Bρ)

=
H2
(
P (∂Bρ ∩ suppw)

)
H2(∂Br)

≤
H2
(
P (A ∩ suppw)

)
H2(∂Br)

≤ 1
H2(∂Br)

{
H2(A ∩ ∂ suppw) +

H2(∂Br)
L3(A)

L3(A ∩ suppw)
}
,

and this last expression implies the assertion.
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Lemma 5.5. There exists 0 < α < 1 with the following property. For any w ∈ BV (BR; {0, 1})
with

1
H2(∂BαR)

∫
BR\BαR

|∇w| + −
∫
BR\BαR

w ≤ 1
2
, (5.11)

there exists α ≤ β < 1 such that

2‖∂BβR‖(suppw) ≤
∫
BR\BβR

|∇w|. (5.12)

Proof. By approximating (see for example Theorem 3.42 of [4]) and scaling we can assume
that w has smooth support and that R = 1. Set 0 < α < 1 to be such that

(1− α)2

16C
= H2(∂Bα), (5.13)

where C is the constant in the relative isoperimetric inequality on the sphere S2 [16, 4.4.2]:

min{H2(D ∩ S2),H2(S2 \D)} ≤ C(H1(∂D ∩ S2))2.

We note that the combination of the assumption (5.11) and Lemma 5.4 implies that when
applying this inequality to D = suppw, with S2 replaced by B1−s, the minimum is attained
by the first argument, i.e. we have

H2(D ∩ ∂B1−s) ≤ C(H1(∂D ∩ ∂B1−s))2.

We now assume that the assertion of the Lemma is false, i.e. that for all α < r < 1

0 < 2‖∂Br‖(D)− ‖∂D‖(B1 \Br). (5.14)

Setting f(s) := H1(∂D ∩ ∂B1−s) we have∫ s

0
f(σ) dσ =

∫ 1

1−s
H1(∂D ∩ ∂Br) dr ≤

∫
B1\B1−s

|∇w|
(5.14)
< 2‖∂B1−s‖(D). (5.15)

By the relative isoperimetric inequality we find∫ s

0
f(σ) dσ < 2‖∂B1−s‖(D) ≤ 2C(H1(∂D ∩ ∂B1−s))2 = 2Cf(s)2.

Note that this inequality implies that f is strictly positive for all s. Solving this inequality
for positive functions f we find∫ 1−α

0
f(σ) dσ >

(1− α)2

8C
(5.13)

= 2H2(∂Bα) ≥ 2‖∂Bα‖(D)
(5.15)
>

∫ 1−α

0
f(σ) dσ,

a contradiction. Therefore there exists an r =: βR satisfying (5.12), and the result follows as
remarked above.

Proof of Lemma 5.3: Let α be as in Lemma 5.5. Choose n balls Bi, of radius less than
1/8, centered at {xi}ni=1, and such that the family {2Bi} is disjoint. Set wk := a−1

k uk, and
note that for each i,

1
H2(∂αBi)

∫
Bi\αBi

|∇wk| + −
∫
Bi\αBi

wk ≤
C

ak

{∫
Ω
|∇uk|+

∫
Ω
uk

}
,
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and this number tends to zero by (5.3), implying that the function wk on Bi is admissible for
Lemma 5.5. For each i and each k, let βik be given by Lemma 5.5, so that

2‖∂βikBi‖(suppuk) ≤ a−1
k ‖∇uk‖(B

i \ βikBi). (5.16)

Now set ũik := ukχβikBi
and ũk :=

∑n
i=1 ũ

i
k. Then for any open A ⊂ Ω such that xi ∈ A,

lim inf
k→∞

∫
A
ũik = lim inf

k→∞

∫
A∩βikBi

uk ≥ lim inf
k→∞

∫
A∩αBi

uk ≥
∞∑
j=1

mjδxj (A ∩ αBi) ≥ mi,

which proves (5.4); property 2 follows from this by remarking that

lim sup
k→∞

∫
Ω

(uk − ũk) = lim
k→∞

∫
Ω
uk − lim inf

k→∞

∫
Ω
ũk ≤

∞∑
j=1

mj −
n∑
j=1

mj .

The uniform separation of the supports is guaranteed by the condition that the family {2Bi}
is disjoint, and property 1 follows by construction; it only remains to prove (5.5).

For this we calculate∫
Ω
|∇ũk| = ‖∇uk‖

( n⋃
i=1

βikB
i
)

+ ak

n∑
i=1

‖∂βikBi‖(suppuk)

(5.16)

≤
∫

Ω
|∇uk| − ‖∇uk‖

(
Ω \

n⋃
i=1

βikB
i
)

+
1
2

n∑
i=1

‖∇uk‖(Bi \ βikBi)

≤
∫

Ω
|∇uk| −

1
2
‖∇uk‖

(
Ω \

n⋃
i=1

βikB
i
)

≤
∫

Ω
|∇uk| − Ck‖uk − −

∫
Ak
uk‖L3/2(Ak) (5.17)

Here the constant Ck is the constant in the Sobolev inequality on the domain Ak := Ω\∪iβikBi,

Ck‖u− −
∫
Ak
u‖L3/2(Ak) ≤

1
2

∫
Ak

|∇u|.

The number Ck > 0 depends on k through the geometry of the domain Ak. Note that the
size of the holes βikB

i is bounded from above by Bi and from below by αBi. Consequently,
for each k1 and k2 there exists a smooth diffeomorphism mapping Ak1 into Ak2 , and the first
and second derivatives of this mapping are bounded uniformly in k1 and k2. Therefore we
can replace in (5.17) the k-dependent constant Ck by a k-independent (but n-dependent)
constant C > 0.

Note that since uk is bounded in L1,

a
−3/2
k ‖uk‖

3/2

L3/2(Ak)
= a−1

k ‖uk‖L1(Ak) → 0 as k →∞. (5.18)
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Continuing from (5.17) we then estimate by the inverse triangle inequality∫
Ω
|∇ũk| ≤

∫
Ω
|∇uk| − C‖uk‖L3/2(Ak) +

C

|Ak|1/3
‖uk‖L1(Ak)

=
∫

Ω
|∇uk| − C‖uk‖L3/2(Ak) +

C

|Ak|1/3a
1/2
k

‖uk‖
3/2

L3/2(Ak)

=
∫

Ω
|∇uk| − C‖uk‖L3/2(Ak)

{
1− 1

|Ak|1/3a
1/2
k

‖uk‖
1/2

L3/2(Ak)

}
(5.18)

≤
∫

Ω
|∇uk| − C ′‖uk‖L3/2(Ak) =

∫
Ω
|∇uk| − C ′‖uk − ũk‖L3/2(Ω).

This proves the inequality (5.5).

Proof of Lemma 5.2: By Lemma 5.1 and by passing to a subsequence we can assume
that vη converges as measures to v0. We first concentrate on the lower bound for E3d

η .
Fix n ∈ N for the moment. We apply Lemma 5.3 to the sequence vη and find a collection

of components viη, i = 1 . . . n, and ṽη =
∑

i v
i
η, such that

w-liminf
η→0

viη ≥
n∑
i=1

miδxi ,

and ∫
T3

|∇ṽη| ≤
∫
T3

|∇vη| − C‖vη − ṽη‖L3/2(T3).

Setting rη := vη − ṽη we also have

‖ṽη − −
∫
ṽη‖2H−1(T3) =

∫
T3

∫
T3

vη(x)vη(y)GT3(x− y) dxdy − 2
∫
T3

∫
T3

rη(x)ṽη(y)GT3(x− y) dxdy

−
∫ ∫

rη(x)rη(y)GT3(x− y) dxdy

≤ ‖vη − −
∫
vη‖2H−1(T3) − 2 inf GT3‖rη‖L1(T3)‖ṽη‖L1(T3).

Therefore
E3d
η (ṽη) ≤ E3d

η (vη)− Cη‖rη‖L3/2(T3) + C ′‖rη‖L1(T3). (5.19)

Assuming the lower bound has been proved for ṽη, we then find

lim inf
η→0

E3d
η (vη) ≥ lim inf

η→0

[
E3d
η (ṽη)− C ′‖rη‖L1(T3)

]
≥ E3d

0

(
w-liminf

η→0
ṽη

)
− C ′ lim

η→0

∫
T3

vη + C ′ lim inf
η→0

∫
T3

ṽη

≥ E3d
0

( n∑
i=1

miδxi
)
− C ′

∞∑
i=n+1

mi.

Taking the supremum over n the lower bound inequality for vη follows.

20



Turning to a lower bound for F3d
η , we remark that by Lemma 4.4 the number of xi in (5.1)

with non-zero weight mi is finite. Choosing n equal to this number and adapting the same
modified sequence ṽη as in the first part, we have

lim
η→0

∫
T3

vη ≥ lim inf
η→0

∫
T3

ṽη ≥
n∑
i=1

lim inf
η→0

∫
T3

viη ≥
n∑
i=1

mi = lim
η→0

∫
T3

vη,

and therefore viη ⇀mi
0δxi , and

∫
T3 rη → 0. Then

F3d
η (ṽη) =

1
η

[
E3d
η (ṽη)− e3d

0

(∫
T3

ṽη

)]
(5.19)

≤ 1
η

[
E3d
η (vη)− e3d

0

(∫
T3

vη

)]
− C‖rη‖L3/2(T3) +

C ′

η
‖rη‖L1(T3)

+
1
η

[
e3d

0

(∫
T3

vη

)
− e3d

0

(∫
T3

ṽη

)]
(5.20)

≤ F3d
η (vη)−

C

η

(∫
T3

rη

)2/3
+
L+ C ′

η

∫
T3

rη.

Here L is an upper bound for e3d
0
′ on the set [infη

∫
ṽη,∞) (see Lemma 4.4) and in the

passage to the last inequality we used the triangle inequality for ‖ · ‖L3/2 and the fact that by
construction, rη takes on only two values. For sufficiently small η, the last two terms add up
to a negative value, and therefore we again have F3d

η (ṽη) ≤ F3d
η (vη). Because of the choice of

n we have ṽη ⇀ v0. Let us assume for the moment we can establish property 3. Then if we
assume, in the same way as above, that the lower bound has been proved for ṽη, we then find
that

lim inf
η→0

F3d
η (vη) ≥ lim inf

η→0
F3d
η (ṽη) ≥ F3d

0 (v0).

We must now show that property 3. holds. To this end, we will need to modify yet again
the sequence ṽη, preserving all the previous properties 1− 2. For use below we note that

F3d
η (vη) ≥ F3d

η (ṽη) =
1
η

[
E3d
η (ṽη)− e3d

0

(∫
T3

ṽη

)]
(4.2)

≥
n∑
i=1

[∫
T3

|∇viη|+ ‖viη‖2H−1(T3) −
1
η
e3d

0

(∫
T3

viη

)]
+ 2

n∑
i,j=1
i 6=j

∫
T3

∫
T3

viη(x)vjη(y)GT3(x− y) dxdy

≥
n∑
i=1

[∫
R3

|∇viη|+ ‖viη‖2H−1(R3) −
1
η
e3d

0

(∫
R3

viη

)]
+ inf

T3
g(3)

n∑
i=1

(∫
R3

viη

)2

+ 2 inf GT3

n∑
i,j=1
i 6=j

∫
R3

viη

∫
R3

vjη (5.21)

In the calculation above, and in the remainder of the proof, we switch to considering viη defined
on R3 instead of T3. Since the terms in the first sum above are non-negative, boundedness
of F3d

η (vη) as η → 0 implies the boundedness of each of the terms in the sum independently.
We now show that when F3d

η (vη) is bounded, then for each i

∃ξiη ∈ R3 :
∫
R3

|x− ξiη|2 viη(x) dx = O(η2) as η → 0. (5.22)
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Suppose that this is not the case for some i; fix this i. We choose for ξη the barycenter of viη,
i.e.

ξη =

∫
R3

xviη(x) dx∫
R3

viη

. (5.23)

Since we assume the negation of (5.22), we find that

ρ2
η :=

∫
R3

|x− ξη|2 viη(x) dx� η2. (5.24)

Note that by (5.23) and the fact that viη ⇀miδxi ,

lim
η→0

ρη = 0. (5.25)

Now rescale viη by defining ζη(x) := ρ3
ηv
i
η(ξη + ρηx). The sequence ζη satisfies

1. ζη ∈ BV (R3, {0, ρ3
ηη
−3});

2.
∫
R3

ζη =
∫
R3

viη;

3.
η

ρη

(∫
R3

|∇ζη|+ ‖ζη‖2H−1(R3)

)
= η

∫
R3

|∇viη|+ η‖viη‖2H−1(R3), and

4.
∫
R3

|x|2 ζη(x) dx = 1.

The first three properties imply that the sequence ζη is of the same type as the sequence vη
in the rest of this paper, provided one replaces the small parameter η by the small parameter
η̃ := η/ρη. The fourth property implies that the sequence is tight. By the third property
above, (5.21), and (5.25), the boundedness of F3d

η translates into the vanishing of the analogous
expression for ζη:

lim sup
η→0

{∫
R3

|∇ζη|+ ‖ζη‖2H−1(R3) −
ρη
η
e3d

0

(∫
R3

ζη

)}
= 0. (5.26)

We now construct a contradiction with this limiting behavior, and therefore prove (5.22).

Following the same arguments as for vη we apply the concentration-compactness lemma
of Lions [21] to find that the sequence ζη converges to (yet another) weighted sum of delta
functions

µ :=
∞∑
j=1

mjδyj with µ(R3) = mi,

where mj ≥ 0 and yj ∈ R3 are distinct. Since∫
x dµ(x) = lim

η→0

∫
R3

x ζη(x) dx = 0 and
∫
|x|2 dµ(x) = lim

η→0

∫
R3

|x|2 ζη(x) dx = 1,

at least two different mj are non-zero; we assume those to be j = 1 and j = 2.
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We will need to show that the number of non-zero mj is finite. Assuming the opposite for
the moment, choose n ∈ N so large that

n∑
j=1

e3d
0 (mj) > e3d

0 (mi);

this is possible since there exist no minimizers for e3d
0 (mi) with infinitely many non-zero

components (Lemma 4.4). We apply Lemma 5.3 to find a new sequence ζ̃η =
∑n

j=1 ζ
j
η , where

ζjη ⇀ mjδyj . Then

lim inf
η→0

η

ρη

{∫
R3

|∇ζη|+ ‖ζη‖2H−1(R3)

}
≥ lim inf

η→0

n∑
j=1

η

ρη

{∫
R3

|∇ζjη |+ ‖ζjη‖2H−1(R3)

}

≥ lim inf
η→0

n∑
j=1

e3d
0

(∫
R3

ζjη

)
> e3d

0 (mi),

which contradicts (5.26); therefore the number of non-zero components mj is finite, and we
can choose n such that mi =

∑n
j=1 mj and

∫
(ζη − ζ̃η)→ 0.

To conclude the proof we now note that∫
R3

|∇ζη|+ ‖ζη‖2H−1(R3) −
ρη
η
e3d

0

(∫
R3

ζη

)
≥

n∑
j=1

{∫
R3

|∇ζjη |+ ‖ζjη‖2H−1(R3)

}
+ 2(ζ1

η , ζ
2
η )H−1(R3) + C‖ζη − ζ̃η‖L3/2(R3)

− ρη
η
e3d

0

(∫
R3

ζη

)
≥ ρη

η

[
n∑
j=1

e3d
0

(∫
R3

ζjη

)
− e3d

0

(∫
R3

ζ̃η

)]
+
ρη
η

[
e3d

0

(∫
R3

ζ̃η

)
− e3d

0

(∫
R3

ζη

)]
+ 2(ζ1

η , ζ
2
η )H−1(R3) + C‖ζη − ζ̃η‖L3/2(R3)

≥ −Lρη
η

∫
R3

(ζη − ζ̃η) +
Cρη
η

(∫
R3

(ζη − ζ̃η)
)2/3

+
1

2π

∫
R3

∫
R3

ζ1
η (x)ζ2

η (y)
|x− y|

dxdy.

Since limη→0

∫
R3(ζη − ζ̃η) = 0, the first two terms in the last line above eventually become

positive; the final term converges to (2π)−1m1m2|y1− y2|−1 > 0. This contradicts (5.26).

5.5 Proof of Lemma 4.4

Let zn be a minimizing sequence for e3d
0 (m). The functions

zεn(x) := zn

(
x

(1 + ε/m)1/3

)
are admissible for e3d

0 (m+ ε) for all ε > −m. Since the functions

fn(ε) :=
∫
R3

|∇zεn|+ ‖zεn‖2H−1(R3) = (1 + ε/m)2/3

∫
R3

|∇zn|+ (1 + ε/m)5/3‖zn‖2H−1(R3)
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satisfy

fn(ε) = fn(0) +
ε

m

(
2
3

∫
R3

|∇zn|+
5
3
‖zn‖2H−1(R3)

)
+

ε2

2m2

(
−2

9

∫
R3

|∇zn|+
10
9
‖zn‖2H−1(R3)

)
+O

( ε
m

)3
, (5.27)

uniformly in n, we have for all ε ≥ 0,

e3d
0 (m+ ε) ≤ inf

n
fn(ε) ≤ e3d

0 (m) +
5
3
e3d

0 (m)
ε

m
+

5
9
e3d

0 (m)
( ε
m

)2
+O

( ε
m

)3
, (5.28)

We deduce that
e3d

0 (m+ ε)− e3d
0 (m) ≤ 5

3m
e3d

0 (m) ε+O(ε2). (5.29)

By (4.2), we find that for any m ≥ 1 and any positive integer n, we have

e3d
0 (m) ≤ e3d

0 (1) + ne3d
0

(
m− 1
n

)
.

By taking n such that m−1
n ∈ [1, 2], we have

e3d
0 (m) ≤ e3d

0 (1) + Cn

where C denotes a uniform bound for e3d
0 on the interval [1, 2]. By choice of n we have for

some constant C ′, e3d
0 (m) ≤ e3d

0 (1) + C ′m. Combining this with (5.29), we find that e3d
0
′ is

bounded from above on sets of the form [a,∞) with a > 0.
For the concaveness of e3d

0 , note that under a constant-mass constraint
∫
|∇z| is minimal

for balls and ‖z‖H−1(R3) is maximal for balls (see e.g. [9] for the latter). Setting m =
∫
z and

r3 = 3m/4π, we therefore have

−2
9

∫
R3

|∇zn|+
10
9
‖zn‖2H−1(R3) ≤ −

2
9

∫
R3

|∇χBr |+
10
9
‖χBr‖

2
H−1(R3),

and an explicit calculation shows that the right-hand side is negative iff m < 2π. From (5.27)
we therefore have for all m < 2π and all ε > −m,

e3d
0 (m+ ε) ≤ e3d

0 (m) + inf
n

[
anε− bε2 + cε3

]
,

where an is a sequence of real numbers, and b, c > 0. Writing this as

e3d
0 (m) ≤ inf

m0∈(0,2π)

{
e3d

0 (m0) + inf
n

[
an(m−m0)− b(m−m0)2 + c(m−m0)3

]}
,

we note that for each m0 the expression in braces is strictly concave in m for |m−m0| < b/3c;
since the infimum of a set of concave functions is concave, it follows that the right-hand side
is a concave function of m. Since equality holds for m0 = m, e3d

0 is therefore concave for
m ≤ 2π, and e3d

0
′′(m) < 0 for m < 2π.

Part 3 follows from remarking that if (say) m1,m2 ∈ (0, 2π), then

d2

dε2

(
e3d

0 (m1 + ε) + e3d
0 (m2 − ε)

)∣∣∣
ε=0

= e3d
0
′′
(m1) + e3d

0
′′
(m2) < 0.
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Therefore the sequence (m1,m2, . . .) is not optimal, a contradiction. It follows that there
can be at most one mi in the region (0, 2π), and since the total sum is finite, the number of
non-zero mi is finite.

For part 4 we assume that z achieves the infimum in the definition (4.1) of e3d
0 (m), for

some m > 0. By the relative isoperimetric equality on the exterior domain of a sphere (see
for example [10]), there exists a C > 0 such that

∀R > 0 :
∫
R3\BR

z ≤ C

(∫
R3\BR

|∇z|

)3/2

.

For sufficiently large R, z satisfies (5.11). Fix such an R which we may assume additionally
insures that

∫
BαR

z ≥ m/2. Let 0 < α ≤ β < 1 be given by Lemma 5.5. We then calculate

e3d
0 (m) =

∫
R3

|∇z|+ ‖z‖2H−1(R3)

≥
∫
BβR

|∇z|+
∫
R3\BβR

|∇z|+ ‖zχBβR‖
2
H−1(R3)

≥ e3d
0

(∫
BβR

z

)
− ‖∂BβR‖(supp z) +

∫
R3\BβR

|∇z|

≥ e3d
0 (m)− ‖e3d

0
′‖L∞(m/2,∞)

(
m−

∫
BβR

z

)
− 1

2

∫
BR\BβR

|∇z|+
∫
R3\BβR

|∇z|

≥ e3d
0 (m)− ‖e3d

0
′‖L∞(m/2,∞)

∫
R3\BβR

z +
1
2

∫
R3\BβR

|∇z|

≥ e3d
0 (m)− ‖e3d

0
′‖L∞(m/2,∞)C

(∫
R3\BR

|∇z|

)3/2

+
1
2

∫
R3\BβR

|∇z|. (5.30)

To pass to the fourth line, we used Lemma 5.5 and part 1 of Lemma 4.4. Inequality (5.30)
holds for all R sufficiently large. Since

∫
R3\BβR |∇z| → 0 as R→∞, the sum of the last two

terms in (5.30) becomes strictly positive if the integrals are positive. Since strict positivity is
a contradiction, it follows that the support of z is bounded.

6 Two dimensions

All differences between the two- and three-dimensional case arise from a single fact: the
scaling of the H−1 is critical in two dimensions, making the two-dimensional case special.

6.1 Leading-order convergence

The first difference is encountered in the leading-order limiting behavior. As we discussed in
Section 3, the leading-order contribution to the H−1-norm involves the masses of the particles
instead of their localized H−1-norm (see (3.7)). For the local problem in two dimensions we
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therefore introduce the function

e2d
0 (m) :=

m2

2π
+ inf

{∫
R2

|∇z| : z ∈ BV (R2; {0, 1}),
∫
R2

z = m

}
(6.1)

=
m2

2π
+ 2
√
πm.

Note that the minimization problem in (6.1) is simply to minimize perimeter for a given area,
and a disc of the appropriate area is the only solution. Thus the value of e2d

0 (m) can be
determined explicitly.

The function e2d
0 does not satisfy the lower-semicontinuity condition (4.2) (cf. Remark

4.1). We therefore introduce the lower-semicontinuous envelope function

e2d
0 (m) := inf


∞∑
j=1

e2d
0 (mj) : mj ≥ 0,

∞∑
j=1

mj = m

 . (6.2)

The limit functional is defined in terms of this envelope function:

E2d
0 (v) :=

{∑∞
i=1 e

2d
0 (mi) if v =

∑∞
i=1m

iδxi with {xi} distinct and mi ≥ 0
∞ otherwise.

Theorem 6.1. Within the space X, we have

E2d
η

Γ−→ E2d
0 as η → 0.

That is, conditions 1 and 2 of Theorem 4.3 hold with E3d
η and E3d

0 replaced by E2d
η and E2d

0 .

The proof follows along exactly the same lines as the proof of Theorem 4.3. In fact, for the
lower bound it is simpler since one can bypass the technicalities associated with Lemma 5.2.
Indeed, a standard result on the approximation for sets of finite perimeter (see for example
Theorem 3.42 of [4]) implies that, without loss of generality, we may assume that a sequence
vη with bounded energy (for η sufficiently small) satisfies

vη =
∞∑
i=1

viη with viη =
1
η2
χAiη , (6.3)

where the sets Aiη are connected, disjoint, smooth, and with diameters which tend to zero as
η → 0. Then the following estimate holds true in two dimensions:

∞∑
i=1

diam(supp viη) ≤ η2
∞∑
i=1

∫
T2

|∇viη| ≤ ηE2d
η (vη) = O(η), (6.4)

which can be used to bypass Lemma 5.2.
The upper bound again follows the argument in three space dimensions. In the construc-

tion, one can now choose optimal two-dimensional balls for the minimizer of e2d
0 . The only

small technicality is that one needs to relate the limiting energy of these balls to e2d
0 . However

one can argue as follows. It is sufficient to prove the statement for finite sums

v0 =
n∑
i=1

mi δxi ,
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since an infinite sum v0 =
∑∞

i=1m
i δxi can trivially be approximated by finite sums, and in

that case

E2d
0

(
n∑
i=1

mi δxi

)
=

n∑
i=1

e2d
0 (mi) ≤

∞∑
i=1

e2d
0 (mi) = E2d

0 (v0).

Finally, taking for v0 now a finite sum, E2d
0 (v0) =

∑n
i=1 e

2d
0 (mi) can be approximated to

arbitrary precision by
n∑
i=1

ki∑
j=1

e2d
0 (mij)

where
∑

jm
ij = mi. Therefore it is sufficient to construct a sequence vη ⇀ v0 such that

lim sup
η→0

E2d
η (vη) ≤

n∑
i=1

e2d
0 (mi) for v0 =

n∑
i=1

mi δxi . (6.5)

By slightly perturbing the positions the xi can still be assumed to be distinct.

6.2 Next-order behavior

Turning to the next-order behavior, note that among all measures of mass M , the global
minimizer of E2d

0 is given by

min
{

E2d
0 (v) :

∫
T2

v = M

}
= e2d

0 (M).

We recover the next term in the expansion as the limit of E2d
η − e2d

0 , appropriately rescaled,
that is of the functional

F2d
η (v) := |log η|

[
E2d
η (v)− e2d

0

(∫
T2

v

)]
.

Here the situation is similar to the three-dimensional case in that for boundedness of the
sequence F2d

η the limiting weights mi should satisfy two requirements: a minimality condition
and a compactness condition. The compactness condition is most simply written as the
condition that

e2d
0 (mi) = e2d

0 (mi) (6.6)

and corresponds to the condition in three dimensions that there exist a minimizer of the
minimization problem (4.1).

In two dimensions, the minimality condition (6.7) provides a characterization that is
stronger than the in three dimensions:

Lemma 6.2. Let {mi}i∈N be a solution of the minimization problem

min

{ ∞∑
i=1

e2d
0 (mi) : mi ≥ 0,

∞∑
i=1

mi = M.

}
. (6.7)

Then only a finite number of the terms mi are non-zero and all the non-zero terms are equal.
In addition, if one mi is less than 2−2/3π, then it is the only non-zero term.
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The proof is presented in Section 6.3. We will also need the following corollary on the
stability of E2d

0 under perturbation of mass:

Corollary 6.3. The function e2d
0 is Lipschitz continuous on [δ, 1/δ] for any 0 < δ < 1.

The limit as η → 0 of the functional F2d
η has one additional term in comparison to the

three-dimensional case, which arises from the second term in (3.6),

− 1
2π

∞∑
i=1

∫
R2

∫
R2

ziη(x)ziη(y) log |x− y| dxdy. (6.8)

To motivate the limit of this term, recall that ziη appears in the minimization problem (6.1),
which has only balls as solutions. Assuming ziη to be a characteristic function of a ball of
mass mi, we calculate that (6.8) has the value f0(mi), where

f0(m) :=
m2

8π

(
3− 2 log

m

π

)
.

We therefore define the intended Γ-limit F2d
0 of F2d

η as follows. First let us introduce some
notation: for n ∈ N and m > 0 the sequence n⊗m is defined by

(n⊗m)i :=

{
m 1 ≤ i ≤ n
0 n+ 1 ≤ i <∞.

Let M̃ be the set of optimal sequences for the problem (6.7):

M̃ :=
{
n⊗m : n⊗m minimizes (6.7) for M = nm, and e2d

0 (m) = e2d
0 (m)

}
.

Then define

F2d
0 (v) :=



n
{
f0(m) + m2 g(2)(0)

}
+

m2

2

∑
i,j≥1
i 6=j

GT2(xi − xj) if v = m
n∑
i=1

δxi , {xi} distinct, n⊗m ∈ M̃,

∞ otherwise.

(6.9)

Theorem 6.4. Within the space X, we have

F2d
η

Γ−→ F2d
0 as η → 0.

That is, Conditions 1 and 2 of Theorem 6.1 hold with E2d
η and E2d

0 replaced with F2d
η and F2d

0

respectively.
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The proof of this theorem again closely follows that of Theorem 4.5. The compactness
property (6.6) in the lower bound follows by a simpler argument than in three dimensions,
however. Using the division into components with connected support (6.3), we have

F2d
η (vη) = |log η|

[
E2d
η (vη)− e2d

0

(∫
T2

vη

)]
= |log η|

∞∑
i=1

[∫
R2

|∇ziη|+
1

2π

(∫
R2

ziη

)2
− e2d

0

(∫
R2

ziη

)]

+ |log η|
∞∑
i=1

[
e2d

0

(∫
R2

ziη

)
− e2d

0

(∫
R2

ziη

)]
(6.10)

+ |log η|

[ ∞∑
i=1

e2d
0

(∫
R2

ziη

)
− e2d

0

(∫
T2

vη

)]
(6.11)

+
∞∑
i=1

{
− 1

2π

∫
R2

∫
R2

ziη(x) ziη(y) log |x− y| dx dy +
∫
T2

∫
T2

viη(x) viη(y) g(2)(x− y) dx dy
}

(6.12)

+
∞∑

i,j=1
i 6=j

∫
T2

∫
T2

viη(x) vjη(y)GT2(x− y) dx dy. (6.13)

The last two lines in the development above are uniformly bounded from below. Since F2d
η (vη)

is bounded from above, it follows that the terms in square brackets, which are non-negative,
tend to zero. In combination with the continuity of e2d

0 and e2d
0 this implies the compactness

property (6.6). We also remark that because the contents of the square brackets in (6.10) and
(6.11) is zero in the limit, we find with the aid of Lemma 6.2 that the number of concentration
points xi in the weak limit of vη is finite with equal coefficient weights. Moreover, we may
assume that there are a finite number of different components of vη, and each must converge
to a different xi; otherwise, the last term (6.13) would tend to ∞ as η tends to 0.

Letting η → 0 and using the the definition (6.8) of f0, one readily sees that the terms (6.12)
and (6.13) directly correspond to the respective three terms of (6.9). The upper bound directly
follows the arguments in three dimensions, now taking optimal two-dimensional balls for the
sequence.

6.3 Proofs of Lemma 6.2 and Corollary 6.3

The proof of Lemma 6.2 contains two elements. The first element is general, and only uses
the property that e2d

0 is concave on
[
0, π

3√4

]
and convex on

[
π
3√4
,∞
)

. This property reduces

the possibilities to a combination of (a) a finite number of equal mi in the convex region with
possibly (b) one mi in the concave region (see [20, Section 5.4] for a similar reasoning). The
second part, in which possibility (b) above is excluded, depends heavily on the exact form
of e2d

0 , and is an uninspiring exercise in estimation.

Proof of Lemma 6.2: For this proof only, let us abuse notation and use x, xi, y, z to
denote positive real numbers. We note that

e2d
0 (m) = 25/3π f

( m

π 24/3

)
with f(x) = x2 +

√
x.
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We therefore continue with f instead of e2d
0 . Since f is concave on

(
0, 1

4

]
and convex on[

1
4 ,∞

)
, the following hold true:

• There is at most one xi ∈
(
0, 1

4

)
; for if xi, xj ∈

(
0, 1

4

)
, then

d2

dε2
(f(xi + ε) + f(xj − ε))

∣∣∣
ε=0

= f ′′(xi) + f ′′(xj) < 0,

contradicting minimality. Therefore only one non-zero element is less than 1
4 , which

also implies that the number of non-zero elements is finite.

• The set of elements
{
xi : xi ≥ 1

4

}
is a singleton, since the function is convex on

[
1
4 ,∞

)
.

Therefore the lemma is proved if we can show the following. Take any sequence of the
form

xi =


x i = 1
y i = 2, . . . , n+ 1
0 i ≥ n+ 2,

(6.14)

with x < 1/4 ≤ y; then this sequence can not be a solution of the minimization problem (6.7).
To this end, we first note that

(n+ 1)f
(

n

n+ 1
y

)
− nf(y) =

n

n+ 1
√
y

(
−y3/2 + (n+ 1)

(√
n+ 1
n
− 1

))
.

If this expression is negative, then by replacing the n copies of y in (6.14) by n+ 1 copies of
ny/(n+ 1) we decrease the value in (6.7). Therefore we can assume that

1
4
≤ y ≤ ym(n) := (n+ 1)2/3

(√
n+ 1
n
− 1

)2/3

.

We distinguish two cases. Case one: If y+ x/n < ym(n), then we compare our sequence
(6.14) with n copies of z := y + x/n:

f(x) + nf(y)− nf(y + x/n) = f(x) + nf(z − x/n)− nf(z)

= x2
(

1 +
1
n

)
− 2xz +

√
x+ n

√
z − x

n
− n
√
z

=: g(x, z).

We now show that g is strictly positive for all relevant values of x and z, i.e. for 0 < x < 1/4
and 1/4 + 1/n < z < ym(n).

Differentiating g(x, z)/x we find that

∂

∂x

g(x, z)
x

= 1 +
1
n
− 1

2x3/2
− n

x2

(√
z − x

n −
√
z
)
− 1

2x
√
z − x

n

. (6.15)

This expression is negative: x < 1/4 implies that

1 +
1
n
− 1

2x3/2
< 0,
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and by concavity of the square root function we have

√
z ≤

√
z − x

n
+

1
2
√
z − x

n

x

n
,

so that the last two terms in (6.15) together are also negative.
Since g(x, z)/x is decreasing in x, it is bounded from below by

4g(1/4, z) =
1
4

(
1 +

1
n

)
− 2z + 2 + 4n

(√
z − 1

4n −
√
z

)
.

The right-hand side of this expression is concave in z, and therefore bounded from below by
the values at z = (1 + 1/n)/4 and at z = ym(n). The first of these is

−1
4

(
1 +

1
n

)
+ 2 + 2n

(
1−

√
1 + 1

n

)
≥ −1

2
+ 2 + 2n (1− (1− 1/2n)) =

1
2
.

For the second, the expression

4g(1/4, ym(n)) =
1
4

(
1 +

1
n

)
− 2ym(n) + 2 + 4n

(√
ym(n)− 1

4n −
√
ym(n)

)
is positive for n = 1, 2, as can be checked explicitly; for n ≥ 3, we estimate 2−2/3 ≤ ym(n) ≤
((n+ 1)/2n)2/3 and therefore

1
4

(
1 +

1
n

)
− 2ym(n) + 2 + 4n

(√
ym(n)− 1

4n −
√
ym(n)

)
≥ 1

4
− 2

(
n+ 1

2n

)2/3

+ 2− 1

2
√
ym(n)− 1

4n

≥ 9
4
− 2

(
n+ 1

2n

)2/3

− 1

2
√

2−2/3 − 1
12

The right-hand side of this expression is strictly positive for all n ≥ 3. This concludes the
proof of case one.

For case two we assume that y + x/n ≥ ym(n), set

z :=
ny + x

n+ 1
,

and compare the original structure with n+ 1 copies of z:

f(x) + nf(y)− (n+ 1)f(z) = f(x) + nf

(
n+ 1
n

z − x

n

)
− (n+ 1)f(z)

=
n+ 1
n

(z − x)2 +
√
x+
√
n
√

(n+ 1)z − x− (n+ 1)
√
z

=: h(x, z).

Note that the admissible values for z are

n

n+ 1
ym(n) ≤ z ≤ nym(n) + x

n+ 1
≤ ym(n). (6.16)

We first restrict ourselves to n ≥ 2, and state an intermediary lemma:
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Lemma 6.5. Let n ≥ 2. Then for all 0 < x < 1/4 and for all z satisfying (6.16),

h(x, z) > min{h(0, z), h(1/4, z)}.

Assuming this lemma for the moment, we first remark that h(0, z) ≥ 0 by the bound
z ≥ nym(n)/(n+ 1) and the definition of ym. For the other case we remark that the function

n 7→
√
n
√

(n+ 1)z − x− (n+ 1)
√
z

is increasing in n for fixed z. Keeping in mind that n ≥ 2 we therefore have

h(1/4, z) ≥ 3
2
(
z − 1

4

)2 +
1
2

+
√

2
√

3z − 1
4 − 3

√
z,

and this function is positive for all z ≥ 2ym(2)/3 ≈ 0.51. This concludes the proof for n ≥ 2.

Before we prove Lemma 6.5 we first discuss the case n = 1, for which

h(x, z) = 2(z − x)2 +
√
x+
√

2z − x− 2
√
z.

The domain of definition of z is[
1
2
ym(1), ym(1)

]
⊂ [0.4410, 0.8821].

The mixed derivative hzx is negative on the domain of x and z, so that

hz(x, z) ≥ hz(1/4, z) = 4z − 1 +
1√

2z − 1/4
− 1√

z
.

This expression is again positive for the admissible values of z, and we find

h(x, z) ≥ h
(
x, 1

2ym(1)
)

= 2
(

1
2ym(1)− x

)2 +
√
x+

√
ym(1)− x− 2

√
1
2ym(1).

Similarly this expression is non-negative for all 0 ≤ x ≤ 1/4, which concludes the proof for
the case n = 1.

Proof of Corollary 6.3: Fix 0 < δ < 2−2/3π and M ∈ [δ, 1/δ]; by Lemma 6.2 there exist
n,m with M = nm such that e2d

0 (M) = n e2d
0 (m). Note that if n = 1 then m = M ≥ δ, and

if n > 1 then by Lemma 6.2 m ≥ 2−2/3π > δ; therefore we have m ≥ δ and n ≤ M/δ. Since
e2d

0 is the pointwise minimum of a collection of functions e2d
0 , local Lipschitz continuity of e2d

0

now follows from the same property for the functions e2d
0 on the domain [δ, 1/δ].

We still owe the reader the proof of Lemma 6.5.
Proof of Lemma 6.5: We first show that if 4/25 ≤ x ≤ 1/4, then hx(x, z) < 0. We estimate
the derivative by using the bounds on z and x:

hx(x, z) = −2
n+ 1
n

(z − x)−
√
n

2
√

(n+ 1)z − x
+

1
2
√
x

≤ −2ym(n) +
n+ 1

2n
−

√
n

2
√
nym(n)

+
5
4
.
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Note that ym is monotonically decreasing in n, and that we can estimate ym from below by

ym(n)3/2 = (n+ 1)
(√

1 + 1
n − 1

)
≥ (n+ 1)

1

2
√

n+1
n

1
n

=
1
2

√
n+ 1
n

.

Using n ≥ 2 we find

hx(x, z) ≤ −2 · 2−2/3

(
n+ 1
n

)1/3

+
n+ 1

2n
− 1

2
√
ym(2)

+
5
4

=: `
(
n+ 1
n

)
.

The function ` is increasing on [1,∞), and we have

`

(
n+ 1
n

)
≤ `(3

2) < 0.

On the remaining region 0 < x < 4/25 the second derivative hxx is negative:

hxx(x, z) = 2
n+ 1
n
−

√
n

4
(
(n+ 1)z − x

)3/2 − 1
4x3/2

≤ 3− 1
4

125
8

< 0.

For any fixed z, therefore, the function x 7→ h(x, z) takes its minimum on the boundary,
that is in one of the two points x = 0 and x = 1/4. Since the first derivative is non-zero
on [4/25, 1/4], and since the second derivative is non-zero on (0, 4/25], the minimum is only
attained on the boundary. This concludes the proof of Lemma 6.2.

7 Discussion

The results of this work provide a rigorous connection between the detailed, micro-scale model
defined by E in (1.2) and the macroscopic, upscaled models given by the limiting energies E2d

0 ,
F2d

0 , E3d
0 , and F3d

0 . We now discuss some related aspects.

Differences between the two- and three-dimensional cases: scaling. The consequences of
the difference between two and three dimensions in the scaling of the H−1-norm are best
appreciated in the Green’s functions in the whole space: if we replace x by ηx, then

log ηx = log η + log x in 2D, and
1
|ηx|

=
1
η
· 1
|x|

in 3D.

The difference between the additive effects in two dimensions and the multiplicative effect in
three dimensions is responsible for the difference between the two limiting problems:∫

|∇z|+
(∫

z

)2

in two dimensions, and
∫
|∇z|+ ‖z‖2H−1 in three.

Differences between the two- and three-dimensional cases: local problems. Because of this
difference in scaling, the local energy contributions e2d

0 (and e2d
0 ) and e3d

0 are necessarily dif-
ferent, and since the two-dimensional local problem is the isoperimetric problem, its solution
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can be calculated explicitly in terms of m. For the three-dimensional local problem we can
only conjecture on the structure of minimizers (see below).

In addition to this, there is a difference in the handling of the lower semicontinuity in two
and three dimensions. This comes from the fact that the definition of e2d

0 presupposes that
the mass of z remains localized (does not escape to infinity) while the definition of e3d

0 does
not. As a result, the function e3d

0 already has the right lower semi-continuity properties, while
for e2d

0 we need to explicitly construct the lower-semicontinuous envelope function e2d
0 .

Some of the other differences are only apparent. For instance, the requirement, in the
definition of F3d

0 , that for each mi the minimization problem e3d
0 (mi) admits a minimizer, is

mirrored in two dimensions by the compactness property e2d
0 (mi) = e2d

0 (mi). The reduction
to ‘blobs’ of bounded and separated support (Lemma 5.2) is immediate in two dimensions,
since it follows from the vanishing of the perimeter.

Minimizers of the local problem in three dimensions. For the three-dimensional minimiza-
tion problem (4.1) one can show a number of properties. For instance, the concaveness of e3d

0

for small m implies that for small m minimizing sequences are compact, and the minimizers
are balls. One can also show that for sufficiently large m, a ball with volume m will be un-
stable with respect to symmetry-breaking perturbations; Ren and Wei have documented this
phenomenon in two space dimensions [32]. For the three-dimensional case, however, one can
show that balls become unstable with respect to splitting into two balls of half the volume
before they become unstable with respect to small symmetry-breaking perturbations. This
leads us to postulate that All global minimizers of the problem (4.1) are balls. We will discuss
this variational problem further in [13].

Limiting structures. In both two and three dimensions, the limiting energies ‘at the next
level’ F2d

0 and F3d
0 penalize proximity of particles as if they were electrically charged. In two

dimensions Lemma 6.2 guarantees that the masses mi, which play the role of the charges
of the particles, are all the same; in three dimensions we conjecture that the same holds,
although currently we are not able to exclude the possibility of (n− 1) equal masses and one
different mass.

The question whether minimizers of these Coulomb energies are necessarily periodic is
a subtle one. It is easy to construct numerical examples of bounded domains on which
minimizers can not be periodic; see e.g. [30] for examples on discs in R2. At the same time,
the examples with many particles do show a tendency to a triangular packing away from the
boundary. In the physical literature such structures are known as Wigner crystals, and in
that field it is generally assumed that periodic structures have lowest energy. As far as we
know, there are no rigorous results that show periodicity without any a priori assumptions
on the geometry. Turning to what can be proved, the closest related results we know of
are: (i) a novel application of the modular function to show that among periodic structures,
spot patterns on a hexagonal lattice have minimal energy [11]; (ii) for the two-dimensional,
Leonard-Jones crystallization result of [36]. Moreover, for the full problem (1.2), the only
periodicity-like results we know of, in dimension larger than one, a statement concerning the
uniformity of the energy distribution on large boxes [3], and for finite-size structures in Rn a
scaling result bounding the energy in terms of lower-dimensional energies [17].

The role of the mass constraint. Note that in the main theorems (6.1, 6.4, 4.3, and 4.5)
there is no mass constraint, as in (1.3), but only the weaker requirement that

∫
v is bounded.

This merits some remarks:
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• Free minimization of the limiting functionals E2d
0 , F2d

0 , E3d
0 , and F3d

0 simply yields the
zero function with zero energy. In order to have a non-trivial object in the limit some
additional restriction is therefore necessary. Typically one expects to have a sequence vη
for which the mass either is fixed or converges to a positive value.

• The fact that only boundedness of
∫
v is required also implies that this scaling of mass

is the smallest one to give (for this scaling of the energies) non-trivial results; if
∫
v

converges to zero, then the limiting energies are also zero, and no structure can be
determined. This conclusion resonates with the fact that in the formal phase diagram
of the Ohta-Kawasaki functional (1.1) the phase at the extreme ends of the volume
fraction range is the spherical phase [12].

Related work. Our results are consistent with and complementary to three other recent
studies in the regime of small volume fraction. In [31] Ren and Wei prove the existence
of sphere-like solutions to the Euler-Lagrange equation of (1.1), and further investigate their
stability. They also show that the centers of sphere-like solutions are close to global minimizers
of an effective energy defined over delta measures which includes both a local energy defined
over each point measure, and a Green’s function interaction term which sets their location.
While their results are similar in spirit to ours, they are based upon completely different
techniques which are local rather than global.

Very recently, Muratov [22] proves a strong and rather striking result for the sharp interface
problem in two dimensions. In an analogous small volume fraction regime, he proves that the
global minimizers are close to being identical circular droplets of a small size separated by
large distances. While this result does not precisely determine the placement of the droplets –
ideally proving periodicity of the ground state, to our knowledge it presents the first rigorous
work characterizing some geometric properties of the ground state (global minimizer).

In [18, 23] the authors explore the dynamics of small spherical phases for a gradient flow
for (1.2) with small volume fraction. Here one finds a separation of time scales for the dy-
namics: Small particles both exchange material as in usual Ostwald ripening, and migrate
because of an effectively repulsive nonlocal energetic term. Coarsening via mass diffusion
only occurs while particle radii are small, and they eventually approach a finite equilibrium
size. Migration, on the other hand, is responsible for producing self-organized patterns. By
constructing approximations based upon an Ansatz of spherical particles similar to the clas-
sical LSW (Lifshitz-Slyozov-Wagner) theory, one derives a finite dimensional dynamics for
particle positions and radii. For large systems, kinetic-type equations which describe the evo-
lution of a probability density are constructed. A separation of time scales between particle
growth and migration allows for a variational characterization of spatially inhomogeneous
quasi-equilibrium states. Heuristically this matches our findings of (a) a first order energy
which is local and essentially driven by perimeter reduction, and (b) a Coulomb-like interac-
tion energy, at the next level, responsible for placement and self organization of the pattern. It
would be interesting if one could make these statements precise via the calculation of gradient
flows and their connection with Γ-convergence [33].

We further note that this asymptotic study has much in common with the asymptotic
analysis of the well-known Ginzburg-Landau functional for the study of magnetic vortices (cf.
[34, 19, 2]). However our problem is much more direct as it pertains to the asymptotics of
the support of minimizers. This is in strong contrast to the Ginzburg-Landau functional
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wherein one is concerned with an intrinsic vorticity quantity which is captured via a certain
gauge-invariant Jacobian determinant of the order parameter.

Although the energy functional (1.1) provides a relatively simple, and mathematically
accessible, description of patterns in this block copolymer system, rigorous results charac-
terizing minimal-energy patterns in higher dimensions are few and far between. We also
mention the comparison of large, localized structures in multiple dimensions with extended
lower-dimensional structures [17]. For a slightly different model for block copolymer behavior
additional results are available. In [26, 27, 28] the authors study an energy functional con-
sisting of two terms as in E in (1.2), but with the H−1-norm replaced by the W−1,1-norm, or
equivalently by the Wasserstein distance of order 1. For this functional the authors study the
symmetric regime, in which A and B appear in equal amounts; a parameter ε characterizes
the small length scale of the patterns. They prove that low-energy structures in two dimen-
sions become increasingly stripe-like as ε → 0, that the stripe width approaches ε, and that
the Gamma-limit of the rescaled energy measures the square of the local stripe curvature.
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