Group-work problems. Lec 11.

- 1. Is there a vector space that has
 - no vectors
 - -1 vector
 - -2 vectors
- 2. Let L and M be subspaces of a vector space V. Are the following sets also subspaces of V?
 - $-L \cup M = \{ \text{ all vectors belonging to } L \text{ or } M \text{ or both } \}.$
 - $-L \cap M = \{ \text{ all vectors belonging to both } L \text{ and } M \}.$
 - $-L+M = \{ \text{ all vectors } w \text{ that can be written as a sum of a vector } x \text{ in } L \text{ and a vector } y \text{ in } M \}.$

Let $L = \{(x, y, x) | x + y + z = 0\}$ and let $M = \{(x, y, z) | x = y = z\}$. Both are subspaces of \mathbb{R}^3 . Give geometric descriptions of L and M, then describe $L \cup M, L \cap M, L + M$.

- 3. Degine the differential operator $D = \frac{d}{dx} 1$ by the rule: $D(f) = (\frac{d}{dx-1})f = \frac{df}{dx} 1$. To make this rigorous, one may think of D as a function whose domain and range is the vector space $C^{\infty}(\mathbb{R})$ of infinitely differentiable functions defined on \mathbb{R} . As with matrices, one can define the null space of D by $NS(D) = \{f \in C^{\infty}(\mathbb{R}) : D(f) = 0\}$.
 - Show that NS(D) is a subspace of $C^{\infty}(\mathbb{R})$.
 - Find NS(D). (Hint: Solve a differential equation).
- 4. Suppose that $S = \{v_1, \ldots, v_k\}$ and $T = \{w_1, \ldots, w_l\}$ are subsets of a vector space V. Furthermore, S and T are each linearly independent sets, and $Span(S) \cap Span(T) = \{0\}$. Show that $S \cup T$ is a linearly independent set.
- 5. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - Show that $A^2 (a+d)A + (ad-bc)I = 0$. Thus $\{I, A, A^2\}$ is a linearly dependent set in M_{22} .
 - Deduce that A^n is in $Span\{I, A\}$ for all non-negative integers n. Show that if A is invertible, then A^n is in $Span\{I, A\}$ even if n is a negative integer.
- 6. Let V be the vector space of all polynomials in P_3 satisfying p(1) = 0. Give a basis for V and find dimV.
- 7. Let $V = C(\mathbb{R})$ be the space of continuous functions $f : \mathbb{R} \to \mathbb{R}$.

- Show that $C(\mathbb{R})$ is infinite dimensional.
- Let W be the subspace spanned by $sin^2x, cos^2x, sin 2x, cos 2x$. What is dimW?
- 8. Let $V = P_5$ and let W be the set of polynomials in V which are even functions. Is W a subspace of V? If so, find a basis for W.
- 9. Let W be a subspace of \mathbb{R}^n and let $\{w_1, \ldots, w_k\}$ be a linearly independent subset of W.
 - Suppose that $\{w_1, \ldots, w_k, w\}$ is linearly dependent for each w in W. Show that $\{w_1, \ldots, w_k\}$ is a basis for W.
 - Suppose moreover that $\{w_1, \ldots, w_k, v\}$ is linearly dependent for each v in \mathbb{R}^n . Show that k = n.
- 10. Suppose that A is an invertible $n \times n$ matrix. What is rk(A)? What is dimNS(A)?
- 11. Show that if A is not square, then either the rows of A or the columns of A are linearly dependent.
- 12. Let A be the matrix formed by taking n vectors from \mathbb{R}^m as its columns. In each of the following situations, what relationship must hold between m and n? Choose from: $m \leq n, n \leq m$ and m = n.
 - The *n* vectors are linearly independent.
 - The *n* vectors span \mathbb{R}^m .
 - The *n* vectors form a basis for \mathbb{R}^m .
 - -A has rank m.
 - -A is invertible.
- 13. Find the rank of the following matrices (it may depend on t):

$$A = \begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} t & -1 & 2 \\ t & t & 1 \\ t & t & t \end{bmatrix}.$$

- 14. Suppose that u is a non-zero $m \times 1$ matrix, and v is a non-zero $1 \times n$ matrix. Show that A = uv is an $m \times n$ matrix of rank 1.
 - Show that the converse is true also. That is, suppose that A is an $m \times n$ matrix of rank 1. Show that there is a column matrix u and a row matrix v so that A = uv.