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Abstract

The aim of the paper is to characterise sequences of domains for which solutions to an

elliptic equation with Dirichlet boundary conditions converge to a solution of the

corresponding problem on a limit domain. Necessary and sufficient conditions are discussed

for strong and uniform convergence for the corresponding resolvent operators. Examples are

given to illustrate that most results are optimal.
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1. Introduction

The purpose of this paper is to discuss conditions on sequences of domains

OnCRN ðNX2Þ such that solutions of the elliptic boundary value problems

Au þ lu ¼ fn in On;

u ¼ 0 on @On ð1:1Þ

converge to a solution of the corresponding problem

Au þ lu ¼ f in O;

u ¼ 0 on @O ð1:2Þ

*Fax: +61-2-9351-4534.

E-mail address: d.daners@maths.usyd.edu.au.

0022-0396/03/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 3 9 6 ( 0 2 ) 0 0 1 0 5 - 5



on a limit domain O as n-N: The motivation to look at such problems comes from
variational inequalities (see [35]), numerical analysis (see [27,37,41–44]), potential
and scattering theory (see [4,38,40,46]), control and optimisation (see [12,13,30,45]),
G-convergence (see [9,15]) and solution structures of non-linear elliptic equations
(see [16–18,24]). We do not attempt here to give a complete bibliography, but
make a rather arbitrary choice of references. As the framework, motivation
and notation used in the literature vary enormously, it can be difficult to compare
results.
We start our analysis with two conditions naturally coming up when trying to

prove convergence of solutions of (1.1) to a solution of (1.2) (see proof of Theorem
3.1). They are

the weak limit points of every sequence unAH1
0 ðOnÞ; nAN;

in H1ðRNÞ are in H1
0 ðOÞ; ð1:3Þ

for every jAH1
0 ðOÞ there exist jnAH1

0 ðOnÞ such that jn-j in H1ðRNÞ:
ð1:4Þ

Here H1
0 ðOÞ and H1ðRNÞ denote the usual Sobolev spaces of functions vanishing on

@O: Extending functions in H1
0 ðOÞ by zero outside O we may consider H1

0 ðOÞ as a
closed subspace of H1ðRNÞ; so (1.3) and (1.4) make sense. It turns out that the two
conditions are not only sufficient but also necessary for convergence, which is known
for some classes of operators (see for instance [14]). For this reason we make the
following definition.

Definition 1.1. If On;OCRN are such that (1.3) and (1.4) are satisfied we write
On-O:

It is often said that On-O in the sense of Mosco (as this is equivalent to

H1
0 ðOnÞ-H1

0 ðOÞ in the sense of Mosco [35, Section 1]). The conditions also appear in

a more disguised form in [41], and explicitly in [44]. Necessary and sufficient
conditions in terms of capacity for (1.3) and (1.4) are discussed in [10] in case On is
contained in a fixed bounded set for all nAN:
In this paper we improve previous results in several directions. First of all we work

with necessary and sufficient conditions for convergence. We allow unbounded
domains with infinite measure and non-self-adjoint operators. Many papers allow
one or the other, but not simultaneously. Also, we look at convergence in Lp-norms,

pAð1;NÞ: Finally, we characterise under what conditions the resolvents converge

uniformly, that is, in the operator norm ofLðL2ðRNÞÞ: Note that the methods could
be used to treat some other, even non-linear or parabolic operators. We refrain from
doing so and restrict ourselves to one class of operators allowing quite elementary
proofs, not involving the theory of G-convergence.
An outline of the paper is as follows. In Section 2 we fix the assumptions, notation

and framework used throughout the paper. Section 3 is concerned with basic
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convergence results. In particular, we prove that convergence holds for all operators
of the class under consideration if and only if it holds for one particular operator. In
Section 4 we discuss conditions for uniform convergence of the resolvents. As a
consequence we get continuity properties of the spectrum with respect to the domain
not true in general. Section 5 deals with convergence in Lp-spaces. A good theory in

Lp-spaces is important when dealing with non-linear problems such as those in [16].

In Section 6 we establish some necessary conditions for convergence. Conditions
(1.3) and (1.4) are not always easy to verify. We discuss some sufficient conditions
which are easy to check in Section 7. Examples showing that most results are optimal
are given in Section 8. We conclude with an appendix containing some auxiliary
abstract results.

2. Assumptions and framework

The purpose of this section is to introduce the framework we need for a precise
formulation of our results. We will always assume that On;O are open (possibly

unbounded and disconnected) sets in RN ; NX2: The Lebesgue measure of a set

SCRN we denote by jSj: If O is an open set we denote by H1
0 ðOÞ the closure of the set

of test functions CN

c ðOÞ in the Sobolev space H1ðOÞ: The norm we use is always

jjujjH1 ¼ ðjjujj22 þ jjrujj22Þ
1=2; where jjujjp is the Lp-norm. Extending elements of

CN

c ðOÞ by zero outside O we may consider CN

c ðOÞ in a natural way as a subspace of

CN

c ðRNÞ: Hence, taking closures we may identify H1
0 ðOÞ with a closed subspace of

H1
0 ðRNÞ ¼ H1ðRNÞ; and we will do so henceforth.

The operator A is always of the form

Au :¼ �
XN

i¼1
@i

XN

j¼1
ai; j@ju

 !
þ aiu

 !
þ
XN

i¼1
bi@iu þ c0u; ð2:1Þ

where ai; j; ai; bi; c0ALNðRNÞ for all i; j ¼ 1;y;N: Moreover, we assume that there

exists a constant a40; called the ellipticity constant, such that

XN

j¼1

XN

i¼1
ai; jxixjXajxj2 ð2:2Þ

for almost all xARN and all x ¼ ðx1;y; xNÞARN : The simplest case is the Laplace
operator �D: We define the form, að� ; �Þ; associated with A by

aðu; vÞ :¼
Z
RN

XN

i¼1

XN

j¼1
ai; j@ju

 !
þ aiu

 !
@iv þ

XN

i¼1
bi@iu þ c0u

 !
v dx ð2:3Þ
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for all u; vAH1ðRNÞ: It is easy to check that að� ; �Þ is a bounded bilinear form on

H1ðRNÞ (and thus on H1
0 ðOÞ for every open set OCRNÞ: If u; v:O-R are two

measurable functions we set

/u; vS :¼
Z
O

uv dx

if the integral exists. By the Riesz representation theorem we can identify L2ðOÞ with
its dual. If we do that then H1

0 ðOÞ+L2ðOÞ+H�1ðOÞ; where H�1ðOÞ is the

topological dual of H1
0 ðOÞ equipped with the dual norm. Duality between H1

0 ðOÞ and
H�1ðOÞ we also denote by / � ; �S: Given fAH�1ðOÞ; we call u a weak solution of

(1.2) if uAH1
0 ðOÞ; and

aðu; vÞ þ l/u; vS ¼ /f ; vS ð2:4Þ

for all vAH1
0 ðOÞ: If we set

l0 :¼ jjc�0 jjN þ 1

2a

XN

i¼1
jjai þ bijj2N; ð2:5Þ

then standard arguments show that

a
2
jjujj2H1ðRN Þpaðu; uÞ þ ljjujj22 ð2:6Þ

for all uAH1ðRNÞ and lXl0; where c�0 :¼ maxð�c0; 0Þ is the negative part of c0: The

Lax–Milgram Theorem [47, Section III.7] then ensures the existence of a unique

weak solution uAH1
0 ðOÞ of (1.2) for all fAH�1ðOÞ whenever lXl0: Moreover, that

solution satisfies the a priori estimate

jjujjH1
0
ðOÞp

2

a
jjf jjH�1ðOÞ: ð2:7Þ

To prove (2.7) note that by (2.4) and (2.6)

a
2
jjujj2H1

0
ðOÞpaðu; uÞ þ/lu; uS ¼ /f ; uSpjjujjH1

0
ðOÞjjf jjH�1ðOÞ:

Dividing by jjujjH1
0
ðOÞ the required estimate follows. It is often convenient to write

(1.2) in an abstract form. To do so recall that að� ; �Þ is a bounded bilinear form on

H1
0 ðOÞ: Therefore, there exists AOALðH1

0 ðOÞ;H�1ðOÞÞ such that

aðu; vÞ ¼ /AOu; vS ð2:8Þ
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for all u; vAH1
0 ðOÞ:We call AO the operator induced byA on O: From the definition

of AO it is quite obvious that uAH1
0 ðOÞ is a weak solution of (1.2) if and only if u is a

solution of ðlþ AOÞu ¼ f in H�1ðOÞ: It is sometimes useful to consider AO as an

operator on H�1ðOÞ with domain H1
0 ðOÞ:As we know that H1

0 ðOÞ is dense in H�1ðOÞ
it follows from (2.6) that AO is a closed densely defined operator on H�1ðOÞ: We
denote by RðAOÞ and sðAOÞ the resolvent set and the spectrum of AO; respectively. By
the previous consideration and (2.7)

½l0;NÞCRð�AOÞ for every open set OCRN : ð2:9Þ

As we are working with varying domains we want a family of operators with

domain and range independent of On and OCRN : To do so denote by

iOALðH1
0 ðOÞ;H1ðRNÞÞ the operator extending functions in H1

0 ðOnÞ by zero outside

O: Moreover, denote by rOALðH�1ðRNÞ;H�1ðOÞÞ the operator restricting

functionals fAH�1ðRNÞ to H1
0 ðOÞ: Obviously /f ; iOn

ðuÞS ¼ /rOn
ð f Þ; uS for all

uAH1
0 ðOnÞ and fAH�1ðRNÞ; so

i0O ¼ rO and r0O ¼ iO: ð2:10Þ

The following lemma relates AO to A :¼ ARN :

Lemma 2.1. For every open set OCRN

AO þ l ¼ rO3ðA þ lÞ3iO

and jjAO þ ljjLðH1ðOÞ;H�1ðOÞÞpjjA þ ljjLðH1ðRN Þ;H�1ðRN ÞÞ: Moreover, if uAH1
0 ðOÞ and g :

¼ ðlþ AÞ3iOðuÞ then u is a weak solution of (1.2) with f :¼ rOðgÞ: (In our exposition we

always identified f with rOðgÞ:)

Proof. By (2.8) and (2.10) we have

/AOu; vS ¼ aðu; vÞ ¼ aðiOu; iOvÞ ¼ /A3iOu; iOvS ¼ /rO3A3iOu; vS

for all u; vAH1
0 ðOÞ: Hence the first assertion of the lemma follows. The estimate

follow as jjiOjj; jjrOjjp1: The last assertion follows from the first as u is a weak
solution of (1.2) if and only if ðlþ AOÞu ¼ f (if we identify f with ¼ rOð f Þ as
usual). &

Given open sets On;OCRN we set

RnðlÞ :¼ iOn
3ðlþ AOn

Þ�13rOn
and RðlÞ :¼ iO3ðlþ AOÞ�13rO ð2:11Þ

whenever the operators are defined. By looking at elements of H�1ðRNÞ we do not

lose anything as by the Hahn–Banach Theorem, every functional in H�1ðOÞ can be

D. Daners / J. Differential Equations 188 (2003) 591–624 595



extended to a functional in H�1ðRNÞ with equal norm (see [47, Section IV.5]). If

there is no confusion likely we identify uAH1
0 ðOÞ with iOðuÞ and fAH�1ðRNÞ with

rOð f Þ: To prove our results we will often work with the adjoint form axð� ; �Þ defined
by axðu; vÞ :¼ aðv; uÞ for all u; vAH1

0 ðRNÞ: This is the form associated with the

formally adjoint operator, Ax; of A given by

Axu :¼ �
XN

i¼1
@i

XN

j¼1
aj;i@ju

 !
þ biu

 !
þ
XN

i¼1
ai@iu þ c0u: ð2:12Þ

If we denote by Ax
OALðH1

0 ðOÞ;H�1ðOÞÞ the operator induced by axð� ; �Þ then clearly

A0
O ¼ Ax

O and ðAx
OÞ

0 ¼ AO: ð2:13Þ

Further, recall that an operator and its dual have the same spectrum. Hence, by
(2.13) we can define

Rx
nðlÞ :¼ iOn

3ðlþ Ax
On
Þ�13rOn

and RxðlÞ :¼ iO3ðlþ Ax
OÞ

�1
3rO ð2:14Þ

whenever RnðlÞ and RðlÞ exist. Using (2.10) and (2.13) we also see that

ðRx
nðlÞÞ

0 ¼ RnðlÞ and ðRxðlÞÞ0 ¼ RðlÞ: ð2:15Þ

Note that RðlÞ is not a resolvent, but only a pseudo-resolvent, that is, a family of
operators satisfying the resolvent identity. For completeness we include the following
standard lemma on positivity of solutions.

Lemma 2.2. Suppose that u is the solution of (1.2), that lXl0; and that fAL2ðRNÞ is

non-negative. Then u is non-negative.

Proof. It follows from [26, Lemma 7.6] that u� :¼ maxf�u; 0gAH1
0 ðOÞ; that ru� ¼

�ru if u40; and that ru� ¼ 0 otherwise. As u is a weak solution of (1.2) it follows
from (2.6) that

/f ; u�S ¼ aðu; u�Þ þ l/u; u�S ¼ �aðu�; u�Þ � ljju�jj22p� a
2
jju�jj2H1ðRN Þp0:

As /f ; u�SX0; we have jju�jjH1 ¼ 0; that is, uX0: &

3. Basic convergence results

In this section we discuss some basic convergence results. Throughout we will use
the assumptions and notation from Section 2. Note that in the whole paper we could
replace the operatorA by a sequence of operatorsAn whose coefficients converge in
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a sufficiently strong way as done for instance in [18]. We refrain from doing so to
keep the notation and statement of results as simple as possible.
The first result does not require uniqueness of solutions of (1.1) or the limit

problem (1.2).

Theorem 3.1. Suppose that unAH1
0 ðOnÞ are weak solutions of (1.1) for all nAN: If (1.4)

holds then every weak limit point of ðunÞnAN lying in H1
0 ðOÞ is a weak solution of (1.2)

for some fAH�1ðOÞ:

Note that if (1.3) holds then every weak limit point of ðunÞnAN is in H1
0 ðOÞ:

Proof. Suppose that vAH1
0 ðOÞ is a limit point of ðunÞnAN; which means that there

exists a subsequence ðunk
ÞkAN of ðunÞnAN with unk

,v weakly in H1ðRNÞ as k-N: As

un is a weak solution of (1.1) and að� ; �Þ is a bounded bilinear form on H1ðRNÞ there
exists MX1 independent of nAN such that

j/fn;jSj ¼ jaðun;jÞ þ l/un;jSjpMjjunjjH1 jjjjjH1

for all jAH1
0 ðOnÞ: By definition of the dual norm jjfnjjH�1ðOnÞpMjjunjjH1 : By the

Hahn–Banach Theorem (see [47, Section IV.5]) it is possible to extend fn to

f̃nAH�1ðRNÞ such that jjf̃njjH�1ðRN Þ ¼ jjfnjjH�1ðOnÞpMjjunjjH1 : As every weakly

convergent sequence is bounded it follows that ðf̃nk
ÞkAN is bounded in H�1ðRNÞ:

Using that every bounded sequence in a Hilbert space has a convergent subsequence

we can, after possibly passing to another subsequence, assume that fnk
,f̃ in

H�1ðRNÞ for some f̃AH�1ðRNÞ: We now show that vAH1
0 ðOÞ is a weak solution of

(1.2) for f :¼ rOðf̃ÞAH�1ðOÞ: To do so fix jACN

c ðOÞ: By assumption (1.4) there exist

jnAH1
0 ðOnÞ such that jk-j in H1ðRNÞ as n-N: Using that un is a weak solution

of (1.1)

aðunk
;jnk

Þ þ l/unk
;jnk

S ¼ /fnk
;jnk

S ð3:1Þ

for all kAN: As unk
,v weakly and jnk

-j strongly in H1ðRNÞ we conclude that

aðu;jÞ þ l/v;jS ¼ /f ;jS by letting k go to infinity in (3.1). Because vAH1
0 ðOÞ;

and jACN

c ðOÞ was arbitrary, v is a weak solution of (1.2). &

Corollary 3.2. If in addition to the assumptions of Theorem 3.1 we suppose that (1.3)

holds, that fn,f weakly in H�1ðRNÞ; that (1.2) has unique solution and that ðunÞnAN is

bounded in H1ðRNÞ then un,u ¼ RðlÞf weakly in H1ðRNÞ:

Proof. By Theorem 3.1 and (1.3) every weak limit point of ðunÞ is a solution. By
uniqueness of solutions of (1.2) and since fn,f the only possible weak limit point of
ðunÞ is u ¼ RðlÞf : As bounded sequences in a Hilbert space are sequentially weakly

compact it follows that un,u weakly in H1ðRNÞ: &
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The second theorem shows that (1.3) and (1.4) are necessary and sufficient for
convergence. In particular, it shows that convergence is independent of the particular
operatorA; hence it generalises a result in [6, Section 5], where equivalence was only
shown for self-adjoint operators, and if On is contained in a fixed bounded set for all
nAN: Recall that AOn

is the operator induced by A on On defined in (2.1) and

RnðlÞ;RðlÞ are given by (2.11).

Theorem 3.3. Suppose that O;OnCRN are open sets, and that lARð�AOn
Þ-Rð�AOÞ

for all nAN: Then the following assertions are equivalent.

(1) On-O in the sense of Definition 1.1 and

lim sup
n-N

jjðlþ AOn
Þ�1jjLðL2ðOnÞÞoN; ð3:2Þ

(2) RðlÞfn,RðlÞf weakly in H1ðRNÞ whenever fn,f weakly in H�1ðRNÞ;
(3) RnðlÞfn-RðlÞf converges in H1ðRNÞ whenever fn-f in H�1ðRNÞ:

Let l0 be given by (2.5). If lXl0 then the following is equivalent to the above.
(4) RnðlÞf,RðlÞf weakly in H1ðRNÞ for f in a dense subset of H�1ðRNÞ:

Finally, if lXl0 and supnAN jOnjoN then also the following is equivalent to the

above.
(5) RnðlÞ1,RðlÞ1 weakly in H1ðRNÞ:

The proof of the above theorem will be given in Section 9. Note that (3.2) is
necessary in Theorem 3.3 as Example 8.2 shows.

Remark 3.4. If fn,f weakly in H1ðRNÞ we do not have strong convergence of

RðlÞfn in H1ðRNÞ or L2ðRNÞ: If (2) of Theorem 3.3 holds and fn,f weakly in

H1ðRNÞ then by Rellich’s Theorem RnðlÞfn-RðlÞf in Lp;locðRNÞ for all

pA½2; 2NðN � 2Þ�1Þ: If lXl0 and fn-f in H�1
loc ðBÞ for some open set BCRN then

RnðlÞfn-RðlÞf in H1
locðBÞ: In particular, convergence takes place in H1

locðRNÞ if

fn-f in H�1
loc ðRNÞ: For a proof of these facts see Lemma 9.1.

Remark 3.5. In (5) we need to be careful what we mean by 1 as 1eH�1ðRNÞ: As On

has finite measure it is clear that 1AH�1ðOnÞ: We define fnAL2ðRNÞ by fn ¼ 1 on On;

and fn ¼ 0 outside On: Then fnAH�1ðRNÞ and jjfnjjH�1ðRN ÞpjOnj1=2: If On has

uniformly bounded measure then fn is bounded, showing that (5) makes only sense
for sequences ðOnÞnAN with uniformly bounded measure. Also note that we cannot

expect RnðlÞ1 to converge strongly in L2ðRNÞ in general, as fn does not in general
converge strongly. In fact, assuming strong convergence Theorem 4.4 below shows

that RnðlÞ converges uniformly, that is, in LðL2ðRNÞÞ:
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4. Uniform convergence and continuity of the spectrum

For applications such as those in [16] it is important to know how the spectrum of
(1.1) and (1.2) relate to each other if On-O: In the general framework considered in
Section 3 we cannot expect continuity of the spectrum as the results in Theorem 3.3

only show that RnðlÞ converges strongly in LðL2ðRNÞÞ; that is pointwise. Under
suitable assumptions on c0 one can prove continuity of part of the spectrum. We will
not pursue this further but refer to [37] or [46]. We only discuss continuity of the
spectrum in case of uniform convergence. It is convenient here to look at the
complexification of the problem as usual in spectral theory.

Theorem 4.1. Suppose that RnðlÞ-RðlÞ in LðL2ðCNÞÞ for some lAC: Then, for

every mARð�AOÞ we have mARð�AOn
Þ for nAN large enough, and RnðmÞ-RðmÞ in

LðL2ðCNÞÞ:

Proof. Suppose that RnðlÞ-RðlÞ in LðL2ðCNÞÞ for some lAR; and that

mARð�AOÞ: It follows from the Proposition A.1 that ðm� lÞ�1ARð�RðlÞÞ: But
then by Kato [31, Theorem IV.2.25] we have ðm� lÞ�1ARð�RnðlÞÞ if only n is large
enough, and by the resolvent identity

lim
n-N

ððm� lÞ�1 þRnðlÞÞ�1 ¼ ððm� lÞ�1 þRðlÞÞ�1

in LðL2ðCNÞÞ: Applying Proposition A.1 again we see that mARð�AOn
Þ if n is large

enough, and that

lim
n-N

RnðmÞ ¼ lim
n-N

ðm� lÞ�1RnðlÞððm� lÞ�1 þRnðlÞÞ�1

¼ðm� lÞ�1RðlÞððm� lÞ�1 þRðlÞÞ�1 ¼ RðmÞ

in LðL2ðCNÞÞ: This completes the proof of the theorem. &

As a consequence we get the upper semi-continuity of separated parts of the
spectrum, and the continuity of every finite system of eigenvalues. Recall that a
spectral set is a subset of the spectrum which is open and closed in the spectrum. To
every spectral set we can consider the corresponding spectral projection (see [31,
Section III.6.4]).

Corollary 4.2. Suppose that RnðlÞ-RðlÞ in LðL2ðCNÞÞ for some lAC; that

SCsð�AOÞCC is a compact spectral set, and that G is a rectifiable closed simple

curve enclosing S; separating it from the rest of the spectrum. Then, for n sufficiently

large sð�AOn
Þ is separated by G into a compact spectral set Sn and the rest of the

spectrum. Denote by P and Pn the corresponding spectral projections. Then the

dimension of the images of P and Pn are the same, and Pn converges to P in norm.
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Proof. The assertions follow from [31, Theorem IV.3.16] and Proposition A.1 in
Appendix A. &

Remark 4.3. As a consequence (see [31, Section IV.3.5]) we get the continuity of
every finite system of eigenvalues (counting multiplicity) and of the corresponding
spectral projection if we have uniform convergence. In particular, we get the
continuity of an isolated eigenvalue of algebraic multiplicity one and its
eigenfunction when normalised suitably.

We next give necessary and sufficient conditions for uniform convergence in the

special case ðlþ AOÞ�1 is compact as an operator on L2ðOÞ: Note that this is

equivalent for H1
0 ðOÞ+L2ðOÞ to be compact. By Rellich’s Theorem we have always

compactness if O is bounded. Conditions for compactness to occur for unbounded
domains are discussed in [1, Chapter 6] or [23, Section VIII.3]. Recall that the

spectral bound of �D on the open set UCRN with Dirichlet boundary conditions is
given by

l1ðUÞ ¼ inf
uACN

c ðUÞ
ua0

jjrujj22
jjujj22

¼ infuAH1
0
ðUÞ

ua0

jjrujj22
jjujj22

: ð4:1Þ

For consistency we set lð|Þ :¼ N: Assuming that the limit problem (1.2) has
compact resolvent on L2ðOÞ we have the following characterisation of uniform
convergence. Note that the implication ð5Þ ) ð1Þ is proved in [11] forA ¼ �D using
G-convergence.

Theorem 4.4. Suppose that O;OnCRN are open sets with On-O and that

lARð�AOn
Þ-Rð�AOÞ for all nAN: Then the following assertions are equivalent:

(1) RðlÞ is compact and RnðlÞ-RðlÞ in LðL2ðRNÞÞ;
(2) RnðlÞfn-RðlÞf in L2ðRNÞ whenever fn,f weakly in L2ðRNÞ:
(3) RnðlÞfn-0 in L2ðRNÞ whenever fn,0 weakly in L2ðRNÞ:

If O is bounded then the above is equivalent to the following:

(4) Eq. (3.2) holds and l1ðOn-* %OÞ-N as n-N:

Let l0 be given by (2.5). If lXl0 and sup
nAN

jOnjoN then also the following is equivalent

to the above:

(5) RnðlÞ1-RðlÞ1 in L2ðRNÞ:

Proof. First note that (1) and (2) imply (3.2). We show that (3) also implies (3.2).
Assume to the contrary that (3.2) does not hold. Then for every kAN there exists

fkAL2ðRNÞ and nkAN such that jjfkjj2 ¼ 1 and jjRnk
ðlÞfkjj2Xk: Setting gk :¼ fk=k we
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have gk-0 in L2ðRNÞ but jjRnk
ðlÞgkjj2X1Q0 as k-N; contradicting (3). Hence

(3.2) must be true in all cases (1)–(3). By Theorem 3.3 we have RnðlÞ-RðlÞ strongly
inLðL2ðRNÞÞ:Now the equivalence of (1)–(3) immediately follows from Proposition
B.1 in Appendix B. To show that ð2Þ ) ð4Þ we prove the contrapositive. Hence

assume that either (3.2) does not hold or l1ðOn-* %OÞQN: If (3.2) does not hold

then by the uniform boundedness principle (2) cannot be true. If l1ðOn-* %OÞQN

then there exist c40 and unk
ACN

c ðOnÞ such that jjunk
jj2 ¼ 1 and jjrunk

jj2pc: In

particular, ðunk
ÞkAN is bounded in H1ðRNÞ: By Lemma 2.1 the sequence fnk

:¼
ðlþ AÞunk

is bounded in H�1ðRNÞ; and unk
¼ RnðlÞfn: As bounded sequences in a

Hilbert space are weakly sequentially compact we can, after possibly passing to

another subsequence, assume that fnk
,f weakly in H�1ðRNÞ: Therefore, by

Theorem 3.3, unk
,u :¼ RðlÞf weakly in L2ðRNÞ: As supp unC* %O for all nAN we

have u ¼ 0: Because jjunjj2 ¼ 1 for all nAN it is not possible that unk
-0 in L2ðRNÞ;

showing that (2) does not hold. Hence ð2Þ ) ð4Þ: Note that we did not use that O is
bounded here. Assuming that O is bounded we now show that ð4Þ ) ð3Þ: Suppose
that fn,0 weakly in H�1ðRNÞ and set un :¼ RnðlÞfn: From Theorem 3.3 we know

that un,0 weakly in H1ðRNÞ: Hence by Rellich’s Theorem un-0 in L2ðBÞ for every
open bounded set B containing %O: To show that un-0 in L2ðRN

\BÞ we choose a

smooth function cACNðRNÞ with 0pcp1; c ¼ 0 on %O; and c ¼ 1 on a

neighbourhood of *B: Then cunAH1
0 ðRN

\ %OÞ and by (4.1)

jjunjj22;*Bp jjcunjj22pl1ðOn-* %OÞ�1jjrðcunÞjj22

p l1ðOn-* %OÞ�1ðjjcjj2
N

þ jjrcjj2
N
Þjjunjj2H1

for all nAN: As ðunÞnAN is bounded in H1ðRNÞ it follows from (4) that un-0 in

L2ðRN
\BÞ; proving (3). Finally, assume that jOnj is uniformly bounded. To prove

that ð1Þ ) ð5Þ note that

jjRnðlÞ1�RðlÞ1jj2p jjRnðlÞ1�RðlÞ1jj2;O þ jjRnðlÞ1�RðlÞ1jj2;On

p jjRnðlÞ �RðlÞjjLðL2ðRN ÞÞðjOj
1=2 þ jOnj1=2Þ

showing (5). It remains to show that ð5Þ ) ð1Þ: As On-O; Theorem 3.3 implies that

Rx
nðlÞ-RxðlÞ strongly in LðL2ðRNÞÞ; where RxðlÞ is given by (2.14). Hence, by

Theorem 3.3, vn :¼ RxðlÞfn,0 weakly in L2ðRNÞ if fn,0 weakly in L2ðRNÞ: Now by
(2.15) and our assumption

lim
n-N

Z
RN

vn dx ¼ lim
n-N

/RnðlÞ1; fnS ¼ /RðlÞ1; 0S ¼ 0:

By splitting fn into positive and negative parts we can assume without loss
of generality that fn is non-negative. As lXl0 it follows from Lemma 2.2 that vn

is non-negative, so vn-0 in L1ðRNÞ: From (2.7) we know that vn is bounded
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in H1ðRNÞ; and so by the Sobolev inequality bounded in LqðRNÞ for some q42:

Thus vn-0 in L2ðRNÞ by an interpolation inequality (see [26, inequality (7.9)]).

Hence (3) holds for the formally adjoint problem, and thus Rx
nðlÞ-RxðlÞ in

LðL2ðRNÞÞ: By (2.15) and the fact that an operator and its dual have the same norm
(1) follows. &

Remark 4.5. In the above theorem we only assume that the limit problem
has compact resolvent. The problems on On do not need to have compact re-
solvent, and hence the family of resolvents is not necessarily collectively compact
in the sense of [3]. As an example consider the sequence of sun-like domains in
Example 8.4.

Remark 4.6. The above proof shows that uniform convergence always implies that

l1ðO-* %OÞ-N; no matter what the limit domain O is. It would be interesting
to know whether On-O and (4) imply uniform convergence for arbitrary limit
domains O:

Corollary 4.7. Suppose that On;O are contained in a fixed bounded set and that

On-O: If lARð�AOÞ then lARð�AOn
Þ for n large enough, and RnðlÞ-RðlÞ in

LðL2ðRNÞÞ:

Proof. Fix a bounded set BCRN such that OnCB for all nAN: First assume that
lXl0 and fn-f weakly in L2ðBÞ: Then by Theorem 3.3 RnðlÞfn-RðlÞf weakly in

H1
0 ðBÞCH1ðRNÞ: By Rellich’s Theorem convergence is strong in L2ðBÞ; so by the

above theorem RnðlÞ converges uniformly. For general lARð�AOÞ the assertions of
the corollary then follow from Theorem 4.1. &

Remark 4.8. Note that all results in [18] concerning parabolic problems remain true
if we assume that On-O; O bounded and (4) of Theorem 4.4 holds. We only need to
modify the proof of [18, Theorem 3.1] in quite an obvious way. Also the results in
[16] remain true whenever the resolvents converge uniformly.

5. Convergence in higher norms

When looking at non-linear problems on varying domains such as in [16] it is
important to be able to get a good perturbation theory in Lp-spaces for p42: The

reason is that, in general, a non-linearity does not map L2 into L2 without severe
restrictions on its growth. We want to show here how to get convergence in Lp for

p42: Suppose that O is an arbitrary open set, and let A :¼ AO the operator defined

by (2.1). Moreover, let A2 denote the part of A in L2 given by DðA2Þ :¼
fuAH1

0 ðOÞ:AuAL2ðOÞg and A2u :¼ Au for uADðA2Þ: Then it is well known that

�A2 is the generator of a strongly continuous analytic semigroup on L2ðOÞ (see [22,
Proposition XVII.6/3]). It is also well known that T2ðtÞ :¼ e�tA2 has an integral

D. Daners / J. Differential Equations 188 (2003) 591–624602



kernel satisfying pointwise Gaussian estimates (see [5] or [20]) and thus interpolates
to Lp for all pAð1;NÞ: Denote by �Ap its infinitesimal generator. We then look at

solutions to the abstract equation

ðAp þ lÞu ¼ f ð5:1Þ

with fALpðOÞ: We call such a solution a generalised solution of (1.2) in LpðOÞ: The
first difficulty is whether the spectrum of �Ap is independent of pAð1;NÞ: It indeed
follows from the above and [33, Theorem 1.1] that sðApÞ ¼ sðA2Þ ¼ sðAÞ for all

pAð1;NÞ: Let us note that the results in the present section can be obtained in a
much easier way if we do not allow unbounded domains!

Proposition 5.1. Problem (5.1) is solvable with bounded resolvent operator if and only

if the same is true for ðA2 þ lÞu ¼ f : Moreover, for all lARð�AÞ we have ðlþ
A2Þ�1jL2-Lp

¼ ðlþ ApÞ�1jL2-Lp
for all pAð1;NÞ:

To prove a convergence result we will need a priori estimates independent of the
choice of O: If we set

mðpÞ :¼ NpðN � 2pÞ�1 if pAð1;N=2Þ;
N if p4N=2;

(

then the following estimates hold.

Proposition 5.2. Suppose that lARð�A2Þ and that pAð1;NÞ: Then ðlþ
ApÞ�1LpCLmðpÞ-Lp: Moreover, there exist constants C40 and oAR only depending

on N; p the ellipticity constant and the LN-norm of the coefficients of A such that

maxfjjðlþ ApÞ�1jjLðLpÞ; jjðlþ ApÞ�1jjLðLp;LmðpÞÞgpC ð5:2Þ

whenever l4o:

Proof. From Proposition 5.1 it follows that lARð�ApÞ if and only if lARð�A2Þ:
Then the first assertion follows from [21, Theorem 4.5]. To prove (5.2) we need to use
that �Ap generates a semigroup on Lp: It follows from [20, Theorem 6.1 and

Corollary 7.2] that there exist constants C140 and o1AR depending only on the

quantities listed in the proposition such that jje�tAO jjLðLpÞpC1e
o1t for all pA½1;N�:

As �AO generates a strongly continuous semigroup we have ðlþ ApÞ�1 ¼R
N

0 e�tAp e�lt dt for l4o1 (see [47, Section IX.4]). It therefore follows that jjðlþ
ApÞ�1jjLðLpÞpC1ðl� o1Þ�1: By interpolation the first of (5.2) follows if we set o :¼
o1 þ 1 and C :¼ C1=o: By a density argument the second inequality in (5.2) now
follows from [21, Theorem 4.5], if we choose C appropriately. &
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From the above it is clear that we may consider RnðlÞ;RðlÞ as operators in

LðLpðRNÞ;LqðRNÞÞ whenever pAð1;NÞ; and qA½p;mðpÞÞ: The following is our main
theorem.

Theorem 5.3. Suppose that On-O; and that o is as in Proposition 5.2. Moreover

suppose that lXo; and that fn,f weakly in LpðRNÞ for some pAð1;NÞ; paN=2:

Then RnðlÞfn,RðlÞf weakly in LqðRNÞ for all qA½p;mðpÞÞ: If convergence of fn is

strong in LpðRNÞ then RnðlÞfn converges strongly in LqðRNÞ for all qA½p;mðpÞÞ:

Proof. We first suppose that fACN

c ðRNÞ: By Theorem 3.3 we have RnðlÞf-RðlÞf
in L2ðRNÞ as fALpðRNÞ-L2ðRNÞ: Moreover, by Proposition 5.2 the sequence

ðRnðlÞf ÞnAN is bounded in LNðRNÞ-LsðRNÞ for all s41: If pAð2;NÞ then by a

well-known interpolation inequality

jjRnðlÞf �RðlÞf jjppjjRnðlÞf �RðlÞf jjy2jjRnðlÞf �RðlÞf jj1�y
N

for some yAð0; 1Þ (see [26, inequality (7.9)]). As one factor is bounded and the other

converges to zero RnðlÞfn-RðlÞf in LðLpðRNÞÞ: If pAð1; 2Þ we use a similar

argument, replacing the LN-bound by the Ls-bound with 1osop: We next assume

that fn-f in LpðRNÞ is arbitrary. Fix e40; and choose gACN

c ðRNÞ such that jjfn �
gjjppe for large nAN: This is possible as CN

c ðRNÞ is dense in LpðRNÞ if pAð1;NÞ:
Taking into account Proposition 5.2

jjRnðlÞfn �RðlÞf jjp

pjjRnðlÞð fn � gÞjjp þ jjRnðlÞg �RðlÞgjjp þ jjRðlÞðg � f Þjjp

p4Cjjfn � gjjp þ jjRnðlÞg �RðlÞgjjpp4Ceþ jjRnðlÞg �RðlÞgjjp

for all nAN: As RnðlÞg-RðlÞg in LpðRNÞ and e40 was arbitrary it follows that

RnðlÞfn-RðlÞf in LpðRNÞ: Using again interpolation and the uniform bound from

Proposition 5.2, convergence takes place in LqðRNÞ for all qA½p;mðpÞÞ: This proves
the second assertion of the theorem. To prove the first we use duality. As the

formally adjoint operator Ax given by (2.12) has the same structure as A we can

define Ax
p as before for pAð1;NÞ: We know from (2.13) that ðAx

2Þ
0 ¼ A2: It therefore

follows that ðe�tAx
2Þ0 ¼ e�tA2 ; and thus ðe�Ax

pÞ0 ¼ e�tAp ; implying that ðAx
pÞ

0 ¼ Ap0 (see

[36, Corollary 1.10.6]). Here p0 is the dual exponent to p defined by 1=p þ 1=p0 ¼ 1:

Also note that the constants C;o in Proposition 5.2 are the same for A and Ax:

Suppose now that fn,f weakly in LpðRNÞ; and that gALq0 ðRNÞ for some

qA½p;mðpÞÞ: Then p0A½q0;mðq0ÞÞ; and by our previous result

lim
n-N

/RnðlÞfn; gS ¼ lim
n-N

/fn;R
x
nðlÞgS ¼ /f ;RxðlÞgS ¼ /RðlÞf ; gS;
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showing that RnðlÞfn,RðlÞf weakly in LqðRNÞ for all qA½p;mðpÞÞ: This concludes
the proof of the theorem. &

Let us finally consider the case of uniform convergence.

Theorem 5.4. Suppose that RnðlÞ-RðlÞ in LðL2ðRNÞÞ for some lAR: Then

convergence takes place in LðLpðRNÞ;LqðRNÞÞ for all pAð1;NÞ and qA½p;mðpÞÞ:

Proof. The assertion directly follows from Theorem 4.1, Propositions 5.1 and 5.2,
and the Riesz–Thorin interpolation theorem (see [8]). &

As in Corollary 4.2 we get the upper semi-continuity of the Lp-spectrum with

respect to the domains.

6. Necessary conditions for convergence

In this section we discuss some conditions which are necessary for convergence.
One obvious necessary condition is that the support of the weak limit of every

convergent subsequence of solutions of (1.1) be in %O: We will characterise this by

looking at the spectral bound of �D on bounded sets outside %O: Recall that for an
arbitrary nonempty open set UCRN the spectral bound, l1ðUÞ; of �D subject to

Dirichlet boundary conditions is given by (4.1). We will write SCCT if %S is compact
and contained in the interior of T :

Theorem 6.1. Suppose that On;OCRN are open sets. Then the following assertions are

equivalent:

(1) The weak limit points of every sequence unAH1
0 ðOnÞ; nAN; in H1ðRNÞ have

support in %O:
(2) For all open sets BCCRN

\ %O (Note B is bounded as %B is compact)

lim
n-N

l1ðOn-BÞ ¼ N: ð6:1Þ

(3) There exists an open covering O of RN
\ %O such that (6.1) holds for all BAO:

If (1.3) is satisfied then (6.1) holds for all open bounded sets BCRN
\ %O:

Proof. Suppose that (1) holds, and that BCCRN
\ %O is open and set ln :¼ l1ðOn-BÞ:

Then, by (4.1) for every nAN there exists vnACN

c ðOn-BÞ such that

ðln þ 1Þjjvnjj22Xjjrvnjj22 ¼ 1: ð6:2Þ
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As BCCRN
\ %O; in particular B is bounded. Hence by the Sobolev inequality vn is

bounded in H1ðRNÞ and therefore has a weak limit point vAH1
0 ðOn-BÞ: Suppose

that v is such a weak limit point, and that vnk
,v weakly as k-N: By assumption

suppðvÞC %BCCRN
\ %O; so by (1) it follows that v ¼ 0: As B is bounded Rellich’s

Theorem shows that vnk
-0 in L2ðRNÞ: Hence, (6.2) can only be true if lnk

� 1-N;
implying that lnk

-N as k-N: The above arguments apply to every weak limit

point, so (1) implies (2). If (1.3) is satisfied then every limit point is in

vAH1
0 ðOÞ-H1

0 ðBÞ even if we only assume that %O-B ¼ 0: Hence v ¼ 0; and the

above argument again shows that lnk
-N: This proves the last statement of the

theorem. Choosing O to be the class of all open sets BCCRN
\ %O assertion (3)

immediately follows from (2). We now prove that (3) implies (1). Suppose that

unAH1
0 ðOnÞ; and that unk

,u weakly in H1ðRNÞ as k-N: Further, suppose that O is

an open covering of RN
\ %O and fix BCO: If jACN

c ðBÞ then junAH1
0 ðOn-* %O-BÞ:

Multiplication with j is a bounded linear map on H1ðRNÞ; and thus it is weakly

continuous, so junk
,ju weakly in H1ðRNÞ: As unj has support in a fixed bounded

set for all nAN by Rellich’s theorem junk
-ju strongly in L2ðRNÞ as k-N:

Moreover, by (6.1) we have

jjjujj22 ¼ lim
k-N

jjjunk
jj22p lim

k-N

l1ðOn-BÞ�1jjrjunk
jj22 ¼ 0:

Hence ju ¼ 0 almost everywhere for all jACN

c ðBÞ; so u ¼ 0 almost everywhere in B:

As O is a covering of RN
\ %O it follows that supp uC %O; proving (1). &

Remark 6.2. In general, it is not true that l1ðOn-* %OÞ-N (see Example 8.1 below).

We showed in Theorem 3.3 that l1ðOn-* %OÞ-N implies uniform convergence if O
is bounded. We also pointed out in the proof of Theorem 3.3 there that

l1ðOn-* %OÞ-N always if convergence is uniform.

So far we discussed necessary conditions on On outside %O: Next we want to derive
a necessary condition on the part of On inside O: Recall that the capacity (or more

precisely ð1; 2Þ-capacity) of a set ECRN is given by

capðEÞ :¼ inffjjujj2H1 : uAH1
0 ðRNÞ and uX1 in a neighbourhood of Eg

(see [29, Section 2.35]). Next, we characterise (1.4) in terms of capacity. A variant
appears in [38, Proposition 4.1]. A proof is given in [27, p. 75] or [44, p. 24], but for
completeness we include one in our framework.

Proposition 6.3. Suppose that O;OnCRN are open sets. Then condition (1.4) holds if

and only if for every compact set KCO

lim
n-N

cap ðK-*OnÞ ¼ 0: ð6:3Þ
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Proof. To prove that the condition is necessary fix a compact set KCO; and let
cACN

c ðOÞ be such that 0pcp1 and c ¼ 1 on a neighbourhood of K : By (1.4) there

exists a sequence *cnAH1
0 ðOnÞ such that *cn-c in H1ðRNÞ: By cutting *cn off with an

appropriate cutoff function, we can assume that supp *cnCB for all nAN for some

open bounded set B*K : As CN

c ðOn-BÞ is dense in H1
0 ðOn-BÞ there exists

cnACN

c ðOn-BÞ such that jjcn � *cnjjH1p1=n: We now set jn :¼ c� cn: Then jn ¼
1 on a neighbourhood of K-*On; and

capðK-*OnÞpjjjnjj
2
H1pjjc� cnjj

2
H1pðjjc� *cnjj2H1 þ 1=nÞ2

for all nAN: By choice of *cn the right-hand side of the above inequality con-
verges to zero, whence (1.4) implies (6.3). To show that the condition is suf-

ficient note first that by density of CN

c ðOÞ in H1
0 ðOÞ it is sufficient to consider

jACN

c ðOÞ: Hence let jACN

c ðOÞ be arbitrary. By definition of capacity there exist

cnACN

c ðOnÞ such that cn ¼ 1 in a neighbourhood of supp j-*On and

jjcnjj
2
H1pcapðsupp j-*OnÞ þ 1=n for all nAN: By assumption cn-0 in H1ðRNÞ

as n-N: We then define jn :¼ ð1� cnÞj: By choice of cn it follows that
jnACN

c ðOnÞ: Moreover,

jjjn � jjjH1pðjjjjj2
N

þ jjrjjj2
N
Þ1=2jjcnjjH1

for all nAN: As cn-0 in H1ðRNÞ it follows that jn-j in H1ðRNÞ; completing the
proof of the proposition. &

7. Sufficient conditions for convergence

Let us first discuss two very special cases, namely monotone approximations of an
open set O by open sets from the inside, and from the outside. The easiest case is
approximation from the inside.

Proposition 7.1. Suppose that On;OCRN are open sets such that OnCOnþ1CO for all

nAN; and O ¼
S

nAN On: Then On-O:

Proof. As H1
0 ðOÞ is weakly closed and OnCO it is obvious that (1.3) holds. Suppose

that uAH1
0 ðOÞ: To prove (1.4) note that by definition of H1

0 ðOÞ there exist

jkACN

c ðOÞ with jk-u in H1
0 ðOÞ as k-N: We can assume that suppj1CO1: By

assumption ðOnÞnAN is an open covering of the compact set suppðjkÞ for all kAN; so

for every kAN there is a finite sub-covering of suppðjkÞ: As OnCOnþ1 for every kAN

there exists nkAN such that On*suppðjkÞ for all nXnk and nk-N: If we set

un :¼ jk for nA½nk; nkþ1Þ then supp unCH1
0 ðOnÞ and un-u as required in (1.4).

Hence On-O as claimed. &
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The above can be used to approximate problems on non-smooth domains by a
sequence of problems on smooth domains. This is a useful tool to get results for non-
smooth domains, using results on smooth domains. Such techniques were for
instance central in [5,19,32] or [34]. For approximations from the outside we need a
weak regularity condition on the boundary of O; whose formulation requires some

properties of functions in H1ðRNÞ: As usual we call a function quasi-continuous if it
is continuous off a set of capacity zero. It can be shown (see [29, Theorem 4.4]) that

for every uAH1ðRNÞ there exists a quasi-continuous function ũ such that u ¼ ũ

almost everywhere. It turns out that two such quasi-continuous functions are equal
except possibly on a set of capacity zero (see [29, Theorem 4.12]). Hence, one can

define traces of functions in H1ðRNÞ on sets of non-zero capacity. If u denotes a
quasi-continuous function one can show (see [1, Theorem 9.1.3] or [29, Theorem

4.5]) that for every open set OCRN

H1
0 ðOÞ ¼ fuAH1

0 ðRNÞ: u quasi-contiuous and uj*O ¼ 0g: ð7:1Þ

One can also define H1
0 ðOÞ by (7.1) for arbitrary, not necessarily closed sets OCRN :

We make the following definition ([2, Definition 11.2.2]).

Definition 7.2. We say the (arbitrary) set SCRN is stable if H1
0 ðSÞ ¼ H1

0 ðS1Þ; where
S1 denotes the interior of S:

Note that by (7.1) every open set OCRN is stable. An excellent discussion of
bounded stable sets is given in [28].

Proposition 7.3. A set SCRN with non-empty interior is stable if one of the following

conditions is satisfied:

(1) @S-S has the segment property except possibly on a set of capacity zero;
(2) all points in @S-S except possibly a set of capacity zero are Wiener regular;
(3) for all xA@S-S except possibly a set of capacity zero

lim inf
r-0

capð*ðSÞ-Bðx; rÞÞ
capð*ðS1Þ-Bðx; rÞÞ40;

where Bðx; rÞ is the ball of radius r centred at x.

The last condition is in fact necessary and sufficient for the stability of S.

Note that, if @S-S is Lipschitz (or even smoother), then @S-S satisfies the
segment condition and @S-S is therefore stable.

Proof. For a proof of (1) see [27,44, p. 77/78; Section 3.2] or [46, Satz 4.8], for (2) we

refer to [25, Theorem 2.5n], and for (3) to [2, Theorem 11.4.1]. &
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Proposition 7.4. Suppose that On*Onþ1*O for all nAN; and that intð
T

nAN OnÞ ¼ O:
If %O is stable then On-O:

Proof. Clearly (1.4) holds. As intð
T

nAN OnÞ ¼ O it follows that all weak limit points

of unAH1
0 ðOÞ for nAN have support in %O: Hence by definition of stability all weak

limit points are in H1
0 ðOÞ as required in (1.3). Hence On-O: &

In [32] it is shown that bounded stable sets are those for which approximation
from the outside and from the inside yields the same limit problem. We next discuss
non-monotone approximations of an open set.

Theorem 7.5. Suppose that On;O are open (not necessarily bounded) sets in RN : If the

following three conditions are satisfied then On-O:

(1) capðK-*OnÞ-0 as n-N for all compact sets KCO;
(2) There exists an open covering O of RN

\ %O such that l1ðU-OnÞ-N as n-N for

all UAO;
(3) We have H1

0 ðOÞ ¼ H1
0 ðO,GÞ; where

G :¼
\

nAN

[
kXn

ðOk-@OÞ
 !

C@O: ð7:2Þ

Before we give a proof let us emphasise that, by the results in Section 6, the first
two conditions are necessary for convergence, and thus cannot be weakened. Note
however, that the last condition is not necessary in general (see Example 8.5 below).
The set (7.2) is used in [44].

Proof. From the first assumption and Proposition 6.3 we see that (1.4) holds.
Moreover, by Theorem 6.1 and the second assumption every weak limit point of

unAH1
0 ðOnÞ; nAN; in H1ðRNÞ has support in %O: It remains to show that every such

limit point is in H1
0 ðOÞ: We assume that u is quasi-continuous and show that u ¼ 0

on @O\G except possibly on a set of capacity zero. It is easily seen from (7.2) that for

every xA@O\G there exists a neighbourhood U such that U-On-@O ¼ | for all n

large enough. Suppose that U is such a neighbourhood of xA@O\G; and that
cACN

c ðUÞ is a cutoff function with 0pcp1 and c ¼ 1 on a neighbourhood V of x:

Then cunjOAH1
0 ðOÞ for n sufficiently large by (7.1). Hence for every weak limit point

of u of un we have cuAH1
0 ðOÞ: In particular, by (7.1) we have u ¼ 0 on V-@O:

Repeating the same argument for every xA@O\G shows that u ¼ 0 on @O\G: As we
know already that supp uC %O it follows that uAH1

0 ðO,GÞ: By condition (3) we have

uAH1
0 ðOÞ; proving (1.3). Hence On-O as required. &

We next discuss some sufficient conditions for (2) to be satisfied. They are by no
means the best, much more general situations can occur! However, they are easy to
apply.
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Proposition 7.6. Let UnCRN be open. Then l1ðUnÞ-N if one of the following

conditions are satisfied:

(1) jUnj-0 as n-N;
(2) Un is the union of connected components Un;k; and infkl1 ðUn;kÞ-N as n-N;
(3) U is a bounded set and UnCU\Kn; where Kn is the union of n closed balls with

radius rn; evenly spaced in U. Moreover nrN�2
n -N if NX3 and n=jlog rnj-N if

N ¼ 2 as n-N:

Proof. To prove that (1) is sufficient note that by the Faber–Krahn inequality
l1ðUnÞXl1ðBnÞ; where Bn is a ball of the same volume as Un: As jUnj-0 the radius
of Bn must converge to zero. It is well known that l1ðBnÞ-N as the radius
converges to zero, hence also l1ðUnÞ-N (see [7, Theorem 3.4]). To prove that (2) is
sufficient simply note that the spectrum of the Dirichlet problem on Un is the union
of the spectra on the components of Un: For a proof that (3) is sufficient we note that
the spectral bound is monotone decreasing if the domain is increasing. Then use the
result from [38, p. 44/45]. &

Finally, we want to give a result which can be used in certain situations to verify
the uniform resolvent bound (3.2).

Proposition 7.7. Suppose that Un; nAN; are open sets with infnAN l1ðUnÞ40; and that

O is a bounded open set. Then infnAN l1ðO,UnÞ40:

Proof. For nAN set On :¼ O,Un: Assume that there exist a subsequence Onk
such

that l1ðOnk
Þ-0 as k-N: By characterisation (4.1) of l1ðOnÞ there exist unk

AH1
0 ðOnÞ

with jjunk
jj2 ¼ 1 for all kAN; and jjrunk

jj2-0 as k-N: In particular, ðunÞnAN is

bounded in H1ðRNÞ: After possibly selecting another subsequence and renumbering

we can therefore assume that un,u weakly in H1ðRNÞ: We know already that

jjrunjj2-0; so ru ¼ 0: Hence u is constant, and as uAH1ðRNÞ we must have u ¼ 0:

By Rellich’s Theorem un-0 in L2ðBÞ for every bounded set BCRN : Suppose now

that cACN

c ðRNÞ; 0pcp1 and c ¼ 1 in a neighbourhood of %O:Denote by B an open

ball such that suppcCB: Clearly cunAH1
0 ðBÞ and ð1� cÞunAH1

0 ðUnÞ for all nAN:
By characterisation (4.1) of the spectral bound

jjunjj2p jjcunjj2 þ jjð1� cÞunjj2

p l1ðBÞ�1=2jjrðcunÞjj2 þ l1ðUnÞ�1=2jjrðð1� cÞunÞjj2

pmaxfl1ðBÞ�1=2; l1ðUnÞ�1=2gðjjrunjj2 þ jjunjj2;BÞ;

where we used in the last step that suppðrcÞCB: By assumption there exists a

constant c40 such that max fl1ðBÞ�1=2; l1ðUnÞ�1=2gXc for all nAN: As jjrunjj2 þ
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jjunjj2;B-0 it follows that un-0 in L2ðRNÞ; contradicting the assumption that

jjunjj2 ¼ 1 for all nAN: &

8. Examples

In this section we provide some examples of converging domains. The main
purpose is to illustrate by simple examples the various conditions discussed, and to
show that they are optimal. To show that we do not gain anything by working with
connected sets, all examples given involve connected sets On: We first show that
convergence of resolvents does not need to be uniform.

Example 8.1. Consider a sequence of dumbbell-shaped domains as depicted
in Fig. 1, where Bn is a ball of radius rn40 and Cn a strip of length cn: We
claim that On ¼ B0,Cn,Bn-O :¼ B0 if cn-N and the width of Cn goes to

zero. Clearly jB-Onj-0 for every bounded open set BCRN
\ %O; so by Proposition

7.6 we have l1ðOn-BÞ-N: As @O is smooth and OCOn for all nAN it follows
from Theorem 7.5 that On-O: We now assume that rn ¼ r is fixed. By (4.1) we

have l1ðOn\ %OÞpl1ðBnÞ for all nAN: As Bn is a ball of fixed radius l1ðOn\ %OÞ
is bounded. Hence by Theorem 4.4 we do not have uniform convergence of
resolvents.

Next, we show that (3.2) is not automatically satisfied even if
lARð�AOn

Þ-Rð�AOÞ for all nAN:

Example 8.2. Consider a similar sequence of dumbbell-shaped domains as in
Example 8.1, and assume that cn-N and rn-N: Moreover let A :¼ �D and
l ¼ 0: As l1ðOnÞ; l1ðOÞ40 for all nAN we have 0ARð�AOn

Þ-RðAOÞ for all nAN:
Assuming that rn-N we have l1ðOnÞ-0 as n-N: On the other hand, we know

that jjRnð0ÞjjXl1ðOnÞ�1-N; so (3.2) cannot be true. By the uniform boundedness
principle (see [47, Section II.1]), condition (3.2) is necessary for RnðlÞf to converge.
Hence we cannot do without (3.2) in Theorem 3.3.
As a variant of the above, we construct an example where On has uniformly

bounded measure. To do so we first look at a dumbbell with two fixed balls B1 and

B0 Bn

Cn

Fig. 1. A dumbbell-shaped domain.
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B2 and handle Cn: Letting the width of Cn go to zero the dumbbells converge to
B1,B2: The domains are contained in a fixed bounded set, so by Corollary 4.7 we
have uniform convergence, and thus by Remark 4.3 the first eigenvalue converges to
the first eigenvalue of the larger of the two balls. Now go back to the original
situation. We let Bn be a ball of fixed radius larger than the radius of B0 and set
l :¼ l1ðBnÞ (which is independent of n). Note that lol1ðB0Þ: By the above
considerations we can choose Cn such that jl1ðOnÞ � ljo1=n and On-B0: Hence,
even if cn-N; we get that l1ðOnÞ-lol1ðB0Þ: If we choose A :¼ �D then

jjRðlÞjjXðlðOnÞ � lÞ�1-N as n-N: Hence, RnðlÞf does not converge in general
if (3.2) does not hold.

Next, we give examples showing that the spectrum does not in general depend
continuously on the domain. The above example shows that the limit points of the
spectrum do not need to be in the spectrum of the limit problem. Next, we show that
a point in the resolvent of the limit problem can be in the spectrum of all perturbed
problems, so the assertions of Theorem 4.1 are not true in general.

Example 8.3. Here we show that a point in the resolvent set of the limit problem
does not need to be in the resolvent set of the corresponding problem on On even for
large n: Consider On as depicted in Fig. 2 with the angle bn-0 as n-N:
If O is the ball then it is obvious that (1.4) holds. Moreover jB-Onj-0 as n-N

for every bounded open set BCRN
\ %O: As O is smooth Proposition 7.6 and Theorem

7.5 imply that On-O: Now let A :¼ �D and l :¼ 0: As O is a bounded domain
clearly 0ARð�AOÞ; but 0Asð�AOn

Þ for all nAN as On contains arbitrarily large balls.
Hence Rnð0Þ does not exist for all nAN:

Next, we give some examples showing that the part of On outside the limit domain
may have large, even increasing or infinite measure, and still On-O with resolvents
converging uniformly.

Example 8.4. Let us discuss simple cases where On-O but the measure of On-* %O
does not converge to zero. In all the examples we make use of Friedrich’s inequality
(see [39, Theorem III.5.3]) which implies that l1ðSnÞ-N if Sn is an open set lying
between two parallel hyper-planes whose distance approaches zero as n-N:
In a first example we let O be an open cube and add ‘‘fingers’’ to one of the sides as

shown in Fig. 3. If we increase the number of fingers such that the volume is

�n

Fig. 2. A disc with an infinite cone attached.

D. Daners / J. Differential Equations 188 (2003) 591–624612



preserved, letting their width go to zero, then by the above remark and Proposition

7.6 we have l1ðOn\ %OÞ-N: As OCOn and O is Lipschitz all conditions of Theorem
7.5 are satisfied, so On-O: If we extend the fingers to infinity then still On-O; but
jOn\Oj ¼ N: Moreover, as l1ðOn\ %OÞ-N Theorem 4.4 applies so we have uniform
convergence of resolvents.
Similar arguments apply to the sun-like domain shown in Fig. 4, where we increase

the number of rays but make them thinner. We arrive at the same conclusion as

above. Note that every open set in RN intersects On if n is large enough.

Next, we show that (3) in Theorem 7.5 is not necessary for convergence of
solutions.

Example 8.5. We use an example in [38, p. 46] to show that (3) in Theorem 7.5 is not

necessary for convergence. We let UCR3 be an open bounded set, and SCU a

compact smooth surface. Let Kn :¼
Sn

j¼1 Bn;j; where Bn;j are n balls of radius rn

centred at the evenly spaced points xn;jAS: Moreover, assume that nrn-N; but

nr2n-0: Hence we can make sure that the balls do not intersect. Finally we let

On :¼ U\Kn and O :¼ U\S: It is then shown in [38, p. 46] that On-O: On the other

hand, if we take xASC@O and a neighbourhood V of x then clearly On-@O-Va|

Fig. 3. A cube with fingers attached.

Fig. 4. A sun-like domain.
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for all nAN: Hence S ¼ G as defined in (7.2). Note however, that

H1
0 ðUÞaH1

0 ðU\GÞ ¼ H1
0 ðOÞ but On-O; showing that (3) in Theorem 7.5 is not

necessary for convergence of solutions.

9. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. We will use the assumptions
and the framework introduced in Section 2. In particular, we will make extensive use
of the formally adjoint problem and its properties. Moreover, l0 is always given by
(2.5). We start by a lemma allowing us to prove strong convergence of solutions in

H1ðRNÞ:

Lemma 9.1. Suppose that lXl0; that fn; fAH�1ðRNÞ and that RnðlÞfn,RðlÞf
weakly in H1ðRNÞ: If fn-f in H�1ðRNÞ then RnðlÞfn-RðlÞf in H1ðRNÞ: Moreover,

if there exists an open set BCRN such that fn-f in H�1ðBÞ then RnðlÞfn-RðlÞf in

H1
locðBÞ:

Proof. Suppose that cACNðRNÞ-LNðRNÞ with jrcjALNðRNÞ: Then cuAH1ðRNÞ
and by an elementary calculation

aðcu;cuÞ ¼ aðu;c2uÞ þ
Z
RN

u2
XN

i¼1

XN

j¼1
ai; j@jc

 !
þ ðbi � aiÞc

 !
@ic dx

þ
Z
RN

cu
XN

i¼1

XN

j¼1
ðai; j � aj;iÞ@jc@iu dx ð9:1Þ

for all uAH1ðRNÞ: Suppose now that fn,f in H�1ðRNÞ; and that un :¼ RnðlÞfn,u :
¼ RðlÞf : As lXl0 we conclude from (2.6) that

a
2
jjcðun � uÞjj2H1ðRN Þp aðcun � cu;cun � cuÞ þ ljjcðun � uÞjj22

¼ aðcun;cunÞ þ ljjcunjj22 þ aðcu;cuÞ þ ljjcujj22

� aðcun;cuÞ � aðcu;cunÞ � 2l/cu;cunS ð9:2Þ

for all nAN: As un,u weakly in H1ðRNÞ we have

lim
n-N

ðaðcun;cuÞ þ aðcu;cunÞ þ 2l/cu;cunSÞ ¼ 2aðcu;cuÞ þ 2ljjcujj22: ð9:3Þ
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Since un is the unique weak solution of (1.1) we get from (9.1)

aðcun;cunÞ þ ljjcunjj22 ¼/fn;c
2unS

þ
Z
RN

u2n

XN

i¼1

XN

j¼1
ai; j@jc

 !
þ ðbi � aiÞc

 !
@ic dx

þ
Z
RN

cun

XN

i¼1

XN

j¼1
ðai; j � aj;iÞ@jc@iun dx: ð9:4Þ

Assume now that fn-f strongly, and let c � 1: As un,u weakly and fn-f strongly
we get from (9.4) that

lim
n-N

ðaðun; unÞ þ ljjunjj22Þ ¼ lim
n-N

/f ; unS ¼ /f ; uS ¼ aðu; uÞ þ ljjujj22;

where we used that u is the weak solution of (1.2). Together with (9.2) and (9.3) it

follows that jjun � ujjH1ðRN Þ-0; that is, un-u in H1ðRNÞ: This proves the first

assertion of the lemma. Now consider the case where fn-f in H�1ðBÞ for some open
set BCRN : Let UCCB be open and choose cACN

c ðBÞ such that 0pcp1 and c ¼ 1

on U : As un,u weakly in H1ðRNÞ it follows from Rellich’s theorem that un-u in
L2ðsupp cÞ: Hence in every term in (9.4) there is a weakly and a strongly converging
sequence. Using (9.1) and that u is the weak solution of (1.2) we therefore get

lim
n-N

ðaðcun;cunÞ þ ljjcunjj22Þ ¼ aðcu;cuÞ þ ljjcujj22:

Together with (9.2) and (9.3) we see that jjcðun � uÞjjH1ðRN Þ-0 as n-N: As c ¼ 1

on U it follows that un-u in H1ðUÞ; showing that un-u in H1
locðBÞ: &

We next prove a lemma about strong convergence without assuming that lXl0:

Lemma 9.2. Suppose that RnðlÞfn,RðlÞf weakly in H1ðRNÞ whenever fn,f weakly

in H�1ðRNÞ: If fn-f in H�1ðRNÞ then Rx
nðlÞfn-RxðlÞf weakly in H1ðRNÞ and

strongly in L2ðRNÞ:

Proof. Suppose that fn-f in H�1ðRNÞ: As RnðlÞg,RðlÞg weakly in H1ðRNÞ by
assumption and (2.15)

lim
n-N

/g;Rx
nðlÞfnS ¼ lim

n-N

/fn;RnðlÞgS ¼ /f ;RðlÞgS ¼ /g;RxðlÞfS ð9:5Þ

for all gAH�1ðRNÞ; showing that Rx
nðlÞfn,RxðlÞf weakly in H1ðRNÞ: As fn-f

strongly in H�1ðRNÞ it follows from (2.15) that

lim
n-N

jjRnðlÞfnjj22 ¼ lim
n-N

/RnðlÞfn;RnðlÞfnS

¼ lim
n-N

/fn;R
x
nðlÞRnðlÞfnS ¼ /f ;RxðlÞRðlÞfS ¼ jjRðlÞf jj22:
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As we know already that Rx
nðlÞfn converges weakly it follows that it converges

strongly in L2ðRNÞ; completing the proof of the lemma. &

Proposition 9.3. Suppose that lAR is such that RnðlÞ and RðlÞ exist for all nAN:
Then the following assertions are equivalent:

(1) RnðlÞfn-RðlÞf in H1ðRNÞ whenever fn-f in H1ðRNÞ:
(2) Rx

nðlÞfn,RxðlÞf weakly in H1ðRNÞ whenever fn,f weakly in H1ðRNÞ:

Proof. We first prove that ð1Þ ) ð2Þ: Suppose that fn,f weakly in H�1ðRNÞ; and
that gAH�1ðRNÞ: Then by our assumptions we know that RnðlÞg-RðlÞg in

H1ðRNÞ: Hence (9.5) applies for all gAH�1ðRNÞ; showing that Rx
nðlÞfn,RxðlÞf

weakly in H1ðRNÞ: To prove that ð2Þ ) ð1Þ we suppose that fn-f in H�1ðRNÞ:
From Lemma 9.2 we know that un :¼ Rx

nðlÞfn-RxðlÞf ¼: u weakly in H1ðRNÞ and
strongly in L2ðRNÞ: In particular fn þ ðl0 � lÞun-f þ ðl0 � lÞu in H�1ðRNÞ: Hence
by Lemma 9.1 and the resolvent equation

Rx
nðlÞfn ¼ Rx

nðl0Þð fn þ ðl0 � lÞunÞ-Rxðl0Þð f þ ðl0 � lÞuÞ ¼ RxðlÞf

in H1ðRNÞ as n-N; completing the proof of the proposition. &

Proposition 9.4. If one of the equivalent statements in Proposition 9.3 are true for some

operator A; then On-O; that is, (1.3) and (1.4) hold.

Proof. We prove that the first statement in Proposition 9.3 implies (1.4), and that
the second implies (1.3). As both are equivalent the assertion of the pro-

position follows. Suppose now that RnðlÞfn-RðlÞf in H1ðRNÞ whenever fn-f

in H1ðRNÞ: Fix jAH1
0 ðOÞ and set f :¼ ðlþ ARN Þj: Then by Lemma 2.1 we

know that j ¼ RðlÞ is the unique weak solution of (1.2). Set jn :¼ RnðlÞf : Then
by assumption jn-j in H1ðRNÞ: As jnAH1

0 ðOnÞ for all nAN; this proves

(1.4). Suppose now that Rx
nðlÞfn,RxðlÞf weakly in H1ðRNÞ whenever fn,f

weakly in H1ðRNÞ: Let unAH1
0 ðOnÞ be such that unk

,u weakly in H1ðRNÞ for

some subsequence ðunk
ÞkAN: To show that uAH1

0 ðRNÞ we set fn :¼ ðlþ Ax
RN Þun: By

Lemma 2.1 we know that un is the unique weak solution of (1.1) with A replaced

by Ax: As Ax
RNALðH1ðRNÞ;H�1ðRNÞÞ; and every bounded operator is weakly

continuous, it follows that fnk
converges to f :¼ ðAx

RN þ lÞu weakly in H1ðRNÞ:
By our assumptions un ¼ Rx

nk
ðlÞfnk

,RxðlÞf ¼ uAH1
0 ðOÞ; proving (1.3). Hence

On-O as claimed. &

Corollary 9.5. Assertions (1)–(3) of Theorem 3.3 are equivalent.
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Proof. Suppose that (1) of Theorem 3.3 holds and that fn,f weakly in H�1ðOÞ: By
(3.2) the sequence un :¼ RnðlÞfn is bounded in H1ðRNÞ; and therefore has a weak

limit point uAH1ðRNÞ: By (1.3) we have uAH1
0 ðOÞ: As lARð�AOÞ it follows that u is

the unique solution of (1.2). Recall that ðunÞ is bounded, so by Corollary 3.2 we have
un,u ¼ RðlÞf : As the spectra of the formal adjoint problems is the same as the one
of the original problems the above procedure also works for the formally adjoint

operator Ax: Combining this with Proposition 9.3 shows that ð1Þ ) ð3Þ: Suppose
that (2) or (3) of Theorem 3.3 hold. ThenRnðmÞf exists and is a weakly convergent in
H1ðRNÞ for all fAH�1ðRNÞ: In particular RnðmÞf is bounded for all fAH�1ðRNÞ;
and thus by the uniform boundedness principle (3.2) follows. Using Proposition 9.4
we conclude that (1) holds. Hence (1)–(3) in Theorem 3.3 are equivalent. &

Next, we consider the case lXl0 and prove the remaining part of Theorem 3.3.

Proposition 9.6. If lXl0 then (3) and (4) of Theorem 3.3 are equivalent.

Proof. It is obvious that ð3Þ ) ð4Þ: Assume that (4) is true, and that V is the dense

subset of H�1ðRNÞ for which RnðlÞg,RðlÞg for all gAV : Let ð fnÞnAN be an

arbitrary sequence converging to some f in H�1ðRNÞ: Given e40 we find gAV such

that jjf � gjjH�1ðRN Þpae=8: As fn-f in H�1ðRNÞ there exists n0AN such that jjfn �
gjjH�1ðRN Þpae=4 for all nXn0: Set un :¼ RnðlÞfn and vn :¼ RnðlÞg: Similarly define

u :¼ RðlÞf and v :¼ RðlÞg: As lXl0 we have from (2.7) and the choice of g that

jjun � ujjH1ðRN Þp jjun � vnjjH1ðRN Þ þ jjvn � vjjH1ðRN Þ þ jjv � ujjH1ðRN Þ

p
2

a
jjfn � gjjH�1ðRN Þ þ jjvn � vjjH1ðRN Þ þ

2

a
jjf � gjjH�1ðRN Þ

p
e
4
þ jjvn � vjjH1ðRN Þ þ

e
2

for all nXn0: By assumption (4) we have vn,v weakly, and thus strongly in H1ðRNÞ
by Lemma 9.1 an lXl0: Therefore there exists n1AN such that jjvn � vjjH1ðRN Þpe=4
for all nXn1: Hence, jjun � ujjH1ðRN Þpe for all nXmaxfn0; n1g: As e40 was arbitrary

un-u in H1ðRNÞ; proving (3). &

To complete the proof of Theorem 3.3 it remains to establish the equivalence of (5)
to the other assertions if jOnj is uniformly bounded. The difficulties in the proof come
for two reasons. The first is that we do not assume that all On are contained in a fixed
bounded set and thus RnðlÞ1 may only converge weakly. The second is that A has

only bounded and measurable coefficients, so we cannot assume that RðlÞ1AC1ðOÞ:

Proposition 9.7. Suppose that ðOnÞnAN has uniformly bounded measure, and that

lXl0: Then (5) of Theorem 3.3 is equivalent to (1)–(4).
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Proof. By assumption there exists M40 such that jOnjpM for all nAN: To show
that (1) implies (5) we set un :¼ RnðlÞ1: As jOnjpM it follows from (2.7) that

jjunjjH1ðRN Þp2a�1jj1jjH�1ðOnÞ ¼ 2a�1jOj1=2p2a�1M1=2: Hence, ðunÞ is relatively

weakly sequentially compact in H1ðRNÞ: Now fix jAH1
0 ðOÞ: By (1.4) there exist

jnAH1
0 ðOnÞ such that jn-j in H1ðRNÞ: Note that jjjn � jmjj1pjOn,Omj1=2jjjn �

jmjj2pð2MÞ1=2jjjn � jmjj2 for all n;mAN; showing that ðjnÞnAN is also a Cauchy

sequence in L1ðRNÞ: As un ¼ RnðlÞ1 we have

aðun;jnÞ þ l/un;jnS ¼
Z
RN

jn dx:

As jn-j in L1ðRNÞ-H1ðRNÞ it follows that every weak limit u point of ðunÞ
satisfies the above identity with n deleted. By (1.3) and since j was arbitrary we have
u ¼ RðlÞ1: Hence the relatively weakly compact sequence ðunÞ has a unique limit
point, and must therefore weakly converge to RðlÞ1 as claimed.
We next prove that (5) implies (4). Set vn :¼ RnðlÞ1 and v :¼ RðlÞ1: Then by

assumption vn,v weakly in H1ðRNÞ: Fix jACN

c ðOÞ and an open balls B and B1 such

that suppjCBCCB1: We want to show that vn-v in H1ðBÞ: We set fnðxÞ :¼ 1 for
xAB1,On and fnðxÞ :¼ 0 otherwise. Similarly define f by deleting n in the definition
of fn: Then clearly vn ¼ RnðlÞfn and v ¼ RðlÞf : Moreover, fn-f in L2ðBÞ; and thus

by Lemma 9.1 we have vn-v in H1ðBÞ: We now derive some properties of v: By
standard regularity theory vACðOÞ (see [26, Theorem 8.24]). Moreover, by Lemma
2.2 we know that vX0: Hence we can apply Harnack’s inequality for super-solutions
(see [26, Theorem 8.18]) to conclude that vðxÞ40 for all xAO: As supp vCCO

jn :¼ j
v

vn

is well defined for all nAN; and jjj=vjj
N
oN: We next show that jn-j in H1ðRNÞ:

First note that

jjjn � jjj2 ¼
j
v
ðvn � vÞ

��� ������ ���
2
p

j
v

��� ������ ���
N

jjvn � vjj2;B;

showing that jn-j in L2ðRNÞ: To prove that the gradients also converge we first

show that j=vAH1ðRNÞ: To do so set we :¼ jðv2 þ e2Þ�1=2: Clearly we-j=v in

L2ðRNÞ as e-0: Using the chain rule for Sobolev functions (see [26, Theorem 7.8])
and then passing to the limit we get

rwe ¼
1

ðv2 þ e2Þ1=2
rj� vj

ðv2 þ e2Þ3=2
rv �!e-0 1

v
rj� j

v2
rv

in L2ðRNÞ: By definition of weak derivatives rðj=vÞ ¼ v�1rjþ v�2jrv: Hence

rjn ¼ j
v
rvn þ

rj
v

vn �
j
v2

vnrv
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for nAN; and so jnAH1ðRNÞ: Moreover,

jjrjn �rjjj2p jjðrjÞ=vjj
N
jjvn � vjj2;B

þ jjj=vjj
N
jjrðvn � vÞjj2;B þ jjj=v2jj

N
jjjrvjðvn � vÞjj2;B:

As vn-v in H1ðBÞ the first and the second terms on the right-hand side of the above
inequality converge to zero. It remains to show that also the third converges to zero.
To do so we first observe that there exists a constant MX1 such that
maxfjjvnjjN; jjvjj

N
gpM for all nAN (see [26, Theorem 8.15] or [21]). Hence,

jjjrvjðvn � vÞjj22;B

¼
Z
½jrvjpk�-B

jrvj2ðvn � vÞ2 dx þ
Z
½jrvj4k�

jrvj2ðvn � vÞ2 dx

pkjjvn � vjj22;B þ 4M2

Z
½jrvj4k�

jrvj2 dx:

Given e40 we can fix k such that the second term on the right-hand side is smaller
than e=2: As vn-v in L2ðBÞ we can then choose n0AN such that the first term is

smaller than e=2 for nXn0: Hence jn-j in H1ðRNÞ: Suppose now that fACN

c ðRNÞ;
and that un :¼ RðlÞf : Then by (2.7) the sequence ðunÞnAN is bounded in H1ðRNÞ; and
thus relatively weakly sequentially compact. For jACN

c ðOÞ we let jnAH1
0 ðOnÞ be

the functions constructed above. Then aðun;jnÞ þ l/un;jnS ¼ /f ;jnS for all

nAN: As jn-j in H1ðRNÞ it follows that aðu;jÞ þ l/u;jS ¼ /f ;jS for every
weak limit point u of ðunÞnAN:We next show that every weak limit point of ðunÞnAN is

in H1
0 ðOÞ: Suppose that unk

,u weakly in H1ðRNÞ as k-N: Clearly ðAOn
þ

lÞðjjf jj
N

vn7unÞ ¼ jjf jj
N
7fnX0; and thus from Lemma 2.2 we have

jjf jj
N

vn7unX0: As the sequences converge weakly in L2ðRNÞ we have

/jjf jj
N

vn7un;jS-/jjf jj
N

v7u;jSX0 for all jACN

c ðRNÞ non-negative. Hence

jvjpjjf jj
N

u almost everywhere. As H1
0 ðOÞ is an order ideal in H1ðRNÞ (see [4,

Lemma 1.3]) it follows that vAH1
0 ðOÞ: Therefore the only weak limit point of ðunÞnAN

is u ¼ RðlÞf ; and as the sequence is relatively weakly sequentially compact un,u

weakly in H1ðRNÞ: Finally, recall that CN

c ðRNÞ is dense in H�1ðRNÞ; so we have

proved (4) of Theorem 3.3. By Proposition 9.6 the assertion of the proposition
follows. &

Appendix A. A spectral mapping theorem

Suppose that E;F are Banach spaces, and that A is a closed densely defined
operator on F with domain DðAÞ: Moreover, suppose that there exist iALðF ;EÞ
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and rALðE;FÞ such that r3i ¼ idF : For all lARðAÞ we set

RðlÞ :¼ i3ðA � lÞ�13r:

We then have the following spectral mapping theorem.

Proposition A.1. Suppose that lARðAÞ; and that mal: Then mARðAÞ if and only if

ðm� lÞ�1ARðRðlÞÞ: If that is the case then

RðmÞ ¼ �ðm� lÞ�1RðlÞðRðlÞ � ðm� lÞ�1Þ�1: ðA:1Þ

Proof. By replacing A by A � l we can assume without loss of generality that l ¼ 0:

Hence let us assume that A�1ALðFÞ: It is well known that 0amARðAÞ if and only if
m�1ARðA�1Þ (see [31, Theorem III.6.15]). Hence we only need to show that

m�1ARðRð0ÞÞ if and only if m�1ARðA�1Þ: To do so we first split equation

Rð0Þu � m�1u ¼ f ðA:2Þ

into an equivalent system of equations. Observe that P :¼ i3r is a projection on E

onto some subspace. If we set E1 :¼ PðEÞ and E2 :¼ ðid� PÞðEÞ then E ¼ E1"E2 is
a direct sum. Clearly the image of Rð0Þ is in E1: As r ¼ r3P we have P3Rð0Þ ¼
Rð0Þ3P and thus (A.2) is equivalent to

ðRð0Þ � m�1ÞPu ¼ Pf ; ðA:3Þ

�m�1ðid� PÞu ¼ ðid� PÞf : ðA:4Þ

Assume now that mARðA�1Þ; and fix fAE arbitrary. It follows that v :¼ ðA�1 �
m�1Þ3Pf is uniquely determined. We set u1 :¼ iðvÞ and note that u1 ¼ Pu1 is the
unique solution of the first of (A.3). Clearly u2 :¼ �mðid� PÞf is the unique solution
of (A.4) in E2: Hence u :¼ u1 þ u2 is the unique solution of (A.2), showing that

m�1ARðRð0ÞÞ: Next assume that m�1ARðRð0ÞÞ; and that gAF is arbitrary. Set f :¼
iðgÞ and note that Pf ¼ f in that case. By assumption (A.3) has a unique solution u1:
As ðid� PÞf ¼ 0 the solution of (A.4) is zero. Hence rðu1Þ is the unique solution of

ðm�1 � A�1Þu ¼ g; showing that m�1ARðA�1Þ: We finally prove identity (A.1),
provided l; mARðAÞ: By the resolvent equation

ðA � lÞ�1 ¼ ðA � mÞ�1ðidF � ðm� lÞðA � lÞ�1Þ:
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Using that r3i ¼ idF this yields

RðlÞ ¼ i3ðA � mÞ�1ðidF 3r � ðm� lÞr3i3ðA � lÞ�13rÞ

¼ i3ðA � mÞ�13rðidE � ðm� lÞi3ðA � lÞ�13rÞ

¼RðmÞðidE � ðm� lÞRðlÞÞ:

Rearranging we get RðmÞðRðlÞ � ðm� lÞ�1Þ ¼ �ðm� lÞ�1RðlÞ: As we know that

ðm� lÞ�1ARðRðlÞÞ identity (A.1) follows, completing the proof of the proposi-
tion. &

Appendix B. Uniform convergence of operators

We prove a convergence theorem useful in the context of domain convergence.
Note that we do not assume that Tn below be compact.

Proposition B.1. Suppose H is a Hilbert space and Tn;TALðHÞ: Then the following

assertions are equivalent:

(1) T is compact and Tn-T in LðHÞ;
(2) Tnfn-Tf in H whenever fn,f weakly in H;
(3) Tn-T strongly and Tnfn-0 in H whenever fn,0 weakly in H.

Proof. We first prove that ð1Þ ) ð2Þ: Assuming that fn,f weakly in H we have

jjTnfn � Tf jjpjjTn � T jjjjfnjj þ jjTð fn � f Þjj:

The first term on the right-hand side converges to zero as Tn-T uniformly by
assumption. The second term converges to zero as fn � f,0 weakly in H and T is
compact. Hence (2) holds. It is clear that ð2Þ ) ð3Þ; so we prove that ð3Þ ) ð1Þ: We
start by showing that T is compact. To do so it is sufficient to show that Tfn-0 in H

whenever fn,0 weakly in H: From (2) it is clear that Tn converges strongly to T :
Hence Tkfn-Tfn as k-N for every nAN: Hence for every nAN there exists knXn

such that jjTkn
fn � Tfnjjp1=n: Therefore

jjTfnjjp jjTfn � Tkn
fnjj þ jjTkn

ð fn � fkn
Þjj þ jjTkn

fkn
jj

p
1

n
þ jjTkn

ð fn � fkn
Þjj þ jjTkn

fkn
jj:

As fn,0 weakly if follows from the assumptions that jjTkn
fkn

jj-0 as n-N: Setting
gkn

:¼ fn � fkn
it follows again from the assumptions that jjTkn

gkn
jj ¼ jjTkn

ð fn �
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fkn
Þjj-0 as n-N: Hence the right-hand side of the above inequality converges to

zero as n-N; so Tfn-0 in H: This shows that T is compact. Now we prove
uniform convergence of Tn: Assume to the contrary that Tn does not converge
uniformly. Then there exists e40 and fnAH with jjfnjj ¼ 1 such that ejjTnfn � Tfnjj
for all nAN: As bounded sets in a Hilbert space are weakly sequentially compact we
can assume that fn,f weakly in H by possibly passing to a subsequence. Therefore

0oepjjTnfn � TfnjjpjjTnð fn � f Þjj þ jjTnf � Tf jj þ jjTð f � fnÞjj: ðB:1Þ

The first term converges to zero by assumption as fn � f,0 weakly in H: The second
term converges to zero as Tn-T strongly. The last term converges to zero as T is
compact and f � fn,0 weakly in H: Hence we get a contradiction to (B.1), showing
that Tn must converge in LðHÞ: Hence (3) holds, completing the proof of the
proposition. &

Note that in the above proposition we could replace the Hilbert space by an
arbitrary reflexive Banach space.

Note added in proof

Part (2) of Proposition 7.3 is wrong. The statement is taken from [25]. However,
[25] cannot be right since in [32, p. 55] there is an example of a Wrener regular
domain which is not stable!
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