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Abstract

The aim of the paper is to characterise sequences of domains for which solutions to an
elliptic equation with Dirichlet boundary conditions converge to a solution of the
corresponding problem on a limit domain. Necessary and sufficient conditions are discussed
for strong and uniform convergence for the corresponding resolvent operators. Examples are
given to illustrate that most results are optimal.
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1. Introduction

The purpose of this paper is to discuss conditions on sequences of domains
Q,cRY (N>2) such that solutions of the elliptic boundary value problems

du+u=f, in Q,,

u=0 on 0Q, (1.1)
converge to a solution of the corresponding problem

Au+iu=f 1in Q

u=0 on 0Q (1.2)
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on a limit domain Q as n— oco. The motivation to look at such problems comes from
variational inequalities (see [35]), numerical analysis (see [27,37,41—44]), potential
and scattering theory (see [4,38,40,46]), control and optimisation (see [12,13,30,45]),
I'-convergence (see [9,15]) and solution structures of non-linear elliptic equations
(see [16-18,24]). We do not attempt here to give a complete bibliography, but
make a rather arbitrary choice of references. As the framework, motivation
and notation used in the literature vary enormously, it can be difficult to compare
results.

We start our analysis with two conditions naturally coming up when trying to
prove convergence of solutions of (1.1) to a solution of (1.2) (see proof of Theorem
3.1). They are

the weak limit points of every sequence u,e€ H}(Q,), neN,
in H'(RY) are in H}(Q), (1.3)

for every pe H,(Q) there exist ¢, € H}(2,) such that ¢,—¢ in H'(RY).
(1.4)

Here H}(Q) and H'(R") denote the usual Sobolev spaces of functions vanishing on
0Q. Extending functions in H((Q) by zero outside Q we may consider H}(Q) as a
closed subspace of H'(R"), so (1.3) and (1.4) make sense. It turns out that the two
conditions are not only sufficient but also necessary for convergence, which is known
for some classes of operators (see for instance [14]). For this reason we make the
following definition.

Definition 1.1. If Q,, Q<R" are such that (1.3) and (1.4) are satisfied we write
Q,— Q.

It is often said that Q,—Q in the sense of Mosco (as this is equivalent to
H}(Q,)— H}(Q) in the sense of Mosco [35, Section 1]). The conditions also appear in
a more disguised form in [41], and explicitly in [44]. Necessary and sufficient
conditions in terms of capacity for (1.3) and (1.4) are discussed in [10] in case £, is
contained in a fixed bounded set for all neN.

In this paper we improve previous results in several directions. First of all we work
with necessary and sufficient conditions for convergence. We allow unbounded
domains with infinite measure and non-self-adjoint operators. Many papers allow
one or the other, but not simultaneously. Also, we look at convergence in L,-norms,
pe(l, 00). Finally, we characterise under what conditions the resolvents converge
uniformly, that is, in the operator norm of £ (L,(R")). Note that the methods could
be used to treat some other, even non-linear or parabolic operators. We refrain from
doing so and restrict ourselves to one class of operators allowing quite elementary
proofs, not involving the theory of I'-convergence.

An outline of the paper is as follows. In Section 2 we fix the assumptions, notation
and framework used throughout the paper. Section 3 is concerned with basic
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convergence results. In particular, we prove that convergence holds for all operators
of the class under consideration if and only if it holds for one particular operator. In
Section 4 we discuss conditions for uniform convergence of the resolvents. As a
consequence we get continuity properties of the spectrum with respect to the domain
not true in general. Section 5 deals with convergence in L,-spaces. A good theory in
L,-spaces is important when dealing with non-linear problems such as those in [16].
In Section 6 we establish some necessary conditions for convergence. Conditions
(1.3) and (1.4) are not always easy to verify. We discuss some sufficient conditions
which are easy to check in Section 7. Examples showing that most results are optimal
are given in Section 8. We conclude with an appendix containing some auxiliary
abstract results.

2. Assumptions and framework

The purpose of this section is to introduce the framework we need for a precise
formulation of our results. We will always assume that ©Q,,Q are open (possibly
unbounded and disconnected) sets in RY, N>2. The Lebesgue measure of a set
S<R" we denote by |S|. If Q is an open set we denote by H} (Q) the closure of the set
of test functions C*(Q) in the Sobolev space H'(Q). The norm we use is always
ual| o = (J]ul3 + \|Vu||§)l/2, where |[ul|, is the L,-norm. Extending elements of
C>(Q) by zero outside Q we may consider C° (Q) in a natural way as a subspace of
C* (R"). Hence, taking closures we may identify H}(Q) with a closed subspace of
H}(RY) = H'(RY), and we will do so henceforth.

The operator o/ is always of the form

N N N
Au = — Z 0; (( a,-,,-aju> + a,~u> + biOiu + cou, (2.1)
i1 =1 i1

where a; ;,a;,b;, coe Lo (RM) for all i,j = 1, ..., N. Moreover, we assume that there
exists a constant o >0, called the ellipticity constant, such that

Z ai,jf[§/>a|f|2 (2.2)

j=1 =1

for almost all xeR"Y and all ¢ = (¢, ...,¢y)eRY. The simplest case is the Laplace
operator —4. We define the form, a(-,-), associated with ./ by

N N N
a(u,v) = /RN Z ( (Z a,;,jﬁju) + a,u) o+ (Z biOu + cou> vdx (2.3)
i=1 J=1 i=1
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for all u,ve H'(RY). It is easy to check that a(-,-) is a bounded bilinear form on

H'(RY) (and thus on H}(Q) for every open set QcR"Y). If u,1:Q—R are two
measurable functions we set

{u,vy = /uvdx
Q

if the integral exists. By the Riesz representation theorem we can identify L,(Q) with
its dual. If we do that then H}(Q)< Ly(Q) H'(Q), where H™'(Q) is the
topological dual of H}(Q) equipped with the dual norm. Duality between H} () and
H~1(Q) we also denote by < - ,->. Given fe H~'(Q), we call u a weak solution of
(1.2) if ue H}(Q), and

a(u,v) + Au,vy = {f,v) (2.4)

for all ve H}(Q). If we set

_ 1 &
i = leg |l +57 3 llai+ il (2.5)
i=1

then standard arguments show that

« 2 2

5 Nl vy S alu, ) + Afully (2.6)
for all ue H'(RY) and 2> 49, where ¢; = max(—co, 0) is the negative part of ¢. The
Lax—Milgram Theorem [47, Section III.7] then ensures the existence of a unique

weak solution ue H}(Q) of (1.2) for all /e H~!(Q) whenever 1> /. Moreover, that
solution satisfies the a priori estimate

2
||u||HO‘(Q)<&“f||H*1(Q)' (2.7)

To prove (2.7) note that by (2.4) and (2.6)

o 2 . .
2 iy <alw )+ e = <> <y V0

Dividing by ||u]]| H(2) the required estimate follows. It is often convenient to write

(1.2) in an abstract form. To do so recall that a(-, ) is a bounded bilinear form on
H}(Q). Therefore, there exists Age L (H(Q), H '(Q)) such that

a(u,v) = {Aqu,v) (2.8)
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for all u, ve H} (Q). We call Aq the operator induced by .o/ on Q. From the definition
of Ag it is quite obvious that ue H} (Q) is a weak solution of (1.2) if and only if u is a
solution of (A4 Ag)u = f in H'(Q). It is sometimes useful to consider 4o as an
operator on H~'(Q) with domain H{}(Q). As we know that H}(Q) is dense in H~'(Q)
it follows from (2.6) that Agq is a closed densely defined operator on H~!(Q). We
denote by 0(A4¢) and (Agq) the resolvent set and the spectrum of A, respectively. By
the previous consideration and (2.7)

[h0, 0)co(—Agq) for every open set QcRY. (2.9)

As we are working with varying domains we want a family of operators with
domain and range independent of @, and QcRY. To do so denote by
ioe Z(H}(Q), H'(RY)) the operator extending functions in H}(Q,) by zero outside
Q. Moreover, denote by roe Z(H '(RY),H '(Q)) the operator restricting
functionals fe H-'(RY) to H}(Q). Obviously (f,iq,(u)) = {rq,(f),u) for all
ue H}(Q,) and fe H'(RY), so

io=rq and ry=iq. (2.10)
The following lemma relates Ag to 4 = Apx.

Lemma 2.1. For every open set Q< RY
AQ + A= VQO(A + A)Ol.g

and || A + | g1 (@) 110y <A + | o mY) 111 ) - Moreover, if ue Hy(Q) and g -
= (A + A)oiq(u) then u is a weak solution of (1.2) with f = ro(g). (In our exposition we
always identified f with rqo(g).)

Proof. By (2.8) and (2.10) we have
{Agu,vy = a(u,v) = aliqu, iqu) = { Asiqu,iqvy = {rooAdciqu,v)

for all u,ve H}(Q). Hence the first assertion of the lemma follows. The estimate
follow as ||ig]|, ||re||<1. The last assertion follows from the first as u is a weak
solution of (1.2) if and only if (A + Ag)u =f (f we identify f with = ro(f) as
usual). O

Given open sets Q,, Q< RY we set

Ru(2) =g (A4 Ag) ‘oro, and R(A) = igo(A+ Ag) terg  (2.11)

n

whenever the operators are defined. By looking at elements of H~'(R") we do not
lose anything as by the Hahn—Banach Theorem, every functional in H~'(Q) can be
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extended to a functional in H~'(R") with equal norm (see [47, Section IV.5]). If
there is no confusion likely we identify ue H}(Q) with ig(u) and fe H™'(R") with
ro(f). To prove our results we will often work with the adjoint form a(-,-) defined
by @ (u,v) = a(v,u) for all u,ve H}(RY). This is the form associated with the
formally adjoint operator, .o/*, of .« given by

N N
A= — Z &'((Z aj.i@'”) + bi”) +
=1

J=1

N
a;0iu + cou. (2.12)

i=1
If we denote by A e L (HL(RQ), H'(Q)) the operator induced by a*(-,-) then clearly
Ay = A5 and (4) = Aq. (2.13)

Further, recall that an operator and its dual have the same spectrum. Hence, by
(2.13) we can define

Ri(2) =igo(A+Ah ) 'org, and  R*()) =igo(i+ Ah) torg  (2.14)

whenever %,(1) and 2(A) exist. Using (2.10) and (2.13) we also see that
(#:(2)) = Ra(2) and  (#(1) = R(}). (2.15)

Note that #(/) is not a resolvent, but only a pseudo-resolvent, that is, a family of
operators satisfying the resolvent identity. For completeness we include the following
standard lemma on positivity of solutions.

Lemma 2.2. Suppose that u is the solution of (1.2), that .= Jy, and that f € Ly(R") is
non-negative. Then u is non-negative.

Proof. It follows from [26, Lemma 7.6] that u~ = max{—u, 0} e H}(Q), that Vu~ =
—Vu if u>0, and that Vu~ = 0 otherwise. As u is a weak solution of (1.2) it follows
from (2.6) that

_ _ _ _ Al — o _
Sfou ) =aluyu™ )+ A u,u Yy = —a(u™,u”) — Aju ||§< _EHM |‘§{|<R/\"><0.

As {f,u"» >0, we have |[u”||;; =0, thatis, u=>0. O

3. Basic convergence results

In this section we discuss some basic convergence results. Throughout we will use
the assumptions and notation from Section 2. Note that in the whole paper we could
replace the operator .7 by a sequence of operators .o7,, whose coefficients converge in
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a sufficiently strong way as done for instance in [18]. We refrain from doing so to
keep the notation and statement of results as simple as possible.

The first result does not require uniqueness of solutions of (1.1) or the limit
problem (1.2).

Theorem 3.1. Suppose that u, € H}(2,) are weak solutions of (1.1) for all ne N. If (1.4)
holds then every weak limit point of (uy,) lying in H}(Q) is a weak solution of (1.2)
for some fe H™'(Q).

neN

Note that if (1.3) holds then every weak limit point of (u,), .y is in H}(€Q).

Proof. Suppose that ve H}(Q) is a limit point of (u,),.y, wWhich means that there
exists a subsequence (1, ) cry OF (), cn With u,, —v weakly in H'(RV) as k— o0 As

u, is a weak solution of (1.1) and a(- ,-) is a bounded bilinear form on H'(RY) there
exists M >1 independent of ne N such that

| Jny @21 = la(un, @) + 2 ttns 0 3 | < M| | |||

for all pe H}(Q,). By definition of the dual norm Vol -1,y < M| 1. By the
Hahn-Banach Theorem (see [47, Section IV.5]) it is possible to extend f, to
fue H'(RY) such that |[f:,|\H,1(RN) = [Vfall -1 (0,) < M|t As every weakly
convergent sequence is bounded it follows that (f;k)kEN is bounded in H'(R").
Using that every bounded sequence in a Hilbert space has a convergent subsequence
we can, after possibly passing to another subsequence, assume that fnkefN in
H'(R") for some fe H~'(RY). We now show that ve H}(Q) is a weak solution of
(1.2) for f = rQ(f) e H'(Q). To do so fix pe C*(Q). By assumption (1.4) there exist
@, € H}(2,) such that ¢, — ¢ in H'(R") as n— co. Using that u, is a weak solution
of (1.1)

a(unkv @nk) + /1<unk7 Py > = <.ﬁ7k’ Py > (31)

for all keN. As u, —v weakly and ¢, — ¢ strongly in H '(RY) we conclude that
a(u, ) + A{v,p> = {f, @) by letting k go to infinity in (3.1). Because ve H}(<Q),
and @ e C* () was arbitrary, v is a weak solution of (1.2). O

Corollary 3.2. If in addition to the assumptions of Theorem 3.1 we suppose that (1.3)
holds, that f,—f weakly in H-'(RN), that (1.2) has unique solution and that (thn) peny B8
bounded in H'(R") then u,—u = R(1)f weakly in H'(R").

Proof. By Theorem 3.1 and (1.3) every weak limit point of (u,) is a solution. By
uniqueness of solutions of (1.2) and since f,—f the only possible weak limit point of
(uy) is u = R(A)f. As bounded sequences in a Hilbert space are sequentially weakly
compact it follows that u,—u weakly in H'(RY). 0O
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The second theorem shows that (1.3) and (1.4) are necessary and sufficient for
convergence. In particular, it shows that convergence is independent of the particular
operator .7, hence it generalises a result in [6, Section 5], where equivalence was only
shown for self-adjoint operators, and if Q, is contained in a fixed bounded set for all
neN. Recall that Ag, is the operator induced by .« on @, defined in (2.1) and
R(1), R(1) are given by (2.11).

Theorem 3.3. Suppose that Q,Q,<RY are open sets, and that Leo(—Ag,) no(—A4q)
for all neN. Then the following assertions are equivalent.

(1) Q,—>Q in the sense of Definition 1.1 and

lim sup [|(Z + 4g,)”" o La(0)) < 3 (3.2)

n— o0

Q) B f—R(A)f weakly in H'(RN) whenever f,—f weakly in H~'(R");
() R, (W) fn— R(A)f converges in H'(RN) whenever f,—f in H™'(RY).
Let Ay be given by (2.5). If A= then the following is equivalent to the above.
B R () f—R(A)f weakly in H'(RN) for fin a dense subset of H™'(RY).
Finally, if 2= 2y and sup, . |Qn| < 00 then also the following is equivalent to the
above.
(5) 2,(W)1—R(J)1 weakly in H'(R").

The proof of the above theorem will be given in Section 9. Note that (3.2) is
necessary in Theorem 3.3 as Example 8.2 shows.

Remark 3.4. If f,—f weakly in H'(R") we do not have strong convergence of
R(A)f, in H'(RY) or Ly(RY). If (2) of Theorem 3.3 holds and f,—f weakly in
H'(RY) then by Rellich’s Theorem %,(A)f,—RZ(A)f in L,jc(RY) for all
PE2,2N(N — 2)71). If .>79 and f,—f in H;!(B) for some open set B=R" then
Rn(D)fn—>R(A)f in HL (B). In particular, convergence takes place in H (RY) if
fo—f in H,gg(RN). For a proof of these facts see Lemma 9.1.

Remark 3.5. In (5) we need to be careful what we mean by 1 as 1¢ H'(RY). As Q,
has finite measure it is clear that 1e H~'(Q,). We define f; € L,(R") by f;, = 1 on Q,,,
and f, =0 outside Q,. Then f,e H'(RY) and Vol 1 vy < 1Q,/"2. 1If Q, has
uniformly bounded measure then f, is bounded, showing that (5) makes only sense
for sequences (£,),.n With uniformly bounded measure. Also note that we cannot

expect #,(/)1 to converge strongly in L,(RY) in general, as £, does not in general
converge strongly. In fact, assuming strong convergence Theorem 4.4 below shows

that %,(1) converges uniformly, that is, in % (L,(R")).
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4. Uniform convergence and continuity of the spectrum

For applications such as those in [16] it is important to know how the spectrum of
(1.1) and (1.2) relate to each other if Q, — Q. In the general framework considered in
Section 3 we cannot expect continuity of the spectrum as the results in Theorem 3.3
only show that %,(1) converges strongly in £ (L,(R")), that is pointwise. Under
suitable assumptions on ¢y one can prove continuity of part of the spectrum. We will
not pursue this further but refer to [37] or [46]. We only discuss continuity of the
spectrum in case of uniform convergence. It is convenient here to look at the
complexification of the problem as usual in spectral theory.

Theorem 4.1. Suppose that R,(1)—R(1) in L(L2(CN)) for some ieC. Then, for
every peg(—Agq) we have ueo(—Ag,) for neN large enough, and R,(p) —> R(u) in
Z(La(CY)).

Proof. Suppose that 2,(1)—%(.) in Z(L,(C")) for some AeR, and that
peo(—Ag). It follows from the Proposition A.l that (u—2A)"'eo(—%(%)). But
then by Kato [31, Theorem IV.2.25] we have (u — 2) ™' €o(—%,(%)) if only n is large
enough, and by the resolvent identity

lim (1= 2) "+ 2a(0) " = (= 2) "+ 2(2)) !

n— o0

in #(Ly(C")). Applying Proposition A.l again we see that ueg(—Ag, ) if n is large
enough, and that

lim %, (p) = lim (u—2)" Ba(A) (= 1) + Ra(2)) "

n— oo n— o0

— (1= ) R (= 2+ 2O = A(w)
in #(Ly(C"Y)). This completes the proof of the theorem. [

As a consequence we get the upper semi-continuity of separated parts of the
spectrum, and the continuity of every finite system of eigenvalues. Recall that a
spectral set is a subset of the spectrum which is open and closed in the spectrum. To
every spectral set we can consider the corresponding spectral projection (see [31,
Section I11.6.4]).

Corollary 4.2. Suppose that R,(1)—R(%) in L(L,(C)) for some LeC, that
Xco(—Ag)<=C is a compact spectral set, and that I is a rectifiable closed simple
curve enclosing X, separating it from the rest of the spectrum. Then, for n sufficiently
large o(—Ag,) is separated by T' into a compact spectral set X, and the rest of the
spectrum. Denote by P and P, the corresponding spectral projections. Then the
dimension of the images of P and P, are the same, and P, converges to P in norm.
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Proof. The assertions follow from [31, Theorem IV.3.16] and Proposition A.l in
Appendix A. O

Remark 4.3. As a consequence (see [31, Section IV.3.5]) we get the continuity of
every finite system of eigenvalues (counting multiplicity) and of the corresponding
spectral projection if we have uniform convergence. In particular, we get the
continuity of an isolated eigenvalue of algebraic multiplicity one and its
eigenfunction when normalised suitably.

We next give necessary and sufficient conditions for uniform convergence in the
special case (A4 Ag)”' is compact as an operator on L,(). Note that this is
equivalent for H}(Q) < Ly(Q) to be compact. By Rellich’s Theorem we have always
compactness if Q is bounded. Conditions for compactness to occur for unbounded
domains are discussed in [I, Chapter 6] or [23, Section VIII.3]. Recall that the
spectral bound of —A4 on the open set U< R" with Dirichlet boundary conditions is
given by

2 2
IVully _ . INEIR

M(U) = =
1(U) TR ue Hi(U)
u#0

5 (4.1)
u#0 [[ul]3

For consistency we set A(0) = oco. Assuming that the limit problem (1.2) has
compact resolvent on L,(Q) we have the following characterisation of uniform
convergence. Note that the implication (5) = (1) is proved in [11] for .7 = —A4 using
I'-convergence.

Theorem 4.4. Suppose that Q,Q,cRYN are open sets with Q,—Q and that
r€0(—Aq,) Nno(—Ag) for all neN. Then the following assertions are equivalent:

(1) R(2) is compact and R, (1) — R (1) in L (Lr(RN));

@) 2, fy— RN in Ly(RY) whenever f,—f weakly in Ly(R").

() R,(2)f =0 in Ly(RN) whenever f;,—0 weakly in Ly(RY).

If Q is bounded then the above is equivalent to the following:

(4) Eq. (3.2) holds and /1 (2,n(Q)— o0 as n— 0.

Let )y be given by (2.5). If .= )y and sup |Q,| < co then also the following is equivalent

neN
to the above:

(5) R,(W)1 >R in Ly(RV).
Proof. First note that (1) and (2) imply (3.2). We show that (3) also implies (3.2).

Assume to the contrary that (3.2) does not hold. Then for every ke N there exists
fie Ly(RY) and n; €N such that ||f;||, = 1 and ||Z,, (2)fx||, = k. Setting gi = fi /k we
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have g; =0 in Ly(RY) but ||%,, ()g|l,=1-+0 as k— oo, contradicting (3). Hence
(3.2) must be true in all cases (1)—(3). By Theorem 3.3 we have %#,(1) —» %(1) strongly
in Z(Ly(R")). Now the equivalence of (1)~(3) immediately follows from Proposition
B.1 in Appendix B. To show that (2) = (4) we prove the contrapositive. Hence
assume that either (3.2) does not hold or 4;(2,(Q)~ co. If (3.2) does not hold
then by the uniform boundedness principle (2) cannot be true. If 4;(2, Q)+ oo
then there exist ¢>0 and u, € C¥(Q,) such that ||u, ||, =1 and ||Vu,||,<c. In
particular, (i, ).y is bounded in H'(RY). By Lemma 2.1 the sequence f,, =
(A + A)u,, is bounded in H~'(RY), and u,, = #,(1)f,. As bounded sequences in a
Hilbert space are weakly sequentially compact we can, after possibly passing to
another subsequence, assume that f, —f weakly in H~'(RY). Therefore, by
Theorem 3.3, u,—u = Z(A)f weakly in Ly(R"). As suppu,=(Q for all neN we
have u = 0. Because ||u,||, = 1 for all ne N it is not possible that u, —0 in Ly(R"),
showing that (2) does not hold. Hence (2) = (4). Note that we did not use that Q is
bounded here. Assuming that Q is bounded we now show that (4) = (3). Suppose
that f,—0 weakly in H~'(R") and set u, = %,(A)f,. From Theorem 3.3 we know
that u,—0 weakly in H'(R"). Hence by Rellich’s Theorem u, —0 in L,(B) for every
open bounded set B containing Q. To show that u,—0 in L,(RY\B) we choose a
smooth function Yy eC*(RY) with 0<y <1, y=0 on @, and y =1 on a
neighbourhood of B. Then yu, e H} (RV\Q) and by (4.1)

[4al [35 < [Woaaal[3 < 21 (20 ACR) ™[IV (W) |13
< 21(2u 00 NI + VW) el

for all neN. As (u,),.y is bounded in H'(R") it follows from (4) that u,—0 in

L>(RM\B), proving (3). Finally, assume that |Q,| is uniformly bounded. To prove
that (1) = (5) note that

12,201 = RO, < || 2(2)1 — ROy + | 2(2)1 — RO 5q,
<12u(2) = RO)| gy (191" + 124]'?)

showing (5). It remains to show that (5) = (1). As Q,—Q, Theorem 3.3 implies that
R (1) — R ()) strongly in Z(Ly(RY)), where %#°(1) is given by (2.14). Hence, by
Theorem 3.3, v, == %#*(2)f,—0 weakly in L,(RY) if f;,—0 weakly in L,(R"). Now by
(2.15) and our assumption

lim [ wdx= lim <R(A)1fD = (R(2)1,0) =0.

n— oo RN

By splitting f, into positive and negative parts we can assume without loss
of generality that f, is non-negative. As 4>/, it follows from Lemma 2.2 that v,
is non-negative, so v,—0 in LI(RN). From (2.7) we know that v, is bounded
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in H'(R"), and so by the Sobolev inequality bounded in L,(R") for some ¢>2.
Thus v,—0 in Ly(RY) by an interpolation inequality (see [26, inequality (7.9)]).
Hence (3) holds for the formally adjoint problem, and thus %ﬁ(i)—»%#(i) in

Z(Ly(RM)). By (2.15) and the fact that an operator and its dual have the same norm
(1) follows. [

Remark 4.5. In the above theorem we only assume that the limit problem
has compact resolvent. The problems on Q, do not need to have compact re-
solvent, and hence the family of resolvents is not necessarily collectively compact
in the sense of [3]. As an example consider the sequence of sun-like domains in
Example 8.4.

Remark 4.6. The above proof shows that uniform convergence always implies that
/1(QN(R)— oo, no matter what the limit domain Q is. It would be interesting
to know whether Q,—Q and (4) imply uniform convergence for arbitrary limit
domains Q.

Corollary 4.7. Suppose that Q,,Q are contained in a fixed bounded set and that
Q,— Q. If Leo(—Ag) then Aeo(—Aq,) for n large enough, and R,(1)— R(1) in
2(LRY).

Proof. Fix a bounded set B R such that Q,< B for all neN. First assume that
A=l and f, - f weakly in Ly(B). Then by Theorem 3.3 #,(1)f, » #(4)f weakly in
H}(B)=H'(RY). By Rellich’s Theorem convergence is strong in L»(B), so by the
above theorem #,(/) converges uniformly. For general 1€ 9(—A4g) the assertions of
the corollary then follow from Theorem 4.1. [

Remark 4.8. Note that all results in [18] concerning parabolic problems remain true
if we assume that Q, » Q, Q bounded and (4) of Theorem 4.4 holds. We only need to
modify the proof of [18, Theorem 3.1] in quite an obvious way. Also the results in
[16] remain true whenever the resolvents converge uniformly.

5. Convergence in higher norms

When looking at non-linear problems on varying domains such as in [16] it is
important to be able to get a good perturbation theory in L,-spaces for p>2. The
reason is that, in general, a non-linearity does not map L, into L, without severe
restrictions on its growth. We want to show here how to get convergence in L, for
p>2. Suppose that Q is an arbitrary open set, and let 4 := Ag the operator defined
by (2.1). Moreover, let 4, denote the part of 4 in L, given by D(A4,) =
{ue H}(Q):Aue L,(Q)} and Au = Au for ue D(4,). Then it is well known that
—A» is the generator of a strongly continuous analytic semigroup on L,(Q) (see [22,
Proposition XVII.6/3]). It is also well known that T»(¢) = e ™ has an integral
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kernel satisfying pointwise Gaussian estimates (see [5] or [20]) and thus interpolates
to L, for all pe(1, c0). Denote by —A4, its infinitesimal generator. We then look at
solutions to the abstract equation

(Ay + Nu=f (5.1)

with fe L,(Q). We call such a solution a generalised solution of (1.2) in L,(£2). The
first difficulty is whether the spectrum of —4,, is independent of pe (1, o). It indeed
follows from the above and [33, Theorem 1.1] that ¢(A4,) = 6(4,) = o(A4) for all
pe(l,00). Let us note that the results in the present section can be obtained in a
much easier way if we do not allow unbounded domains!

Proposition 5.1. Problem (5.1) is solvable with bounded resolvent operator if and only
if the same is true for (A, + A)u=f. Moreover, for all .eo(—A) we have (A+

AZ)il LinL, = (A+Ap)7l|Lsz,, for all pe(1, o).

To prove a convergence result we will need a priori estimates independent of the
choice of Q. If we set

() = {Np(N—zml if pe(1,N/2),

o0 if p>N/2,
then the following estimates hold.

Proposition 5.2. Suppose that leg(—Ay) and that pe(l,00). Then (L+

Ap)fle < L) 0 Ly. Moreover, there exist constants C>0 and weR only depending
on N,p the ellipticity constant and the L.,-norm of the coefficients of </ such that

max{||(Z + Ap)71 ||:/(Lp)a I1(2+ AP)71||$(L1,,L,,,U,))} <C (5.2)
whenever .> w.

Proof. From Proposition 5.1 it follows that 1eg(—A,) if and only if Aeo(—4>).
Then the first assertion follows from [21, Theorem 4.5]. To prove (5.2) we need to use
that —A4, generates a semigroup on L,. It follows from [20, Theorem 6.1 and
Corollary 7.2] that there exist constants C; >0 and w; €R depending only on the
quantities listed in the proposition such that ||e"A9||g<LP) < Ce® for all pe[l, wo].
As —Aq generates a strongly continuous semigroup we have (/14 Ap)f1 =
Jo© e e dt for A>w, (see [47, Section IX.4]). It therefore follows that ||(4+
A,)7]
w1+ 1 and C = C|/w. By a density argument the second inequality in (5.2) now
follows from [21, Theorem 4.5], if we choose C appropriately. [

2(1,) S C(A— wl)_l. By interpolation the first of (5.2) follows if we set w =
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From the above it is clear that we may consider %,(1), Z(1) as operators in
L(L,(RY), L,(R")) whenever pe (1, o), and g€ [p,m(p)). The following is our main
theorem.

Theorem 5.3. Suppose that Q,— Q, and that w is as in Proposition 5.2. Moreover
suppose that .=w, and that f,—f weakly in LP(RN) for some pe(1,0), p#N/2.
Then R, (2)fy—R()f weakly in L,(RY) for all gelp,m(p)). If convergence of f, is
strong in L,(RY) then R,()f, converges strongly in L,(R") for all qe[p,m(p)).

Proof. We first suppose that f € C* (R"Y). By Theorem 3.3 we have 2,(1)f — Z(A)f
in Ly(RY) as feL,(RY)nLy(R"). Moreover, by Proposition 5.2 the sequence
(Rn(A)f),ery is bounded in L., (RY)NL(RY) for all s>1. If pe(2, o) then by a
well-known interpolation inequality

12D = RO, <||2a(2)f — RO\ 20(2)f — RSN

for some e (0, 1) (see [26, inequality (7.9)]). As one factor is bounded and the other
converges to zero Z,(A)f,—#(2)f in L(L,(RY)). If pe(1,2) we use a similar
argument, replacing the L. -bound by the Li-bound with 1 <s<p. We next assume
that f,, > f in L,(R") is arbitrary. Fix ¢>0, and choose ge C* (R") such that ||f, —
gll,<¢ for large neN. This is possible as C*(R") is dense in L,(RY) if pe(1, ).
Taking into account Proposition 5.2

120 (2)f0 — (D,
SZu(2)(fn = DI, + [122(2)g — R(D)gll, + |2 (2) (g = 1),

<4Clfo = 9gll, + 12:(2)g — #(2)gll, <4Ce + || Z:(1)g — Z(2)4ll,

for all neN. As #,(2)g—#(%)g in L,(R") and ¢>0 was arbitrary it follows that
Rn(D)fn— RN in L,(RY). Using again interpolation and the uniform bound from
Proposition 5.2, convergence takes place in L,(R") for all ge[p,m(p)). This proves
the second assertion of the theorem. To prove the first we use duality. As the

formally adjoint operator .«7* given by (2.12) has the same structure as ./ we can
define A;f as before for pe(1, o0). We know from (2.13) that (45)" = 4. It therefore
follows that (e=43)' = =2 and thus (¢~%)' = e~/ implying that (43) = Ay (see
[36, Corollary 1.10.6]). Here p’ is the dual exponent to p defined by 1/p+ 1/p' = 1.
Also note that the constants C,w in Proposition 5.2 are the same for .o/ and .Z%.

Suppose now that f,—f weakly in Lp([RiN)7 and that geLq/([RN) for some
gelp,m(p)). Then p'e[q’,m(q’)), and by our previous result

Jim CRa(Df 9> = lim fo A(2)g> = <f R (D)g) = <R 97,
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showing that %, (1)f,—%(2)f weakly in L,(R") for all ge [p,m(p)). This concludes
the proof of the theorem. [

Let us finally consider the case of uniform convergence.

Theorem 5.4. Suppose that R,(2)—R(%) in L(L(RY)) for some ieR. Then
convergence takes place in ¥ (L,(RY), L,(RY)) for all pe(1, ) and q€[p,m(p)).

Proof. The assertion directly follows from Theorem 4.1, Propositions 5.1 and 5.2,
and the Riesz—Thorin interpolation theorem (see [8]). [

As in Corollary 4.2 we get the upper semi-continuity of the L,-spectrum with
respect to the domains.

6. Necessary conditions for convergence

In this section we discuss some conditions which are necessary for convergence.
One obvious necessary condition is that the support of the weak limit of every
convergent subsequence of solutions of (1.1) be in Q. We will characterise this by
looking at the spectral bound of —4 on bounded sets outside Q. Recall that for an
arbitrary nonempty open set U< R the spectral bound, 4;(U), of —4 subject to
Dirichlet boundary conditions is given by (4.1). We will write S <= < T if S is compact
and contained in the interior of 7.

Theorem 6.1. Suppose that Q,, Q<R" are open sets. Then the following assertions are
equivalent:

(1) The weak limit points of every sequence u,eH}(Q,), neN, in H'(RY) have
support in Q.
(2) For all open sets Bc <« R¥\Q (Note B is bounded as B is compact)

lim 4,(2,nB) = . (6.1)
(3) There exists an open covering O of RN\Q such that (6.1) holds for all Be 0.

If (1.3) is satisfied then (6.1) holds for all open bounded sets B< RM\Q.

Proof. Suppose that (1) holds, and that Bc =« R¥\Q is open and set 4, = 1,(2, N B).
Then, by (4.1) for every ne N there exists v, € C° (€, B) such that

(n + Dlleal 3> V0|3 = 1. (6.2)
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As Bc cRM\@Q, in particular B is bounded. Hence by the Sobolev inequality v, is
bounded in H'(R") and therefore has a weak limit point ve H}(Q,n B). Suppose
that v is such a weak limit point, and that v,,—v weakly as k— co. By assumption
supp(v)c Bc cRM\Q, so by (1) it follows that v = 0. As B is bounded Rellich’s
Theorem shows that v, —0 in Lz([R{N). Hence, (6.2) can only be true if 4,, — 1 - o0,
implying that 4,, > o0 as k— oco. The above arguments apply to every weak limit
point, so (1) implies (2). If (1.3) is satisfied then every limit point is in
ve HY(Q)nH}(B) even if we only assume that QB =0. Hence v =0, and the
above argument again shows that 4, — co. This proves the last statement of the
theorem. Choosing ¢ to be the class of all open sets B « RV\Q assertion (3)
immediately follows from (2). We now prove that (3) implies (1). Suppose that
u, € H} (Q,), and that u,,—u weakly in H'(R") as k— oo. Further, suppose that ¢ is
an open covering of RM\Q and fix B< €. If pe C* (B) then gu,e H}(Q,n(2N B).
Multiplication with ¢ is a bounded linear map on H'(RY), and thus it is weakly
continuous, so gu,,—ou weakly in H'(RY). As u,¢ has support in a fixed bounded
set for all neN by Rellich’s theorem ¢u,, — @u strongly in Ly(RY) as k— 0.
Moreover, by (6.1) we have

2 . 2 . -1 2
lpul; = lim [lpus |3< lim 21(2,0B)" [V} =0.

Hence pu = 0 almost everywhere for all o € C° (B), so u = 0 almost everywhere in B.
As O is a covering of RM\Q it follows that supp uc Q, proving (1). O

Remark 6.2. In general, it is not true that 4;(Q, "(Q) — oo (see Example 8.1 below).
We showed in Theorem 3.3 that 4;(2, "(Q)— oo implies uniform convergence if Q
is bounded. We also pointed out in the proof of Theorem 3.3 there that
21(2,n(Q) > oo always if convergence is uniform.

So far we discussed necessary conditions on Q, outside Q. Next we want to derive
a necessary condition on the part of Q, inside Q. Recall that the capacity (or more
precisely (1,2)-capacity) of a set EcRY is given by

cap(E) = inf{||u|\i,1: ue HY(RY) and u>1 in a neighbourhood of E}
(see [29, Section 2.35]). Next, we characterise (1.4) in terms of capacity. A variant

appears in [38, Proposition 4.1]. A proof is given in [27, p. 75] or [44, p. 24], but for
completeness we include one in our framework.

Proposition 6.3. Suppose that Q,Q,<RY are open sets. Then condition (1.4) holds if
and only if for every compact set K< Q

lim cap (Kn(Q,) =0. (6.3)
n— o0
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Proof. To prove that the condition is necessary fix a compact set K<, and let
Y e Cr (L) be such that 0<y <1 and y = 1 on a neighbourhood of K. By (1.4) there
exists a sequence y, € H} (2,) such that i, - in H'(R"). By cutting i}, off with an
appropriate cutoff function, we can assume that supp i, = B for all ne N for some
open bounded set BoK. As C*(Q,nB) is dense in H}(Q,nB) there exists
¥, € C*(Q, 0 B) such that ||y, — Y,||;n <1/n. We now set ¢, = —,,. Then ¢, =
1 on a neighbourhood of Kn(Q,, and

cap(K nC) <loullzn <IW = Wl < (1 = dallfn + 1/n)°

for all neN. By choice of , the right-hand side of the above inequality con-
verges to zero, whence (1.4) implies (6.3). To show that the condition is suf-
ficient note first that by density of C*(Q) in H}(Q) it is sufficient to consider
peCr(Q). Hence let pe C(Q) be arbitrary. By definition of capacity there exist
V,eCr(Q,) such that y,=1 in a neighbourhood of suppen(Q, and
1W,,|[71 <cap(supp @ "(R,) + 1/n for all neN. By assumption ¢, —0 in H'(RV)
as n—oo. We then define ¢, = (1 —,)p. By choice of y, it follows that
¢,€CF(Q,). Moreover,

2 2 4\1/2
19 = @l <@l + 11Vl ) Il

for all neN. As ,—0 in H'(RY) it follows that ¢, — ¢ in H'(R"), completing the
proof of the proposition. [

7. Sufficient conditions for convergence

Let us first discuss two very special cases, namely monotone approximations of an
open set 2 by open sets from the inside, and from the outside. The easiest case is
approximation from the inside.

Proposition 7.1. Suppose that Q,, Q< R" are open sets such that Q,<Q,.1 <Q for all
neN, and Q = Q,. Then Q,— Q.

neN

Proof. As Hé (Q) is weakly closed and Q, =Q it is obvious that (1.3) holds. Suppose
that ue H}(Q). To prove (1.4) note that by definition of H}(Q) there exist
pre CF(Q) with @, —>u in H}(Q) as k— oo. We can assume that supp ¢, =Q;. By
assumption (Q,), .y is an open covering of the compact set supp(¢,) for all ke N, so
for every ke N there is a finite sub-covering of supp(¢@;). As Q, =Q,,;; for every ke N
there exists nx €N such that Q,>supp(e,) for all n=n; and np— co. If we set
U, = @y for nelng,niy1) then suppu, = H(2,) and wu,—u as required in (1.4).
Hence Q,,— Q as claimed. [O
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The above can be used to approximate problems on non-smooth domains by a
sequence of problems on smooth domains. This is a useful tool to get results for non-
smooth domains, using results on smooth domains. Such techniques were for
instance central in [5,19,32] or [34]. For approximations from the outside we need a
weak regularity condition on the boundary of Q, whose formulation requires some
properties of functions in H'(R"). As usual we call a function quasi-continuous if it
is continuous off a set of capacity zero. It can be shown (see [29, Theorem 4.4]) that
for every ue H'(RY) there exists a quasi-continuous function & such that u =
almost everywhere. It turns out that two such quasi-continuous functions are equal
except possibly on a set of capacity zero (see [29, Theorem 4.12]). Hence, one can
define traces of functions in H'(R") on sets of non-zero capacity. If u denotes a
quasi-continuous function one can show (see [1, Theorem 9.1.3] or [29, Theorem
4.5]) that for every open set QcRY

H)(Q) = {ue H}(R"): u quasi-contiuous and ulpq = 0}. (7.1)

One can also define H}(Q) by (7.1) for arbitrary, not necessarily closed sets Q< RY.
We make the following definition ([2, Definition 11.2.2]).

Definition 7.2. We say the (arbitrary) set ScR" is stable if H}(S) = H}(S°), where
S° denotes the interior of S.

Note that by (7.1) every open set Q< R”Y is stable. An excellent discussion of
bounded stable sets is given in [28].

Proposition 7.3. A set S<RY with non-empty interior is stable if one of the following
conditions is satisfied.

(1) SN S has the segment property except possibly on a set of capacity zero;
(2) all points in S NS except possibly a set of capacity zero are Wiener regular;
(3) for all xe dS NS except possibly a set of capacity zero

im inf SAPE(S) 0 B(x, 1)

0 Cap TS B )

where B(x,r) is the ball of radius r centred at x.
The last condition is in fact necessary and sufficient for the stability of S.

Note that, if dSNS is Lipschitz (or even smoother), then SN S satisfies the
segment condition and SN S is therefore stable.

Proof. For a proof of (1) see [27,44, p. 77/78; Section 3.2] or [46, Satz 4.8], for (2) we
refer to [25, Theorem 2.5%], and for (3) to [2, Theorem 11.4.1]. O
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Proposition 7.4. Suppose that Q, > Q,.12Q for all neN, and that int((,.n @) = Q.
If Q is stable then Q,— Q.

Proof. Clearly (1.4) holds. As int(("),.n 2») = Q it follows that all weak limit points
of u, € H}(Q) for neN have support in Q. Hence by definition of stability all weak
limit points are in H}(Q) as required in (1.3). Hence Q,—»Q. O

In [32] it is shown that bounded stable sets are those for which approximation
from the outside and from the inside yields the same limit problem. We next discuss
non-monotone approximations of an open set.

Theorem 7.5. Suppose that Q,, Q are open (not necessarily bounded) sets in R . If the
following three conditions are satisfied then Q,— Q:

(1) cap(Kn(Q,)—0 as n— o for all compact sets K =Q;

(2) There exists an open covering O of RM\Q such that J,(UNQ,)— o as n— oo for
all Ue0;

(3) We have H}(Q) = H}(QUT), where

r=) (U (ka8Q)> c0Q. (7.2)

neN \k>=>n
Before we give a proof let us emphasise that, by the results in Section 6, the first
two conditions are necessary for convergence, and thus cannot be weakened. Note
however, that the last condition is not necessary in general (see Example 8.5 below).
The set (7.2) is used in [44].

Proof. From the first assumption and Proposition 6.3 we see that (1.4) holds.
Moreover, by Theorem 6.1 and the second assumption every weak limit point of
u,e H)(Q,), neN, in H'(R") has support in Q. It remains to show that every such
limit point is in H} (). We assume that u is quasi-continuous and show that u = 0
on OQ\I' except possibly on a set of capacity zero. It is easily seen from (7.2) that for
every xe OQ\I" there exists a neighbourhood U such that UnQ,n0Q = 0 for all n
large enough. Suppose that U is such a neighbourhood of xedQ\I', and that
YeCr(U) is a cutoff function with 0<yy <1 and y = 1 on a neighbourhood ¥ of x.
Then Yy, eH(} (Q) for n sufficiently large by (7.1). Hence for every weak limit point
of u of u, we have Yyue H}(Q). In particular, by (7.1) we have u =0 on ¥V noQ.
Repeating the same argument for every xe dQ\I" shows that u = 0 on OQ\I". As we
know already that supp u<=Q it follows that ue H)(2uTI'). By condition (3) we have
ue H}(Q), proving (1.3). Hence Q, - Q as required. O

We next discuss some sufficient conditions for (2) to be satisfied. They are by no
means the best, much more general situations can occur! However, they are easy to

apply.
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Proposition 7.6. Let U,cR"Y be open. Then 11(U,)— oo if one of the following
conditions are satisfied:

(1) |U,| =0 as n— oo;

(2) U, is the union of connected components U, ., and infi Ay (Uyx)— o0 as n— oo;

(3) U is a bounded set and U, < U\K,,, where K, is the union of n closed balls with
radius ry, evenly spaced in U. Moreover nrN=— oo if N>3 and n/|log r,| - oo if
N=2asn— .

Proof. To prove that (1) is sufficient note that by the Faber—Krahn inequality
A (Uy,) = 21(By), where B, is a ball of the same volume as U,. As |U,| -0 the radius
of B, must converge to zero. It is well known that A,(B,)— oo as the radius
converges to zero, hence also 1, (U,) — oo (see [7, Theorem 3.4]). To prove that (2) is
sufficient simply note that the spectrum of the Dirichlet problem on U, is the union
of the spectra on the components of U,. For a proof that (3) is sufficient we note that
the spectral bound is monotone decreasing if the domain is increasing. Then use the
result from [38, p. 44/45]. O

Finally, we want to give a result which can be used in certain situations to verify
the uniform resolvent bound (3.2).

Proposition 7.7. Suppose that U,, ne N, are open sets with inf,cn 11 (U,) >0, and that
Q is a bounded open set. Then inf,cn 21 (QuU U,)>0.

Proof. For neN set Q, = Qu U,. Assume that there exist a subsequence @,, such
that 4,(Q,,) — 0 as k — co. By characterisation (4.1) of 1;(€,) there exist u,, eH& (Q,)
with ||u,, ||, =1 for all keN, and ||Vu,,||,—>0 as k— co. In particular, (u,), . iS
bounded in H'(RY). After possibly selecting another subsequence and renumbering
we can therefore assume that u,—u weakly in H'(R"). We know already that
||V, ||, —0, so Vu = 0. Hence u is constant, and as ue H'(R") we must have u = 0.
By Rellich’s Theorem u,—0 in L,(B) for every bounded set B=R". Suppose now
that e C* (RM),0<y<1and y = 1in a neighbourhood of Q. Denote by B an open
ball such that supp = B. Clearly yu,e H}(B) and (1 — y)u, e H}(U,) for all neN.
By characterisation (4.1) of the spectral bound

|l < [[Wtan 5 + [1(1 = ¥ )un ]
—-1/2 -1/2
< 2 (B) PV W)y + 21 (Un) IV (1= ¥ )un)| |
< max{2(B)"%, 21 (Un) "2 ([Vually + lleta] 5 ).

where we used in the last step that supp(Vy)<B. By assumption there exists a
constant ¢>0 such that max {4;(B)""/?,4,(U,)""/*}=¢ for all neN. As || V||, +
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|[ttn]| g0 it follows that u,—0 in Ly(RY), contradicting the assumption that
[lun|l, =1 for all neN. O

8. Examples

In this section we provide some examples of converging domains. The main
purpose is to illustrate by simple examples the various conditions discussed, and to
show that they are optimal. To show that we do not gain anything by working with
connected sets, all examples given involve connected sets ,. We first show that
convergence of resolvents does not need to be uniform.

Example 8.1. Consider a sequence of dumbbell-shaped domains as depicted
in Fig. 1, where B, is a ball of radius r,>0 and C, a strip of length /,. We
claim that Q,=ByuC,UB,—»Q =By if /,—» oo and the width of C, goes to
zero. Clearly |[BnQ,|—0 for every bounded open set B= RM\Q, so by Proposition
7.6 we have 4(Q,nB)— o0. As 9Q is smooth and Q<=Q, for all neN it follows
from Theorem 7.5 that Q,— Q. We now assume that r, = r is fixed. By (4.1) we
have 7;(2,\Q)<A(B,) for all neN. As B, is a ball of fixed radius 1;(2,\Q)
is bounded. Hence by Theorem 4.4 we do not have uniform convergence of
resolvents.

Next, we show that (3.2) is not automatically satisfied even if
r€0(—Aq,) No(—Ag) for all neN.

Example 8.2. Consider a similar sequence of dumbbell-shaped domains as in
Example 8.1, and assume that /,— co and r,— oo. Moreover let .o/ .= —A4 and
A=0. As 21(2,),41(2)>0 for all neN we have 0e9(—Ag,) no(Aq) for all neN.
Assuming that r, - o0 we have 1;(Q,)—0 as n— co. On the other hand, we know
that ||2,(0)]|=41(2,)"" > o0, so (3.2) cannot be true. By the uniform boundedness
principle (see [47, Section II.1]), condition (3.2) is necessary for %,(4)f to converge.
Hence we cannot do without (3.2) in Theorem 3.3.

As a variant of the above, we construct an example where @, has uniformly
bounded measure. To do so we first look at a dumbbell with two fixed balls B; and

Fig. 1. A dumbbell-shaped domain.
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B, and handle C,. Letting the width of C, go to zero the dumbbells converge to
By U B,. The domains are contained in a fixed bounded set, so by Corollary 4.7 we
have uniform convergence, and thus by Remark 4.3 the first eigenvalue converges to
the first eigenvalue of the larger of the two balls. Now go back to the original
situation. We let B, be a ball of fixed radius larger than the radius of B, and set
2= A1(B,) (which is independent of n). Note that A<l(By). By the above
considerations we can choose C, such that |1;(Q,) — A|<1/n and Q,— By. Hence,
even if /,— o0, we get that 1,(Q,)—>A<41(By). If we choose .o/ = —A4 then
|2(2)||= (4(2,) — )" — o0 as n— oo. Hence, %,(4)f does not converge in general
if (3.2) does not hold.

Next, we give examples showing that the spectrum does not in general depend
continuously on the domain. The above example shows that the limit points of the
spectrum do not need to be in the spectrum of the limit problem. Next, we show that
a point in the resolvent of the limit problem can be in the spectrum of all perturbed
problems, so the assertions of Theorem 4.1 are not true in general.

Example 8.3. Here we show that a point in the resolvent set of the limit problem
does not need to be in the resolvent set of the corresponding problem on €, even for
large n. Consider Q,, as depicted in Fig. 2 with the angle , >0 as n— oo.

If Q is the ball then it is obvious that (1.4) holds. Moreover |[BNnQ,| -0 as n— o
for every bounded open set B< RM\Q. As Q is smooth Proposition 7.6 and Theorem
7.5 imply that Q,—Q. Now let o/ = —4 and 1:=0. As Q is a bounded domain
clearly 0eg(—Agq), but 0ea(—Ag,) for all neN as Q, contains arbitrarily large balls.
Hence #,(0) does not exist for all neN.

Next, we give some examples showing that the part of Q,, outside the limit domain
may have large, even increasing or infinite measure, and still Q, —» Q with resolvents
converging uniformly.

Example 8.4. Let us discuss simple cases where Q, —Q but the measure of Q,N(Q
does not converge to zero. In all the examples we make use of Friedrich’s inequality
(see [39, Theorem I11.5.3]) which implies that 4,(S,)— oo if S, is an open set lying
between two parallel hyper-planes whose distance approaches zero as n— co.

In a first example we let Q be an open cube and add ““fingers” to one of the sides as
shown in Fig. 3. If we increase the number of fingers such that the volume is

Bn

~
~ <

Fig. 2. A disc with an infinite cone attached.
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Fig. 3. A cube with fingers attached.

Fig. 4. A sun-like domain.

preserved, letting their width go to zero, then by the above remark and Proposition
7.6 we have 41 (2,\Q)— c0. As Q<= Q, and Q is Lipschitz all conditions of Theorem
7.5 are satisfied, so Q, — Q. If we extend the fingers to infinity then still 2, — Q, but
|Q,\Q| = co. Moreover, as 4;(2,\Q) — oo Theorem 4.4 applies so we have uniform
convergence of resolvents.

Similar arguments apply to the sun-like domain shown in Fig. 4, where we increase
the number of rays but make them thinner. We arrive at the same conclusion as
above. Note that every open set in RY intersects Q, if n is large enough.

Next, we show that (3) in Theorem 7.5 is not necessary for convergence of
solutions.

Example 8.5. We use an example in [38, p. 46] to show that (3) in Theorem 7.5 is not
necessary for convergence. We let UcR?® be an open bounded set, and ScU a
compact smooth surface. Let K, .= U7:1 B, ;, where B,; are n balls of radius r,
centred at the evenly spaced points x,;€S. Moreover, assume that nr,— oo, but

nr>—0. Hence we can make sure that the balls do not intersect. Finally we let
Q, = U\K, and Q := U\S. It is then shown in [38, p. 46] that Q, — Q. On the other
hand, if we take xe S =0Q and a neighbourhood V of x then clearly Q,n0QnV #0
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for all neN. Hence S=1TI as defined in (7.2). Note however, that
HY(U)#H{(U\I') = H(Q) but Q,—Q, showing that (3) in Theorem 7.5 is not
necessary for convergence of solutions.

9. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. We will use the assumptions
and the framework introduced in Section 2. In particular, we will make extensive use
of the formally adjoint problem and its properties. Moreover, A is always given by
(2.5). We start by a lemma allowing us to prove strong convergence of solutions in

H'(RY).

Lemma 9.1. Suppose that 1>y, that f,,fe H ' (RY) and that R,(1)f,—~R()f
wealkly in H'(RN). If f,—f in H-Y(RY) then #,(2)f,, » R in H'(RY). Moreover,
if there exists an open set B RN such that f,, —f in H='(B) then #,(\)f, —»Z()f in
Hlloc(B)'

Proof. Suppose that ye C* (RY)n L., (RY) with |[Viy|e L., (RV). Then yue H'(R")
and by an elementary calculation

N N
a(Wu, ) = a(u, *u) + / u (Z <Z a; jajw> + (bi — a,-)w> o dx
RY i—1 \j=
N N
+ / lﬁuz Z a; j — a;;)OppOu dx (9.1)
RY i

i=1 j=I1

for all ue H'(R"). Suppose now that f,—f in H~'(R"), and that u, = Z,(2)f,—u :
= R(A)f. As A= 2y we conclude from (2.6) that

1 Gt = 1) 1y < @t = o, ey = o) + 2 — )3
= (e, i) + AWt [ + @, ) + 2l 5
— alun, Yu) = alpupuy) = 22 Chupuy - (9.2)

for all neN. As u,—u weakly in H'(R") we have

lim (a(Yuy, yu) + a(Yu, Yuy,) + 22 pu, Yy > ) = 2a(Yu, yu) + 22\||ﬁu|\§. (9.3)

n— oo
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Since u, is the unique weak solution of (1.1) we get from (9.1)

a(wum lﬂun) ‘/jzun>
N
/ (Z (Z ai, j0; W) + (bi —az)l//> O dx
1; =
v Z (ai,j — aj.;)Opb Oruy dx. (9.4)

i=1 j=1

Assume now that f, — f strongly, and let = 1. As u,—u weakly and f,, > f strongly
we get from (9.4) that

hm (a(tn, uy) "’)“H”nug) = nlin;) Sy = Lfouy = alu,u) + ;“Hu”%a

n— oc

where we used that u is the weak solution of (1.2). Together with (9.2) and (9.3) it
follows that |[u, — u||z gy —0, that is, u,—u in H'(RM). This proves the first

assertion of the lemma. Now consider the case where f;, —f in H~!(B) for some open
set BcRY. Let U< = B be open and choose y € C* (B) such that 0<y <1 and ¢ = 1
on U. As u,—u weakly in H 1(RN ) it follows from Rellich’s theorem that u, —u in
L, (supp ). Hence in every term in (9.4) there is a weakly and a strongly converging
sequence. Using (9.1) and that u is the weak solution of (1.2) we therefore get

Tim (@i, i) + A [3) = alhu, ) + Al .

Together with (9.2) and (9.3) we see that ||y (u, — u)|[ ;1 gv) >0 as n—>c0. As ff =1

on U it follows that u, »u in H'(U), showing that u, »u in H\} (B). O

We next prove a lemma about strong convergence without assuming that 1> 4.

Lemma 9.2. Suppose that R,(1)f,—R(L)f weakly in H'(RY) whenever f,—f weakly
in H-YRN). If fu—f in HY(RY) then % (A)f,— R (L)f weakly in H'(RY) and
strongly in Ly(RY).

Proof. Suppose that f, —f in H-'(RY). As %,(1)g—%(1)g weakly in H'(RY) by
assumption and (2.15)

lim (g, Z(Af> = lim {fo Ba(2)g)> = S R(g) = g #* (W) >  (9.5)

for all ge H-'(RY), showing that %7 (1)f,—%*(A)f weakly in H'(R"). As f,—f
strongly in H~'(RY) it follows from (2.15) that

lim %, (Dfll5 = i Ay (), Ru(D)fo>
= lim o By (DRADN> = S ARG = || RGN |-

n— oo
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As we know already that ?A’ﬁ(i)fn converges weakly it follows that it converges
strongly in L,(RY), completing the proof of the lemma. [

Proposition 9.3. Suppose that J.eR is such that R,(A) and #(1) exist for all ne N.
Then the following assertions are equivalent:

M) 2, f—RA)f in H'(RY) whenever f,—f in H'(R").
Q) & (W) f—R* (\)f weakly in H' (RN) whenever f,—f weakly in H'(R").

Proof. We first prove that (1) = (2). Suppose that f,—f weakly in H~'(R"), and
that ge H-'(RY). Then by our assumptions we know that %,(1)g—%(%)g in
H'(R"Y). Hence (9.5) applies for all ge H~'(RY), showing that %7 (1)f,—%*(/)f
weakly in H'(RY). To prove that (2) = (1) we suppose that f,—f in H '(RY).
From Lemma 9.2 we know that u, == %7 (1)f,, » %#*(A)f =: u weakly in H'(R") and
strongly in Ly(RY). In particular f, + (do — A)u, —f + (lo — A)u in H™'(R"). Hence
by Lemma 9.1 and the resolvent equation

Ay(Wf = Ry (20) (o + (G = D) > B (20) (f + (20 = 2)u) = A*(A)f

in H'(RY) as n— oo, completing the proof of the proposition. [

Proposition 9.4. If one of the equivalent statements in Proposition 9.3 are true for some
operator o, then Q,— Q, that is, (1.3) and (1.4) hold.

Proof. We prove that the first statement in Proposition 9.3 implies (1.4), and that
the second implies (1.3). As both are equivalent the assertion of the pro-
position follows. Suppose now that #,(A)f,, —»#(A)f in H'(RY) whenever f;, —f
in H'(RY). Fix @eH}(Q) and set f = (2+ Agv)p. Then by Lemma 2.1 we
know that ¢ = 2(4) is the unique weak solution of (1.2). Set ¢, = %,(1)f. Then
by assumption ¢,—¢ in H'(RY). As ¢,eH}(Q,) for all neN, this proves
(1.4). Suppose now that %%(1)f,—~%*(.)f weakly in H'(RY) whenever f,—f
weakly in H'(RV). Let u,e H}(2,) be such that u, —u weakly in H'(RY) for
some subsequence (i, ) .- To show that ue Hj(RY) we set fy == (4 + Afy)un. By
Lemma 2.1 we know that u, is the unique weak solution of (1.1) with .&Z replaced
by /% As Af, e Z(H'(RV),H'(R")), and every bounded operator is weakly
continuous, it follows that f, converges to f = (AE;N + A)u weakly in H'(RY).
By our assumptions un:,@nﬁk(l)f,;ké,%ﬁ(i)f:ueH&(Q), proving (1.3). Hence
Q,—Q as claimed. O

Corollary 9.5. Assertions (1)—(3) of Theorem 3.3 are equivalent.
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Proof. Suppose that (1) of Theorem 3.3 holds and that f,—f weakly in H~!(Q). By
(3.2) the sequence u, == #,(2)f, is bounded in H'(R"), and therefore has a weak
limit point ue H'(R"). By (1.3) we have ue H}(Q). As Aeo(—Ag) it follows that u is
the unique solution of (1.2). Recall that (u,) is bounded, so by Corollary 3.2 we have
u,—u = R(A)f. As the spectra of the formal adjoint problems is the same as the one
of the original problems the above procedure also works for the formally adjoint
operator ./*. Combining this with Proposition 9.3 shows that (1) = (3). Suppose
that (2) or (3) of Theorem 3.3 hold. Then %,(u)f exists and is a weakly convergent in
H'(R") for all fe H'(R"). In particular #,(u)f is bounded for all fe H'(RY),
and thus by the uniform boundedness principle (3.2) follows. Using Proposition 9.4
we conclude that (1) holds. Hence (1)—(3) in Theorem 3.3 are equivalent. [

Next, we consider the case 4>/ and prove the remaining part of Theorem 3.3.
Proposition 9.6. If 1= 4 then (3) and (4) of Theorem 3.3 are equivalent.

Proof. It is obvious that (3) = (4). Assume that (4) is true, and that 7 is the dense
subset of H~'(RY) for which R,(1)g—%(4)g for all geV. Let (f,),.n be an
arbitrary sequence converging to some f in H~'(R"). Given &¢>0 we find ge V such
that [|f — gl| ;-1 mv) <oe/8. As f—f in H™'(R") there exists npe N such that ||f, —
9l 1wy <oe/4 for all n=ng. Set uy = Ry(4)fy and v, = A,(4)g. Similarly define
u=RL)f and v:= R(1)g. As =2y we have from (2.7) and the choice of g that

[ — ”HHI(RN) < fun — U”HHl([RN) + [|on — U||H1(RN) +lv— u”H‘(RN)

2 2
< o I[fn — gHH*‘([REN) + |lvn — U||H1(R~'V) +& - g||H*‘(RN)

& &
szt [[on = vl g1 vy T3

for all n>>ny. By assumption (4) we have v,—v weakly, and thus strongly in H'(RY)
by Lemma 9.1 an 4> 4. Therefore there exists 7 € N such that |[v, — v|[;p gy) <&/4

for all n>ny. Hence, ||u, — u||jp gv) <é for all n>max{ng, n1}. As ¢>0 was arbitrary
u,—u in H'(RY), proving (3). O

To complete the proof of Theorem 3.3 it remains to establish the equivalence of (5)
to the other assertions if |Q,] is uniformly bounded. The difficulties in the proof come
for two reasons. The first is that we do not assume that all Q,, are contained in a fixed
bounded set and thus %#,(4)1 may only converge weakly. The second is that .o/ has
only bounded and measurable coefficients, so we cannot assume that 2(1)1e C'(Q).

Proposition 9.7. Suppose that (2,),.n has uniformly bounded measure, and that
A=Ao. Then (5) of Theorem 3.3 is equivalent to (1)—(4).
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Proof. By assumption there exists M >0 such that |Q,|<M for all neN. To show
that (1) implies (5) we set u, .= Z,(A)1. As |Q,|]<M it follows from (2.7) that
[ g1 vy <20 1710,y = 2001121 <207 ' M2, Hence, (u,) is relatively
weakly sequentially compact in H'(RY). Now fix pe H}(Q). By (1.4) there exist
¢, € H(Q,) such that ¢, > ¢ in H'(RY). Note that ||, — @,,||, <|2 U Qu|"?[|¢, —
qom||2<(2M)l/2||q)n — @,||, for all n,meN, showing that (¢,),. is also a Cauchy
sequence in L;(RY). As u, = %,(2)1 we have

(i, ) + 2ty P> =/ 0, d.
rRY

As ¢,—¢ in Li(RY)~nH'(R") it follows that every weak limit u point of (u,)
satisfies the above identity with n deleted. By (1.3) and since ¢ was arbitrary we have
u= Z(2)1. Hence the relatively weakly compact sequence (u,) has a unique limit
point, and must therefore weakly converge to %#(4)1 as claimed.

We next prove that (5) implies (4). Set v, = #,(2)1 and v:= %#(4)1. Then by
assumption v,—v weakly in H'(R"). Fix ¢ € C*(Q) and an open balls B and B; such
that supp ¢ = B< = B;. We want to show that v,—vin H'(B). We set f,(x) = 1 for
xeByuQ, and f,(x) == 0 otherwise. Similarly define /" by deleting » in the definition
of f,. Then clearly v, = #,(A)f, and v = Z(1)f. Moreover, f, —f in Ly(B), and thus
by Lemma 9.1 we have v,—v in H'(B). We now derive some properties of v. By
standard regularity theory ve C(Q) (see [26, Theorem 8.24]). Moreover, by Lemma
2.2 we know that v>0. Hence we can apply Harnack’s inequality for super-solutions
(see [26, Theorem 8.18]) to conclude that v(x)>0 for all xeQ. As supprc =Q

=0
n Un

is well defined for all ne N, and ||@/v|| , < co. We next show that ¢, — ¢ in H'(R").
First note that

b 4
low=olly = |[ 20, = o)|| <[ [2]]_ 11en = ol

showing that ¢, — ¢ in Ly(RY). To prove that the gradients also converge we first
show that ¢/ve H'(RV). To do so set w, = @(v* + ) "/2. Clearly w,—¢/v in
Ly(RY) as ¢—0. Using the chain rule for Sobolev functions (see [26, Theorem 7.8])
and then passing to the limit we get

| v e—-0 1

- - L 2 _9e
Vw, = E +32)1/2 Vo @ +82)3/2 Vv— vV(p 2 \Y%%

in Ly(RY). By definition of weak derivatives V(¢/v) = v 'V + v=2¢Vv. Hence

Vo

Vo, = gVun +—0v, - %UHVU
v v v
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for neN, and so ¢,e H'(R"). Moreover,

Vo, = Voll,< [I(Ve)/v

oo [1Un — U||2,B

+110/0ll 1V (00 = V)5 + [0/ 01| V0l (00 = V)], 5-

As v, —vin H'(B) the first and the second terms on the right-hand side of the above
inequality converge to zero. It remains to show that also the third converges to zero.
To do so we first observe that there exists a constant M>1 such that
max{||va|| .., ||v]| . } <M for all neN (see [26, Theorem 8.15] or [21]). Hence,

11V0l(0n = 0)| 25

-/ Voo - o dv [ Vi - o d
([Vu|<klnB [[Vo|>K]

<kl|v, —v||§'B+4M2/ Vo) dx.
' |V >Kk]

Given ¢>0 we can fix k such that the second term on the right-hand side is smaller
than &/2. As v,—v in Ly(B) we can then choose npeN such that the first term is
smaller than ¢/2 for n>ny. Hence ¢, — ¢ in H'(R"). Suppose now that f e C (R"),
and that u, = 2()f. Then by (2.7) the sequence (u,), .y, is bounded in H'(R"), and
thus relatively weakly sequentially compact. For ¢ e C*(Q) we let ¢, € H}(Q,) be
the functions constructed above. Then a(uy,¢,) + A<u,, ¢,> = {f,¢p,> for all
neN. As ¢,— ¢ in H'(RY) it follows that a(u, ) + 2{u,@» = {f,p) for every
weak limit point u of (uy,), .- We next show that every weak limit point of (i), is
in H}(Q). Suppose that u,—u weakly in H'(RY) as k—oo. Clearly (4g, +
AW pontun) = |||, £f2=0, and thus from Lemma 2.2 we have
IIf]l,vntu,=0. As the sequences converge weakly in L,(RY) we have
I o vnttin, > = If]],vtu, 0> =0 for all pe%” (R"Y) non-negative. Hence
lv|<||f||,u almost everywhere. As H}(Q) is an order ideal in H'(RY) (see [4,
Lemma 1.3]) it follows that ve H} (Q2). Therefore the only weak limit point of (i),
is u=Z(1)f, and as the sequence is relatively weakly sequentially compact u,—u
weakly in H'(RY). Finally, recall that C*(R") is dense in H~'(R"), so we have
proved (4) of Theorem 3.3. By Proposition 9.6 the assertion of the proposition
follows. [

Appendix A. A spectral mapping theorem

Suppose that E, F are Banach spaces, and that 4 is a closed densely defined
operator on F with domain D(A). Moreover, suppose that there exist ie #(F, E)
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and re Z(E, F) such that roi = idr. For all 1eg(A4) we set

We then have the following spectral mapping theorem.

Proposition A.1. Suppose that 2€9(A), and that p#i. Then peo(A) if and only if
(u—2)""eo(2(2). If that is the case then

A0 = ~(u—2) "2 AG) (-1 (A1)

Proof. By replacing 4 by 4 — A we can assume without loss of generality that 1 = 0.
Hence let us assume that 4~' e Z(F). It is well known that 0+ peg(A) if and only if
wleo(A47") (see [31, Theorem II1.6.15]). Hence we only need to show that
weo(2(0)) if and only if u='ep(47"). To do so we first split equation

A0V —p'u=1 (A.2)

into an equivalent system of equations. Observe that P := ior is a projection on E
onto some subspace. If we set E; .= P(E) and E; .= (id — P)(E) then E = E, @ E; is
a direct sum. Clearly the image of 2(0) is in E;. As r =roP we have P-%(0) =
A(0)oP and thus (A.2) is equivalent to

(#(0) — u~ ) Pu = Pf, (A3)

—u'(id = P)u = (id — P)f. (A4)

Assume now that peg(A4~!), and fix fe€E arbitrary. It follows that v = (47! —
w')ePf is uniquely determined. We set u; == i(v) and note that u; = Pu; is the
unique solution of the first of (A.3). Clearly u, = —u(id — P)f is the unique solution
of (A.4) in E,. Hence u = u; + up is the unique solution of (A.2), showing that
weo(#(0)). Next assume that u~'eg(#(0)), and that geF is arbitrary. Set f ==
i(g) and note that Pf = f in that case. By assumption (A.3) has a unique solution u;.
As (id — P)f = 0 the solution of (A.4) is zero. Hence r(u) is the unique solution of
(u™' — A "Yu =g, showing that u~'eg(4~'"). We finally prove identity (A.1),
provided A, e g(A4). By the resolvent equation

(A=2)7" = (A=) dr — (= A)(A=2)").
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Using that roi = id this yields
A(2) =io(A — )~ (idpor — (u— A)roio(Ad — 1) 'or)
— o — ) or(idg — (1 — 2)io(A — 7)""or)
— 2(0)(idg — (1 — ) R(2)).

Rearranging we get Z2(u)(#(2) — (u—2A)"") = —(u—1)"'%(%). As we know that
(u—2)"eo(2(%)) identity (A.1) follows, completing the proof of the proposi-
tion. [

Appendix B. Uniform convergence of operators

We prove a convergence theorem useful in the context of domain convergence.
Note that we do not assume that 7, below be compact.

Proposition B.1. Suppose H is a Hilbert space and T,,, T€ ¥ (H). Then the following
assertions are equivalent:

(1) T is compact and T,—» T in ¥ (H);
(2) Tuf,— Tf in H whenever f,—f weakly in H;
(3) T,— T strongly and T,f,,—0 in H whenever f,—0 weakly in H.

Proof. We first prove that (1) = (2). Assuming that f,—f weakly in H we have
W Tufu = TAN< T = TIAll + T (fo = I

The first term on the right-hand side converges to zero as 7,— T uniformly by
assumption. The second term converges to zero as f, — f—0 weakly in H and T is
compact. Hence (2) holds. It is clear that (2) = (3), so we prove that (3) = (1). We
start by showing that T is compact. To do so it is sufficient to show that 7f, -0 in H
whenever f,—0 weakly in H. From (2) it is clear that T, converges strongly to 7.
Hence Ty f, — Tf, as k— oo for every ne N. Hence for every neN there exists k, >n
such that || Ty f, — Tfu||<1/n. Therefore

WAl < WTfw = Tifull + 1 Tk, (S = Si)

|+ 1T,

1
<o+ | Tk, (fo — fr,)

|+ TSl

As f,—0 weakly if follows from the assumptions that || T% fx,
gk, = fn —Ji, it follows again from the assumptions that ||Ty, gx,|

| >0 as n— 0. Setting

= 1Tk, (fu =
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Ji,)]| >0 as n— co. Hence the right-hand side of the above inequality converges to
zero as n— o0, so Tf,—0 in H. This shows that 7 is compact. Now we prove
uniform convergence of T,. Assume to the contrary that 7, does not converge
uniformly. Then there exists >0 and f, € H with ||f,|| = 1 such that ¢||T,f, — Tf,||
for all ne N. As bounded sets in a Hilbert space are weakly sequentially compact we
can assume that f,—f weakly in H by possibly passing to a subsequence. Therefore

O0<e<||Tufn = THISITalfu = NI+ TS = TAN+ T =Sl (B.D)

The first term converges to zero by assumption as f, — f—0 weakly in H. The second
term converges to zero as 7, — T strongly. The last term converges to zero as 7 is
compact and f — f,—0 weakly in H. Hence we get a contradiction to (B.1), showing
that T, must converge in #(H). Hence (3) holds, completing the proof of the
proposition. [

Note that in the above proposition we could replace the Hilbert space by an
arbitrary reflexive Banach space.

Note added in proof

Part (2) of Proposition 7.3 is wrong. The statement is taken from [25]. However,
[25] cannot be right since in [32, p. 55] there is an example of a Wrener regular
domain which is not stable!
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