Nonlinear Stochastic Homogenization ().

GrTANNI DAL MAso - LuciaNno MoODICA

Sunto. — In quesio lavoro viene studiata U'omogeneizzazione stocastica per funzionali integrali del
Calcolo delle Variazioni con integrando dipendente dalla variabile spaziale e convesso nel-
gradiente, soddisfacente alle usuali ipotesi di uniforme coercitivita e limitatecza. I risultato
generale ottenuto copre uwn largo spettro di fenomeni riguardanti materiali con disposizione
casuale di pil componenti il cui comportamento fisico é retto da equazioni variazionali non
lineari.

0. — Introduction.

The mathematical theory of homogenization for periodic structures has been
greatly developed in the 1970’s by E. DE GioreI, 8. SPAGNOLO, I,. TARTAR, N. 8.
BArvArov, 1. BABUSKA, E. SANCHEZ-PALENCIA, A. BENSOUSSAN, J. L. Lions, G. C.
PapANICOLAOU, C. SBORDONE, P. MARCELLINI, V. V. ZHIKOV, S. M. Kozrov, O. A.
OLEINIK, KHA T°EN Na@oAN, F. MURAT and many other authors (see [1] and the
bibliography of [6]).

More recently, some attention has been devoted fo the stochastic homogenization,
in particular in boundary value problems for the linear second-order uniformly
elliptic equations in variational form '

(1) i Di(“w(wy %)Di“): g (e—>0+4)

iyd=1

where o is a random parameter and the matrix field (a,;) is mainly supposed to be
bounded, positive definite, homogeneous and ergodic: see 8. M. Kozrov [13], V. V.
YURINSKLS [24], G. C. PAPANICOLAOU and 8. R. 8. VARADHAN [19] and the volume [3].
The physical meaning is obvious: the structures to be homogenized are not periodic
but, in a sense, only stochastically periodic and this corresponds naturally to a
large number of real phenomena in physics, chemistry and engineering.

In this paper we propose a new scheme to study stochastic homogenization,
which covers the Euler equations of a broad class of convex integral functionals,
hence in particular the linear equations (1) (arising from integral quadratic forms)

(*) Entrata in Redazione il 29 settembre 1985,
Indirizzo degli AA.: G. Dar Maso: Istituto di Matematica, University di Udine, Italia;
L. Mopica, Dipartimento di Matematica, Universita di Pisa, Italia.
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but also much more general nonlinear variational equations. In the case (1) we
obtain independently the results already known, except for g slight difference about
which we shall return afterwards in the remark (a) of this introduction.

The main feature of our secheme is to pass from the point of view of the stochastic
differential equations to be solved to that one of the random integral functionals
to be minimized. In the classical, let us say « deterministic », homogenization, this
passage is the convergence in energy of E. DE GIORGI and S. SPAGNOLO [8] and was
performed for the convex integral functionals by P. MARCELLINI [16]. The present
paper may be congsidered a stochastic version of the Marcellini’s one and also a
generalization of it.

Let us describe more closely the content of this work. First, we introduce the
class § of all the integral functionals of the form

Flu, A) = f #(z, Du(w)) dw
4

(% real function in a suitable funetion space U, 4 open bounded subset of R») with
f(#, p) measurable in @, convex in p and such that

elplr<f(m, p)<exf|pl* + 1)

where 0 << ¢;<¢, and «>1 are fixed real constants.

~ As we want to study the random integral functionals, that is the « measurable »
maps « — F(w) of a probabilistic space £ into F, and their eonvergence, we need
some structure on F. Then we construct on § a distance d so that the following
two main eonditions are fulfilled:

(i) (&, d) is a compact metric space;

.(ii) the funetion

F —Min (F, A, ¢, %,) = min {F(u, A) —{—fqpu dx: w—u,€ Wﬁ""(A)}
* 4

is (uniformly) continuous on (F, d), whenever A is an open bounded subset of Rn,
peL¥(4) and u,e Wh*(4).

Let us remark that conditions (i) and (ii) depend on the fact that the convergence
in & is equivalent to the I“convergence, in the sense of E. DE GIORGI (see [7]).

Condition (i) says that (¥, d) is a good setting for the standard methods of Proba-
bility Theory. Condition (ii) implies that the convergence in probability of a se-
quence (F,(w)) of random integral functionals toward F_(w) yields direcily the
convergence in probability of the respective random minima Min (Fu(w), 4, ¢, )
to Min (F (), 4, ¢, %,).

Of course, if we want to obfain the convergence in probability of the solutions
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of Buler equations of F,(w) (in the case F,(w) are differentiable), we have to prove
also the « continuity » of *uhe minimizers (minimum points) but, in lack of uniqueness,
this is more complicated to be explained briefly and so we refer to corollary 1.23.

The main result we prove is the following. Let F, F.: 2 -~ & (¢ > 0) be random
integral functionals and denote respectively by f(w, x, p) and fw, =, p) their in-
tegrands. For every zc Z* and ¢ > 0 let us define the random integral functionals
7,1 0 F: Q > F by

(0. ) (@), 4) —ffw, + 4 Dul)) do
(0.F) (), A4) = f {2, Dute)aa.
’ 4

We say that F is stochastically 1-periodic if 7,F ~ F for every 2 e Z» where ~
means for us to have the same distribution law. We say that (F.) is a stochastic
“homogenization proeess modelled on F if F.~ g. I for every &> 0.

MAIN THEOREM. — Let (Fg) be a stochastic homogenization pi’ocess modelled on a
stochasticolly 1-periodic functional F. Suppose that theve exists M > 0 such that, when-
ever A, B are disjoint bounded open subsets of R with dist(A, B)> M, the two families
of random functions

o = (Flo)(u, 4) e and o — (F(w)(4, B)),eq
are independent.

Then there exists a single functional Foe F (or equivalently a constant random in-
tegral functional) such that (I':) converges in probability to F, as ¢ — 0t. Moreover
the integrand fo(z, p) of ¥y does not depend on x and

(2) fo(p __hmf Min (F(w), Quye, 0, 1,) dP(a
e—>0+ lQl/s[
where Q.= {w e R™: || < 1fe, i =1,...,n} is a cube, |Q,,| is its Lebesgue measme,

L(x) = p o is the linear function with gmdimt p, and P is the probability on Q.

In order to grasp betler this result, let us anticipate from the fourth section of
this paper a very simple one-dimensional example. For every &> 0 let us consider
a wire formed by small segments of lenght ¢ of two different materials randomly
chosen, having thermal conductivities 4> 0, 4> 0.
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The thermal energy of a piece A of this wire, corresponding to a temperature
distribution u, is

Fo(o)(u, 4) = f ae(o, 1)’ (1)* &t
A

where the generic random paramefer w is a sequence (w,),.; With values 4, A and

as(w,t) = w, if telke, (B +1el, keZ.

Then we may choose 2 == {4, A}* and the probability P equal to the infinite
product of the trivial equi-distributed probability on {1, 4}. Let F = F,; as
ay{w, t + §) = a,(®, 1) with &,= w, ;, then 7, F has the same distribution law of F
for every jeZ. Moreover g.F = F,.. Finally, if dist (4, B)>1, F(o)(u, A) and
F(w)(u, B) are independent because; roughly speaking, no unitary segment intersect
both A and B, hence the values of the energies on A and on B are independent.

Applying our theorem we obtain that there exists

Fofu, 4) = [f(u ) at
A

such that (¥:) converges in probability to F,. Calculating f, by (2), we have that
fo(p) = cp? with ¢ the harmonic mean of A and A. This shows that in this case the
homogeneous material after the stochastic homogenization is the same as after the
classical homogenization in which the two materials are regularly alternated without
randomness. Moreover, in this particular case, one could prove directly that ae-
tually (Fe(w)) converges to F, (in the sense of &, or I“converges) for P-almost all
o € £, because in dimension one there is a good characterization for the I-convergence
of the integral quadratic forms.
Let us return to our main theorem, by doing some remarks.

(@) Our hypotheses concern only the distribution laws of F, v, F, Fe, peF so0
obviously we can not obtain the almost sure convergence of (F.) to F,. However,
if we suppose g.F = F. instead of g.F ~ F, it remains open the question of the
almost sure convergence, which is verified in the example quoted above, in an
example studied by G. FACCHINETTI and L. RUsso [11] and in the ease (1) of second
order elliptic equations.

(b) Our proof relies essentially on De Giorgi’s I'-convergence Theory (under
this aspect the paper is self-contained) and on elementary Probability Theory. In
particular, we do not use explicitly Ergodic Theory.

(6) Actually, the erucial hypothesis of independence of F(w)(u, 4) and F(w)(u, B)
for dist (4, B)> M might be relaxed in a kind of asymptotic uncorrelation but it
should become less readable and more complicated to be verified in the examples,
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so we have preferred in this paper to consider a stronger but simpler hypothesis.
Depending on this, we can not attack directly here, for instance, the case of homo-
genization of chesshoard structures with cells of completely random size (the figure
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Fig. 2.

below should be a hint to understanding it) but only with cells whose random size
is estimated a priori from above. Let us reeall that the one-dimensional case of
homogenization with cells of completely random size, proposed by E. DE GIoRal,
was the starting point of this research (see L. MobIca [17]) and has been solved
by G. FaccHiNeTTI and L. Russo [11].

The plan of the paper is the following.
1. — Integral functionals and I™-convergence.
2. — Random integral functionals.
3. — Main results.
4. — Examples:

4.1. Homogenization with regular cells occupied by two materials rand-
omly chosen;

4.2. Homogenization with cells of bounded random size alternatively
occupied by two materials.

1. — Integral functionals and [™-convergence.

In this section we introduce the class of integral functionals we shall deal with
in the rest of the paper and we endow it with a topological strueture related to the

23 - Annali di Matematica
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Iconvergence. All the results we state here are substantially known but they are
often not easily available in the literature, so we prefer to give the proofs.

Let A, be the family of all bounded open subsets of R» and fix three real constants
01, C,, o Such that 0 << ¢, <6, and o > 1. These constants will be held fixed throughout
the paper, so we often omit to indicate explitly the dependence on ¢, ¢, a.

We denote by F = F(ey, ¢, o) the class of all functionals F: L (R") X #4, >R =
= R U {+ o0, — oo} such that

| f flao, Du(w)) do if ul,e WH(A)
3) Plu, 4) ={ 4
-+ oo otherwise

where f: R*x R*— R is any funection satisfying the following conditions:

(4) f(@, p) is Lebesgue measurable in 2 and convex in ?;

(5) alplr<fw, p)<e(p*+1), Vi, p)eR xR,

We shall refer o the left-hand side inequality in (5) as the equicoerciveness
of the elements of ¥ and to the right-hand side inequality as the equiboundedness
of the elements of &.

As usual, Du = (u/ow, ..., ou/ox,) denotes the gradient of w and WY*(4) denotes
the Sobolev space of the functions of L#(A) whose first weak derivatives belong to
I2(A). We shall denote by Wy*(4) the closure of C5(4) in Wh*(4).

Note that, if w e W"*(4), the function @ — f(», Du(»)) is non-negative and Le-
besgue measurable on 4 (recall that f(», p) is convex in p) so the integral in (3)
makes sense.

Actually, (3) defines F(u, A) for every e L, (A) (or also u e Lj, (4)) even if u
can not be extended to R* as an element of L (R"): for technical reasons, we prefer
not to take into consideration this case in the definition of F.

There is not this problem when e L*(4): in this case we may extend u to an
element @ of L (R") and the value of F(ii, A) does not depend on the extension @
of u. So, each Fe F defines, for every A € A,, a functional F,: L*(4) — R.

1.1. REMARK. —~ If Fe & , the integrand f(», p) of F is identified for almost all
w€ R~ and for all p e R". Indeed, if B (2) is the ball in R" with center in # and
radius g, [B,(») is its Lebesgue measure and ,: R"— R is the linear function with
gradient p, we have

1 .
lim —— F(l,, B,) = f(» for a.a. x€ R~.
g—>0+ [Bg(fﬁ)l ( 3 g) f( 7_p)

‘We say that a subfamily 3 of A, is dense if, for every 4,, A,¢€ 4, with -4,cc 4,
(A cc B means 4 c B), thero exists B B such that 4,cc Bcc A,.
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1.2. PROPOSITION. — Suppose B is a dense subfamily of A,. Then
F(u, A) = sup {F(u, B): Be $, BC A}

for every Fe 5, ue L,

(R, A € #,
ProoF - Trivial (if u¢ W“*(4), because of equicoerciveness (5)).

1.3. ProprosiTioN (Rellich’s Theorem). — Let A € #&,. Then any bounded subset
of Wy*(A) is relatively compact in L*(4). If, in addition, the boundary of A is Lipschitz
continuous, then any bounded subset of Wh*(A) is relatively compact in L*(A).

PrOOF. — See e.g. [22], sect. 25-26.

1.4. COROLLARY. — Let A € A,. Then any bounded sequence in W *(A) contains a
subsequence that converges in Ly (A), weakly in W-*(A) and pointwise almost every-
where in A.

ProoF. — It follows from Rellich’s theorem recalling that W:*(4) is reflexive
because « > 1 and that any convergent sequence in Iy, (4) contains a subsequence
which eonverges pointwise almost everywhere in 4.

1.5. PROPOSITION. — Let A € A, and F e F. Then the functional F 4 is lower semi-
continuous in L*(A). Moreover, its restriction to W *(A) is continuous in the strong
topology of W“*(A) and lower semicontinuous in the weak topology of Wh*(A).

PROOF. — The strong continuity of F, in W*(4) follows from convexity and
equiboundedness (5) (e.g. see [9], ch. 1, prop. 2.5). The weak lower semicontinuity
of F, in W"*(4) follows from convexity and strong continuity (e.g. see [9], ch. 1,
cor. 2.2). Now, let us prove the lower semicontinuity in L*(4), that is

(6) F (o) <lim inf F ,(u,)

h—> + oo

for every sequence (u,) converging in L*(4) to w,. It is not restrictive to assume
that (F4(u,) is bounded, so equicoerciveness (5b) gives that (Dw,) is bounded in
L*(A). On the other hand (u,) converges to u, in L*(A4), hence corollary 1.4 implies
that (u,) eonverges to u_, weakly in W“*(4). Then (6) follows from the weak lower
semicontinuity of F, in Wh-*(4).

1.6. COROLLARY. — Let ‘W be a dense subset of WH*(R") and B a dense subfamily
of A,. If F,Ge 5 and

F(w, B) = G(w, B), YweW, VBe %,

then F = G.
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ProoFr. — It follows from propositions 1.2 and 1.5, because Wh*(R") is dense
in Wh%(A) for every A € A, with Lipschitz continuous boundary and the family

of all these open sets is dense in #A,.
For Ae#,, denote by P, the best constant in the Poincaré inequality (see
e.g. [22], sect. 23, ineq. (23.5))

(7) f [ do<P,[|Duf* dow, YueWh*(4).
A A4

1.7. PROPOSITION. — Let A € A, and F e F. Suppose X is a nonvoid weakly closed
subset of W*(A) and ¢: 4 X R — R is & function such that ¢(x, y) is Lebesgue measur-
able in x and continuous in y. If

(8) ®(@, y) >Myla + wp(@) , V(#,y)e AXR

for some A >0 and uc L (A), then there exists the minimum in X of the functional
W: I4A) — R defined by

P(u) = Fofw) +[p(@, ulw)) a.
’ A

If X Cuy -+ WE(A) for some u,e Wh*(4), then (8) may be relaxed by requiring only
)\. > e OI/PA'

Proor. — First, suppose A > 0. By (8) and equicoerciveness (5), we have that

(9) W) >min {o, Blulpen— o, YeeX

henece m = zi‘]ngc Y(u) > —co. Since the case m = 4 oo is trivial, we assume that
m € R and we choose a minimizing sequence (%) in X such that (¥(u,)) is bounded.
Then we infer from (9) that (u;) is bounded in W-*(4) and, applying corollary 1.4,
we may select a subsequence (u,,)) that converges weakly in WL*(A) and pointwise
almost everywhere to a function u,ec Wh*(4). We claim that . is the minimum
point of ¥ in X. In fact, u,€ X because X is weakly closed and, by proposi-
tion 1.5, we have that

F a(theo) <lim inf F (%) -
h—> 4+ oo
On the other hand, pointwise almost everywhere convergence, Fatou’s lemma and
(8) give that
f(p(m, Ueo(#)) doo<Him inf | (2, wpey(2)) de .

A h—>+ o0 by
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Then, we conclude that

m<W(Uy) = Fi(ths) —f—fqo(w, Yoo (%)) dir << lim inf E[’( Ugy) =
)t h—>+ o0

and the proposition is proved.
In the case X Cu,+ Wy*4) and 1> —¢,/P,, (9) may be replaced by

99 Plu)> k1”“”§ﬂ:*(z1)‘ kz”“ol“vxvi»“(zi)'“ HIU‘HL‘(A) , YuelX

where k, > 0 and k,> 0 are suitable real constants. Indeed, by Poincaré inequality

we obtain that

0 — wo ]l 7acay <P all Dt — D[ 7 iy < P 4| [ D] + | D[ 7y
hence, by convexity

] oy <@ — S Uollgocay + 7% ooy <
<@- 3)1—“PAH | Dul| + ID%”‘Z“(A) + 81—“”“0”;&(4)<

<@ — &P | Dufgacyy -+ (1 — €)' P, 6| Dyl ey + €7
for every u € X and for every ¢e10,1[. Now, by (8)

V() > 01| Dulfesy + Ml — [plpw=
= 6] Du|fxay + (€1— 0)| Dullfocsy + Au]ixa— |plo >

( )204»—

> 8] Dl + [( ) + ﬂ] [0

"I “o”fa(A)

— (61— 0)(1 — )" 81_“||DuoHL“(A)— (61— 9) %( V24 to | £xay— | el 22

for every ue X, e €10,1[, 6 €10, ¢,[. Recalling that ¢,/P, 4 2> 0, we may choose ¢
and 6 small enough so that (¢,— 6)(1 —g)**2/P, -+ 2> 0 and (9) is proved. More-
over, the above subsequence (u,;) may be selected so that (u.y,) converges also
‘in L*(4) (Rellich’s theorem, see proposition 1.3) so, by Fatou’s lemma applied to

@(@, ua(h)(w)) — Aty (@)[* -

lim inffq)(w, g (2)) dw>f<p(x, U (%)) da

h—> 4
4 A

and the proof of this case is equal to the previous one.
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1.8. REMARK. — In the case X C u, + Wh*(4), (8) is verified for some 1> —e¢,/P,
if p(z, y)> y(@)|y|? with 1<8 < «, y € L?(A) and y equals the dual exponent of a/p.
In fact, the elementary inequality

i
ab< —-

&? 1 1
< pL —pe b 0,- +-=
pep“ _I‘qb (ay 1 &P, >0, q 1)

P
yields

1
1@y P> — eyl —Zp(@)lr, Vi, )4 X R, Ye >0

s0 it suffices to choose ¢ so small that — &’ > —¢)/P,.

1.9. EXAMPLES. — When o« = 2 proposition 1.7 applies in these well-known cases:

(a) X = Wt(4), f(z,p) = [p]* 9@, ¥) = Ay —wi(2)]*, 1> 0, u;€ L*(4): here the
minimum point of ¥ in X is the weak solution in W2(4) of the Neumann problem
for the equation Au = A(u — u,).

w
(0) X = o+ W§*(4), f(w, p) = 3 a:(@)p.p; satisfying (4), (5) and a;= a;,
Q=1 :
@z, y) = 2yy(x), y € L*(A): here the minimum point of ¥ is the weak solution in
W2(A) of the Dirichlet problem for the equation > D,(a,; D;u) = x with prescribed
boundary value u,. Gi=1

() X = WyP(4A), f(x, p) as above in (b), (@, y) =— ky* +- 2yx(®), 0 < k< ¢;/P:
here the minimum point is the unique weak solution in W;*(4) of the Dirichlet
problem for the equation '

n
> Dya; Dyu) + ku =y
Bi=1
(the uniqueness depends on the fact that ¥ is smaller than the first eigenvalue of
o, 4).
In these examples ¢(x, y) is smooth in y so we can consider the Euler equation
of ¥, but note that proposition 1.7 applies also to non-smooth wp.

In order to give a topological structure on F, we need the definition of e-Yosida
transform of a functional F e . ‘

For every FeF and ¢>0, the ¢Yosida transform of F is the function
T F: L (R") X #,— R defined by

loc
(10) T:.F(u, A) = inf {F(fv, A) - 1; f lv—ul*dx: ve L{‘QC(R")}
4

or also, by proposition 1.7

(107) T.F(u, A) = min {FA(?J) -+ }s— f [o—ul*de: ve WI’“(A)} .
4
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This kind of transform was considered for generic functions on metric spaces
in [7] (except for a slight unessential difference), motivated by the metheds oe-
curring in [8]; it is strietly related with the Fenchel-Moreau conjugation (see [9],
ch. I). The name « Yosida transform » comes from the following remark.

1.10. REMARK. — Let a =2 and f(z, p) = 3 a,(e)p.p, satisfying (4), (3) and
$,d=1

a:; = ;. By forgetting for a moment that R*¢ #£,, we caleulate F(u, R*) obtaining

F(u, R") = {Lu,u>, VYue W R") = Hy*R")

where L =— Y D,a;D,): Hy*(R") >~ H“*R") and {-,-> is the pairing between
=1

H**R") and H}*(R"). Now we shall show that
T F(u, R") = (I®u, uy, Yue Hy¥R")
where L®) = 1/e[I — I(I + eLy™*I] = I(I + ¢L)™I is the Yosida e-approximation

of L (e.g. see [2], pg. 28) and I is the natural embedding of Hy*(R") into H *(R").
In fact

T:F(u, R") = F(vs, R") -}- % f fve— u|? do
R~

where v, is the solution in Hy*(R") of

Lvs+lI(ve—u) =0.
&€

From the last equation we infer that
vo= (I + eL)*Iu
hence
1 1
Flve, R") + o f [ve— u|? do = (Lwe, ve) + <; T(ve— w),y ve— u> =
Rn

— (Le, 00> — (Lws, ve— > = (Lve, w> = (LPu, ) .

1.11. PROPOSITION. — Let F e F, u e Ly,

loc

(R"), A e £,. Then

lim 7. F{u, A) = sup T F(u, A) = F(u, 4) .

e—>0F >0

Proor. — It is obvious that 7' F(u, A) is non-increasing in e and bounded from
above by F(u, A), hence it suffices to prove that for every k < F(u, A) there exists
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&> 0 such that T, F(u, A)>k. Fix k < F(w, 4). By lower semicontinuity (proposi-
tion 1.5) there exists § > 0 such that

Fo,4)>Fk, YoeL*(A): f]'v--u]“dm< P
A
therefore, for these funetions v

F(U,A)—]—%f{v—u]“dx>k, Ye>0.
A

On the other hand, if ve L*(4) and f [0 — u|* dw>4d, then
4

1
F(o, A) —l—;f[v——u]“dw> g—, Ve>0
A
hence
TeF(u, A)>min {k,g} =k

for ¢ small enough.

Now, we define a distance on F. Let us choose a countable dense subset
W = {w;: je N} of WH*(R") and a countable dense subfamily $ = {B;: k€ N} of
#,. For instance, B could be chosen as the family of all bounded open subsets of
R» which are finite unions of rectangles with rational vertices. Let us define for
P, GeF

1

+ o0
(11) a(F, a) = kz o lare tg Ty, F(w;, By} — are tg Ty, G(w;, By)|.
V8=

1.12. PROPOSITION. — d is a distance on F.

ProorF. - If d(F, G) = 0, then proposition 1.11 and corollary 1.6 give that F = G.
The other properties of a distance are straightforward to prove.

1.13. REMARK. — By changing W and $ one may obtain different distances but
all of them are topologically equivalent to d: this will be a consequence of proposi-
tion 1.21. Moreover, it is obvious that in (11) aretg may be replaced by any increas-
ing, continuous, bounded function y: R — R.

The main reason for choosing d as distance on § is the link between d and
I'-convergence, a type of variational convergence proposed by E. DE GIORGI and
studied by many authors in the last years (see the bibliography of [6]). Let us
define the case of I-convergence we are interested in.

Let X be a metric space and let (F,) be a sequence of functions defined on X
with values in R. We say that (¥,) I'(X~) converges at a point #»€ X to 1€ R if



GIANNI DAL MAS0 - LUCIANO MoDICA: Nonlinear stochastic homogenization 359

the following two conditions are fulfilled:

(12) A<lim inf #,(x;)
h—>+ oo

for any sequence (#,) converging in X to x_;
(13)  there exists a sequence (x;) converging in X to 2, such that

lim sup Fu(a,) <A .
h— 4 oo

In this case we write 4 = F(X‘)hEQth(wm). Tf there exists F.: X — R such that

Fole) = I'(X")lim Fi{w), VezeX

>+ oo

we say that (#,)I'(X~) converges to F,,. Note that, in this last case, (12) and (13)
give that

(14) Fo(0e) = min qlim inf F,(z,): (x,) converging in X to xm}
h—~+ oo

for every x,€ X, hence they determine univoecally the I'(X~) limit F_.
For technical reasons, it will be useful to have the following equivalent formula-
tion of (13).

1.14. PROPOSITION. — The condition (13) is equivalent fo:

(139 lim sup [inf Fh(a;)] <A

h—~> oo TgeU

for any meighborhood U of x.

ProOOF. — It is tfrivial that (13) implies (13'). Conversely, suppose (13') holds
and denote by U, the ball in X with center #, and radius 1/k. Then there exists
an increasing funetion ¢: IN — IV such that

inf Fy(a) < - 5177, Vh, ke N: h>a(k)

zelUx

therefore we may select y, € U, such that

Fro(yn ) <A+ %, Vi, ke N: h=o(k).

Let 7: N — N the «inverse function » of ¢, that is

7(h) = min {j e N: o(j + 1) > h}



360 GIANNI DAL MASO - LucraNo Mobica: Nonlinear stochastic homogenization

and define #, = ¥, .- Then

. 1
o(v(m))<h, €U, lmeh)=-+oco and Fuz)<id+——
h—+ oo T<h)

s0 (@,) converges in X to #, and (13) holds.

1.15. PROPOSITION. — Let (I;) be a sequence of functions defined on a metric space X
with values in R.

(a) If F\= F for every he N and F is lower semicontinuous in X, then (F,) I'(X™)
converges to F. :

(b) If the sequence (F,) I'(X™) converges 1o a function F,, then any subsequence
I'(X™) converges to F..

- (0) If the sequence (F,) does not I'(X™) converge to a fumction F_: X — R, then
there exists a subsequence (F ;) of (Fu) with the property that no further subsequence
of (F,uy) I'(X-) converges to F.,. :

PRrROOF. — (a) and (b) follow directly from the definition (12), (13) of I'(X™) con-
vergence. For (¢) note that, if (IF,) does not I'(X~) converge to ¥, ecither (12) or
(13") are not satisfied. In both cases it is immediate to construet a subsequence
of (F;) such that no further subsequence satisfies respectively (12) or (13), so the
proposition is proved.

1.16. REMARK. — Proposition 1.15 says that the set of the lower semicontinuous
functions defined on X with values in R, endowed with the I'(X~) convergence, is a
£*-space in the terminology of K. KURATOWSKI ([14], vol. I, ch. 2, § 20).

Now, let us adapt the definition of I-convergence for sequences of functionals
in ¥ We say that a sequence (F,)in F I'(L*") converges (or simply I-converges)
to a functional F_e & if

I(IL#(A)") im (F;) ((u) = (Foo)a(w), YueL*(4)

h— o0

whenever A e #A,. In this case we write F(L“—)hlil}_lthz F_.

The next propositions give the main properties of I'(L*") convergence in F:
compactness (1.17-1.22), convergence of minima and minimizers (1.18-1.19), link
with the distance d (1.21), confinuity of the e-Yosida transform, of minima and
minimizers (1.23-1.25).

1.17. PrROPOSITION. — The class F is compact for the I'(L*") convergence, in the
sense that every sequence (I} in F contains a subsequence that I'(L*) converges to a
functional F e F, ' ‘
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Proor. — Let (F,) be a sequence in &. By theorems 4.3 and 2.4 of [4] (with
some minor changes in the proofs) there exists a subsequence (F,,) and a function
fo: R*x R*» — R, non-negative, Lebesgue meagurable in the first » variables, convex
in the lagt » variables such that

(15) T(Z(A)7) Bim (Foq) a(w) =ffoo(w, Du(w)) dw
4

h—>+ o

for every Ae A, and we Wh¥A). If we L*(ANW*(4) and (u;) is a sequence
converging in L*(A) to u, then (u,) can not have bounded subsequences in WH*(4)
by corollary 1.4. It follows that either w,¢ W-*(4) definitively or

lim | |[Duyyl* de = 4+ oo
h— 4+ o0
A
for each subsequence (u,y) contained in WL*(A).
In both cases, recalling (3) and (5), we obtain that

lim inf (Fyg)a(tn) = + 00
— -+ 0o
-hence

f fol, Du(@)) do  if u e Wha(A)
F(L“(A)—z_}ifolo(Fa(h))A(u) =4 4
+ oo if we LHANWL(A)
for every 4 e #A,.
The right-hand side of the last equality defines a functional F: L (R") X #, — R
which is the I'(L*") limit of (¥,,). It remains to prove that F.e &, that is (5)
holds. Indeed,

o f |Dul dw< P, o, A) <0, f (1 + [Dul*) do
A A4

for every A € #A,, w € W-*(4), he N: by taking the I'(L*(4)") limit of these three
terms as b — + oo, the first one and the last one do not change because of lower
semicontinuity (propositions 1.5 and 1.15 (a)) and the double inequality continues
to hold ([-convergence is « monotone») by (14), so we obtain that

(16) o f |Dul do < F(u, A)<e, f (1 -+ |Dul¥) o
A4 A4
for every 4 € A4, and v € W"*(4). The same argument of remark 1.1 shows that
(16) implies
ol p|* <ful@, P)<0s(1 + |PI%)

and the proposition is completely proved.
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1.18. PROPOSITION. — Let A € £, and (F,) be a sequence in F. Let X be a subset
of Wh*(A4), p: AXR — R be a function such that ¢(x,y) is Lebesgue measurable in x,
continuous in y. Define the functionals W,: L*(A) — R by

h(w) = Fafw, 4) +[¢(o, u(@) do .

Suppose that
(1) (F)I(LX) converges to a functional F_c F;

(ii) X s weakly closed in W“*(A) and X + Wy*= X in the sense that uc X,
vE Wy A) implies u +ve X;

(i) Aafyi® + ) <g(@, ) < lyl* + @) Y@, y) € AX R
for some A,> 0, 1,> 0, w,, u,€ L*(4).

Then, we have that

lim [min llf,,(u)] — min ()

b—> + co* ueX ueX
where
V() = Fofu, 4) +[p(, u@) do .
A4
Moreover, any sequence (u,) in X such that >

Pi(us) = min ¥ (u)

ueX

does contain a subsequence that converges in Li (A), weakly in W"*(4A), and pointwise
almost everywhere in A to a function w,€ X such that

Vooltheo) = min ¥o(u) .

ueX

If, in addition, A has Lipschitz continuous boundary, then the convergence of the sub-
sequence of (u,) takes place also in L*(A). Finally, if X =u,+ Wy*(A) with u,e
€ Wh*(A), then the lefi-hand side of (iii) may be relaved by requiring only A, > — /P,
and again the convergence of the subsequence of (u,) takes place also in L*(A).

ProoF. — By proposition 1.7, all the functionals ¥, and ¥, attain their minimum
in X. Let (u,) be a sequence in X such that

V() = min P, (u) .

ueX
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As in the proof of 1.7, (u,) is bounded in WL*(A), so corollary 1.4 gives that there
exists a subsequence (%) that eonverges in L (4), weakly in Wh*(4) and point-
wise almost everywhere to a function w. and such that

(17) lim inf (min !Fn(u)) — lim inf (min Tg(h)(u)) .

B> +too ‘ueX h— oo ueX

This convergence takes place also in L*(4) if 94 is Lipschitz continuous or X ==
=y, + WH*(A). We want to prove that u, is a minimum point of ¥, in X. Since X
is weakly closed, %€ X.

Now, let us endow X with the metric induced by L*(4) and suppose we have
proved that

(18) Vo (thoo) < limn inf Wi (Uoim)
h—+ o0
(18 (X7 lim Pu(u) = Po(u), YueX.
h—> 400

Then, by (18)

W o (o) < Jimn ind ¥ (Uho) = Lim inf [min T5<h)(u)] = lim inf [min Y’h(u)] .
b~ 400 h—> oo FusX h>+oo “ueX

On the other hand, applying definition (13) of I'(X~) convergence and (18'), for any
ve X there exists a sequence (v;) in X such that

W, (1) > lim sup Py(v,) >1lim sup [min ‘I’h(u)] .

B> + o >+ o0 yeX

. 'We conclude that ¥, (v)>¥,(u,) for any o€ X, hence u, is a minimum point of
¥ _in X, and also, by taking v = ., that

V(o) <lim inf [min ‘_l’h(u)] <lim sup [min ‘Ph(u)] < W oo(Uen)

B> + o0 ueX h—> 4 co ueX

so our proposition is proved. It remains %0 check (18) and (18').

Let us prove (18). Fix Be #, with Bcc A; the sequence (u,y) converges in
IL*(B) to u,, and the sequence (Fy)m) I'(L*(B)”) converges to (F.)s (see proposi-
tion 1.15 (b)), hence by the definition (12) of I'-convergence we obtain that

Fw(u’wy B) < lim inf Fd(h)(ua(h)a B) <12m inf Fa(h)(uc(h)y A) .

h—> -+ 00 > 1 00

On the other hand, if 4,>0, Faton’s lemma (recall that (u,q) converges pointwise
almost everywhere to u,) yields

lim int f(p(x, g (®)) dw>f(p(az, Uoo()) dow .

h> + 00
A
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The same result may be obtained in the case X = u,+ Wy*(4), even if 1, < 0,
applying Fatouw’s lemma to @(@, %,qy(®)) — A |4 (®)* and recalling that in this
case (U,y) converges to u, in L*(A4).

So we conclude that

Foo(uow B) +f¢(507 uoo(w)> dw<hm inf [Fa(h)(ua'(h)y A) +f¢(w7 ua(h)(m)) dm] =
A 4

h~> + co

= lim inf W, (Uep) -

h> + ca
By taking B{A (prop. 1.2), (18) is proved.
Let us prove (18'). If we denote

D(u) :ftp(w, u(@)) dw  (u e L¥A))
A
and remark that by (iii)

o, i< (4] + D) YI* + [m(@)] + |p(@)], V(z,y)e AXR

then the basic continuity result of Nemitcki’s operators (e.g. see [23], th. 19.1,
pg. 164) gives that @ is continuous in L*(A4), hence in X.

Recalling definition (12), (13) of I'(X™) convergence, the I'(X™) convergence of
(h) = (Fa)a+ D) to V= (Fo)s + D is equivalent to the I'(X~) convergence of
((F4)4) to (F)4, hence we have only to prove that

D(X7)lim (Fy) (u) = (Foo)ulu), VueX.

h—> oo

The property (12) is trivial because X is a topological subspace of L*(4) and
hypothesis (i) holds. Let us verify (13'), by taking »,e X and by proving that for
every &> 0 these exists a sequence (v,) in X converging to v, such that

(19) lim sup Fy(v,, A)<(1 -+ &) Foo(¥e0, A) + Ce

h—> + oo

where O = O(v,) is a real constant depending only on »,. Let us fix £€10,1[.
Hypothesis (i) gives a sequence (w,) converging in L*(4) to v, such that

Fo(Veo, A) > lim sup Filw,, 4) .

h~> -+ oo

We want to obtain v,€ X by modifying in a suitable way w,. Let us choose a
compact subset K of A such that '

f (1 + |Dv ) de < &

ANE
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(recall that v,e X C W"%(4)) and moreover A4,, 4,€ #, such that K C A;cc 4,cc A.
Applying theorem 6.1 of [5], we construct M > 0 and finife number ¢,, ..., ¢, of
function of 07 (4,) such that 0<¢@,<1 and ;=1 on 4, (41 =1,2, ..., k) and

min Fyg,w, + (1 — @)V, A) <(1 + &)[Faws, A) 4 Fu(ve, ANK)] +

1<i<k
+ ellwnlFw + [l fxam + 1] + Mwr— ve| Frnm)

for every h € N. Denote by ¢, the index ¢ for which the previous minimum is attained
and let v, = ¢, w, + (1 —@,,)v,. Then v,= v, + @, (w,—v,) € X. Moreover

o — ’DOOHL"‘(A) <|Jwy,— vooHLD‘(A) , VheN

hence (v,) converges in X to v,. Finally, by using the previous inequalities and
equiboundedness (5), we obfain that

lim gup #Fol{vs, 4)<(1 + &) []jm sup Fy(ws, 4) -+ sz(l + [ Dvoo|*) dw] -}
h— + o0 h—>+ o0

ANK

+ 3[2”7700”1/"(:1) + 1] <(1 + &) Foolvoo, A) 4 8[202 + 2[["’°°[!L"‘(A) -+ 1]
80 (19) and our proposition are proved.

1.19. COROLLARY. — In addition to the hypotheses of proposition 1.18, suppose
that Y., has a unique minimum point in X (for example, if X is convexw and ¥_ is
strictly convex on X). Then any sequence (u,) of minimizers converges in L (A) and
weakly in W"*(A) to the minimum point of W in X. If A has a Lipschite continuous
boundary or X = u, + Wy*(A) with w,e WH*(A), then the convergence takes place also

in L*(4).

Proor. — Let %, be the minimum point of ¥ in X and suppose that (u,) does
not converge to u, in Lj (A) (vesp. weakly in W"*(4)). Then there exists a sub-
sequence (u,p,) such that no further subsequence converges to u, in L (4) (resp.

weakly in W%*(4)), but this contradicts proposition 1.18 spplied to ¥, (recall
proposition 1.15 (b)).

1.20. ExampLeE. — The most known example of application of the previous
propositions is given by the sequences of quadratic forms

aﬁ’;’(m) Dy Du de (u € Wl’z(A))

1

Fh(uyA—) Zf

A

M=

i

where

n

01'p12< Z a%‘-’(‘az)pipj<ozlp]2, V(z, p) € R»

=1
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and o) = a{? are Lebesgue measurable functions, for every he N, 4,j=1,...,n.
By taking X = u, + Wy*(4) and ¢(z, y) = 2yy(») with w,e W-3(4) and y e L*(4)
(recall remark 1.8), proposition 1.18 and corollary 1.19 give that the I'(L*’) con-
vergence of (F,) to F implies the convergence in L*(4) of the solutions (u,) of the

Dirichlet problems '

Y Dia®Du) =y on A, u,=u, on 4

tyd=1

to the solution u, of the corresponding problem for F_: in fact it may be proved
that I, also is a quadratic form with eigenvalues in [e, ¢,]. In particular, the

w
operators (ZDi(aﬁ’;’Dj)) G-converge in the sense of S. SPAGNoLO [21] to the cor-
T d=1 n
responding limit operator > D(a{7’D;). Even the converse in true: G-convergence
=1
of the Euler operators implies I-convergence of the energies (see [8]). The case
a®(x) = a,(hw), with a,, periodic, is the case of the classieal homogenization.
1.21. PROPOSITION. — Let (F;) be a sequence in F and F, c F. Then the following
" conditions are equivalent:
(i) Hm d(F%, Fo) = 0;
h—>+ 0

(if) (Lo ) lim Fp = Fy;

h—> + 00

(iti) lim (TeF)(u, A) = (TeFo)(u, 4), Ve>0,uec L (R", Ae 4.

h—>+ oo

PROOF. — (i) = (ii). Let W and B be the dense families employed in the defini-
tion (11) of the distance d and let we W and Be B. Then

lim T/, Fi(w, B) = Ty Fo(w, B), VieN

h—>+co

and, for any sequence (u,) converging to w in IL#(B),

Ty Fu(w, B) < Fyltn, B) + i||lwp—wi*dz, Vi,heN
B

8o, recalling proposition 1.11,

(20)  Fo(w,B) =1lim lim Ty, F,(w, B)<

i~>+ 00 h—>+co

<lim inf lim inf [Fh(uh, B) + zf [y, — w|* dw] = lim inf Fy(u,, B) .
3 .

—=>+o00 h->+o0 B~ + o0
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Moreover, if u,,€ W*B) denotes the function such that

Ty Fo(w, B) = Fy(uip, B) + 4| |w;p— w[* do
(recall (10)), we may estimate ’
[ s5— W] zxm < % [Ty Fn(w, B) — Fi(%; 0, B)]< %Tl,iFh(w, B)<

< %Fh(w, B)< .2f(1 + |Dwl®) da .
B

s[ﬁ

It follows that, if U, is the ball of L*(B) with center w and radius r, then for ¢ large
enough (independently of ) we have wu,,c U,, hence

uEW*(B) uelUr

Ty Fu(w, B) = min [F,i(u, B)+ @f |l —w|* dw] = inf [Fh(u, B) - @f lu —aw]* dw]
B E
and we conclude that

(21) Fo(w, B)>ThiFoo(wy B) = lim T/, Fy(w;, B) =
h—> oo
= lim inf [F,i(u, B) +1 f]u — w|* dw] >lim sup inf F;(u, B).
B

400 uelsr h— + oo uelr

Recalling the definition (12), (13') of I-convergence, (20) and (21) say that

D(I#(B)~) im (Fy)s(w) = (Po)s(w), YweW, Be%.

h— + o0

On the other hand, for any subsequence (F,,) there exists a sub-subsequence
(Foz)) that I(I*") converges (compactness theorem 1.17): its limit &, depends a
priori on r and o but, observing that by proposition 1.15 (b) we have

(Go)s(w) = I'(LXB)~) im (Fym))s(w) = (Foo)s(w), VYweW, Be B,

h—> + o0

we conclude by corollary 1.6 that F_ = ¢_,. Since G, does not depend on v and o,
proposition 1.15 (¢) applies and we obtain that

F(L“(A)—) lim (Fh)A = (Goc)A: (Foo)A 9 V.A (S .7‘&0

h—> 4+ 00

go (ii) is proved.

(i) = (iii) Tt suffices to apply proposition 1.18 with X = W"*(4) and ¢(=,y) =
= (1/)|u(z) — y|*

(iii) = (i) It is obvious.

24 ~ Annali di Matematica
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1.22. COROLLARY. — The metric space (F, d) ¢s compact, hence complete and separable.
Proor. - It follows from propositions 1.17 and 1.21.

1.23. COROLLARY. — Let A € £&,, X C Wh*(4), ¢: A xR — R be satisfying the hypo-
theses of proposition 1.18. - Consider the function My x ,: I — R defined by

ueX

Moy, x,(F) = min { (u, A) + f Ty U dm]

and the multivalued map .fV(;;’X’w: F — Wh(A) defined by

Wz o F) = {ueX Fu, 4) + j #(o, @) do = Sy ()

Then Moy x , s continuous on (F,d) and Jv(,‘;’X’q, is upper semi-continuous on (F, d),
in the sense that, if (F,) is a sequence converging in F to I, and (u,) is o sequence in X
converging to u, weakly in WY*(A) (resp. Lt (A)) such that w,e A x,0(F), then
Yoo € Moy 5 o(F0). '

Finally, if G is a closed subset of F such that J%;’X,w(G) is formed by a single point
for every G €S, then ‘/K);’X’q, is continuous on G as single-valued map with values in
Wh(A) with its weak topology or in Ly, (A). If, in addition, A has Lipschitz continuous
boundary or X = uy,+ Wy*(4), then L] (A) may be replaced by L*(A).

Proor. — It suffices to apply propositions 1.18 and 1.21 and, for the last part
of the statement, corollary 1.19.

1.24. REMARK. — An example of G to which one may apply the previous result
is the set of the quadratic forms of example 1.20.

1.25. COROLLARY. — Let ueL;‘gc(R”) and A € A, be fized. Then, for every ¢ >0
the function F — (T:F)(u, A) defined on F with values in R is continuous on (F, d).

If, in addition, u|,c Wl""(A) then these fumctions are bounded independently of e.

Proor. — Oon’sinuity is a consequence of corollary 1.23 when X == Wh*(4) and
oz, y) = (1/e)ju(x) — y[*. Equiboundedness is given by

0< TeF(u, A)<F(u, A) < f(l + |Dul) dw, Ve>0,VFeF
A
Since J is a set of real extended functions on the set 1' = L (R") X A,,
might consider on & the product ¢-field induced by R” where R is endowed Wlth
the Borel ¢-field. Moreover we might consider the Borel ¢-field induced on F by
the metric d.
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1.26. THEOREM. ~— The Borel o-field Gz on (F, d) coincides with the trace on F
of the product o-field of R”, where T = L (R") X #, and R is endowed with the Borel
o-field. Hquivalently, Gy is the intersection of all the o-fields G on F such that, for every
we Ly (R*) and A € A, the evaluation map F — F(u, A) defined on F with values

in R is measurable as function between (F, G) and the Borel line.

Proor. — Fix uwel; (R") and Ae A, The evaluation map F — F(u, A) is
lower semicontinuous on (F, d) because, if (F,) is a sequence converging to I, in F,
then proposition 1.21 and (12) applied with %, —= u give that

F(u, A)<lim inf F,(u, A) .

h—>+ oo

It follows that Gz belongs to the family of the o-fields such that any evaluation map
is measurable. Now, we want to prove that G is the smallest of such o-fields. Let ©
be one of these o-fields. If (w;) is a sequence dense in W"*(4), then
(TeF)(u, 4) = int {F(w;;, Ay 1 f lt — [ dw}, Ve 0, Yue LEy(RY), VA € 4
jeN [ .

by (10’) and proposition 1.5, hence the map F — (T.F)(u, A) is G-measurable,
being the infimum of countably many G-measurable functions, for every &> 0,
we Ly (R") and A e 4&,. By the definition (11) of the distance d, we obtain that
even the function F — d(F, F,) is measurable for every F,c &, therefore all the
balls in F belong to G. Finally, as F is a metric separable space (corollary 1.22),

each open subset of (F, d) is the union of a countable family of open balls, hence
G 2 G and the theorem is proved.

2. — Random integral functionals.

From now on, (2, G, P) will denote a probability space, that is £ is a set, T is a
o-field of subsets of 2 and P is a probability measure on G.

A random integral functional is any measurable function ¥: Q2 — F when £
is endowed with the o-field G and & with the Borel o-field Gz generated by the
distance d (see section 1).

2.1. PROPOSITION. — Let F: 2 — F be a function. F is a random integral func-
tional if and only if, for every u € L, (R") and A € A,, the function o — [F(w)](u, 4)
is a (real extended) random wvariable, i.e. it is measurable as function between (£2, )

and the Borel line.

Proor. — Tt is a direct consequence of theorem 1.26 and of the fact that a fune-
tion F from a measurable space (£, B) into the product R? of Borel lines is meas-
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urable if and only if the functions m,cF are measurable for every ¢e T, where m,
is the projection of R” on its factor with index ¢ (e.g. see [15], sec. B).

2.2, COROLLARY. — Let I be a random integral functional, w e Ly (R"), A e 4.
Then, for every ¢>0 and for every X C W“*(A) and ¢: AXR — R satisfying the
hypotheses of proposition 1.18, the functions w — [ Te(F(w))](u, A) and o — Moy x (F(w))
(see corollary 1.23) between L2 and R are real extended random variables.

Proor. — It follows from corollaries 1.25 and 1.23.

If F is a random integral functional, the image measure F,P on ¥, defined
by (F,P)(8) = P(F-(8)) for every S e Gy, is called the distribution law of F. We
shall write F'~ @G if F and G are random integral functionals having the same
distribution law.

2.3. PROPOSITION. — Let F, G be two random integral functionals. We have F ~ G
if and only if, whenever u,, ..., uy are a finite number of functions of Li (R") and
A, ..., Ay are a finite number of open sets of #A,, the distribution laws of the two vector
random variables

w — (F(w)(uly 4,), ..., Flw)(uy, AN))
w — (G(w)(un Ay)y vy Glo)(uy, AN))

are equal.

Proor. — It is again a direct consequence of theorem 1.26 and of the fact that
two probability measures y and » on a product space R’ agree if and only if
Tpa b == TOp Y ifor every projection z, on a finite number of factors of R” (e.g. see [15],
sec. 4).

For every ¢ e R* and ¢ > 0 we want to define the operators 7, and g. respectively
of translation and of homothety. If we L (R"), then 7,4 € L (R") is defined by
(t.ulx) = w(® —c) while gsu € L, (R") is defined by (g:u)(x) = (1/e)u(ex). If A A,,
then 7,4 = {reR*: v —oe 4} and g.4 = {we R": ew € A}. Finally, if F € F, then

the funectionals 7,F € F, g F € F are defined by
(22) (T F)(u) A) = F(r,u, 7,4), (0 F)(u, 4) = " F(0su, 0:A)

for every u e Ly (R") and 4 € #,.
If f(x, p) denotes the integrand of a functional F € F (recall remark 1.1) then
it is very easy to check that

7, F(u, A) =ff(x -+ ¢, Du(w)) do

A
o (w, 4) = [ 1% Dute) )
4

for every ue W, (R") and 4 e #A,.

loc
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9.4, COROLLARY. — Let ce R, £ > 0 and F be a random integral functional. Then
the functions 7, F, 0 F: 2 — F defined by

(v F)(w) = TG(F(W)) ’ (0sF)(w) = QE(F(CO)) , VYVoel

are random integral functionals. Moreover, tf G is another random integral functional
such that F ~ @, then we have also 1, F ~ v, and 0. F ~ 0.G.

Proor. — It suffices to apply propositions 2.1 and 2.3 and (22).

Let X, Y be two real or real extended random variables defined on £ and
suppose X, Y e L2, P). Then the covariance of X and Y is defined by

cov (X, ¥) = (X(w) — BX])(¥() — BY)) iP(o),
where ?

X} — f X(w) dP(w), B[Y]= f Y () dP(w) -
o [}

If cov (X, Y) = 0 we say that X and Y are uncorrelated. If X and Y are indepen-
dent, then cov (X, ¥) = 0 (see [15], sec. 15). Finally, the variance of X is defined
by o*(X) = cov (X, X).

2.5. THEOREM. — Let (F,) be a sequence of random integral functionals with I,
defined on the probability space (£2,, Gu, Py). Let F_ be a random integral functional
defined on (2., 6., P.). Suppose that (F,) converges in law to F,, in the sense that
the corresponding laws p, = Fu Py converge weakly* as h — + oo to p,= F 4P, i.e.

Lim | P(F) dun(F) :f Y(F) dpeo(F)
T F

for every continuous function ¥: F — R. Then, whenever u, v € Ly, (R") and A, B € #,
are such that u|,€ Wh*(4) and v]z€ WH*(B), we have :

515)1 hiiﬁ eov ([TaFa(*))(u, A), [TeFs(+)1(v, B)) = €0V ([Fool )11, A), [Feo(-)1(v, B)) .
* (R, A, B #, such that u|,€ Wh*(4) and |z W"*(B).
For every ¢ > 0, denote by ¥P{* and P{ the functions on F with values in R defined
by PENF) = T:.F(u, A), P¥(F) = T:F(v, B). Analogously, define ¥\(F) = F(u, 4)
and W,(F) = F(v, B). The functions P! and ¥{ are bounded independently of &
(corollary 1.25) and converge pointwise as ¢ — 07 respectively to ¥, and ¥, (proposi-
tion 1.11), hence by Lebesgue’s dominated convergence theorem we obtain that

Proor. — Bix o, ve L

lim cov (PP F g, PPoFy) = cov (P10 Fw, Vool ).

e—>0%
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Now, again by corollary 1.25, P{ and P are continuous and finite, so we have

lim B[P oF,] = lim | PO(Fy(0)) dPy(o) = lim | P(F) duy(F) =

f~> + o0 . > - 0o h—> 4+ 0

Qn F
= f PO(F) duiol F) = f PO Ff) APar() = B[P 00T o]
F L

for ¢ =1, 2. By the same argument, we obtain also

h~> - oo
On

im | P Fy(w)) PO (Fu(w) dPyw) = f P Foo(0) ) P Foo(0)) dPeo(0)
Qs

80 we conclude that

Hm cov (PEoF,, PPoF,) = cov (PPoFw, PPoF )

h—> -+ oo

and the theorem is proved.
2.6. REMARK. — Note that in the previous theorem no general statement of the
form

lim cov (Fh()(“’ A)’ Fh(')(/u, B)) = eov (Foo(')(“’ A)y Fw(‘)('l), B))

h—>+ oo

could be obtained. Indeed, the convergence in F (I'(L*") convergence) :1s not com-
parable with pointwise convergence (see [6], pg. 118-119).

2.7. PROPOSITION. — Let F be a random integral functional. If A, Be A, and the
families of random functions

o = (Flw)(uy A))yerz mny  ond o = (Fo)(u, B)) yers, (&n)

.are independent, then for every e > 0 and u € L;, (R") the real ewtended random variables
w — [T:F(w)|(u, A) and © — [T:F(w)](u, B) are independent (and, in particular, un-
* correlated).

ProoF. — It suffices to observe that by (10’) and proposition 1.5

T:F(w)(u, A) = inf {F(w)(w;‘i, 4) —}-f jwi — ul* dw} , Yoef
A4

jeN

where (w;') is any dense sequence in W'*(4), and analogously for 7'.F(w)(w, B).

Indeed, as the two sequences (F(-)(wf, A));cy, (F()(w}h, B));cy are independent,
their infima are independent (e.g. see [15], sec. 15).

The following result will be crucial in the proof of our main theorem.
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2.8. THEOREM. — Let F be o random integral functional. Suppose that the random
variables o — F(w)(w, A) and o — F(w)(u, B) are uncorrelated for every uw e WH*(R™)
and for every A, Be &, with A\ B = 0. Then there exists Fye F such that F(w) = T, for
P-almost oll we L.

PROOF. — Let us choose a countable dense subset W of Wh*(R") formed by
Lipschitz continuous functions and a countable dense subfamily B of #£,. Suppose
we have proved that

@3)  oF()w, B)) =[[F(@)w, B)—[F)w, B) ()]’ dP@) = 0
2 Q

for every we W and Be $. Then, taking into account the fact that W and B are
countable, there exists 2'C 2 such that P(£2') =1 and

F(w')w, B) =[Flo)w, B) aP(@), Vo'c @', we, BeS.
0

Now, if o is any point in ', define F,= F(w,). Since

Byw, B) = F(o})(w, B) = [F(w)(w, B) P(w) = F(o)(w, B)
Q

for every w'e Q', we W, Be®B, corollary 1.6 yields that F(w') = F, for every
w'e ' and the thesis is achieved.

Let us prove (23). Fix we W, Be$B and denote by L the Lipschitz constant
of w. For every Cc 4, denote by ¥, 0 —> R the random variable defined by
¥, (w) = F(w)(w, C). For every N €N, let us select a finite number B, ..., By of
open subsets of B so that

B.nB;,=90, Vi,j=1,...,N, ij

Vi=1,..,N

where |-| denotes the Lebesgue measure in R*. Note that

N N N
o‘z(gl !PB‘) = 21 o*(¥s) +'2_100v (¥s,, ¥s)

i#d
hence, by hypothesis

N N
o*( 3 ¥s) = PR

i=1

On the other hand, by equiboundedness (5), we have that

1B

Vs (0) <af1 + L) Bil <ol + L°) 5
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therefore

oA (Wy) = f (P, () — B[¥y])* dP(0) <
2

2_[(5?’; + (E[¥,))) dP(w) < (202< +L“l§l)

and finally

y 463(1 + L*)*|BJ?
) Z "(Fr) < N :

o

Now, denote Cy= UB_ and ¥y=Y, = Z‘PB because the sets B, are disjoint.
§=1

Note that OxC B and [B\Cy|<|B|/(N + 1 hence, if Dy is an open neighborhood

of B\ Oy with |Dy|<|B|/N, we obtain for every we £

&Mz

V() = F(w) 10, O) < Flw)(10, B) < F(@)(w, Oy) -+ Flw)(w, D) < i
<Wy(o) + (1 + 1) Dyl <) + (1t + L) 12

Then the sequence (¥y) converges uniformly, and so in L2(Q, P), to F(:)(w, B) and
we may conclude that

2 &\2 2
o*(F(*)(w, B)) leiIJ:a ot (Py) iliin Z-Liz—(—l—i——l\f;)'ﬂ =0

hence (23) and the theorem are proved.

We conelude this section with some words about the eonvergence of sequences
of random integral functionals. We have already mentioned in theorem 2.5 the
convergence in law. Since F is a metric space, we have also the convergence in
probability. Let (#,) be a sequence of random integral functionals on the same
probability space £2; we say that (F,) converges in probability to a random integral
functional ¥, if

(24) lim P{w e Q: d(Fy(w), Folw)) >7n} =0, ¥Yyp>0
h— 4+ oo
where d is the distance on . An analogous definition holds for the limit in proba-

bility of a family (F )f'>0 as & — 0T,
The following proposition is well-known.

2.9. PROPOSITION. — Let F be a constant random integral functional, that is there
exists Foe F such that F_{w) = F, for P-almost all w e 2. Then convergence in law
and convergence in probability toward F. are equivalent.

ProoF. ~ Suppose that (F,) is a sequence of random functionals which converges
in law to F_: this implies that ((FuP)(S)) converges as & — + oo to (F ;. P)(8S)
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for every open subset S of F such that (F. .y P)(8)=0. As F_; P is the Dirac
meagure centered at F_, for every n > 0 we have that

lim P{we Q: YFu(w), Fo) > n} = lim (FuP) (8,) = (FotP) 8)=0,

h—> oo h—>+ co

where S, ={Fe J5:d(F,F.)>n}, hence (F,) converges in probability to F,.
Conversely, suppose that (F,) converges in probability to F_ and let ¥: § — R be
a continuous function. For every &> 0 these exists # > 0 sueh that d(F, F,)<y
implies |P(F)— V(F.)| <e. Then

| [#@E)aFsPIE) [ PEUF P < [ 19(Fi(0) — P(Fe)| dPlw) =
F F 2

= [ [P(Fuf0) — P(Fa) | aP(0) + [ [#(Fu(0)) — ¥(Fu)| dP(o) <

{0e2: d(Fr(0), o)<} {0el: d(Fnw), Fo)>n}

<e+ [I;lax [P(F)[) P{w € Q: A(Fy(w), Fo) > 1} .
eF

By letting # — + oo and ¢ — 07, the thesis follows.

2. — Main results.

Let us begin with the definition of stochastic homogenization process and of
stochastically periodie integral funetional, recalling that we gave in (22) the defini-
tion of the translation operator 7, and of the homothety operator g..

Let (F,),., be a family of random integral functionals on the same probability
space £ (see section 2). We say that (F:) is a stochastic homogenization process
modelled on a fixed random integral functional F on £ if Fe~ 0. F for every &> 0,
that is F. and g.F have the same distribution law.

Let F be a random integral functional. We say that F is stochastically periodic
with period T >0 if F~ 7,F for every z€ TZ»= {w e R*: »/T € Z*}. In the fol-
lowing, for the sake of simplicity, we shall suppose I = 1 but the results remain
true for any T > 0.

‘We are mainly interested in the stochastic homogenization processes modelled
on a stochastically periodie random: integral functional: the main feature of these
processes is that their limit points in probability are translation-invariaunt, as the
following proposition shows.

3.1. PROPOSITION. — Let (F) be a stochastic homogenization process modelled on a
stochastically periodic random integral functional F. Suppose that, for a given sequence
(e4) of real positive numbers converging to zero, the sequence (Fs,) converges in probability
(see (24)) to a random integral functional Fy. Then v, Fy~ F, for every ¢c R".
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ProOF. — Denote G = F., . Since any sequence converging in probability con-
tains a subsequence which converges pointwise almost everywhere (see [15], sec. 6),
it is not restrictive to assume that (G4(w)) econverges in F to F, for every w € 2'C Q
with P(2')=1. Now, fix ce R* and select a sequence (z,) in Z” so that (¢, #,) con-
verges to ¢ in R" as b — + co. Denote ¢, = ¢,%,. We want to prove that (z,,G(w))
converges in F to 7, Fo(w) for every we 2. Fix we . Since F is compact, we
may assume that (7,,Gu(w)) converges in F to a functional G, and prove that
G, = 1. Fo(w). Let A€ 4, and e L*(4): by (12) and (13) there exists a sequence
(u,) converging in L*(4) to u such that

G, A) = lim (7, G(w))(Us, 4) .

b~ 400

If Be A4, and Bcc A, we have 7,BC v, A for b large enough, hence by (22)

(T’fh h(w))(uh7 'A') == Gh(.w)(rch Uny TchA)>Gh((U)(Tchuh, TCB) .

On the other hand, it is very easy to check that (z,u,) converges in L*(z,B) to
7,4, 50 by (12) applied to (Gu(w))

lim inf Go(w)(7,, U, ToB) > Fo(w)(7,u, T.B) = T.Fy(w)(u, B) .
h—> -+ co

We conclude that

Goo(ty A)>Hm sup Gy(w) (7., Uy, T, B) >1im inf G4(w)(7,, %, 7.B) > 7, Fo(w) (%, B)

h—> + o0 h—>+ oo
and, by taking B}A (proposition 1.2),
G (u, A)>7 Fo(w)(u, 4) .

The proof of the opposite inequality is ana,logous, so we have proved that (7., G (w))
converges in F to 7,Fo(w) for every we 2. _
Finally, by the hypotheses F. ~ p. F, 'rsz ~ F and corollary 2.4, we have that

TchGhz Tshthan Teyom QshF = QezTZnFN thFN F‘Sh .

(note that 7,0, = g,7,): a8 (7, @,) converges pointwise P-almost everywhere to 7,
and (F,) to F,, we obtain that 7,F,~ F, and the proposition is proved.

The following is the main result of our work.

3.2. THEOREM. —~ Let (Fs) be a stochastic homogenization process modelled on a
stochastically periodic random integral functional F. Suppose that there ewvists M > 0
such that the two families of random functions

(F(' ), A))ueLﬁ,c(m) ’ (F(')W; B))ueLf;c(Rn)
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are independent whenever A, B e A&, with dist (4, B)y>M. Then (F:) converges in
probability as & — 0% to the single functional F,c F independent of w (i.e. to the
constant random integral functional Fy) given by

f fo(Du(@)) de  if ul,e Wo(4)
Fo(u, A) =y 4 '
) otherwise

where, for p e R»,

©5)  fop) = lim min{ﬁm)(u,@m): u(m)—p‘meWé’“(Que)}dP(w),

>0t %
2

Q.. is the cube {weR": |n|<lfe,i=1,..,n} and [Q,| = (2/e)" is its Lebesque
measure.

Proor. — By proposition 2.9 it suffices to prove that (F,) converges in law as
¢ > 0" to F,. Let u,= FeyP be the image measure of F. on F and p, be the
Dirac measure centered at F,. Since F is a compaet metric space, C(F, R) is a
separable Banach space, hence the bounded subsets of its dual space are metrizable
and weak*-compact (e.g. see [20], th. 3.15-3.16). As u.(F) =1 for every ¢> 0, in
order to prove the weak® convergence of (ue) toward u,, it will suffice to prove that,
if &,— 0% and (u.) weak® converges to u, then u = u,.

StEP 1. — 4 is a Dirac measure on F.

Since u:(F) =1 for every >0, we have u(F) =1.

Let (Q,, B, P,) be the probability space (F, Bz, u) and F,: Q- F be the-
trivial random functional given by the identity map. We have that (o., F) converges
in law to F, because (g, F),P = Fe 4P = pe,, Fo4 P, = p, hence by theorem 2.5
with £,= @ for every he N

lim lim cov (Tepe, F(-)(u, A), Te0s, F(-)(u, B)) = c0V (Foo(*)(t, A), Feo()(u, B))

= %h
&->07 B> + o0

for every uc W-*(R") and A, B € 4,.
Now, choose A, Be £, with AN B = 0.
For h large enough,

dist (gs, 4, 05, B) = 8—1hdist (4, B)>M

hence, by hypothesis, the families of random functionals

(QshF( ) w, A))ueLﬁ,c(R") = (SZ-F( )(v, @ahA))veLﬁ,e(R")
(QshF(. ) (2, B))ueL?OC(R") = (EZF(' )(v, e, B))veLfgc(Rn)
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are independent. Proposition 2.7 gives that
0OV (e, F(-)(u, 4), Tege, F(-)(u, B)) = 0
for every we WH*R"), e> 0 and kb large enough, so
covV (Fw(")(u, A), F (*)(u,B)) =0, VYueW-*R").

By theorem 2.8 we conclude that there exists Gye F such that F_(w) = G, for
P_-almost all w € 2., so u is the Dirac measure on F centered at G,.

SteP 2. — The integrand g¢,(w, p) of G, does not depend on «.

We have proved that the sequence (F:) converges in law to a econstant random
functional F,, hence proposition 2.9 yields that (F.,) converges in probability to F.,.
From proposition 3.1 we infer that 7,F.~ F, for every ¢c R~ The distribution
laws of 7,.F, and ¥, are the Dirac measures centered respectively at 7,G, and G,,
therefore 7,G,= G, and, by remark 1.1, go(» -+ ¢, p) = go(2, p) for almost all
€ R* and for every p,ce R~ In other words, g,(, p) does not depend on w.

STEP 3. — f, is well-defined by (25).

Fix pe R". For every A€ #,, denote X, =1, Wy*(4) where ,(») = p-2 and,
recalling corollary 1.23, denote for simplicity M, = M, x, o and M,= Ay, for >0
so that

min {Witl F(o)(4, Q) u(@) —p-oe Wé’“(@»} — (0T ()

%

for every we £ and ¢> 0. By corollary 2.2, the integral

m(t) = [1Q1 4 F(w)) aP(w)
Q

makes sense. We want to prove that there exists t_l)i{nwm(t) and it is finite. Suppose
we have proved that '

(26) m(jk)<m(k), Vj,keN
(27) tzm(t,) <tim(ly) + C(ts— ), th, 1,€ 10, + co[: t,>1,

for a given real constant C = C(p,n) and let 1 = }Creljg m{k). Fix £> 0 and select

ko€ N that m(k,)<A -+ e. For every t> 0, denote by P the integer part of ¢/k, and
let ;= p, 1. As kp;<t<k,q; we obtain by (27)

mit) < Z[(kep mtop) + O(1— (hp)?)] <mlkaps) + 0(1 _(k‘tg))

Mmit) > ;n" (Ko@) m(kogs) — C((koge)"— )] >m(Koqy) — 0((@)1— 1) )
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By using (26), kp:>t—k, and kyq,<? + k,, we have that

m(t) <m (ko) + 0(1 —(t _t k”)") <A+e+ 0(1 __(t —t ko)")

m(t) >m(keq:) — C«t —i; ko)”__ 1) >1— 0((&;&) - 1)

and we conclude easily thattl}grnwm(t) = A

Let us prove (26) and (27). Fix j, ke N. The cube @,, may be subdivided in j»
smaller ecubes eongruent to @,, 8o we have

jn

Qin— U 7:Q% =0

i=1

where 7,= 7, and 2y, ..., #;» are suitable points in Z». Fix v € 2 and denote by u,
a function in 1, + Wi*(z,Q,) such that ‘

Fle)u;, 7,0y) == Moy g, (Flw)) -
Define piecewise a funetion % on @, by
wx) = u,x), Veer,Q,.
It is very easy to check that wel, + Wy*(Q,,). Moreover, as
Flo)(u + ¢, A) = Flo)u, 4), Yue L (R"), Ac A, ¢ceR,
we obtain easily that

Mo, 0 (F(0)) = min {7, F(w)(v, Q): v —p-2,—1,€ Wp*(Q,)} = My (7, F(w))

7;Qk
for every i =1, 2, ..., "
Then, observing that

i* in

Mo(F(0)) <F(w)(w, Q) = 2 Flo) (s, 7:Q1) = 3 Moo, (F(0))
i=1 i=1
and recalling that AGy(7,F(+)) ~ M(F(+)) because Ay is continuous (corollary 1.23)
and 7, F ~ ¥, we conclude that

mijk) =f Q2|1 F(00)) dP() < (2k)" f -11 Moo (F(0)) dP(w) =
o 2

— (2k)— f Mo F(w)) dP(w) = m(k)
and (26) is proved, @
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Let us pass to (27). Fix we Q and #,, t,€ ]0, + oof with & >1,. Let u, be a
funetion in 7, + W§*(Q, ) such that

F(o)(uy, @) = Moy (F(w))
and define u, on ¢, by extending %, on @, \, with the values of I,. Then w,&1, +
+ W5*(@,) and by (5)

Moo (B (@) <F(0) (03 Q1) = Fl)(thr, Qr,) + Flw)(ly, QN@1) <
<Hoi(P@) + 0 [ (1+ [DL) az

Q: 2\.621
hence

(28)mm(t) < (2t)"m(ty) + 6,(1 + |p|*)[(28,)"— (28,)"]
and (27) is proved.

STEP 4. — go=f, hence u = y,.
Fix pe R" and let [,(x) = p-x. Denote @ = @, so that |@| = 1. For every
wel, + Wy*@), we have that

Golly; Q) = go( [ Dly(@) @) = g [Dut@) do) < [gu(Du()) do = Go(u, Q)
Q Q Q
(the inequality is the Jensen’s inequality; see, e.g., [12], 2.4.19), hence
90(P) = Gilly, @) = Moy(Gy) =[oy(F) du(F) .
F

The function A, is continuous on F (corollary 1.23) and u is the weak* limit of (u.,),
80

go(p) = Hm | Moy (F) dus,(F) .

b~ 4 o0
As Fe,~ 0., F and ., is the distribution law of F.,, we have that

9o(p) = lm | M3(0e, F(w)) dP(w) .

h—+ o0

Finally
Hop(0e.F (0)) = min {& F (e, 05,Q8): 4 €L, + W5*(Qy)} =

= min {|Q1pes| T (v, Qusze,) : 0115,0 €L+ Wo*(Q1)} =
= min {inlzenl_IF(U: Ql/za,,)_: VEQ,, I, th)’“<Q1/2€h>} .



GIANNI DAL MASo - LuciANO MoDicA: Nonlinear stochastic homogenization 381

As 0¢,l,=1,, we conclude that

go(p) = lim | min IQ1/2sh|_1F(”’ Qe vEL, + W;’N(Ql/zen)} dP(w) = fy(p)

h— + oo

and the theorem is completely proved.

3.3. COROLLARY. — Let A € #4,, X C WH*(A), p: AXR — R be satisfying the hypo-
theses of proposition 1.18. Suppose (Fe) is a stochastic homegenization process modelled
on o stochastically periodic random integral functional F, satisfying the hypothesis of
independence of theorem 3.2. Let

ueX

() = Mog x4 F o)) = min {m(w)(u, A) + f o, u(@)) dw} :
A

Then (m.) converges in probability as ¢ — 07 fo m}, given by
My = Moy 5 o(F)

where Fy is defined in the statement of theorem 3.2.

Proo¥. — The function M, x , is continuous on F (corollary 1.23) hence uniformly
continuous (corollary 1.22). Then for every ¢ > 0 there esists d(¢) > 0 such that

Plw € Q: |ms(w) — mo| >} <P{w € 2: d(Fo(w), Fo) >(e)}

and the thesis follows from theorem 3.2.

3.4. COROLLARY. — Let A, X, ¢, F¢ be as in the previous corollary. Suppose that
the boundary of A is Lipschite continuous and that, for every ¢ >0 and w € 2, Fo(w)
belongs to a closed subset § of F satisfying the uniqueness of minimum points stated
in corollary 1.23. Then F,e G and, if u:(w) denotes the unique minimum point of

Felo)(u, 4) +[p(n, u(@)) dz
A

for we X, we have

1im.P{(JJE.Q: “us(a))—uOHLa(A)>’}’]}=0 ’ V77>0

s—>07F

where u, s the minimum point in X of

Fo(u, 4) +f<p(x, u(z)) do .
A4



382 GIANNI DAL MAs0 - LucraNo Mopica: Nonlinear stochastic homogenization

Proor. — It is the same argument used in the previous corollary. The thesis
Fy,e S depends on the fact that a sequence which converges in probability contains a
subsequence which converges almost everywhere (see e.g. [15], see 6).

3.5. ExamprEe. — If we choose in the previous corollary § equal to the set of the
quadratic forms (see examples 1.20 and 1.24), we obtain in particular the well-known
{see introduction) IL2-convergence in probability of the solutions of Dirichlet (or
Neumann, or other boundary value) problems for stochastic second-order elliptic
equations in the presence of homogenization, stationarity (for -us, stochastic pe-
riodicity) and ergodicity, substituted in this paper by the independence « at large
distances » in theorem 3.2.

4. — Examples.

4.1. Homoyemzation with regqular cells occupied by two materials randomly chosen.

For every ¢ > 0, let (X}),.z« be a family of independent random variables defined
on a probabilistic space (2, G, P) with values A >0 or A > 0 such that

Ploe 2: X(w)=A=r, Powe: X(o)=4}=1—r

for every ¢ >0, ke Z* and for re]0, 1] fixed.
For every ¢> 0 and ke Z", let @; be the cube in R"

{90 € R»: 8k,<w@< S(kz + 1), 4 = 1, ) 'ﬂ}

and denote by I; its characteristic function.
Now, let us define

afw,2) =3 Xe(0)Ii(@) (wel,zeRr

keZn
and
fae(w, o) |Du(x)|*de  if u|.e Whe(A)
Fe(w)(u, A) =1 4
+ oo otherwise
for we L (R") and A e &,.

If =2, P(w)(u, A) corresponds to the energy of a dielectric medium in A,
subjected to the electric potential u#, whose structure is an e-cubical lattice with
cells occupied by two different materials with diectric constants A and 4, chosen
independently by a Bernoulli’s law.
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M

3e
A a4 A A 4 A A 4

2¢
A A A a4 A A A A

£

A 4

£ 2 3¢ 4e
Fig. 3.

It is obvious that, for every u e Ly,

(R") and 4 e #£,

w —> Fe(w)(u, 4) = 3 Xi(w f z)| Du(x)|* dw
kel
4

is measurable, so F. is a random integral functional (proposition 2.1). Moreover,
Fs~ o F;: indeed

Iia) = I,lc(g), Ve>0, ke Z* xR
and the global laws of (X2),cz. and (X3),.z. are equal, so the distribution laws of

(QGFl( (thiy Ay)y oees QEFl(')(uNyAN))

(Fe(- ) try Ay)y ooy Fo( )0y, Ay))
are the same for every u,, ..., u,€ L (R") and Ay, ..., Ay€ #A; then g F,~ F, by
proposition 2.3, that is (Fe) is a stochastic homogenization process modelled on F,.

The random functional F, is stochastically periodic: indeed, if 2 € Z», A € A,
and we Wh*(A)

keZn

7, Fr(w)(u = > Xi(w) fIl z + 2)|[Du(@)|* de = Z X,H_z fI,ﬁ(w)]Du(a;) | dw
4

A

and the global laws of (X}, ,)rez» a0d (X})ez» are equal so, as above, v, Fy~ F,.

25 - Annali di Matematica
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Finally, if A4, Be £, and dist (4, B) > v/n, then there exist two disjoint sets
{£, ..., b} and {£, ..., k,} in Z* such that

N M
AU @y, BclU e
i=1 =1

and the random veetors (Xp.),_y v, (Xj)i-y,., u are independent.
As ’

‘ N
Fiw)(u, A) = ;X,i;(w) fI,lc;(w)'Du(w)]“ dx
4

Fi(w)(u, B) = ; XL () f I(2)| Du(x)|* dz

A

for every u e WH*(R"), it follows that the two families

FC) ) yezgemm s (Frl )y B)) e, ey

are independent. Theorem 3.2 applies, so there exists Fye F such that (¥.) con-
verges in probability to F, as ¢ — 07,
In particular, by corollary 3.3, the random variables

o —> Me(w) = min {Fe(w)(u, 4) +f¢pu dz: u— uy€ W};“(A)}
A4

converge in probability as ¢ — 0" to

My = min {Fo(u, A) ~I—f¢pu do: u— u,e W};”‘(A)}
A

whenever A € #4,, p € L*(4) and u,& W-*(4).
The explicit caleulation of F, is easy when n = 1 (see also [10]). In fact, by (25)

e o) =lim [minfo [, nluof dts wi—iy =— i , uti) =i} aP(o).
2 ~j

By writing the Euler equation of F(w), we obtain that the function » that attains
the minimum in (28) satisfies the equations

(o, YW @) =0¢ Viel—j, il

w(—1j)=—jp, w(j)=/jp



GIANNT DAL Maso - Luciano MoDIicA: Nonlinear stochastic homogenization 385

for a suitable real constant e¢. By a straightforward calculation, we conclude that

min{%fal(w,t)lu'(t)la dt: w(—j) = —jp, u(j) = ip} =

3
= o [(atw,npo-mar] "pe=|2 5 (x| e
2j ’ 2§ & *

=i

—§

for any w € 2, so by the strong law of large numbers (see e.g. [15], sec. II)

folp) = [rAHO= -+ (1 — ) AV 2p
and.
Fyfu, 4) = g, f ' (6)|* @t
A

for every uc W% 4), where a, is the a-harmonic r-weighted mean of A and 4. If
o =2 and 7 = 1, a, is the harmonic mean of 4 and 4.

Note that F, is equal to the limit in the deterministic case when the cells are
alternatively occupied by the two materials. In dimension two with « = 2 and
¥ = } the corresponding limit is the geometric mean 4/24 instead of the harmonic
mean (see [13]; a proof in the deterministic case has been communicated to us by
F. MURAT and L. TARTAR [18]). In three or more dimensions we do not know ex-
plicit formulas for F,.

4.2. Homogenization with cells of bounded random size alternatively occupied by two
materials.

As we said in the introduction, the homogenization of chessboard structures
with cells of random size can not be treated directly by the results of this paper,
even if we think that a careful inspection in the proofs and a not easy estimate of
some covariances should permit to include it in our theory.

There is not this difficulty, if we suppose that the random size of the cells is
bounded, a priori from above. Let us present an example in dimension one.

We want to construct a random partition of R in intervals not longer than a
fixed constant M > 1. Suppose we have a family (X,)..z of real random variables
defined on a probabilistic space (2, G, P) satisfying the following conditions:

(i) Xulo) < Xnpa(@), VoeQ, keZ;
M —

if) [ Xi(w) —k| < —3 1, Voel, ke Z;

(iii) the two families (X, + 1),cz, (Xj.1)rez have the same global distribution

law;

(iv) there exists N >>1 such that the sub-families (X,),._» and (X;),-y are
independent.
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To the partition (X,(w)),ez We associate the function .

z AI% t) + AIzk——l( w)(?) (e Q’ te R)'

k=—o0

where I;(w) is the characteristic funetion of [X,(w), X, ,(w)] for jeZ and 4> O
A > 0 are given real numbers. In other words, a(w, ) takes alternatively the values 4
and A on the intervals of the partition (X, (®)),cz-

Finally; let F. be a random integral functional with values in F(4, 4, 2) such
that Fe~ g:F where

_ fa(w, t)(u'(t))2 di if “lA € Wi2(4)
Flw)(u, A) =1 4
+ oo otherwise .

The random funetional ¥ is stochastically periodic with period 2: indeed, for every
eeZ, Ae &, and u e WhH2(4)

Ta. F () (%, 4) =fa(co, t+ 22‘)u’2(t) dt =
4

Xopr1(w)—22 Xop(w)—22
- co

= > A f Iuw2@)dt - A f I (t)u'2(t) dt
fome Xyp(w)—2% Xap-1(0)~22

where I, is the characteristic function of A. Since the definite infegrals are con-
tinnous function of the extrema of integration and, by (iii), the global law of
(X, — 22)4z 1s equal to the global law of (X;_,,)..z, We infer thab

Xog—2z+2(*) Kag-2:(")

R BWI f Loyw'*(t) dt + A f Latyu'™(t) dt = F(+)(u, A)
b Xop-2e(") ‘ Kog-gz-1(")

80, a8 in 4.1, 7,, F ~ F for every ze Z.

Now, let 4, Be #, with dist (4, By>2N + M +1. Define K, ,— {keZ: dist (k, 4)
<(M +1)/2} and analogously K. If [Xi(w), Xi{w)] N A0 for some ke Z
and o€ @, then ke K,; moreover, if ¥’'e K, and k"€ K, then |k'— k"|>2N.

Then, for u € W-2(R)

(1, A) = f 1) + AL s()(0)0's() dt

Y(u, B "‘J‘ Z AL () () + ALy (o )(t))ulz(t) dt
kGKB
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so, by (iv), F(-)(u, 4) and F(-)(u, B) are independent, hence; as in 4.1, theorem 3.2
applies and (F.) converges in probability as ¢ =07 to a functional F,e &
Let us caleulate the integrand f, of F,. We shall prove that

L\DI}'."

(29) lim -f > (o)

j— 4 oo :' keZ

for P-almost all w e 2. Since

DSLpg(w) =1—3 Liyw), VYoef

keZ keZ

we shall obtain easily that

j—>+eo keZ

fo(p) = p* Lim | 24 (/1 + (A — g)_ ZI% dt) iP(0) = (1//1 _; 1//1\)~1p2

as in the previous case and as in the case of completely random size studied by a
direct method .in dimension one by G. FACCHINETTI and L. Russo [11].
Let us prove (29). Let L = N + 1. We have that

Y(w E 2n(0 g '2'1‘ ze: flzwsz (w)(¥) dt .

ksZ
—i

By (ii) we obtain that
i + 00
[Lavam@)®) @t = [ Lissugo) @, Voo

if 26 4+ omL — (M —1)/2>—j and 2i + 2mL +1 -+~ (M —1)/2<j, while

fI2i+2mL(w)(t) =0, VYVoef

it

if 2 +omL -1 + (M —1)2<—7j or 2i + 2mL — (M —1)/2>7, so that

+ o0 i
L-11 1
. ; (. I; t) dt
Z 5 ffz remz(w)(t) d Zo mgszz:’f 2i+2mz{®)(?)
— 0 -3
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where
_ —2j—4i4 M —1 2 —4i— M—1
Sl_{meZ. —~—4L————<m< 1L
—2j—di— M —1 —9f—di+ M —1
Sz—{meZ. 1T <m< N7 or
2] —4i— M —1 2§ —di - M —1
il <m< 4L '
Note that # 8,<M /L + 2, hence
lim _fIZ‘L-FZML =0, V(DGQ, Vi=0,-..,L—-1.
J—>+oomESa

On the other hand, if m,, m,e 8, and m,+# m,, the two random variables
w0 _>J.Im+2m,z,(w)( )8 = Xy omps1(0) — Xy (@) (r=1,2)

are independent by (iv) and have the same distribution law by (iii) so, remarking
that (2j — M)2L<# 8,<(2j — M)/2L + 1, the strong law of the large numbers (see
e.g. [15], sec. II) and (iii) give that

lim Y,(0) = hm f Lpitomp(w)(?) dt =
>+ o0 j>+4o0 i= 02]mesl
Il q 1 ZIz 1
:i;)ﬁ (Xpis(@) — Xyi(w)) dP(0 ::_E Z Xoi(w) + 1 — Xyi(w)) dP(w )=2—
02 o

and (29) is proved.
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