
Nonlinear Stochastic Homogenization (*). 

GIANNI DAL 1VIAS0 - LUCIAN0 ~0DIOA 

S u n t o .  - I~  questo lavoro viene st~diata l'o~nogeneizzazione stocastica per ]unzionali integrali del 
Calcolo delle Variazioni con integrando dipendente dalla variabile spaziale e convesso nel 
gradiente, soddis]acente alle usuali ipotesi di ,~ng]orme coe~'citivith e limitatezza. II risultato 
generale ottenuto copre un largo spettro di ]enomeni riguardanti materiali con disposizione 
casuale di pi~ componenti il cui comportamento ]isico ~ retto da equazioni variazionali n o n  

lineari. 

O. - I n t r o d u c t i o n .  

The mathematical theory el homogenization for periodic structures has been 
greatly developed in the 1970's by E. DE GIOI~GI, S. SPAGNOL0, I~. TAI~TAR~ I~. S. 
:BAItVALOV, I. BABUSKA~ E. SA~CHEZ-~PALENCIA, A. BE]~SOUSSAN, J. I~. I~Iol~tS, G. C. 
PAPANICOLAOU, C. SB01~D0:NF,, P. ~V[AI~CELLII~II, V. V. ZHIKOV, S. 1V~. ]~0zLov, O. n.  
OLErNIK, KHA T'EN I~GOAN, F. MUI~AT and many other authors (see [1] an4 the 
bibliography of [6]). 

more recently, some attention has been devoted to the stochastic homogenization, 
in particular in boundary value problems for the linear second-order uniformly 
elliptic equations in variational form 

i ,J=l  \ \ 

where ~ is a random parameter and the matrix field (a~r is mainly supposed to be 
bounded, positive definite, homogeneous and ergodic: see S. ~ .  Koz•ov [13], V. V. 
YUI~INSKIj [2~], G. 0. PAPANICOLAOU and S. R. S. VA~ADHA~ [19] and the volume [3]. 
The physical meaning is obvious: the structures to be homogenized are not periodic 
but, in a sense, only stochastically periodic and this corresponds naturally to a 
large number of real phenomena in physics, chemistry and engineering. 

In this paper we propose a new scheme to study stochastic homogenization, 
which covers the Euler equations of a broad class of convex integral functionals, 
hence in particular the linear equations (1) (arising from integral quadratic forms) 

(*) Entrain in Redazione il 29 set*embre 1985 .  
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bu t  also much more general nonlinear variat ional  equations. In  the  case (1) we 
obtain independent ly  the  results already known, except  for a slight difference about  
which we shall re turn  af terwards  in the remark  (a) of this introduct ion.  

The main feature of our scheme is to pass from the point  of view of the stochastic 
differential equations to be solved to tha t  one of the random integral  functionals 
to be minimized. In  the  classical, let us say (( determinist ic ~>, homogenization,  this 
passage is the  convergence in energy oi E.  DE GIORGI and S. SPAGNOLO [8] and was 
performed for the convex integral  functionMs by  P. I~ARCEL5~I [16]. The present  
paper  may  be considered a stochastic version of the  ~axcell ini 's  one and also a 
generalization of it. 

Le t  us describe more closely the content  of this work. First ,  we introduce the 
class 5 r of all the  integral  functionals of the form 

f(u, A) =f/(x, Du(x)) dx 
A 

(u real  funct ion in a suitable funct ion space U, A open bounded subset of R ~) with 
J(x, p) measurable in x, convex in p and such tha t  

edp I < l(x, p) < e (Ip I + 1) 

where 0 < c1< c2 and e > 1 are fixed real constants.  
As we want  to s tudy the  random integral  functionals,  t ha t  is the (( measurable ~> 

maps e) -* l~(co) of a probabilistic space D into ~-, and thei r  convergence, we need 
some s t ructure  on ~-. Then we construct  on ~ a distance d so tha t  the  following 
two main conditions are fulfilled: 

(i) (~,  d) is a compact  metr ic  space; 

(if) the funct ion 

F ~ Min (F,A,q~,Uo) = min iF(u,A) -k f~u dx: u - -uoe  W:'~(A)} 
A 

is (uniformly) continuous on (5-, d), whenever  A is an open bounded subset of R ~, 
~0 E L~'(A) and uo e WI'~'(A). 

Let us remark that conditions (i) and (ii) depend on the fact that the convergence 

in ~- is equivalent  to the  / ' -convergence,  i n t h e  sense of E. DE GIolmI (see [7]). 
Condition (i) says tha t  (5 ,  d) is a good set t ing for the s tandard  methods  of Proba- 

bi l i ty  Theory.  Condition (if) implies tha t  the convergence in probabi l i ty  of a se- 
quence (F~(co)) of random integral  functionals toward  F~(~o) yields direct ly the 
convergence in probabi l i ty  of the  respective random minima Min (F~(co), A, cf, Up) 
to ~ i n  (/~(co), A, ~o, Uo). 

Of course, if we want  to obtain the convergence in probabi l i ty  of the solutions 
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of Enler  equat ions of Ft,(co) (in the  case Fh(eo) are differentiable),  we have  to p rove  

also the  << cont inui ty  >> of the  minimizers  (min imum points) but ,  in lack of uniqueness,  
this  is more compl ica ted t o  be explained briefly and  so we refer  to corollary 1.23. 

The ma in  result  we prove  is the  following. Le t  F ,  F~: ~Q --> 5 ~ (e > 0) be  r a n d o m  

integral  functionals  a n 4  4elloto respect ively  by  J(~o, x, p) and f~(co, x ,p )  the i r  in- 

tegrands.  For  every  z ~ Z ~ a a 4  e > 0 let us 4efiae the  r a n d o m  integral  funet ionals  
~'~F, ~o~F: Q -~ 5" b y  

A )  = x + z, Du(x)) dx 
Id 

A 

A 

We say t ha t  F is s tochast ical ly 1-periodic if T . / ~  F for every  z e Z ~ where 
means  for us to have  the  same dis t r ibut ion law. We say t h a t  (F~) is a s tochast ic  

homogenizat ion process model led on F if F ~  ~ F  for eve ry  e > 0. 

~/~AIiN TI-ITEOI~EIVL - -  Let (F,) be a stochastic homogenization process modelled on a 
stochastically 1-periodic junctional F.  Suppose that there exists M > 0 such that, when- 
ever A,  B are disjoint bounded open subsets oJ R ~ with dist(A, B) >1 M, the two jamilies 
of random Junctions 

and 

are independent. 
Then there exists a single junctional ~o E ~- (or equivalently a constant random in- 

tegral Junctional) such that (F~) converges in probability to Fo as e --> 0+. Moreover 
the integrand Jo(x, p) oJ ~o does not depend on x and 

(2) fo(p) = l im ( 1  M_in (xV(co), Q~/~, O, l~) dP(a)) 
*----o+3 IQI/,I  

where Qli~= {x ~ R": ]x, I < l/e,  i ----1, ..., n} is a cube, ]Qli~ [ is its Zebesgue measure, 
l,(x) = 19 .x is the linear junction with gradient 19, and _P is the probability on [2. 

In  order to gmasp be t t e r  th is  result,  let  us an t ic ipa te  f rom the  four th  section of 
this  pape r  a ve ry  simple one-dimensional  example .  For  every  e > 0 let  us consider 
a wire fo rmed b y  small  segments  of lenght  e of two different mater ia ls  r andomly  

chosen, hav ing  t he rm a l  conduct ivi t ies  2 > 0, A > 0. 

< - - 8 - - >  

t711111,1 Y/ / I I l IZI I I / / IAI  Y / / / / I / L I I I l I I A  W1/I l IA I i ' I ' l l~ I l iA  
2 A ~ ~ A ~ ~ A ~ A A A 

l~ig. 1. 
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The thermal energy of a piece A of this wire, corresponding to a temperature 
distribution u, is 

F~(~)(u, A) =[a~(o), t)~'(t)~ at 
A 

where the generic random parameter ~o is a sequence (~%)~z with values ~, A and 

a~(~, t) ---- ok if t e [ks, (k + l) s[ , k e Z .  

Then we may choose s = {A, A} z and the probability P equal to the infinite 
product of the trivial equi-distribu~ed probability on {2, A}. Let P = P1; as 
al(eo, t ~- i) = a~(cS, t) with o 5 ~  co~+j, then T~-P has the same distribution law of F 
for every j ~Z. Moreover @~P ~ P~. Finally, if dist (A, B ) > I ,  ~(~o)(u, A) and 
P(~o)(u, B) are independent becausei roughly speaking, no unitary segment intersect 
both A and B, hence the values of the energies on A and on B axe independent. 

Applying our theorem we obtain that  there exists 

Fo(U, A) =f]0(u'(t)) at 
A 

such that  (Fs) converges in probability to Fo. Calculating ]o by (2), we have that  
]o(P) : cP ~ with c the haxmonic mean of A and A. This shows that  in this case the 
homogeneous material after the stochastic homogenization is the same as after the 
classical homogenization in which the two materials axe regularly alternated without 
randomness. Moreover, ill this 9axtieular case, one could prove directly that  ac- 
tually (P~(o))) converges to P,  (in the sense of 5,  or _F-converges) for P-almost all 
~o ~ [2, because in dimension one there is a good chaxacterizution for the/'-convergence 
of the integral quadratic forms. 

Let us return to our main theorem, by doing some remarks. 

(a) Our hypotheses concern only the distribution laws of P,  ~fl~, P~, @,iv so 
obviously we can not obtain the almost sure convergence of (P~) to Fo. However, 
if we suppose @~-~  ~ instead of @~P~ ~ ,  it remains open the question of the 
almost sure convergence, which is verified in the example quoted above, in an 
example studied by G. FaccI~i~EmmI and L. l~vsso [11] and in the case (1) of second 
order elliptic equations. 

(b) Our proof relies essentially on De Giorgi's /'-convergence Theory (1ruder 
this aspect the paper is self-contained) and on elementary Probability Theory. In 
particular, we do not use explicitly Ergodic Theory. 

(e) Actually, the crucial hypothesis of independence of/~(co)(u, A) and ~(co)(u, B) 
for dist (A, B )>  M might be relaxed in a kind of asymptotic uncorrelation but it 
should become less readable and more complicated to be verified in the examples, 
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so we have preferred in this paper to consider a stronger but simpler hypothesis. 
Depending on this, we can not at tack directly here, for instance, the case of homo- 
genization of chessboard structures with cells of completely random size (the figure 

l 
l ~ ~ / J ~ .  

Fig. 2. 

below should be a hint to understanding it) but only with cells whose random size 
is estimated a priori from above. Let  us recall that  the one-dimensional case of 
homogenization with cells of completely random size, proposed by E. DE GIonGI, 
was the starting point of this research (see L. )/[0PICA [17]) and has been solved 
by G. FACCm-NEmTI and L. l~vsso [11]. 

The plan of the paper is the following. 

1. - Integral ftmctionals and ]"-convergence. 

2. - l~mdom integral functionals. 

3. - Main results. 

4. - Examples: 

4.1. Homogenization with regular cells occupied by two materials rand- 
omly chosen; 

4.2. ttomogeaization with cells of bounded random size alternatively 
occupied by two materials. 

1. - Integra l  f u n c t i o n a l s  and / ' - c o n v e r g e n c e .  

In  this section we introduce the class of integral functionals we shall deal with 
in the rest of the paper and we endow it with a topological structure related to the 

2 3  - A n n a l t  di  Ma temal i ca  
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F-convergence.  All the  results  we s ta te  here  are substant ia l ly  known but  t hey  are 
of ten not  easily avai lable in "the l i tera ture ,  so we prefer  to give the  proofs. 

Le t  A0 be the  f ami ly  of all bounded  open subsets of R ~ and  fix th ree  real  constants  
c~ ~ c~ ~ ~ such t h a t  0 < s~ < e, and  g > 1. These constants  will be  held fixed th roughout  

the  paper ,  so we often omi t  to indicate  expl i t ly  the  dependence on c~, c~, ~. 

We denote b y  ~ = ~(c~, c.a, ~) the  class of all  funct ionals  F :  Zloo(R ~) • go --> R = 
--~ R ~) { +  ~ ,  -- c~} such that 

(3) ~ ( u , A )  = A 

d: c~ otherwise  

where ]: R ~ •  is a n y  funct ion sat isfying the  following condit ions:  

(~) /(x, p) is Lebesgue measuraMe in x and  convex in p ;  

(5) c~IpI~<~](x,p)<c2(IpI~ + l) , V ( x , p ) ~ R ~ •  " . 

We shall refer  to the  le f t -hand side inequal i ty  in (5) as the eqnicoerciveness 

of the  e lements  of ~ and  to the  r igh t -hand  side inequal i ty  as the  equiboundedness 

of the  e lements  of ~ .  
As usual,  Du = (au/ax~, ..., au/ax~) denotes  the gradient  of u and  WI'~(A) denotes 

the  Sobolev space of the  functions of L~(A) whose first weak der ivat ives  belong to 

Z~(A). We shall denote b y  Wlo'~(A) the  closure of Co(A ) in W~.~(A). 
~ o t e  tha t ,  if u E WI'~(A), "the funct ion x --> ](x~ Du(m)) is non-negat ive  and  Le- 

besgue measurable  on A (recall t h a t  ](x, p) is convex in p) so the  in tegra l  in (3) 

makes  sense. 
ActuMly, (3) defines 2'(u, A) for every  u e L~oo(A ) (or Mso u s Z~oo(A)) even if u 

can not  be  ex tended  to R"  as a a  e lement  of Lloo(R ). for technical  reasons, we prefer  
not  to  t ake  into considerat ion this case in the  definition of F .  

There is not  this  p rob lem when u e L~(A): in th is  case we m a y  ex tend  u to an 

e lement  t~ of Ljoo(R ") and  the  value of ~(g~ A) does not  depend on "the extension 
of u. So, each ~ 6  ~- defines~ for every  A e g0~ a funct ional  F~:  L~'(A) - ~ R .  

1.1. RE~AgX. - I f  ~ ~ 5 ,  the  in tegran4 ](x~ p) of F is identified for a lmost  all 

x e R - and  for all p 6 R ~. Indeed ,  if Be(x ) is the  ball  in R"  with  center  in x and  

radius ~, ]Be(x)[ is its Lebesgue measure  and  4:  R ~ - ~ R  is the  l inear  funct ion with  
gradient  p, we have  

1 
l i m - - F ( 4 ~ B s )  = ] ( x , p )  for a.a.  x e R  ~ 
~-~o+ lB~(x) l 

We say t h a t  a subfami ly  55 of A0 is dense if, for every  A1, A2 ~ Ao with Alcc A2 
(A c c B  means  A c B), there  exists B e 55 such tha t  A~cc B ccA2.  
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1.2. P~oeos~m~o~. - Suppose ~ is a dense subjamily oj Ao. Then 

F(u,  A) = sup {F(u, B): B e 5~, B _~ A} 

/or every F ~ ~,  u ~ Z~oc(R~), A ~ Ao 

t)~oo~ - Trivial (if u ~ WI'~(A), because of equicoerciveness (5)). 

1.3. P~oPosImIo~ (l~ellich's Theorem). - Zet A ~ Ao. Then any bounded subset 
o/Wi'~(A) is relatively compact in L~(A). If, in addition, the boundary o / A  is Zipschitz 
continuous, then any bounded subset o/ W~'~(A) is relatively compact in L~(A). 

PROOF. -- See e.g. [22], sect. 25-26. 

1.~. COROLLAI~Y. - Let A e Ao. Then any bounded sequence in W~'~(A) contains a 
subsequence that converges in JL~oc(A), weakly in W~'~(A) and pointwise almost every- 
where in A. 

Pn00F. -- I t  follows from l~ellieh's theorem recalling tha t  W~m(A) is reflexive 
because ~ > 1 and tha t  any convergent sequence in L~oc(A ) contains a subsequence 
which converges pointwise almost everywhere in A. 

1.5. P~oPosImIog. - Let A E Ao and F ~ ~. Then the Junctional F ~ is lower semi- 
continuous in L~(A). Moreover~ its restriction to WI'~(A) is continuous in the strong 
topology oJ WI'~(A) and lower semicontinuous in the weak topology of WI'~(A). 

PlzooF, - The strong continuity of FA in WI'~(A) follows from convexity and 
equiboundedness (5) (e.g. see [9], ch. 1, prop. 2.5). The weak lower semicontinuity 
of -FA in WI'~(A) follows from convexity and strong continui ty (e.g. see [9], oh. 1, 
cor. 2.2). Now, let us prove the lower semicontinuity in Z~(A), tha t  is 

(6) /~ (u=)  < l i m  inf 2'~(u~) 
h--+ + oo 

for every sequence (ua) converging in L~(A) to uoo. I t  is not  restrictive to assume 
tha t  (F~(ua)) is bounded, so equicoerciveness (5) gives tha t  (Dub) is bounded in 
JL~(A). On the other hand (uh) converges to u~ in Z~(A), hence corollary 1.4 implies 
tha t  (u~) converges to u~ weakly in WI'~(A). Then (6) follows from the weak lower 
semicontinuity of FA in WI'~(A). 

1.6. C0~0LLA~Y. - Zet %1) be a dense subset oJ WI'~(R ~) and :B a dense subJamiIy 

o] Ao. IJ F, G ~ 5" and 

2"(w, B) ---- G(w, B ) ,  Vw ~ '~, VB E r , 

then F : G. 
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P~ooF. - I t  follows from propositions 1.2 and 1.5, because W~'~(R ~) is dense 
in W~'~(A) for every  A e Ao with Lipsehitz continuous boundary  and the family 
of all these open sets is dense in Ao. 

For  A ~ A0, denote by  P~ the  best  constant  in the  Poincax6 inequal i ty  (see 
e.g. [22], sect. 23, ineq. (23.5)) 

(7) flur d <P flDur dx, Vu 
A A 

1.7. PROPOSITION. - Zet A e Ao and F e ~ .  Suppose X is a nonvoid weakly closed 
subset oJ WI'~(A) and 9): A • R -+ R is a Junction such that q3(x, y) is Lebesgue measur- 
able in x and continuous in y. IJ 

(s) qJ(x,y)>Alyl~+ /~(x), V(x,y) e A •  

/or some ;~ > 0 and # e ZA(A), then there exists the minimum in X oJ the Junctional 
T:  L~(A) ~ R deJined by 

-L 

~(u) = ~(u)  +f~(x, u(x)) dx. 
A 

IJ X c_ u o + Wlo,~(A) /or some Uo~ WI'~(A), then (8) may be relaxed by requiring only 
)~ > --  c~/P ~. 

Placer .  - First ,  suppose 2 > 0. By  (8) and eqnicoereiveness (5), we have tha t  

(9) ~(u) >rain IlslL,(.), vue  x 

hence m = inf T ( u ) > -  c~. Since the  case m = + c~ is trivial,  we assume tha t  
q~ffX 

m ~ R an4 we choose a minimizing sequence (u~) in X such tha t  (W(uh)) is bounded.  
Then we infer f rom (9) t ha t  (u~) is bounded in WI'~(A) and, applying corollary 1.4, 
we may  select a subsequence (u~(a)) t ha t  converges weakly in W~'~(A) and pointwise 
almost everywhere to a function u~eW~'~(A). We claim tha t  u~ is the min imum 
point  of h y in X. In  fact,  u~ e  X because X is weakly closed and, b y  proposi- 
t ion 1.5, we have tha t  

/~x(u~) < l i m  inf /~(u. (n)) .  
h--* + r 

On the other  hand,  pointwise almost everywhere convergence, Fatou 's  lemma and 
(8) give t ha t  

X X 
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Then, we conclude thn~ 

m < T(u~ ) = Fa(u~) -I-f of(x, u~ (x)) dx < lira inf T(%(~)) = m 
h--> + oo 

A 

an4 the proposition is proved. 
In  the case XC_u o 4- W~o'~'(A) and 2 > - - e , / P a ,  (9) ,nay be replaced by 

where /~1 > 0 an4 ks > 0 are suitable real constants. Indeed, by Poincar4 inequali ty 
we obtain tha t  

}I ~ - % I1~o(~)< P~  [l D ~  - D% [f;o(~) < P ~  ll IDa I + f D% f Ir;o(~) 

henc% by convexity 

< (1 - ~)~-~v~if IDul + [DUol]]Zo(~) + ~-~]]%]];o(~>< 

- -  ~) ~ l I D u l l . ( ~ )  + (1 - -  ~)~-~P~ ~I-~I{D%II~o(~ ) + ~ II%{i.(~) 

fo~ every u e X: and for every e e ]0, 1[. ~ow, by (8) 

~ ( u )  > o~[lDullb(~)+ Ziluli~o<~)-- li~li~,(~)= 

~:1-- cr 

for every u a X~ s ~ ]0~ 1[~ ~ a ]0, e~[. l~ecalling that  c~/P.~ 4- ), ~ O~ we may choose s 
and ~ small  enough so tha% (e~-- 5)(1 - -  e)~-~/Pa 4- 2 > 0 and (9') is proved, i~ore- 
over, the above sttbsequence (u~(~)) may  be selecte4 so ~hat (uo(~)) converges also 

i n  L~(A) (t~ellich's theorem~ see proposition 1.3) s% by Fatou 's  1emma upplie4 to 

~(x,  %(~)(x)) - ~[uo(~)(x)V 

A A 

and the proo~ of ~his case is eciual to the previous one. 
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1.8. t~EiV~A~X. - In  the  case X c Up + W~'~(A), (8) is verified for some ~ > - -  el/P~ 

if ~(x, y)>z(x)]y] ~ with l < f l  < a, Z e Lv(A) and 7 equals the  dual exponent  of o~/fi. 
In  fact,  the  e lementary  inequa l i ty  

~s~ e-qbq ab < a~ + q 

yields 

(a, b, e~ p~ q > O, p + 1~ ~-1)  

1 
x ( x ) l y l , ~ > -  ~=~,~lyl~-~ [z(x)l ~, , V(x, y)A x.R", Ve :> o 

so i t  suffices to choose e so small t ha t  - - e ~ / ~ > -  el/P~. 

1.9. EXAMPLES. -- When  ~. ~ 2 proposit ion 1.7 applies in these well-known cases: 

(a) X = WI.2(A), f(x, P) -~ [P[~, qJ(x, y) = 2[y--u~(x)] 2, ~ > 0, ~1~ L~(A): here the  
min imum point  of T in X is the  weak solution in WI,~(A) of the  ~ e u m a n n  problem 
for the equat ion Au z ~(u--u~). 

(b) X ---- Up + W~o'~(A), ](x, p) = ~ a,(x)p~p~ satisfying (4), (5) and a ,  = ai~, 
i , i = l  

~(x~ y)----2yz(x)~ % ~ L~(A): here the min imum point  of T is the  weak solution in 

W~,~(A) of the  Dirichlet problem for the equation ~ .DJa~j D~u) = g with prescribed 

boundary  value ~o. ~'J=~ 

(e) X = W~o'2(A), ](x, p) as above in (b), 9(x, y) -~ -- ky ~ + 2y)~(x), 0 < k <  e~//~: 
here the  min imum point  is the  unique weak solution in W~o'~(A) of the  Dirichlet 

problem for the equat ion 

~ Di(ai~D,u) + ku = % 
i , j = l  

(the uniqueness depends on the fact that k is smaller than the first eigenvalue of 
elA). 

In  these examples 9(x, y) is smooth in y so we can consider the  Euler  equat ion 
of }/1, bu t  note  tha t  proposit ion 1.7 applies also to non-smooth y~. 

In  order to give a topological s t ructure  on $ ,  we need the 4efiaition of s-Yosida 
t ransform of a funct ional  F E ~-. 

For  every  F e 9 ~ and e >  0, the  e-Yosida t ransform of ~ is the  funct ion 

T F: L~o~(R n) X A o --> R defined b y  

(10) T~F(u,A)---  inf{tZ(v,A) +l-  f lv--ul~dx: v~L~oJR')} 
A 

or also, by  proposit ion 1.7 

A 
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This kind of t ransform was considered for generic functions on metr ic  spaces 
in [7] (except for a slighg unessential  difference), mot iva ted  b y  the  methods oc- 
em~ring in [8]; it is s tr ict ly related with the Fenche l -~orean  conjugation (see [9], 
ch. I).  The name <~ Yosida t ransform ~> comes f rom the following remark.  

1.10. I~ErLal~K. -- Le t  c~ = 2: and /(x, p ) =  ~ ai~(x)pip~ satisfying (4), (5) and 
i , ~ = 1  

a,---- a~. By  forget t ing for a moment  tha t  R ~  Ao, we calculate/~(u,  R ~) obtaining 

�9 '(u, R ~) = (Lu ,  u ) ,  Vu ~ WI'~(R ~) = tt~o'~(R ") 

where L = - - ~ D ~ ( a ~ D s ) :  H~'2(R ~) -+H-I'~(R n) and ( . , . }  is the pairing between 
i , ~ = 1  

H-~'2(R ~) and H~'~(R~). Now we shall show tha t  

~_F(n,  R ~) = (Z(~)u, u } ,  Vu e It~o'2(R ~) 

where L (~)= 1/e[I-- I ( I  + eL)- l I ]  = Z(I  + eL)-~I is the u  s-approximation 
of L (e.g. see [2], pg. 28) and I is the natural  embedding of H~o'~(R ~) into H-~'~(R"). 
In  fact  

T~r(u, R ~) = r(v~, R-) + 1 ~ Ivy-- u] ~ dx 
t;g 

Rn  

where v is the  solution in H~o'2(R ") of 

Lv~ + 1_ I(v~-- u) = 0 .  
? 

F rom the last equat ion we infer t ha t  

v; = (I + eZ)-~Iu 

h e n c e  

lv~--u]~ dx = (Lv~, v~) + <~ I(v~--u), v~--u}  = 

1.11. PROPOSITION. -- Let t z e ~,  u E f,~oc(Rn), A ~ d~ o. Then 

lira T~F(u, A) = sup T~2'(u, A) = F(u, A) . 
~-->0 + ~ > 0  

P~ooF. - I t  is obvious tha t  T F(u, A) is non-increasing in s and bounded from 

above by  ~(u, A), hence i t  suffices to prove tha t  for every  k < F(u,  A) there exists 
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e > 0 such tha t  T,F(u, A) > k. Fix  k < F(u, A). By lower semicontinuity (proposi- 
tion 1.5) there exists (~ > 0 such tha t  

F(v, A) > k ,  Vv e Z~(A): f l y - -  u] ~ dx < 
A 

therefore, for these functions v 

x) + f Iv - ul 
A 

dx > k,  Ve > 0. 

On the other hand, if v e Z~(A) and f l y -  u] ~ dx>~ 6, then  
A 

hence 

l f F(v, A) + 
A 

Vs > 0 

T~F(u, A ) > m i n  {k, !} ---- k 

for ~ small enough. 

Now, we define a distance on 5 r. I~et us choose a countable dense subset 
ql) = {w~.: j ~ N} of WI'~(R ~) and a countable dense subfamily ~ ---- {B~: k e N} of 
Ao. For instance, 33 could be chosen as the family of all bounded open subsets of 
R ~ which are finite unions of rectangles with rational vertices. Let  us define for 

+ ~  1 
(11) d(F, G) = ~k: 12 ~+~+~ ]arc tg T~lJ(w~, B~) -- are tg TII~G(w~, B~)]. 

1 . 1 2 .  PROPOSITION.  -- d i s  a dis tance  on ~ .  

P~00F. - I f  d(•, G) -~ 0, then  proposition 1.11 and corollary 1.6 give tha t  F = G. 
The other properties of a distance are straightforward to prove. 

1.13. RE~AR~:. -- By changing %0 and 33 one may  obtain different distances but  
all of them are topologically equivalent to d: this will be a consequence of proposi- 
tion 1.2[. moreover, i t  is obvious tha t  in (11) arctg may  be replaced by any  increas- 
ing, continuous, bounded function Z: R - + R .  

The main reason for choosing d as distance on ~ is the link between d and 
/'-convergence, a type of variational convergence proposed by E. DE GIo•GI and 
studied by  m a n y  authors in the last years (see the bibliography of [6]). Le t  us 
define the case of / '-convergence we are interested in. 

Let  X be a metric space and let (F~) be a sequence of functions defined on X 
~ i t h  values in R. We say tha t  (F~) / ' (X-)  converges at  a point xoo~X to 2 e R  if 



GIA~NI DAL MAS0 - LUCIAI~0 1VfODICA: Nonlinear stochastic homogenization 359 

the following two conditions are fulfilled: 

(12) ~ < l i m  inf ~(x~) 
h---> + co  

for any  sequence (xh) converging in X to x~; 

(13) there exists a sequence (xh) converging in X to x~ s~ch t h a t  

l im sup Fa(x~) < 2.  
h - >  + co  

In  this case we write A = I'(X-)hljm+ooFa(xo~ ). If  there exists _V: X - > R  such tha t  

Foe(x) = F(X-)  lim F~(x), Vx e X 
h---~ + co  

we say tha t  (Fh)/~(X-) converges to F~.  Note that ,  in this last case, (12) and (13) 
give tha t  

(14) E~(xr = rain {~m inf Fh(x~): (x~) converging in X to x ~  
h---~ + co  

for every z~e  X, hence they  determine univocally the / ' (X-)  l imit  F~.  
~or  technical reasons, i t  will be useful to have the following equivalent formnla- 

t ion of (13). 

1.14. P~oPosITIO~. - The condition (13) is equivalent to: 

(13') 

/or any neighborhood U o] x~o. 

l im sup [inf < 
h---> + oo ~ x e U  J 

PROOF. - I t  is trivial tha t  (13) implies (13'). Conversely, suppose (13') holds 
and denote by  Uk the ball in X with center r and radius 1/k. Then there exists 
an increasing function ~: N - ~  N such tha t  

1 
inf s +-~-#, Vh, k e N :  h>a(k) 

xeU~ 

therefore we may  select y ~ e  Uk such tha t  

1 
F~(yh,~) < 2  + ~, Vh, k e N :  h > a ( k ) .  

Le t  ~: N -+ N the (~ inverse function ~> of ~, t ha t  is 

~(h) : rain {] e N: ~(i + 1) > h} 



360 G ~ A ~  DAL ~AS0 - LUC~A~0 ~VJ~0DICA: Nonlinear stochastic homogenization 

and define xa = ya,~(a). Then 

a(~(h)) <-< h ,  x~ ~ U~(~), l im ~(h) : + pc 
h--> + oo 

so (x~) converges in X to x~o and (13) holds. 

1 
und _Fn(xn) < ~ d- - -  ~(h) 

1.15. PRoPosI~Io~. - Let (Fh) be a sequence of/unctions defined on a metric space X 
with values in R.  

(a) I] ~ = F / o r  every h c N and F is rower semicontinuous in X ,  then (F~) F ( X - )  
converges to F. 

(b) I] the sequence (F~) F ( X - )  converges to a function F~o, then any subsequenee 
I~(X -)  converges to .Eo:. 

(v) I] the sequence ( ~ )  does not F ( X - )  converge to a function F~: X --> R,  then 
there exists a subsequencv (Fo(h)) of (_Fh) with the property that no further subsequence 
of (_E~(h)) F(X- )  converges to t'~o. 

Pgool~. - (a) and (b) follow direct ly f rom the definition (12), (13) o f / ' ( X - )  con- 
vergence. For  (c) note  tha t ,  if  (F~) does not  F ( X - )  converge to 2 ~ ,  e i ther  (12) or 
(13') are not  satisfied. In  bo th  cases it  is immedia'~e to construct  a snbsequence 
of (F~) such tha t  no fur ther  subsequence satisfies respect ively (12) or (13'), so "the 
proposit ion is proved.  

1.16. I~E~ARK. - Proposi t ion 1.15 says tha t  the set of "the lower semicontinuous 
~unctions defined on X with values in R,  endowed with the F ( X - )  convergence, is a 
E*-space in the terminology of K.  K~AWOWSXI ([14], eel .  I ,  ch. 2, w 20). 

Now, let  us adapt  the definition of F-convergence for sequences of functionu!s 
in 5-. We say tha t  a sequence (F~) in 5-/~(Z~-) converges (or simply/~-converges) 
to a functional  / ~  ~ 5 if 

F(Z~(A) -)  lira (~Vh)~(U) = ( ~ ) ~ ( u ) ,  
h--> + co 

Vu c L~(A) 

whenever  A e Ao. In  this case we write ~P(Z~-)hlim F ~ = F~ .  

The nex t  propositions give the main propert ies  of F(L ~-) convergence in 5-: 
compactness (1.17-1.22), convergence of min ima and minimizers (1.18-1.19), l ink 
with the distance d (1.21), cont inui ty  of the e-Yosida transform, of minima and 
minimizers (1.23-1.25). 

1.17. P~oPosITIoy. - The crass 5 is compact for the F(L  ~-) convergence, in the 
sense that every sequence (_P~) in 5- contains a subsequenee that F(L  ~-) converges to a 
functional Fc~ E 5-. 
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P~oo~. - Le t  (_Fh) be a sequence in ~ .  By  theorems 4.3 and 2.4 of [4] (with 
some minor  changes in the  proofs) there  exists a subsequence (F,(h)) and a funct ion 
J~: R ~ • R, non-negative,  Lebesgue measurable in the  first n variables,  convex 
in the last n variables such t h a t  

Um (F~(~,).(u) = [ M x ,  Du(x)) ax (15) T'(LffA)-) 
h--> + oo d 

A 

for every  A a Ao and u ~ WI'~(A). I f  u E L~'(A)\WI'~(A) and (ua) is a sequence 
converging in 25~(A) to u, then  (u~J can not  have bounded subseqaenees in W1/'(A) 
by  corollary 1.4. I t  follows tha t  ei ther  u~6 WI'~(A) definitively or 

IDu~(h)[ r d x  = + c o  lira 
h--> + oo . ] 

A 

for each subsequenee (u,(~)) contained in WI'~(A). 
In  bo th  cases, recalling (3) and (5), we obtain tha t  

-hence 

lim inf (Foa)}a(uh) = + oo 
h---> + oo 

i f/oo(., Du(x)) dx 
F(L~(A) :) l im (/~o(h))A(U) = A 

h---> + ~ - ~  C O  

for every  A a Ao. 
The r ight-hand side of the  last equal i ty  defines a f u n c t i o n a l / ~ :  Llor • Ao --> R 

which is the  F ( L  ~-) limi~ of (F,(h)). I~ remains to prove tha t  F ~ E  5 ,  tha~ is (5) 
holds. Indeed,  

A A 

if u ~ WI,~(A) 

if u ~ L~(A)\WI,~(A) 

(16) @D<- + ID t dx 
A A 

for every  A e Ao and u a WI'~(A). The same argument  of remark  1.1 shows tha t  
(16) implies 

cdpV<]~(x, p)<c.(1 + [p] =) 

and the proposit ion is completely proved.  

for every  A e Ao, u ~ WI'~(A), h ~ N: by  taking the F(L~(A) -) l imit  of these three 
te rms as h --~ + co, the  first one and the last one do not  change because of lower 
semicont inui ty  (propositions 1.5 and 1.15 (a)) and the double inequal i ty  continues 
to hold (_F-convergence is <( monotone  ~>) b y  (14), so we obtain tha t  
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1.18. PROPOSITION. - .Let A ~ Ao and (Fh) be a sequence in ~'. Let X be a subset 
o] WI'~(A), q~: A •  -~ R be a ]unetion such that q~(x, y) is Lebesgue measurable in x, 
continuous in y. De]ine the ]unctionals T~,: L~(A) --~ R by 

P _  
~(u)  = G(u,  A) + |~(x ,  u(x)) dx . 

A 

Suppose that 

(i) (F~)F(L ~-) converges to a junctional ~r 5 ;  

1~cr (ii) X is weakly closed in WI'~(A) and X -~ W o = X in the sense that u e X,  
v ~ W~o'~(A) implies u ~- v e X;  

(iii) 21 [yl ~ ~- #dx)  < ~(x, y) ~< ~ [y [: ~- #~ (x) V(x, y) ~ A • R 
]or some 2~> O, 2~> 0, tel , / t2E LI(A).  

Then~ we have that 

l im [min T~(u)] = mia  T~(u)  
h--> + c~ u ~ X  u e X  

where 

Tdu)  = F~(u, A) +f~(x,  u(x)) dx.  
A 

Moreover, any sequence (u~) in X such that 

~a(ua) = rain T~(u) 
u~X 

does contain a subsequenee that converges in L~oc(A), weakly in WI'~(A), and pointwise 
almost everywhere in A to a ]unction u~ ~ X_ such that 

Tco(u~) = rain T~(u)  . 
u~X 

I], in addition, A has Zipschitz continuous boundary, then the convergence o] the sub- 
sequence of (u~) takes place also in Z~(A). Finally, i] X----u o ~- Wlo'~(A) with uoe 
e WI,~(A), then the le]t-hand side of (iii) may be relaxed by requiring only ~1 ~ - -e l /Pz  
and again the convergence o] the subsequenee o] (u~) takes plaee also in L:(A). 

PROOF. - By proposition 1.7~ all the funotionals ~ an4 ~ attain their minimum 

in X. Let (u~) be a sequence in % such that 

u~X 
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As in the proof of 1.7, (u~) is bounded in W~'~(A), so corollary 1.4 gives that  there 
exists a subsequence (u~(h)) that  converges in Ll~oo(A), weakly in WI'~(A) and point- 
wise almost everywhere to a function u~ ~nd such that  

(17) lim inf (min ~ ( u ) )  -~ l iminf  (rain ~.(~)(u)) . 
h . - - ~ + c ~  ~ u e X  h----> , c o  u e X  

This convergence t~kes place also in L~(A) if 3A is Lipschitz continuous or X 
= % + W~o,~(A). We want to prove that u~ is a minimum point of W~ in X. Since X 

is weakly closed, u~e X. 
Now, let us endow X with the metric induced by L~(A) and suppose we have 

proved that 

(18) Tco(ur <lira inf T~(h)(%(a)) 
h--> + co 

(18') F(X-) lira T~(u) = T~(u), 
h - ~  + co 

Then, by (18) 

~ ( u ~ )  <lira inf T~(~,(uo(~)) = lim inf [min ~o(h,(u)] 
h---> + c o  h--> + ~ ' - u e X  

Vu e X .  

: lira inf [rain Wh(u)]. 
h'~-  + co  u e X  

O~ the other hand, applying definition (13) of F(X-) convergence and (18'), for any 

v e X there exists a sequence (v~) in X such that  

F 1 

T~(v) ~> lira sup Th(v~,) ~> lira sup |rain T~(u)] . 
h--> + c o  h.-> + oo " u e X  

We conclude that  ~r for any v~X,  hence u~ is a minimum point o2 

W~ i~ X, and also, by taking v = u~, that  

T~(u~) ~<lim inf [min T,(u) l ~<lim sap [min Th(u)] ~< T~(U~) 
h'-r + c o  L u ~ X  " h--> § c o  ~ u ~ X  

so our proposition is proved. I t  remains to check (18) and (18'). 
Let us prove (18). Fix B ~ Ao with B cc A; the sequence (u,(h)) converges in 

L~(B) to u~ and the sequence ((F,(n))~) F(L~(B) -) converges to (F~), (see proposi. 
tion 1.15 (b)), hence by the definition (12) of F-convergence we obtain that  

F~(u~, B) < lim int F,,(h)(uo(h), B) <lira inf Fo(~)(u,(~), A). 
h--~ § co h - ~  + co 

On the other herod, if 41>0, Fatou's lemma (recall that  (u,(n)) converges pointwise 

almost everywhere to u~) yields 

liminfh_~+~ f q~(x, u~(h)(x)) dx>~ f q~(x, u~(x)) dx. 
A A 
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The same result may  be obtained in the case X : u o q-WI,~(A), even if ~1< 0, 
applying Fatou 's  lemma to qD(x, %(h)(x))--2~[%(h)(x)] ~ and recalling tha t  in this 
case (uo(h)) converges to u~ in Z~(A). 

So we conclude tha t  

A A 

= lim inf T~(h)(U,,(h~) �9 
h - ~  + co 

By taking B~A (prop. 1.2), (18) is proved. 
Let  us prove (18'). I f  we denote 

~'(u) =fv(x,  u(x)) a. (~ ~ L~(A)) 
A 

and remark tha t  by  (iii) 

]~(x, y)I<([AI + ~)IyV§ ]m(x)I + I~(x)l, v(x, y) e A •  

then  the basic continui ty result of :Nemitcki's operators (e.g. see [23], th. 19.1, 
pg. 154) gives t ha t  qi is continuous in Z~(A), hence in X. 

l~ecalling definit ion (12), (13) of F(X-)  convergence, the F(X-)  convergence of 
(TI~) : ((Fh)~-F r  to To : (F~)~ + ~ is equivalent to the _P(X-) convergence of 
((Fh)a) to ( /~)a ,  hence we have only to prove tha t  

I ' (X- )  lira (Fh)~(u) : (F . )~(u) ,  Vu e X .  
h--> + c~ 

The property  (12) is tr ivial  because X is a topological subspace of Z~(A) and 
hypothesis  (i) holds. Le t  us verify (13'), by  taking v ~  X and by  proving tha t  for 
every e > 0 these exists a sequence (va) in X converging to v~ such tha t  

(19) lim sup Fh(vl~, A) < (1 + s)F~(v~, A) + Ce 
h--> + co 

where C : O(v~) is a real constant  depending only on v~. Let  us fix e e ]0, 1[. 
Hypothesis  (i) gives a sequence (w~) converging in s to v~ such tha t  

F~(vr A ) > l i m  sup/~h(w~, A ) .  
h--> + co 

We want  to obtain v~e X by modifying in a suitable way wh. Let  us choose a 
compact subset K of A such t h a t  

f(1 + ID~I =) dx < 
A\K 
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(recall t ha t  v~ m X C W~'~(A)) and moreover  A~, A~ ~ Ao such tha t  K c A, cc  A~ cc  A. 
Applying theorem 6.1 of [5], we construct  M >  0 and finite number  ~,, . . . , ~  of 
funct ion of C~(A~) such tha t  0 < ~ i < 1  and ~ i :  1 on A[~ (i : 1, 2, ..., k) and 

rain ~h(~iWh § (1 --%)Coo,-~) <(1  § ~)[Fh(Wa~ A) § Fa(Vr A~.K)] § 
1 ~  

for every  h E N. Denote  by  i~ the index i for which the previous min imum is a t ta ined 
and let  v~ ~ ~,w~ + (1 - -  q~i~)v~. Then vh---- v~ + q0~(wh-- v~) ~ X. Moreover 

hence (v~) converges in X to v~. Finally,  b y  using the previous inequalities and 
equiboundedness (5), we obtain t h a t  

l imsup tZ~(vh, § e) [nmsup X) + f ~-~+~o § IDv~l~) dx] § 
A ~ K  

so (19) and our proposit ion are proved.  

1.19. COI~0LLAI~u -- In  addition to the hypotheses o] proposition 1.18, suppose 
that ~ has a unique minimum point in X (for example, if X is convex and Tc~ is 
strictly convex on X). Then any sequence (u~) o] minimizers converges in Z~o~(A ) and 
weakly in W~'~(A) to the minimum point o / ~  in X.  I] A has a Zipschitz continuous 
boundary or X -~ u o ~- Wlo'~(A) with uo~ W~'~(A), then the convergence takes place also 
in L~(A). 

P~ooF. - Le t  u .  be the min imum point  of ~ in X and suppose tha t  (u~) does 
not  converge to u~ in L~oe(A ) (resp. weakly in WI'~(A)). Then there  exists a sub- 
sequence (up(h)) such tha t  no fur ther  subsequence converges to u~ in Z~or ) ( resp.  
weakly in W~'~(A)), but  this contradicts  proposit ion 1.18 applied to T,(h) (recall 
proposit ion 1.15 (b)). 

1.20. EXA~PLE. - The most  known example of application of the previous 
propositions is given by  the sequences of quadrat ic  forms 

= aij t~) Din D~u dx 
i , i = l  

A 

(u e 

where 

c~rp]2< ~ (h) aij (x)pipj<~c~Jp] ~ , V(x, p) c R ~ 
i , j ~  l 
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and @)--.. -- ~-(~) are Lebesgue measurable functions, for every h e N, i, ~ = 1, ..., n. 
By  taking X = u o d-W~'~(A) and q~(x, y) = 2yz(w ) with uoe W~'~(A) and Z sL~(A) 
(recall remark 1.8), proposition 1.18 and corollary 1.19 give t ha t  the F(L ~-) con- 
vergence of (~a) to ~ implies the convergence in LS(A) of the solutions ('u~) of the 
Diriehlet problems 

�9 ~ i \ ~ i ~  

i , ~ = 1  

to the solution u~ of the correspon4ing problem for F~:  in fac~ it m a y  be proved 
~hat F~ also is a quadratic form with eigenvalues in [01, 02]. In  particular, the 

(z operators D~(a,~ Dj) G-converge in the sense of S. Se2m~oso [21] to the cor- 
i , J = l  

�9 (r responding limit  operator ~ D~(a~j Dj). Even the converse in t rue:  G-convergence 
i , j= l  

of the Euler operators implies F-convergence of the energies (see [8]). The case 
(h) a~j ( x ) :  a~j(hx), with a~ periodic, is the c~se of the classical homogenization.  

1.21. P~ot'osITIol~. - Let (~h) be a sequence in ~ and ~r e ~'. 
conditions are equivalent: 

(i) l im d ( F h , / v )  = O; 
h---~ + ~ 

(ii) F(L ~-) lira Fa -- ~ ;  
h--+ + 

(iii) lira (T~Fh)(u, A) = (T~F~)(u, A ) ,  Ve > O, u ~ L,~o(R"), X ~ Ao. 
h--+ + oo 

Then the /ollowing 

P~ooF. - (i) ~ (if). Let %0 and 5~ be the dense families employed in the defmi- 
tion (11) of the distance d an4 let w e %0 and B e ~ .  Then 

lim T1/,F~(w, B) = Tll~F~(w, B), Vi e N 
h - ~  + 0o 

and, for any  sequence (uh) converging to w in ~ ( B ) ,  

Tll~.~'~(w, B) <~'a(u~, B) + i f  lu~-- wl ~ d x  , 

.B 

Vi, h e n  

so, recalling proposition i.Ii, 

(20) / ~ ( w ,  B) = lira lim Tll~Fh(w, B) < 
~--> + eo h---> + co 

<lim~_. + o~inf limh_~ + ~oinf [Fa(u~, B) -~ 
B 

= lim inf Fa(uh, B) . 
h - +  + eo 
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Moreover, if ui,h~ W~'~(B) denotes the function such tha t  

T1/iF~,(w, B) = tzi~(u~,~,, B) + i f lu  @ -  wl ~ dx 
B 

(recall (10')), we may  est imate 

1 [:r~/~Fh(w, B) --.F~(u~,~, B)] 11 
1 

< ~- :T~/,Fh(w, B) < 

1 ((1 + ID< ) ax. 
B 

I t  follows that ,  if U, is the ball of L~ with center w and radius r, then for i l~rge 
enough (independently of h) we have u~,~  U,, hence 

ueWl,~(B) ueUr 
.B .B 

aztd we conclude tha t  

(21) .Foo(w, B) > Tllt~oo(w, B) = l ira/ '~, , /~(wl B) = 
h.--> + co  

----limh_~+~ ~,~,inf[lV~(u'B)+i f lu--wl~dx] >limsupinfF'(u'B)'h-~+~ ~, 

l~ecMling the definition (12), (13') of ]"-convergence, (20) and (21) say tha t  

F(I,~(B)-) l i ra  (-~h)B(W) = (Foo)z(W), 
h--> + co  

Vw ~ ql), B ~ 33. 

On the other hand,  for any  subsequence (F~(h)) there exists a sub-subsequence 
(Fo(~(a))) that F(L ~'-) OOllverges (compactness theorem 1.17): its l imit  G~ depends a 
priori on r and a but,  observing tha t  by  proposition 1.15 (b) we have 

(Goo)~(w) = F(L~(B) -) l im (F,e(~)))B(w) = (Foo)B(W) , Vw ~ '0), B ~ 33, 
h--> + co  

we conclude by corollary 1.6 tha t  F~ = G~. Since G~ does not  depend on ~ and G, 
proposition 1.15 (e) applies and we obtain tha t  

F(L'*(A)-) l im (F1,)a = (G~)a ---- (~o)~,  VA e Ao 
h - +  + c o  

so (ii) is proved. 

(ii) ~ (iii) I t  suffices to apply proposition 1.18 with X -~ W~'~'(A) and q~(x, y) -~ 
= ( 1 / E ) l u ( x )  - y l  

(iii) ~ (i) I t  is obvious. 

2~ - ,dn, n a l i  d t  M a t e m a t i e a  
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1.22. Conor.l,Alr165 - The metric space (5,, d) is compact, hence complete and separable. 

P~oo~. - I t  follows f rom proposit ions 1.17 and 1.21. 

1.23. COI~0LLAI~u - Let A ~ Ao, X c_ W~,~(A), 9): A •  --> R be satis]ying the hypo- 
theses o] proposition 1.18. Consider the ]unction ~L~,x,v: ~ --~ R de]ined by 

&A,xAF) = rain IF(u, X) + f~(x, u(x)) dx] ~x 
A 

and the multivalued map ~L~,x,~: 5 , -+ WI'~(A) de]ined by 

A 

Then ~tA,x, ~ is continuous on (5,, d) and ~(~,x,~ is upper semi-continuous on (5,, d), 
in the sense that, ij  (Fh) is a sequence converging in 5" to F~ and (u~) is a sequence in X 
converging to Uc~ weakly in W~'~(A) (resp. L~oo(A)) such that uhe ~L~,x,r , then 

l 

u~ e d~j,,x,~(F~). 
~inally,  i] ~ is a closed subset oJ 5, such that dt'~,x,~(G ) is ]ormed by a single point 

/or every G E 9, then ~L'~,x, ~ is continuous on 9 as single=valued map with values in 
W~'~'(A) with its weak topology or in L~oo(A ). I], in addition, A has Lipsehitz continuous 
boundary or X = u o + W~'~(A), then LIoo(A ) may be replaced by L~(A). 

PI~OOF. - I t  suffices to app ly  proposi t ions 1.18 and  1.21 and~ for the  last  pa r t  

of the s ta tement ,  corollary 1.19. 

1.24. I=~ElV[ARK. - -  An example  of g to which one m a y  app ly  the  previous result  

is the  set of the  quadrat ic  forms of example  1.20. 

1.25. COROLLAI~Y. - Let u ~ LIoo(R" ) and A ~ ,~o be Jixed. Then, /or every e > 0 
the ]unction E -+ (T~E)(u, A) de]ined on 5, with values in R is continuous on (5,, d). 
IJ, in addition, u ] ~  wa'~(A) then these ]unctions are bounded independently oj s. 

PROOF. - Cont inui ty  is a consequence of corollary 1.23 when X = WI'~(A) and  
F(x, y ) =  (1/s)]u(x)--y[~.  Equiboundedness  is given b y  

O<T~(u,A)<F(u,A)<o~f(1 + IDuff) dx, W>0,  VFes , .  
A 

Since 5, is a set of real  ex tended  funct ions on the  set T : El~o(R ~) x Ao, we 
might  consider on 5, the  produc t  G-field induced b y  ~T  where R is endowed with  
the  Borel  G-field. Moreover  we migh t  consider the  Borel  G-field induced on 5, b y  
the  metr ic  d. 
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1.26. T~Eo~E~. - The Borel a-/ield ~ on (~,  d) coincides with the trace on 
el the produet a-]ield el R ~, where T = .~or ~) • Ao and R is endowed with the Borel 
a-]ield. Equivalently, ~ is the intersection el all the a-]ields ~ on 5" such that, ]or every 
u e_Sloo(R ~) and A e Ao, the evaluation map F - * F ( u ,  A)  de]ined on 5 with values 
in R is measurable as ]unction between (~-, ~)  and the Borel line. 

PR00F. -- F ix  U e Lxoe(R" ) and A ~ Ao. The evaluat ion map F--->F(u,  A) is 
lower semicontinuous on (~-, d) because, if (F~) is a sequence converging to 1~  in ~ ,  
then  proposit ion 1.21 and (12) applied with u ~ :  u give tha t  

F (u ,  A) < l im  i n f / ~ ( u ,  A ) .  
h---> + r 

I t  follows tha t  ~;B belongs to the  family  of the a-fields such tha t  any  evaluat ion m a p  
is measurable.  Now, we want  to prove tha t  ~ ,  is the smallest of such a-fields. Le t  
be one of these a-fields. I f  (w~) is a sequence dense in WI'~(A), then  

A 

by  (10') and proposit ion 1.5, hence the  map F--~(T~F)(u, A ) i s  ~-measurable,  
being the  infimnm of conntably m an y  ~-measurable  fuac'~ions, for every  e ~ 0, 
u e L~oo(R ~) an4 A e A0. By  the  definition (11) of the distance d, we obtain tha t  
even the  funct ion F -> d(F,/~o) is measurable for every  ~o e Y, therefore  all the 
balls in Y belong to 23. Finally,  as Y is a metr ic  separable space (corollary 1.22), 
each open subset of (:Y, d) is the  union oi a countable family  of open balls, hence 

D_ ~ and the  theorem is proved.  

2.  - R a n d o m  i n t e g r a l  f u n c t i o n a l s .  

From now on, (f2, ~ , /~)  will denote  a probabi l i ty  space, t ha t  is ~ is a set, ~ is a 
a-field of subsets of ~ and P is a probabi l i ty  measure  on ~.  

A random integral  functional  is any  measurable funct ion J~: ~ - +  5 when 
is endowed with the a-field 23 and ~- with the  Borel  a-field ~B generated b y  the  
distance d (see section 1). 

2.1. P~o~oslTIO~. - Zet F :  ~ -~ 9 v be a ]unetion. F is a random integral ]une- 
tional i] and only i], ]or every u ~ Zx~oc(R ~) and A ~ Ao~ the ]unction ~o -~ [xv(~o)](u, A) 
is a (real extended) random variable, i.e. it is measurable as ]q~nction between (~, ~)  
and the Betel line. 

P~oor .  - I t  is a direct consequence of theorem 1.26 and of the fact t ha t  a func- 
t ion F f rom a measurable space (f2, ~)  into the product  R T of Borel  lines is meas- 
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urable  if and  only if the  funct ions ztoi~ are measurable  for every  t ~ T, where z t  

is the  project ion of R ~ on its factor  wi th  index t (e.g. see [15], see. 5). 

2.2. COROL]~A~u - .Let F be a random integral ]unetiona 4 u E .Lloo(R ), A ~ Ao. 
Then, ]or every s > 0 and /or every X c WI,~(A) and q~: A • R satis/ying the 
hypotheses o] proposition 1.18, the junctions r~ -> [T~(/~(~o))] (u, A) and ro --> 3CA,x,~(/~(o~)) 

(see corollary 1,23) between • and R are real extended random variables. 

P~ooF. - I t  follows f rom corollaxies 1.25 and  1.23. 

I I  F is a r a n d o m  integral  functional ,  the  image  measure  F ~ P  on ~ ,  defined 

b y  ( ~ P ) ( S )  = P(F-~(S)) for every  S ~ ~B~ is called the  dis tr ibut ion law of/~. We 

shall wri te ~ ~ G if /~ and  G axe r a n d o m  integral  fanct ionals  hav ing  the  same 
dis t r ibut ion law. 

2.3. PROP0SI~I0~. - _Let ~ ,  G be two random integral ]unetionals. We have t ~ ~ G 
i] and only i f ,  whenever Ul, . . . ,  u~v are a ]inite number o] ]unctions o] .L~oc(R ~) and 
A ~  ..., A~v are a ]inite number o] open sets o] Ao~ the distribution laws o] the two vector 
random variables 

o~ -~ (F(~) (u l ,  A~), . . . ,  F ( ~ ) ( u ~ ,  A~)) 

-~  (G(~)(u~, A~), ..., G(o~)(u~, A~)) 

are equal. 

P~ooF. - I t  is again a direct  consequence of theorem 1.26 and  of the  fact  t h a t  

two probabi l i ty  measures  # and  v on a p roduc t  space R~ agree if and  only if 
~f~# = zt~v :for every  project ion ~ on a finite n u m b e r  of factors  of R~ (e.g. see [15], 
sec. 4). 

For  every  c ~ R ~ and  e > 0 we want  to define the  operators  ~ and ~ respec t ive ly  

of t ransla t ion and  of homothe ty .  I f  u ~ .L~o~(R ), t hen  %u  ~ .L~o~(R ) is defined b y  
(~u)(x) = u ( x - -  e) while e~u e .L~oo(R ~) is defined b y  (~u)(x)  = (l/e)u(sx).  I f  A ~ Ao, 
then  ~ A  = ( x ~ R " :  x - - e ~ A }  and ~,A = { x ~ R ' :  e x e A } .  Final ly ,  i f F e  5 ,  then  
the function~is ~iw ~ ~-, ~ ~ ~- are defined by 

(22) (~F) (u ,  A) = F(z~u, ~oA) , (~F)(u ,  A)  = s"~(O~u, o~A) 

Cr ~t for every  u ~ .L~oo(R ) and  A e Ao. 
I f  ](x, p) denotes  the  in tegrand  of a funct ional  ~ ~ Y (recall r emark  1.1) then  

it  is ve ry  easy  to cheek t h a t  

voW(u, A) =t](x + e, Du(x)) dx 

A 

A 

for every  u ~ W~o~(R ) and A ~ Ao. 
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2.4. COROLLAI~Y. " ~et e @ R n, S ~ 0 and ~ be a random integral ]unctional. Then 

the ]unctions T~F, ~ :  ~2 -~ ~ defined by 

(~o~)(~) = ~ ( r ( ~ ) ) ,  ( ~ ) ( ~ )  = e~(r(~) ) ,  w e n 

are random integral functionals. Moreover, i] G is another random integral ]unctional 
such that ~ ~ G, then we have also ~GF,~ ~ G  and @ ~  9~G. 

P~ooF. - I t  suffices to apply  propositions 2.1 and 2.3 and (22). 

Let  X, Y be s ~eal or real ex tended random variables defined on ~ and 
suppose X, Y 6 L~(t9, P).  Then the  covariance of X and Y is defined by  

= f  (X(~) - -  E[X])(Y(~) - -  EEY]) dP(~) ,  c o y  (x ,  Y) 
~J 

where 

~[x] =fx(~,)d_P(~), ~[r] =f:~(~o) dP(~). 

I f  coy (X, Y) = 0 we say tha t  X and Y are uneorrelated.  I f  X and Y are indepen- 
dent,  then coy (X, Y) = 0 (see [15], sac. 15). Finally,  the variance of X is defined 
by  as(X) = coy (X, X). 

2.5. TttE01~E~. - JLet ( ~ )  be a sequence o] random integral ]unctionals with _F~ 
de]ined on the probability space (/2~, ~ ,  Ph). Let ~ be a random integral ]unctional 
defined on ([2~, ~ P~). Suppose that (F~) converges in taw to ~r in the sense that 
the corresponding laws #h ---- F~Pa converge weakly* as h ---> d- c~ to ttco= ~ P r  i.e. 

l im f bY(/~) d#~(/~) = f  T(/~) d/~oo(2~) 
h---> d- ~ 

]or every continuous/unction bY: ~ --> R.  Then, whenever u, v ~ Lice(R" ) and A,  B ~ A.  
are such that u]~te WI'~(A) and v]Be WI'~(B), we have 

l im lira coy ([T~h( .)](u, A), [T~F~( .)](v, B)) = coy ( [ /~ (  .)](u, A), [F~o( .)](v, B)). 
s-->0 + h-~ + co 

Y.~ IR~ A, B ~ go such tha t  u[.~ WI'~(A) and v[Be WI'~(B). PiEOOF. - FiX U, V C ~loeX /, 
For  every  s > 0, denote  by  k//~! a~d kP(2 ~) the  functions on ~- wi th  values in R defined 
by  T~)(F) = T ~ ( u ,  A), T(~)(F) -= T Y ( v ,  B). Analogously, define W,(/~) ----/~(u, A) 
and kP2(F) : ~(v, B). The functions T~ ~) and T~ ~) axe bounded independent ly  of e 

(corollaxy 1.25) and converge pointwise as s --> 0 + respectively to W~ and T~ (proposi- 
t ion 1:11), hence  by  Lebesgue's dominated  convergence theorem we obtain tha t  

l im coy (T(I~)oF~, ~ 2 w) coy 
~-->0 § 
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Xow, again  by  corollary 1.25, T~) and ~ )  are continuous and finite, so we have 

h-~ § co 

~9co 

for i = 1, 2. B y  the same argument,  we obtain also 

~2a TJco 

so we conclude that  

(S)o lira coy (T~ F~, T~%2'~) = coy (T~(%/~oo, T~%/v~) 
h--~+ oo 

and the theorem is proved.  

2.6. I~E~rA~K. -- ~Tote tha t  in the previous theorem no general s ta tement  of the 
form 

lim coy (/7~( .)(~, A),/~h(')(v, B)) = coy (F~( .)(u, A), F~o(.)(v, B)) 
h - ~ +  co 

could be obtained. Indeed, the convergence in ~- (P(Z ~-) convergence) !is not  com- 
parable with pointwise convergence (see [6], log. 118-119). 

2.7. PI~OPOSITIOST. - Zet _F be a random integral functional. I f  A,  B e Ao and the 

families of random functions 

co -+ (~(co)(u, A))u~oo(r. ) and co -> (F(co)(u, B))u~oo(r. ) 

�9 are independent, then for every s > 0 and u ~ Zloe(R ~) the real extended random variables 
co --> [T~F(co)](u, A) and co --> [T~zV(co)](u, B) are independent (and, in particular, an- 

correlated). 

PROOF. -- I t  suffices to observe t h a t  b y  (10') and proposition 1.5 

A 

where (w~) is any  dense sequence in Wx'r and analogously for TY(co)(u,  B). 
Indeed,  as the  two sequences (F(-)(w~, A))j~v , (F(.)(w~, B))~; v are independent ,  
their infima are independent  (e.g. see [15], see. 15). 

The following result will be crucial in the  proof of our maii1 theorem. 
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2.8. TItEOI~E~. - Let F be a random integral functional. Suppose that the random 
variables ~o --> F(~,9)(u, A)  and c9 ~ F(~)(u,  B) are uncorrelated for every u ~ W~'~(R n) 

and/or  every A,  B ~ Ao with A (~ B = 0. Then there exists Fo ~ 5 such that ~(c~) = t"o for 

.p-almost all o~ ~ Y2. 

P~oo~.  - /Jet us choose a countable  dense subset  %0 of W~'~(R ~) formed b y  
Lipschitz continuous functions and  a countable dense subfami ly  ~ of Ao. Suppose 

we have  p roved  t h a t  

t~ t) 

for eve ry  w ~ %0 and  B ~ :5. Then,  t ak ing  into account  the  fact  t h a t  %0 and ~ are 

countabl% there  exists  tg'_~ [2 such ~ha~ .P(~')  = 1 and  

=~2'(o~)(w, B) d.P(e)), Vo)'~ Y2', w e %0, B ~ F(~o')(w, B) 

Now, if w~ is a n y  point  in zg', define Fo : F(o~). Since 

Fo(W, B) : F(~'ol(w, B) = f ~ ( ~ l ( w ,  B) d.p(o~) -- ~(~')(w, B) 
t2 

for every  o)'~ ~9', w ~ %0, B e ~ ,  corollary 1.6 yields t h a t  lv((o') : Fo for eve ry  

a)'~ z9' and  the  '~hesis is achieved. 
Le t  us prove  (23). F ix  w c %0, B ~ and  denote b y  L "~he Lipschitz constant  

of w. For  every  C e A0 denote b y  We: ~9--~R the  r~ndom variable  defined b y  
Tc,(~o ) = F(co)(w, C). For  every  _~cN~ let  us select a finite number  / ~ ,  ..., BN of 

open subsets of B so tha~ 

~ n ~ j =  ~, Vi, j =I, . . . ,N,  i~=j 
[B] 

where ]. [ denotes  the  Lebesgue measure  in R ~. I~lote t h a t  

h r N h r 

i = 1  i = 1  i,~'= 1 
i C J  

henc% b y  hypothes is  
N iV 

= 

i - i  s _ i = l  

On the  other  hand,  b y  equiboundedness  (5), we have  t h a t  

T~,(~o) <c~(1 § L~)IB,[ <e~(1 + L ~) -~  
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therefore 

f~ 

and finally 

X i = l  i = 1  -/~ 

N 2v 

Now, denote C~ = U B~ and ~ =  ~G~ = ~ TB, because the sets B~ are disjoint. 
i=1  i = l  

Note tha t  C~c B and ]B\Cs l  < ]B]/(N + 1), hence, if DN is an open neighborhood 
of B \ C ~  with ]Dsl < ]BI/N, we obtain for every ~o e /2  

T~(o~) = F(m)(w, ~ )  </~(m)(w, B) <F(~o)(w, ~ )  + F(m)(w, D~) < 

< ~ (~ )  + e~(1 + L')[D~I <N~(c0 ) + e2(1 + L : ) ~ .  

Then the sequence (T~) converges uniformly, and so in Z2(/2, P),  to F( .  )(w, B) and 
we may  conclude tha t  

a"(F( .)(w, B)) = lim a ' ( T s ) < l i r a  4e~(1 -}- Lc')~IBI2-- - -  0 
~r-+ + c~ At--> + c~ Y 

hence (23) and the theorem are proved. 

We conclude this section with some words about the convergence of sequences 
of random integral functionals. We have already mentioned in theorem 2.5 the 
convergence in law. Since ~- is a metric space, we have also the convergence in 
probability. Let  (Fh) be a sequence of random integral functionals on the same 
probabili ty space/2;  we say tha t  (F~) converges in probabili ty to a random integral 
functional /~= if 

l im P{o~ e /2 :  d(lZ~(co), F~(~o)) > ~} = O, V~ > 0 
h---> + r 

where d is the distance on ~ .  An analogous definition holds for the l imit  in proba- 
bili ty of a family  (F~)~> o as  e - ->  0 +. 

The following proposition is well-known. 

2.9. P~oPosIr - Zet F~ be a constant random integral Junctional, that is there 
exists Foe ~ such that ~ ( ( o )  = Fo ]or _P-almost all (9 ~ /2. Then convergence in law 
and convergence in probability toward F~ are equivalent. 

P~ooF. - Suppose tha t  (~'~,) is a sequence of random fnnctionals which converges 
in law to F~:  this implies tha t  ((Fh~P)(S)) converges as h -~ + ~ to (F~HP)(S) 
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for every open subset S of iv such t h a t  ( F ~ P ) ( 3 S ) ~  O. As F ~ P  is the Dirac 
measure centered at  / ~ ,  for every  ~ ~ 0 we have tha t  

lira P{co e ~9: d(F~(co), F~)  > ~} = lim (/~a#P) (S~) = (F~eP)  (S,) ---- 0 ,  
h---> + co h--> + co 

where S, = {F e Y : d ( F , / ~ )  ~ ~]}, hence (F~) converges in probabi l i ty  to F~ .  
Conversely, suppose tha t  (F~J converges in probabi l i ty  to F~ and let T :  Y - >  R be 
a continuous function. For  every  s ~ 0 these exists ~ ~ 0 such tha t  d(t~, F ~ ) < ~  
implies I T ( F ) - - T ( F ~ ) ]  < s. Then 

f - f  < f  -- I dP( ) = 

{eoe~: d(Eh((9) , Fco)~ ~} {~o~ : d(Fa(~) ,  -~c~)> ~7} 

L~e 2" 

By let t ing h -~ ~- ~ and e -> 0 +, the  thesis follows. 

3 .  - M a i n  r e s u l t s .  

L~t us begin with the definition of stochastic homogenizat ion process and of 
stochastically periodic integral  functional,  recalling tha t  we gave in (22) the  defini- 
t ion of the t ranslat ion operator  ~ and of the homothe ty  operator  ~ .  

Le t  (F)~> o be a family of random integral  iunctionals on the  same probabi l i ty  
space Y2 (see section 2). We say tha t  (_F~) is a stochastic homogenizat ion process 
modelled on a fixed random integral functional  F on $2 i f / ~  ~ F  for every  s ~ 0, 
t ha t  is /~, and ~ F  have the same distr ibution law. 

Le t  ~ be a random integral  functional.  We say tha t  F is stochastically periodic 
with period T ~ 0  if E , ~ w ~ F  for every  z e T Z  ~ : { x ~ R ~ : x / T e Z ~ } .  In  the fol- 
lowing, for the  sake of simplicity, we shall suppose T ~ 1 but  the results remain 
t rue  for any  T > 0. 

We are mainly interes ted in the stochastic homogenizat ion processes modelled 
on a stochastically periodic random integral  functional:  the main  feature  of these 
processes is t ha t  the i r  l imit  points in probabi l i ty  are t ranslat ion-invuriant ,  as the 
following proposit ion shows. 

3.1. PKOP0SITIO~. - Let (.E~) be a stochastic homogenization process modelled on a 
stochastically periodic random integral/unvtional F.  Suppose that , /or a given sequence 
(s~) o1 real positive numbers converging to zero, the sequence (F~) converges in probability 
(see (24)) to a random integral /unetional F o. Then v~ *vo~ _Fo /or every e ~ R ~. 
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P~oo~. - Denote  G~ ~ / 7 ~ ,  Since any  sequence converging in probabi l i ty  con- 
tains a subsequence which converges pointwise almost everywhere  (see [15], sec. 6), 
it  is not  restr ict ive to assume tha t  (G~(~o)) converges in ~- to l~o for every  ~o e Y2~_c Y2 
with P(Y2') ~ 1. l~ow, fix c e R  ~ and select a sequence (z~) in Z" so tha t  (s~z~) con- 
verges to v in R ~ as h -+ -~ co. Denote  c~ ~- e~z~. We want  to prove tha t  (~G~(~o)) 
converges in ~- to ~/~o(~) ~or every  (o e Y2'. F ix  o e Y2'. Since ~ is compact,  we 
m a y  assume tha t  (v~G~(~o)) converges in ~- to a ~unctional G~ and prove tha t  
G~ ~ ~/7~(~o). Le t  A e A0 and u e Z~(A): by  (12) and (13) there  exists a sequence 

(u~) converging in L:(A) to u such tha t  

G~(u, A) ---- lim (~ G~(o~))(u~, A). 
h---~ + oo 

I f  B e Ao and B cc A, we have ~oB c ~ A  for h large enough, hence by  (22) 

(~fl~(o)) (u~, A) = G,,(o~)(To~ ~ ,  ~o A) > G~(~o)(~o u,, voB). 

On the other  hand, it  is ve ry  e a s y  to check tha t  (~u ~)  converges in Z~(~B) to 

~U,  so by  (12) applied to (G~(o))) 

l im inf Ga(o)(~cu~, T~B)>~/7o(O)(~u, ~ B )  = T~Fo(o))(u, B ) .  
h - ~  + co  

We conclude tha t  

(7r A) > l i m  sup Gh(~o)(z~, u~, T~B) > l i ra  inf Gh(o~)(,~u~, ~oB) > zfl~o(O))(u, B) 
h--+ + c~ h---~ + oo 

and, by  taking B~A (proposition 1.2), 

~ ( u ,  A)> ~o/7o(~)(u, A).  

The proof of the opposite inequal i ty  is analogous, so we have proved tha t  (To, G~((o)) 
converges in 5 to T~/70(~) for every  ~o e ~ ' .  

Finally,  by  the hypotheses/7~--~ @~/7, ~ / 7  ,~/7 and corollary 2.4, we have tha t  

(note tha t  %z@, : ezra) : as (re, G~) converges poin twise  _P-almost everywhere to T~/7o 
and (F~) to /70, we obtain tha t  ~o/7o~/7o and the proposit ion is proved. 

The following is the main result of our work. 

3.2. THEOlCE~. -- s (/Te) be a stochastic homogenization process modelled on a 
stochastically periodic random integral functional /7. Suppose that there exists M ~ 0 
such that the two ]amilies o] random ]unctions 

(/7(. )(u, A))~;oo(~o ) , (/7(. )(u, B)).~;oo(~,.) 
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are independent whenever A~ B ~ Ao with dist (A, B ) >  M. Then (F~) vonverges in 
probability as ~ -~ 0 + to the single ]unetional ~o ~ ~ independent o] ~o (i.e. to the 
constant random integral ]unetional Fo) given by 

~o(u, A) = [ + 

where, /or 19 ~ R~, 

1 
(25) /0(19) = lira ( r a in  IVA-~/~(~o)(~, Qi/~): u(x) 

e - > 0 + J  u I . l " g ' l / e l  
D 

f/o(Du(x)) d~ ir ul~e W~'=(A) 
A 

otherwise 

- -  19. x ~ W~o'~(Q1/e)} dP(co) 

Q~/~ is the cube ( x ~ " :  [x,l < ~/e, i =  ~, .. . ,n} and IQ,~I = (2/~)" is its Lebesgue 
measure. 

1)goog. - By  proposit ion 2.9 i t  suffices to  prove tha t  (F,) converges in law as 
e - + 0  + to /~o. Let  # 8 = ~ 2 P  be the  image measure of ~ on 9= an4 /~o be the 
Dirac measure centere4 at  F o .  Since 5 is a compact  metr ic  space, C~ R)  is a 
separable Banach spac% hence the  boun4ed subsets of its 4ual space are metrizable 
an4 weak*-compact (e.g. see [20], th. 3.15-3.16). As #~(~-) = 1 for every  e > 0, in 
or4er to prove "~he weak* convergence of (/~) toward/&~ it will suffice to prove tha t ,  
if eh-> 0 + an4  (#~,) weak* converges to /~, then  # : #0. 

STEP 1. - # is a Dirac measure on ~-. 
Since /~(~-) = 1 ~or every  e > 0, we have #(~-) = 1. 
Let  (~r ~ ,  P~) be the  probabi l i ty  space (5 ,  ~ ,  #) and F~:  Q~ -~ ~- be t h e  

tr ivial  r andom functional  given b y  the  iden t i ty  map. We have tha t  (Q~azv) converges 
in law to / ~  because (~ /P )~P  = ~ e P  = ~ , / 7 ~ p ~  = #, hence by  theorem 2.5 
with /2h = / 2  for every  h E N 

lim lim coy ( T ~ ,  F(  .)(u, A), T~o~ F( .)(u, B)) = coy (F~( .)(u, A), F~( .)(u, B)) 
e-~O + h--> § co 

for eve ry  u ~ WI'~(R ~) an4 A,  B ~ Ao. 
Now~ choose A,  B ~ Ao with  ~ (~/~ = 0. 
For  h large enough, 

dist  ( ~ A ,  Q~B) ---- --1 dist (A, B) > M 
e h  

hence, by  hypothesis,  the  families of random functionals 



378 G~A~NI I)AL ~AS0 -LUCIA_N0 ~V[ODICA: 2~onlinear stochastic homogenization 

are independent .  Proposit ion 2.7 gives that 

coy (r~e~J~(.)(u, A), ~ F(.)(u,  B)) = o 

for every  u ~ W~'~'(R~), e ~ 0 and h large enough, so 

C0V (~co(')(U, A),.~co(.)(u, B)) = 0 ,  VueWl'~r  n) . 

B y  theorem 2.8 we conclude tha t  there  exists Go~ ~ - s u c h  tha t  2 '~(c~)~ Go for 
P~-almost  all co e / 2 ~  so # is the Dirac measure on ~- centered at  Go. 

S T E P  2 .  - The integrand go(X, p) of Go does not  depend on x. 
We have proved tha t  the  sequence (E~) converges in law to a constant  random 

functional  E~,  hence proposition 2.9 yields tha t  (E~) converges in probabi l i ty  to E~.  
F rom proposition 3.1 we infer tha t  z ~ / ~  E~ for every  c e R ~. The distribution 
laws of ~ and E~ are the Dirae measures centered respectively at  ~Go and Go, 
therefore ~oGo----Go and, by  rem~xk 1.1, g o ( x - ~ e , p ) = g o ( x , p )  ~or almost all 
x e R ~ and for every  p, c e R% In  other  words, go(x, p) does not  depend on x. 

S~:]~e 3. - 1o is well-defined by  (25). 

F ix  p e R ~. For  every  A e Ao, denote X ~ =  4 ~- W~o'~(A) where 4(x) = 19 .x and, 
recalling corollary 1.23, denote  for simplicity 2 ~  = &(~,x~,o and r t = 3{~Q, for t > 0 
so that 

mjn o,): w ,I 

for every  ~o r  and t > 0. By  corollary 2.2, the integral  

m(t) aP( ) 
~2 

makes sense. We want  to prove tha t  there  existstli+moom(t ) and it  is finite. Suppose 
we have proved that 

(26) 

(27) 

m(jk )<m(k ) ,  Vj, k e N  

t~m(t2) <t~m(t~) § C(t~-- t~) , Vt~, t ~  ]0, ~- oo[: t2>t~ 

for a given real constant  C-~ C(p,n) and let  ~ : i n f m ( k )  F ix  e > 0  and select 
k e n  

koe N tha t  m(ko)< ~ ~ s. For  every  t ~ O, denote b y  p~ the integer par t  of t/ko and 
let  q ~  p~ ~ 1. As kop~<t<koq~ we obtain by  (27) 

re(t) < ~ [(kop~)nm(kop,) + C(t n -  (kop~)~)] <m(kop~) + C 1 --  
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B y  using (26), kop~>t--ko an4  koq~<t ~- ko, we have  t h a t  

~,~,<o,~o, § ~(~ (~)-)<.~ § § ~(~ ( ~ ) - )  
m(t)>~m(koqt)- ~((~)~-1)~>),- c ((t--~o)"_ 1) 

and  we conclude easily thattl~moom(t ) = ~. 
Let  us prove  (26) and  (27). F ix  j, k ~ N. The cube Q~ m a y  be subdivided in j~ 

smaller  cubes congruent  to Q~, so we have  

Q ~ -  U ~Q~ = o 
i = 1  

where ~ = ~ and  z~, ..., z~ are suitable points  in Z ~. F ix  ~o ~ s and  denote b y  u~ 
l a  a funct ion in l~ + W o (~Q~) such that 

:F(~)(u~, ~Q~) = ~ , Q ~ ( F ( ~ ) )  . 

Define piecewise a funct ion u on Qj~ b y  

u ( x )  = u~(x)  , V x  z "c~g~ . 

1~0r I t  is ve ry  easy to check t h a t  u ~ l~ ~- W o (Q~k). Moreover,  as 

n _F(~)(u +o ,A )=F(co ) (u ,A ) ,  Vu~L~or ), A e A o ,  o e R ,  

we obta in  easily t h a t  

for every  i ~ 1, 2, ._,  j~. 

Then,  observing t h a t  

i = l  i = l  

and recalling t h a t  JI(~(T~F(. )) ~ 3(~k(F(')) because Jt(~ is continuous (corollary 1.23) 

and  Ti• ~ ~ ,  we conclude t ha t  

and (26) is proved.  
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Let us pass to (27). Fix coeY2 and t~, t ~ ] 0 ,  -~oo[ with t ~ t ~ .  Let u~ be a 
I , ~  function in l~ + W 0 (Qt,) such tha t  

~(~)(u~, Q,,) = ~ , , ( ~ ( ~ ) )  

and define u2 on Q~ by extending u, on Qt~\Q~, with the  values of 4- Then u2e l, 
1,ar We (Qt~) and by (5) 

~(~(2~(~)) <~(~o)(u~, Q~) : F(eo)(u,, Q~) -F ~'(~o)(1,, Q~\Q~) 

<,~,~(~(~)) + ~ f (~ 
+ ID41 ~') dx 

hence 

(2t~)-m(t~) < (2t~)-m(t~) + ~(1 + Ipl~)[(2t~p- (2t~)~] 

and (27) is proved. 

STv, P 4. - go = ]o hence # =/Zo. 
Fix p e r  ~ an4 let  l , ( x )=p .x .  

u Elv + Wlo'~(Q), we have tha t  
Denote Q = Q~ so tha t  l q l  = x .  For every 

Q ~ Q 

(the inequali ty is the Jensen's  inequali ty;  see, e.g., [12], 2.4.19), hence 

go(P) = Go(/~, Q) --- Jll~�89 =~Jt~�89 d#(E) .  
~r 

The function zt(,�89 is continuous on ~- (corollary 1.23) and # is the weak* limit  of (tt~), 
SO 

go(P) =-h-~+~olim f~ � 89  d/t~(/g). 

As F ~  ~ F  an4 #~ is the  distribution law of -Fen, we have tha t  

go(P) =h-~+~lim f JL�89 F(~o)) dP(co) . 
t~ 

Final ly 

~ ( e ~ ( ~ ) )  = rain {~F(e,~u, e,~Q~): u e 4 + W~"(Q~)} = 

1~0r 
= min {IQl[2eh[-l~(~), Ql[26h!: ~) e e s h l ,  Jr- W O ( 0 1 / 2 8 h ) }  " 

~t 
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As @,~l~ = l~, we conclude  that 

go(P) = l im fmin IO~/.~l-~F(v, Q~,.~) 
h--> + o,~ d u 

t2 

: v e l~ + w~'~(Q~/ .~ ) }  dP(o~) --- fo(p) 

and  the  t h e o r e m  is comple te ly  proved.  

3.3. Col~or~]~Alr165 - Let A ~ Ao, X c WI,~(A), q~: A •  ~ R be satisfying the hypo- 
theses of proposition 1.18. Suppose (F~) is a stochastic homogenization process modelled 
on a stochastically periodic random integral functional F, satisfying the hypothesis of 
independence of theorem 3.2. Let 

m~(~o) ---- ~t~ z ~(F~(o~)) = min  IF~(fg)(u, A) +(9~(x, u(x))dx ! . 
' " ' " u e X  [ J 

A 

Then (m~) converges in probability as s --> 0 + to mo given by 

m o = diL~,x,~(~o) 

where Fo is defined in the statement of theorem 3.~. 

P~ooF.  - The  func t ion  ~ , x , ~  is con t inuous  on 5 ~ (corollary 1.23) hence  u n i f o r m l y  

con t inuous  (corollary 1.22). Then  for eve ry  s > 0 there  esists 6(s) > 0 such t h u t  

a n d  the  thesis  follows f r o m  t h e o r e m  3.2. 

3.4. COnOLLAI~u - Let A, X,  % F~ be as in the previous corollary. Suppose that 
the boundary of A is Lipschitz continuous and that, ]or every e > 0 and o~ ~ ~,  F~(eo) 
belongs to a closed subset g of ~ satis]ying the uniqueness o[ minimum points stated 
in corollary 1.23. Then Fo ~ 9 and, if u~(~o) denotes the unique minimum point o[ 

~(~o)(u, A) + f~(x, u(x)) dx 
A 

]or u e X,  we have 

l im P{oJ e ~9: Ilu~(o)) - -  UoH~(~)> 9} = 0 ,  V~ > 0 
8 - + 0  + 

where uo is the minimum point in X of 

~o(U, A) + f~(x, u(x)) ax . 
A 
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PlcooF. - I t  is the same argument  used in the previous corollary. The thesis 
2'0 e g depends on the  fact tha t  a sequence which converges in probabi l i ty  contains a 
subsequence which converges almost everywhere (see e.g. [15], see 6). 

3.5. EXAMPLE. - If  we choose in the previous corollaxy g equal to the set of the 
quadratic forms (see examples 1.20 and 1.24), we obtain in part icular  the well-known 
(see introduction) L~-convergence in probabi l i ty  of the  solutions of Dirichlet  (or 
Neumann,  or other  boundary  value) problems for stochastic second-order elliptic 
equations in the  presence of homogenization,  stationaxity (for us ,  stochastic pe- 
riodicity) and ergodicity, subst i tuted in this paper  by  %he independence <( at  large 
distances ~> in theorem 3.2. 

4 .  - E x a m p l e s .  

4.1. Homogenization with regular cells occupied by two materials randomly chosen. 

For  every e > 0, let (X~)kEz, be a family  of independent  random variables defined 
on a probabilistie space (9,  "G, P)  with values g > 0 or A > 0 such tha t  

P{o) ~ 9 :  X~(r = ~} = r ,  P{o) e 9 :  X;(~o) = A} = 1 - -  r 

for every  e > 0, k e Z n and for r e ]0, 1[ fixed. 
For  every e > 0 and k e Z  ~, let  Q~ be the cube ill R n 

{x e R~: Jc~<x~< e(k~ § 1), i = 1, ..., n} 

and denote by  I~ its characterist ic function.  
~ow, let  us define 

and 
~ Z  n 

(o~ e ~ ,  x e R ~) 

[ fa~(co, x)lDu(x)l=dx if  ul~eW~'~(_A_) 

c~ otherwise 

for u e L,oo(RD an4 A ~ ,~0. 
I f  g = 2, F~(~o)(u, A) corresponds to the  energy of a dielectric medium in A, 

subjected to the electric potent ia l  ~, whose s t ructure  is an e-cub'ical lat t ice with 
cells occupied by  two different materials  with diectric constants 2 and A, chosen 
independent ly  by  a Bernolflli~s law. 
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3~ 

2 8  

A ~I A A A 

A a A ~ 

A A ~ A 

A ~ ~ A ~ A 

A A A ~ A 

e 2e 3~ 4e 

Fig. 3. 
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A 

n I t  is obvious that,  for every u ~ L~oo(R ) and A ~ Ao 

k~Z ~ J 
A 

is measurabl% so F~ is a random integral functional (proposition 2.1). ~oreover, 
/ F ~  e~Fl: indeed 

I~(X),  V e t O ,  k ~ Z ' ,  x ~ R "  I~(x) 

X 1 and the global laws of (X~)k~z~ and ( k)k~Z~ axe equal, so the distribution laws of 

( e ~ ( . ) ( u l ,  A1), ..., ~ ( . ) ( u ~ ,  A~)) 

(F~(.)(u~, A~), ..., F~( . )(~,  A~)) 

axe the same for every ul, ..., u~Lloo(R ~) ~nd A~, ..., A ~  Ao; then 9~.E~F~ by 
proposition 2.3, that  is (F~) is a stochastic homogenization process modelled on F~. 

The random functional F~ is stochastically periodic: indeed, if z ~ Z ~, A ~ Ao 
and u E WI'~'(A) 

%Fl(~o)(u, A) =k~zo ~-" X~(o~) f l i (x  § z) lDu(x)[ ~ ,ix 
A 

= ~ x~+o(~o) Ii~(x)lDu(x)V dx 
keZ  n J 

A 

X 1 X 1 and the global laws of ( k+~)kcZ~ and ( k)k~Z~ axe equal so, ~s ~bove, ~FI,~-F1. 

25 - A n n a l i  di Mat~:matlca 
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Finally, if A, B ~ Ao and dist (A, B) > V'g, then ~here exist ~wo disjoin~ sets 
{k'~, ' . . . ,  a, d . . . ,  G} in z -  s,, h tha  

/V M 

A z U g ~ i ,  BcUQI;  
i ~ t  i = 1  

X 1 X 1 and the random vectors ( k~)~=~ ..... ~, ( ~;)~=~ ..... M are independent .  
As 

Fi(~)(u, A) = y. x~;(~,) zl;(x)IDu(x)b ax 
4=1 d 

A 

2~(o~)(u, :B) = Z xi:(o~) ~ ; ( x ) [ D u ( x ) l  ~ 
i = 1  

)1 

dx 

for every u ~ W~'~(R'), it follows tha t  the  two families 

(FI(.)(u,A)).~L~oo(,.), (F~(.)(u, B)).~Lroo(,. ) 

are independent.  Theorem 3.2 agplies, so there  exists l~o~ ~ snc]l tha t  (F~) con- 
verges in probabi l i ty  to Fo as e - >  0 +. 

I a  9articular,  b y  corollary 3.3, the  random variables 

a) -> m~(o) ~- min F~(~o)('a, A) + q~u dx: u -  uo~ WI'~(A) 
A 

converge in probabi l i ty  as e -* 0 + to 

m o =  mia  {i~o(u, A) + fq~u dx: u--  UoC W~o'~(A)} 
A 

whenever A ~ Ao, q~ E L~"(A) arLd. Uo~ WI"~(A). 
The explicit calculation of Fo is easy when n = 1 (see also [10]). In  fact, b y  (25) 

(28) re(P) ~--lim~_.+~afmin I I ~  t z ' J  .(al(w't)]u'(t)l~dt: u(--  j) = - -  ~p , u(j) = jp} d/)(eo) . 

B y  writing the Euler  equation of FI(m), we obtain that  the function u tha t  a t ta ins  
the  minimum in (28) satisfies the  equations 

a1(~o, t)]U'(t)] " l l  = e Vt e ] - -  j,  ~[ 

u ( - -  i) = -- j p  , u d )  = j p  
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for a suitable real  constant  e. By  a s t raightforward calculation~ we conclude tha t  

min ~1. fal(O) ' ~)lUl(~)la d~,* U(--~) :  -- ~p, u (~) :  ~p} : 
l Z l J  

--~-" [ I-1L ~'j ]11--~ [1, ~1 ]l--O~:pa 
(a'(c~ 1/(1-~)dt p ~ =  -~ ~=_ (X~(o))) 1/(1-~) 

--j 

for any o~ ~ ~ ,  so by  the strong law of large numbers  (see e.g. [15], sec. II)  

and 

]0(P) = [ r~1/(1-~) @ (1 - -  r)A1/(1-~)]l-~p ~ 

F~ A) = a@u'(t)l ~ dt 
A 

for every  u e WI'~(A), where ao is the  ~-harmonic r-weighted mean of A and A. I f  
= 2 and r---- �89 ao is the  harmonic  mean of 2 and A. 

Note  t ha t  L~o is equal to the  l imit  in the  determinist ic  case when the  cells are 
a l ternat ively  occupied by  the two materials. In  dimension two with ~ = 2 and 
r = �89 the  corresponding l imit  is the  geometric mean  V'Z-A instead of the harmonic 
mean  (see [13]; a proof in the  determinist ic  case has been communicate4  to us b y  
F. ~ A m  and I~. TA]~T~a~ [18]). In  three or more dimensions we do not  know ex- 

plicit  formulas for /~o. 

4.2. Homogenization with cells o/ bounded random size alternatively occupied by two 
materials. 

As we said in the  introduction~ the  homogenizat ion of chessboard structures 
with cells of random size can not  be t rea ted  direct ly  b y  the results of this paper,  
even if we th ink  tha t  a careful inspection in the  proofs and a not  easy est imate of 
some covariances should pe rmi t  to include it  in our theory.  

There is not  this  difficulty, if we suppose t h a t  the  random size of the cells is 
bounded a priori  f rom above. Le t  us present  an example in dimension one. 

We want  to  construct  a random par t i t ion  of R in intervals  not  longer than  a 
fixed constant  M > 1. Suppose we have a family  (Xk)k~ z Of real random variables  
defined on a probabilistic space (~, ~ ,  P)  satisfying the following conditions: 

(i) X~(~) <X~+I(~), V~ e ~ ,  k e Z; 
M - - 1  

if) ]Xk(w) - -k ]  < ~ ,  Vw e ~ ,  k e Z ;  

(iii) the  two families (Xk-~ 1)k~z , (Xk+l)kez have  the same global distribution 

law; 

(iv) there  exists Z r >  1 such t h a t  the  sub-families (Xk)l~<_lV and (Xk)k> N are 

independent .  
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To the pavtitio~ (X~(o~))~z z we associate ~he function, 

d-co 
a(o), t) = ~ ~I~,(o))(t) 4 AI~,_~(o))(t) (o) ~ D, t ~ R )  

where I+(o)) is the chavacteristie function of [Xi(~o), Xj+z(to)] for ~ ~ Z and ~ > 0 ,  
A > 0 are given real numbers. :In other words, a(o~, t) takes alternatively the values ). 
and A ca the intervals of the partitioa (X~(~o))~ z. 

Finally/ let E~ be a random integral functional with values in ~-(~, A, 2) such 
that  E , ~  ~,E where 

�9 [ fa(co, t)(u'(t)) ~ dt if ul~ ~ WI,~(A) 

~(~o)(u, A) i 
-~ oo otherwise. 

The random functional E is stochastically periodic with period 2: indeed, for every 
z e Z, A e Ao and u ~ W~,2(A) 

A 

t + 2z)u'2(t) dt = 

X2~:+ 1 @ )'7 2z X ~ , ( ~ ) -  2 z 

+ =  f f --= ~, ~ I~(t)u'2(t) dt ~- A I~(t)u'~(t) dt 

X~((o)- 2z X ~ -  ~ ( ~ ) -  2z 

where IA is the ehavaeteristie function of A. Since the definite integrals are con- 
tinuous fuuction of the extrema of integration and, by (iii), the global law of 
(Xky--2Z)ksZ is equal to the global law of (Xk_2,)k~Z , we infer that  

~F(.)(u,A)N 

x~,_**+,(.) x~_,~(.) 

~ I~(t)u'~(t) dt + A IA(t)u"(t)  dt = E( ' ) (u ,  A) 

x~_~(.) x~_~_~(.) 

so, as ir~ 4.1, ~2~ENE for every z E Z .  
:Now, let A,  B ~ Ao with dist (A, B) > 2 N  + M § 1. Defin e ~ a =  {k e Z: dist (k, A) 

< (M d- 1)/2} and analogously KB. If [X~(co), Xk+l(co)] (~A :/: 0 for some k ~ Z 
and e o ~ ,  then k e/~a;  moreover, if k ' e K a  and k"c.KB, then [k ' - - k " l>2N.  

Then, for u e W~,~(R) 

A 

B 
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so, by (iv), F( ')(% A) and F(.)(u, B) axe independent, hence; as in 4.1, theorem 3.2 
applies and (F~) converges in probability as e -+ 0 + to a functional To ~ ~-. 

Let us calculate the integran4 ]o of Fo. We shall prove that  

$ 

(29) lim 1 k ~ z i  1 ~ f  ~(~)(t) dt = - 

j ~ + o o  2 
- j  

for _P-almost all a)~ D. Since 

k~Z keZ 

we shall obtain easily that  

]o(P) = P ZA 2 +  (A--k)  1 ~ I2~(~o)(t) dt dP(~o) = 
k~z 2 

~s in the previous case and as in the case of completely random size studied by a 
direct method in  dimension one by G. FAOOHINETTI alld L. l~wsS0 [11]. 

Let us prove (29). Let L =  N + I .  We have that  

L.(-)) = &~(o~)(t) at = ~ N ~ /&,+~.~d@(t) 
~ = 0  J meZ d 

- J  - i  

dr. 

By (ii) we obtain that  

+oo  

- -~ - - o o  

Vco ~Q 

if 2i + 2 m L - - ( M - - 1 ) / 2 > - - j  and 2i + 2mL + 1 + (M- -1 ) /2< j ,  while 

J 

f I2~+ 2~(~)(t ) dt 
- j  

= O, V~0 E ,.(2 

if 2i + 2mJL + 1 + ( M - - 1 ) / 2 < - -  j or 2i + 2mE--  ( M - - 1 ) / 2 > j ,  so that  

+ c o  

f "= x { = 0  
- - 0 o  --~ 
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where 

S*----{ m ~ z : - 2 j - 4 i + 4 Z  M - - 1  <.m<2j--di--M--1}dL 

S ~ :  { m ~  Zi - 2 i - d i -  < m <  --  2 ] - - d i  + 

2 j - -  4 i - -  M - - 1  

Note tha t  # $2 < M/L + 2, hence 

l im ~ 2~ fI2*+2mL(o))(t)dt---- O, 
- - i  

4.L < m <  

o r  

2i - -  4~ + M - - ~ }  
4L 

Vo) ~ Q ,  Vi  = O, . . . ,  .L - -  1 .  

On the other hand, if m,, m~ e S, and m , r  m2, the  two random variables 

+ c o  

~ ~fI~+~,~(o))(t) dt = X2~+2,~,~+,(0) ) - -  X2i+~,~(o ) (r = 1, 2) 

are independent  b y  (iv) and have the same distr ibution law by  (iii) so, remarking 
that  (2j - -  M ) I 2 L <  # S, < (2j - -  M)I2L + 1, the  strong law of the large numbers  (see 
e.g. [15], sec. II) and (iii) give tha t  

, L~- .*i  _ f l im Y~(co) = lim ~ - -  ~ j I~+2m~(c0)(t) dt = 
j--+ + r ~-++oo 4=0 2j rosS1 

- - o o  

L-I 1 f 1 ~-1 I" 1 
: ,_x ~ ~ ] (x,+~<~)- ~,<~)) dP<~): ~ ,__x ~ ] (x:,<~) +, _ x..,<~)) dP<~) = 

and (29) is proved. 
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