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Nonlinear stochastic homogenization
and ergodic theory

By Gianni Dal Maso at Udine and Luciano Modica at Pisa

Introduction

In a recent paper [2] we have studied the stochastic homogenization in the class
of all integral functionals

F(u, A)={ f(x, Du(x)) dx

whose integrand f(x, p) is Lebesgue measurable in x, convex in p and fulfils the
inequalities ‘
ci|pI* =S (x, p) S e (1+1pl),

where a>1, ¢, =c¢, >0 are fixed constants.

More precisely, first we constructed a metric d on § so that (&, d) is a compact
metric space and the minimum value of the Dirichlet problem

m(F, uy, A)=min {F (u, A): u—uy € W3 *(4)}

is a continuous function of F in (&, d) for any bounded open subset A of R" and for any
fixed boundary value u, € W' %(A).

Second, we defined a stochastic homogenization process in § as a family (F,),», of
random integral functionals (i.e. measurable maps on a fixed probability space  with
values in (&, d)) such that F, has the same law of g, F, where F is a given random
integral functional with integrand f(w, x, p) and g, F is defined by

[(0:F) @] (& 4)={ / (w, =, Du(x)> dx.

Then we proved that, under the assumption that F is periodic in law and satisfies
a particular condition of independence at large distances, there exists a random integral
functional F, such that (F,) converges in probability to F, as ¢ — 0*. In particular, we
obtained by continuity that the minima of the Dirichlet problems for F, converge in
probability as e — 0* to the corresponding minimum of F, and so we solved a large
class of physical nonlinear stochastic homogenization problems. For instance, the
homogenization of materials with random chessboard structure sketched in figure 1 or
of the structure with randomly positioned impurities sketched in figure 2.



Dal Maso and Modica, Nonlinear stochastic homogenization

‘m/m
11}
m
.

7

’ i,

Fig. 1: The random chessboard
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Fig. 2: Balls in random position
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Nevertheless, our result was not completely satisfactory for two reasons. The
former is that the independence at large distances is not verified in some other
interesting cases of stochastic homogenization, as for instance the chessboard structure
with cells of random size sketched in figure 3.
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Fig. 3: Infinite chessboard with cells of random size
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The latter is that, while convergence in probability is the best possible if we give as
above the hypotheses in terms of laws, the problem arises whether there is almost
everywhere convergence in the case F,=g,F, as already proved in linear stochastic
homogenization by S. M. Kozlov [7], V. V. Yurinskij [10], G. C. Papanicolaou and S.
R. S. Varadhan [8]. '

‘Both these difficulties can be overcome by a more general proof of our theorem
(see section 1) which relies on recent results in Ergodic Theory and on a characteriza-
tion of convergence in § (G. Dal Maso-L. Modica [3]). We are indebted to L. Russo
who, recognizing in the independence at large distances a “mixing” hypothesis, signaled
us the nice Subadditive Ergodic Theorem due to M. A. Akcoglu and U. Krengel [1].

Section 2 of this paper is devoted to the non-trivial problem of passing from
hypotheses, like ergodicity, on the integrands to the same ones on the integral
functionals. Finally, section 3 contains some examples.
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1. The main theorem

In this section we extensively use notations and results of our paper [2]. We
repeat here only those definitions which are necessary in the statement of the main
theorem.

We denote by U, the family of all bounded open subsets of R" and for every
A €U, we denote by W' *(4) the Sobolev space of the functions of L*(4) whose first
weak derivatives belong to L*(A4).

Let us fix a>1, c,2¢;>0. We denote by & =F(c;,c,,®) the class of all
functionals F: L} (R")x Ay — R =R U {— o0, + o0} such that

| flx, Du(x))dx if ul,e Wh*(A),
F(u, A)={"*
+ otherwise,

where f: [R" x R" — [R is any function satisfying the following conditions:
(i) f(x, p) is Lebesgue measurable in x and convex in p;
(i) ¢ |pl*=f(x, p)=c,(1+]|p") V(x,p)e R"xR".

We consider & as equipped with the metric d introduced in [2], prop. 1.12, so
that & is a compact metric space ([2], cor. 1.22). For each Fe @, AeUA, and
u, € W%(4) we may consider the Dirichlet problem for F on 4 with boundary value
uy: letting

m(F, ug, A)=min {F(u, A):u—u, e Wi *(A)},
we have that m(F, u,, A) is continuous in F with respect to the metric d ([2], cor. 1.23).

We denote by 7, the Borel o-algebra of §. Let (2, 7, P) be a fixed probability
space; we call random integral functional any (7, J)-measurable map F:Q — §.

The additive group Z" and the multiplicative group R, act on § by the
- translation operator 1, (z € Z") defined by

(x.F) (u, A)=F(t,u, 1, 4),

where (t,u) (x)=u(x—1z), 1,A={x € R":x—z € A}, and by the homothety operator g,
(e>0) defined by

(@.F) (u, A)=¢"F (¢, 0. A)
where (g, u) (x) =% u(ex), g, A={xeR":¢x € A}.

Let us recall that, if F is a random integral functional, then 7, F and g,F are also
random integral functionals (see [2], cor. 2.4) for every ze Z" and ¢>0.

We shall consider ergodicity in § with respect to Z". Namely, we say that a
random integral functional F is ergodic if P[F € §]=0 or 1 for every Jp-measurable
subset S of § such that 7,(S)=S for every ze Z".
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Now, we state our main theorem. Let Q, be the cube
{xeR":|x]|<t, i=1,...,n},
let |Q,| be its Lebesgue measure and let [, be the linear function on R" with gradient p,
ie L(x)=p-x.

Theorem I. Let F be a random integral functional and define F,=¢,F. If F is
periodic in law (i.e. F and t,F have the same law for every z € Z"), then F, converges P-
almost everywhere as ¢ — 0% to a random integral functional F,. Moreover, there exists
Q' <= Q of full measure such that the limit

_ m(F@) 1, Q)
Jm 0

exists for every w € ', pe R" and
Fo(@) @, A) = { fo(w, Du(x)) dx
A

=fo(@, p)

for every we Q, AeU,, ue L (R") with ul, € W'*(A). If, in addition, F is ergodic,
then F, is constant or equivalently f,(w, p) does not depend on w and

folp= tim [ 7E@: Q)

dP(w
Jm @)

for every p e R".

In order to prove theorem I, we need a few definitions and a lemma. A set
function p: U, — R is said to be subadditive if

RAS Y, 14y
keK
for every A e A, and for every finite family (A4,),.x in A, such that

A AVkeK, A,nA=0VhkeK h+k, |4— ) AJ=0.

kekK

Let M =M(c) be the family of the subadditive functions u: W, — R such that
OSu(A)SC|A| VAeU,,

where ¢ is a fixed real constant. We denote by I the trace on M of the product o-

algebra of R¥.

Let (2, 7, P) be a given probability space. A (J T y)-measurable map pu:Q— M
is called a subadditive process.

The group Z" acts on M by the formula

(1) (A) = p(z.4)
so that we say that a subadditive process is ergodic if P[ue S]=0 or 1 for every Ty
measurable subset S of M such that 7,5 =S for every z e Z".

The main tool in the proof of theorem I will be the following proposition, which is
substantially the subadditive ergodic theorem of M. A. Akcoglu and U. Krengel [1].
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Proposition 1. Let u:Q — I be a subadditive process. If u is periodic in law, that
is u and t, pu have the same law for every z € Z", then there exist a I -measurable function
¢:Q— R and a subset Q' < Q of full measure such that :

i u((;:)Q(TQ) — o),

for every we Q' and for every cube Q in R". If, in addition, u is ergodic, then ¢ is
constant. '

Proof. An immediate consequence of theorem 2.7 of [1] is that there exist a -
measurable function ¢:Q — R and a subset Q' = Q of full measure such that

i HOEQ_
e

for every w € ' and for every cube Q in R" with vertices in Z”". Now, by the inequality
k(@) (B)S p(w) (A)+c|B—A| VoeQ, A,BeU,, AcB, [04]|=0,
we first obtain that

i HO0D)_

tel®

for every w e @ and for every cube Q in R" with vertices in Z", and then we pass to
general cubes in R" by an easy approximation argument.

The fact that ¢ is constant when pu is ergodic follows from a remark of [1] (p. 59),
so the proposition is proved.

Let us return to the proof of theorem I.
Proof of theorem I. Let us fix pe R" and define
1y(@) (4)=m(F (@), I, 4)

" for w € Q and 4 € U,,. It is easy to check that u,(w) € M(c) with ¢ =c, (1 +]pl|*) for every
w € and that u,:Q — M is (7, T))-measurable because m(, ,, A) is continuous on
&. Note that, for every ze Z", we Q, Ae U,

(T2 1) (@) (4) = pp (@) (1, 4)
=min {(t,F) (@) (t_,u, A):1_,u—1_,1,€ W} *(A)}

=min {(t,F) () (v +1,(z), 4):v—1, € W5 *(A)}.

As the integrand of F depends only on x and Du, we have that
(t.F) (@) (v +1,(2), A)=(z. F) (@) (v, 4),
hence
(7. p) (@) (A) =m((x. F) (@), I, 4)

for every z € Z", w € Q, A € U, so that p, is periodic in law because 7, F and F have the
same law and m(-, l,, A) is continuous on .
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Then proposition 1 gives that there exist a subset Q) <'Q of full measure 'and a
J-measurable function ¢,:Q — R such that

for every weQ, and for every cube Q in R" Let Q, be the cube
{xeR":|x]<t, i=1,...,n} and let fy: Qx R" — [R be the function defined by

fo(w, p)=limsup M Y(w, p) e Qx R".

t=++o |Qz|

Now, let us remark that the functions
Hp() (4)
14|

are convex (this is an easy consequence of convexity in u of F(w)(u, A)) and
equibounded between 0 and c,(1+]|p|*), hence locally equicontinuous. It follows that
Jo(w, p) is convex in p and, denoting

p— (O)EQ,AEQI())

o= 2

pe@Qn
(@ is the set of rational numbers), we have P()=1 and

. Up(@) Q)
tlllzlw “TQI— = fo(®, p)

for every w € @, pe R" and for every cube Q in R". Finally, observe that
Hp(@) (tQ) = t"m((Q%F ) (@), 1,, 9),
hence, as g, F = F,, we have that
. m(F(w),1,, Q)
lim E L
e 0 10l

for every we Q', pe R" and for every cube Q in [R". Recalling theorem IV of [3], it
follows that for every w € Q' there exists an integral functional F,(w) € § such that F,(w)
converges to Fy(w) as ¢ — 0. Let us calculate the integrand g, (w, x, p) of Fy(w). Fix
w € Q'. If we denote '

=f0 ((U, P)

QO(X)={YER":|yi—xi|<Q, izl,"'! n}a

theorem I of [3] and the continuity of m(:, I,, A) give that there exists a subset N of R"
with |[N|=0 such that

o m(Ra@) ly Q) mF), Iy, 0,(4)
go(@, %, p)= lm =5 Jim lim

o)} 0,)

= lim lim I
e—*0*e—0 l-;Qa(x)

=f0 (60, p)
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for every x € R"\N, p € R", hence
Fol) (4 A)= | folo, Du(x) dx
A

for every we ', AeW,, ue L} (R") such that u|, € W' *(A). Finally, if F is ergodic,
then u, is ergodic and ¢, does not depend on w (see proposition 1), so theorem I is
completely proved. '

Remarks. (a) Note that the almost everywhere convergence of F,(w) is obtained
in theorem I under the assumption F,=g,F. If we suppose only that F, and g,F have
the same law, we can not obtain almost everywhere convergence but we may deduce
that F, converges in law to F, from compactness of § and Lebesgue’s dominated
convergence theorem. If, in addition, F is ergodic, then F, converges in probability to
F,, being F, a constant random integral functional.

(b) Theorem I contains the results by S. M. Kozlov [7], V. V. Yurinskij [10], G.
C. Papanicolaou and S. R. S. Varadhan [8] about the homogenization of Dirichlet
boundary value problems for second order elliptic partial differential equations in

divergence form:
i,j=1

u=u, ondA.

Indeed, as we will see in the remark of section 2, the functional F associated to the
integrand

f(w9 X, p)= ] 'ZI aij(w’ X) DiDj
L=
is periodic in law (resp. ergodic) if the matrix-valued random field (a;;) is homogeneous
(resp. ergodic), so we may apply theorem I for obtaining almost everywhere convergence
of F,=¢,F in §. Now, in the symmetric case a;=a;, the P-almost everywhere
convergence in L?(A) of the solutions of the Dirichlet problems is an easy consequence
of corollary 1.23 of [2].

() The convergence of F,(w) to F,(w) for P-almost all w € Q gives also the P-
almost everywhere convergence of minimum values and minimizers of general boundary
value problems for F,: we refer again to corollary 1.23 of [2].

(d) The easiest way for proving ergodicity of F is to verify a mixing condition (or
independence at large distances), as for example the following one: there exists M >0
such that the two real-extended vector random variables

(F(‘)(“nAj))i=1 ..... I;j=1,.,J (F(’)(UkaBt))k=1 ..... K;l=1,..,L

are independent whenever u,,..., U, vy,..., vx € Li,.(R"), Ay,..., A;, By,..., BLe N, and
dist(4;, B)=M for j=1,...,J and I=1,..., L.

The proof that this assumption implies ergodicity is not completely trivial: it
requires the standard technique for passing from mixing hypothesis to ergodicity (see for
example [9]) and also the characterization of J contained in theorem 1.26 of [2].
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Finally, note that the above condition of independence at large distance is slightly
stronger than the corresponding one in theorem 3.2 of [2], but it is verified in all
meaningful examples. Therefore theorem I is substantially — but not strictly speaking
— a generalization of our previous result.

2. Integrands and integral functionals

In this section we are concerned with the following problem. What are the
hypotheses on the integrand f(w, x, p) of a random integral functional F(w) € & in order
that theorem I holds? In particular, in order that F is ergodic?

Let us begin by giving some notations. By 3= 3(c,, c,, ®) we denote the class of
the integrands, that is of the functions f:[R" x R" — [R such that f(x, p) is Lebesgue
measurable in x, convex in p and

alpl*sf(x, p)sc,(1+1pl")  V(x,p)e R"xR"
where a>1, ¢, =c, >0 are fixed real constants.

Let (Q, 7, P) be a probability space. A function f: Q x R" x R" — [R is said to be
a random integrand if f is (7 x %, x %,, #)-measurable (%, denotes the Borel o-algebra
on R", # that one on R) and f(w, *, *) is an integrand of the class J for every w € Q.

If f:QxR"xR"— R is a random integrand, we denote by f:Q — 3 the map
defined by

f(w) (xs P) =f((0, X, p)

Let J; be the trace on J of the product a;algebra of R®"*R" that is the smallest
g-algebra & on J such that all the evaluation maps

feflup) (el peR)

are (¥, #)-measurable.

A first trivial remark is that, if f: Q x R" x R" — [ is a random integrand, then f
i8 (7,9;) measurable. The converse is not true, because the joint J x %, x %,
measurability of f may fail.

Now, we may consider the map J: 3 — § which transforms an integrand of the
class 3 in the corresponding integral functional of the class §, that is

[ f(x, Du(x))dx if ul,e W:*(A),
J(f) (u, A)=14

+ 00 otherwise

for every ue L} . (R") and A e U,.

The difficulty which arises here is that J is not (7, J)-measurable (7 is the
Borel g-algebra on §). Let J; be the smallest o-algebra on 3 which contains Z; and
such that J is (4, 75)-measurable. Then the main result proved in this section will be
the following theorem.
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Theorem II. Let fg:QxR"x[R"— R be two random integrands. Then the
functions f,§:Q— 3 are (7, J,)-measurable. If, in addition, the two measures p=fy P
v=g, P (defined on J,) agree on I, then u=v on J;.

Proof. As [ is obviously (7, 7,)-measurable, the (7, ,)-measurability of f can
be proved by verifying that Jof is (7, Jz)-measurable or equivalently, recalling
theorem 1.26 of [2], that the map w > J(f(®)) (u, A) is (7, #B)-measurable for any fixed
ue L. (R"), AeA,. But this is obvious by the definition of random integrand and by
the theorem of measurability of integrals depending on a parameter.

Let us pass to prove that, if u=f, P and v=g, P agree on J;, then u=v on ;.
This is an immediate consequence of the following lemma.

Lemma 1. Let (f,).cm be a countable family of random integrands and let
tm=T)s P for every me M. Then, for every He J,, there exists E € I; such that
Un(EAH)=0 for every me M.

Proof of the lemma. Let T, be the subfamily of the elements H of ; for which
the thesis holds. Then J, is a o-algebra which contains Z;. If we prove that J is
(7, Tr)-measurable, then T v 27, and the lemma is proved. Let us fix ue L% (R"),

A e U, such that u|, € W'*(4), and t, € R: recalling theorem 1.26 of [2], it is enough
to prove that

H={pe3:(Jo)(u, A)=[ @(x, Du(x)) dx>ty} € T,.

Let S = AV be the set of all sequences in 4, endowed with the g-algebra &, which is the
infinite product of the Borel o-algebras on A4, and with the probability measure A given
by the infinite product of the normalized Lebesgue measures on A. Then the Birkhoff’s

ergodic theorem (see [9]) gives that, for every ¢ € 3, there exists S, €% such that
A(S,)=1 and

L [ @(x, Du(x)) dx= lim % i @ (sn, Du(sy))

|A| A k= +o h=1

for every s=(s,) € S,.
‘Let us consider the set U of the pairs (w, s) € 2x § such that

-&l—jfm o, X, Du(x))dx—-hmsup Z fn(e, sy, Du(sy))

k- +oo
for every me M. Of course, Ue J x & and
iA{seS:(w,5)eU})=1 VoeQ,
hence, by Fubini’s theorem, there exists § € S such that
PlweQ:(w,5eU})=1.

Now, define

E={(p€3 hmsup Z @ (54, Du(s,)) > IIZI}'

k= +o
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It is obvious that E € 9, so it remains only to prove that u,(E A H)=0 for every
me M. But

tm(E A H)=P(f "(E AH))
<P ({a) € Q:——l—- | fu(®, x, Du(x)) dx = limsup 1 i S, 5, Du(§,,))}>
. |A| A k- +o k h=1

SP(weQ:(w,5)¢U})=0
for every me M, so the lemma and theorem II are completely proved.

The following corollaries are straightforward applications of theorem II.

Corollary 1. Let f,g be two random integrands. Then f,P=g,P on J; if and
only if the laws of the two vector random variables
(fCs Xk Pkexs  (8C5 Xk P)lkex
are equal for every finite family {(xy, p)}xex in R" x R

The group Z" acts on 3 by the translation operator z, defined by

(Tzf) (xa p) zf(x +z, p)

A random integrand f is said to be periodic in law if f P=(c,f), P (on J;) for every
zeZ"

Corollary 2. A random integrand f is periodic in law if and only if the laws of the
two vector random variables

(fCs Xk PO)kex (f(, Xk +2, Pi)kex
are equal for every z € Z" and for every finite family {(x;, px)}xex in R" x R".

A random integrand is said to be ergodic if (f, P) (H)=0 or 1 for every subset
H e J; such that 7,(H)=H for every ze Z".

Corollary 3. A random integrand f is ergodic if and only if (f4 P)(E)=0 or 1 for
every subset E € I, such that t,(E)=E for every ze Z".

Proof. Assume that (f, P) (E)=0 or 1 for every subset E € 7, such that 7,(E)=E
for every z e Z", and let H € J; be a set for which 7,(H)= H for every z € Z". We have
to prove that (f, P) (H)=0 or 1. If we apply lemma 1 to the family (z, f), . of random
integrands, we obtain that there exists E € J; such that (f, P) (H A 1,(E))=0 for every
z € Z". This implies that (f, P) (E A 1,(E))=0 for every z € Z", therefore ({4 P) (E)=0
or 1 by hypothesis. Since (fy P) (H)=(f P) (E), we obtain (f P) (H)=0 or 1, and the
corollary is proved.

‘Remark 1. The previous corollaries allow to construct random integrands
periodic in law and ergodic in a standard way. Let g:R*xR" — R be any Borel
function such that g(y, p) is convex in p and

clp*sg(np)Sc;(1+(p") V(i DeR xR".

Let a: Q x R" — [R* be any random field (i.e. any (J x %,, #,)-measurable map) and let
[ 2xR"xR"— R be the function defined by

f(o, x, p)=g(a(w, x), p).
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Then f is a random integrand and f is periodic in law (resp. ergodic) if a is periodic in
law (resp. ergodic). For example, the quadratic form

Z a;j(w, x) DiDj
i,j=1

is periodic in law (resp. ergodic) if the matrix-valued random field (a;;) is periodic in law
(resp. ergodic).

Remark 2. A random integrand f is ergodic if it satisfies the following mixing
condition:

| lim P({weQ:f(w,x;,p)>s; Viel, f(o,y;+2z,q;)>t; VjeJ})
z| =+ +
zeZn

=P({weQ:f(w, x;, p;)>s; Viel}) - P{oe Q:f(w,y;, q;)>t; VjeJ})

for every pair of finite families {(x;, p;, 5;)}icr and {(¥;, g;, t;)}jcs in R"x R" x R. Indeed
this condition implies that

lim (f4 P)(Ent.(E)=[(f4 P) (E)])?

z| » +©
zedn

for every E € ;. Therefore, if E € 7, and t,(E)=E for every z e Z" we have

(f+ P) (E)=[(]+ P) (E))?
so (f« P)(E)=0 or 1, and f is ergodic by corollary 3.

Finally, we obtain the result which was the goal of this section.

Theorem IIl. Let f, g be two random integrands and F=J of, G=J o § be the
corresponding random integral functionals.
() If faP=§F4+P on J;, then F and G have the same law.
(i) If f is periodic in law, then F is periodic in law.
(iii) If f is ergodic, then F is ergodic.

Proof. It follows immediately from the (¥, 9)-measurability of J and from
Jot,=1,0J for every ze Z".

Let us remark that the converse of the statements (i), (ii), (iii) in theorem III is not
true because an integral functional F does not univocally determine its integrand f(x, p)
for every (x, p) € R" x R". Nevertheless, the formula

m(F, lp, B_;_(x))
=i —_’—h—
J(F) (x, p)=limsup 1By ()

where B, (x)= {y ER":|y—x| <~}1;} , selects a particular integrand J(F)e 3 of Fe &
h

(see [3], theorem I) and it is possible to prove that F ergodic implies J(F) ergodic. The
same holds for the converse of (i) and (ii).
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3. Examples

(3.1) The two examples contained in [2], §4 — homogenization with regular
cells occupied by two materials randomly chosen and homogenization with cells of
bounded random size alternatively occupied by two materials — may be also treated by
theorem I of the present paper. In particular, these two examples verify the hypothesis
of independence at large distances in the strong form (see remark (d) in section 1).

(3.-2) As we said in remark (b) of section 1, the linear stochastic homogenization
of second order elliptic equation is a particular case of theorem I

(3.3) For the other examples we need the definition of multi-dimensional
Poisson process (see, for example, [6]). Let #° be the family of all bounded Borel
subsets of R". A Poisson process with parameter 4 is a family (X,) .40 of random
variables on a fixed probability space (2, 7, P) with non-negative integer values such
that

@ X, up(w)=X,(w)+ Xpz(w) for P-almost all w e Q whenever 4, Be #° and
AN B=0;

(b) for every finite and disjoint family (4,).x in #°, the random variables X ,,
(k € K) are independent;

© PIXg=ml=ein 2l

for every A e #° (that is the law of X, is the

Poisson law with parameter A|A]).

Roughly speaking, a Poisson process is a counting process for a uniform random
distribution of points in R".

The first example models a material with random spherical inclusions (for
instance, a concrete). Let (X ,) be a Poisson process and define

a(w, x)=cy +(c, —¢;) min {1, Xp, (@)}

In other words, a(w, x) holds ¢, on the union of the balls of radius r centered in the
random points associated to (X,) and ¢, elsewhere. Now, let F be the random integral
functional given by ‘

F (o) (u, A) =£ a(w, x) [Dul* dx

and F,=¢,F (F is a random integral functional by remark 1 of section 2). As F is
periodic in law (for any real period) and independent at large distances, hence ergodic,
theorem I applies, so there exists a functional F;, of the form

Folu, A)= [ fo(Du(x) dx

such that F,(w) converges to F, as ¢ — 0" for P-almost all w € Q. It can be proved that
F, is homogeneous of degree a because the family of functionals which are homog-
eneous of degree « is closed in §. Moreover the invariance under rotations of F implies
that f,(p)=c|p|* with ¢; Sc=c,.
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The same physical situation may be modelled in another way. Let (X%) be, for
¢>0, Poisson processes with parameter 1, =A¢": this corresponds to reducing up to a

factor ¢ the mean distance of the random points associated to the Poisson process.
Define

ae(wa x) =¢+ (Cz - Cl) min {1’ X%(x,re)(w)} ’

where r,=reg, and

F,(») (u, A) = | a,(w, x) |Du|* dx.

A

In this case F, is not equal to ¢, F but F, and ¢, F have the same law, so remark
(@) of section 1 applies, hence F, converges in probability to the constant random
functional F,.

(3.4) The random chessboard structures (with cells of arbitrary size, not bounded
a priori) may be treated by means of n one-dimensional Poisson processes which give
random partitions of the axes. For example, in two dimensions, let (X,), (Y,) be two
independent one-dimensional Poisson processes, let ¥ be a random variable with
equiprobable values c,, c¢,, independent of the processes (X ,), (Y,).

For every t € R, we set A(t)=[0, ¢t[ if t>0, A(t)=[t,O[ if t<0, A(t)=0 if t=0.

Define for every w € Q and x=(x,, x,) € R?

oo, %)= { V() if X4 (@)+ Yyu,(@) is even,

Cl + CZ - V(a)) if XA(M)(CU) + YA(xz)(w) iS Odd.

Intuitively, for every w € Q the function a(w, x) is constant on each cell of the
random chessboard structure, with alternated values c¢; and c¢,, and the value at the
origin is given by the random variable V.

Then, taking o =2, the random integral functional F, whose integrand is a|Dul?, is
- periodic in law (for any real period) and ergodic (but not independent at large distances)
so the random functionals F,=g,F converge P-almost everywhere as ¢ — 0" toward

Fo(u, A)=c [ |Dul* dx.
A

It can be proved that c=|/c;c, as in the deterministic regular chessboard
structure (see [7] and [4]).

A similar structure in the one-dimensional case has been studied by G. Facchinetti
and L. Russo [5].
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