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LIMITS OF NONLINEAR DIRICHLET PROBLEMS
IN VARYING DOMAINS

Gianni DAL MASO - Anneliese DEFRANCESCHI

We study the general form of the limit, in the sense of I'-convergence, of a sequence of nonlinear
variational problems in varying domains with Dirichlet boundary conditions. The asymptotic problem is
characterized in terms of the limit of suitable nonlinear capacities associated to the domains.

Introduction

The main purpose of this paper is the study of the asymptotic behavior, as h—y+ee, of
sequences of minimum problems in varying open sets with Dirichlet boundary
conditions of the form

0.1) min { jf(x Du) dx + J‘gu dx },
ue 0 (Q\Eh) QF, QE,
where Q is a bounded open subset of R", n 22, and (E;) is a sequence of closed

subsets of (2. We assume that f(x,£) is measurable in x, convex and p-homogeneous
in &, and that

c1lEP < f(x,8) < c,lEP

for suitable constants 0 <¢; ¢y <+e0, 1 <p<n.

For every ge LY(Q), 1/p + 1/q = 1, we denote by my(g) and M (g) respectively the
minimum value and the set of all minimum points of problem (0.1). We shall prove the
following compactness theorem (Section 6): for every sequence (E) of closed subsets
of Q there exist a subsequence (Ec(h)) and a non-negative Borel measure |, vanishing
on every subset of  with p-capacity zero, such that

0.2) }lli_rg&mo(h)(g) = m(l,g)

for every ge LI(Q), where

0.3) m(l,g) = rnin {J.f(x Du) dx + J.Iulpdu + Jgu dx } .
(Q) Q Q

Moreover, if M(ut,g) indicates the set of all minimum points of problem (0.3), then for
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every neighborhood U of M(u,g) in LP(Q) there exists ke N such that
Mc(h)(g) c U forevery h>k.

To achieve this result we introduce the class MP(Q) of all non-negative Borel
measures on €2 vanishing on all Borel sets with p-capacity zero. An important special
case of such measures is given, for every Borel set E < Q, by the measure

0 if Cp(EnB) =0,
E(B) =
+oo if Cp(EmB) >0.

0.4)

Indeed, by taking this definition into account, the minimum problem (0.1) becomes

equivalent to

0.5) f f(x,Du) dx + J.Iulpdph + fgu dx }
0 (Q) Q

for },lh =

In the first part of this paper we analyze the dependence on pe MP(Q) of the
minimum value m(u,g) and of the set M(W,g) of the minimum points of the problem

0.6 Jf(x Du) dx + J‘Iulpdu + J.gu dx }
ue 0 (Q) Q Q
To reach this goal we introduce on %(Q) the notion of y-convergence, which is a
convergence of variational type related to the [-convergence (see [14], [13], [1]) of the
corresponding functionals

ff(x,Du) dx + J‘Iulpdu
Q Q

We show that the Y-convergence is compact and metrizable on MD(Q) (Theorems
3.3 and 3.5) by using some techniques developed in the study of limits of obstacle
problems (see [7], [1], [2]). A well-known variational property of the I'-convergence
implies immediately the following result concerning the convergence of the minimum
values and of the minimum points of problems of the form (0.6): if (1) Y-converges to
y in ﬂ/[p(Q), then (m(};,,g)) convergesto m(u,g) and for every neighborhood U of
M(iL,g) in LP(Q) there exists ke N such that M(iy;,g) < U forevery h2k.

The results regarding the minimum problems (0.1), mentioned at the beginning,
follow then rather easily from the compactness theorem applied to the sequence
Hp=<g,.

Finally, the 7y-convergence is characterized by means of the notion of W-capacity
(Section 5). This is a set function defined for every Borel set B 2 Q by

C(f,u,B) = min { J.f(x,Du) dx + Jmﬂ’au tu-1le H(l)‘p(Q)} )
Q B

We show the equivalence between the y-convergence of a sequence of measures (L)
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in %(Q) and the weak convergence (in the sense of [15]) of the corresponding
p-capacities C(f,Lp,") . More precisely, by setting
o'(K) = liminf C(f,u, ,K) , a"(K) = limsup C(f,u,,K)
h—+0co h—+eo
for every compact set K < Q, we show in Theorem 5.8 that (u;) Y-converges to a
measure { in %(Q) if and only if

0.7 sup {o'(K) : K compact, K< A} = sup {a"(K) : K compact, K C A}

for every open set A c . In this case both sides of (0.7) are equal to C(f,u,A) and
this allows us to obtain an explicit formula for p in terms of the set functions o' and
o" by applying the main theorem of our previous paper [9].

These results take on an especially nice form in the case of the Dirichlet problems
(0.1), as illustrated in Section 6.

In the case p =2 and f(x,E) = I€I2, the notion of Yi-convergence has been
extensively studied in [12], to which we refer for a wide bibliography on this subject. A
probabilistic analysis of this notion of convergence is carried outin [4].

The first proof of the sufficiency of condition (0.7) in the case f(x,£) = IE[2 was
obtained in [5] by probabilisitic methods, under the hypothesis that |l has (locally) a
bounded potential. A different proof, which holds for arbitrary L, was given in [§8] by
I"-convergence methods.

In the case p # 2, the results obtained in this paper are completely new. The only
problems of this kind studied in the literature are two examples discussed in [2],
Chapter 5, and [17], Chapter 4.2, under the assumption that the sets E; have a periodic
structure.

The results of the present paper were announced without proofs in [10].

1. Notation and Preliminaries

Let Q bea bounded open subset of R", n>2, and let p be a real constant with
1 <p<n Wedenote by A the class of all open subsets of £ and we say that a
subset R of A is rich in 4 if, for every family (Aper in A, with A,cC A
whenever s,teR,s <t theset {teR:AgR]} isat most countable. We indicate by
K the class of all compact subsets of Q and by B the o-field of all Borel subsets of Q.
For every Ke X we define the p-capacity of K with respect to £ by

C,(K) = inf {le(plpdxcheC(’)"(Q),(pzl on KJ .
Q

This definition is extended to A€ 4 by
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Cy(A) = sup {C,(K):Ke X , K A},
and to arbitrary sets E C Q by
C(B) = inf {C)(A): Ac A, EcA}.

Let E be a subset of Q. If a property P(x) holds for all xeE, except for a set
Z cE with Cp(Z) = 0, then we say that P(x) holds p-quasi everywhere on E
(p-q.¢. on E) or for p-quasi every x€E.

A set Ug Q issaid to be p-quasi open (tesp. p-quasi closed ) in Q if for every
€ > 0 there exists an open (resp. closed) set A < Q such that Cp(UAA) < &, where
A denotes the symmetric difference and the topological notions are given in the relative
topology of . In a similar way we give the notion of a p-quasi Borel subset of Q
and denote by B, the o-field of all p-quasi Borel subsets of €.

By a Borel measure on Q we mean a non-negative countably additive set function
K : B—[0,+o=] such that p(J) =0 . We indicate by MP(Q) the class of all Borel
measures | on Q such that p(B) =0 for every Be B with Cp(B) =0 . Every
measure p of the class %(Q) can be extended to a unique measure, still denoted by
U, defined on the o-field B,.

For every ue HP(Q) and for every xe Q we assume that

fuay

(x)

1
.. < < 1 e
(LD limi (f‘;W) Y= 0 = IR BR
X,

1
IB_(x)!

! Bl’ I
where B(x) = {ye RM: ix-yl<r} and IB(x) is the Lebesgue measure of B (x). With
this convention , the pointwise value u(x) is determined p-q.e. on Q.

Let us finally recall the definition and the basic properties of I'-convergence as

formulated in abstract terms in an arbitrary metric space X (see [14]).

Definition 1.1. Let (F,) be a sequence of functions from X into R,and let F be
a function from X into R. We say that (Fp) T-convergesto F in X if the following
conditions are satisfied:
(@) forevery ueX and for every sequence (u,) convergingto u in X
Fw) < liminfF (u) ;
h—4ee

(b) forevery ueX there existsa sequence (u;) convergingto u in X such that
F > limsupF (u) .
() lim sup L(u)

The main motivation of this convergence is given by the following variational property
(see [14], Corollary 2.4).
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Proposition 1.2. Let (F)) be a sequence of functions which T'-converges in X to
afunction F and let G : X—R be a continuous function. Suppose that for every AeR
there exists a compact set Ky € X such that {veX: Fu(v) +GV) < Al c K, for

every heN. Then F + G atains its minimum in X and

lim inf [F(v)+G(V)] = mi)r(l [F(v) + G(v)] .

h—3+o0 veX

Furthermore, if My and M denote the set of all minimum points of Fy+ G and F+G
respectively in X, then for every neighborhood U of M there exists ke N such that
M, < U for every h2k.

2. A Compactness Theorem

Let us fix a function f: QxR"—5R and two constants 0 <c¢; < ¢, < +eo which
satisfy the following conditions:
2.1) f(x,) is Lebesgue measurable in x , convex and p-homogeneusin & ;
(22) cilGP < f(x,§) < c,lEP forevery (x,£)e QxR".

For every Ae 4 and for every ue LP(A) we define

Jf(x,Du(x))dx if ueH"P(A) ,
2.3) FwA) = { A

+o0 otherwise .

Moreover, given L& %(Q), we define for every Ae 4 and for every ue LP(A)

_[luﬂ’du if ueH"(A) |
2.4) G, @A) ={ A
o0 otherwise.

We can now state the main result of this section which is a compactness theorem,
with respect to the I'-convergence, for the family of all functionals of the form F + Gu

with pe M,(Q) .

Theorem 2.1. For every sequence (l;) in MP(Q) there exist a subsequence
(“c(h)) of (W), ameasure | in MI')(Q), anda family R ,rich in A, such that

[F(,A) + G, (h)(-,A)] T-converges to [F(,A) + G,(,A)]  in L"(A)
(o]

forevery AeR.
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To prove this theorem we establish first an analogous result for functionals of the
form F+ G'LL , le ﬂ'[p(Q), where G'u is defined as follows: for every Ae 4 and
for every ue LP(A) we set

J-(u+)pdu if ueH"P(A),
G,@A) = { A
+oo otherwise,

where u* = max{u,0}. Then the following lemma holds.

Lemma 2.2. For every sequence (L) in ﬂ\{p(ﬂ) there exist a subsequence (“c(h))
of (W), a measure e %(Q), and a family R, rich in A, such that

[FC.A) +G, (A)  T-comvergesto  [F(,A) +G,(,A) in LYA)
o(h)
for every AeR..

Before starting with the proof of this lemma let us introduce the notion of local
functional . Let X(€2) be a space of functions defined (a.e.) on Q. By a local
functional on X(Q) we mean a functional G : X(Q)x4—R such that G(u,A) =
G(v,A) for every Ae A and for every pair of functions u, ve X(£2) which agree
almost everywhere in A,

Let then G be a local functional on LP(Q) and let Ae 4. The function G(:,A),
defined on LP(Q), can be extended in a natural way to LP(A) : for every ueLP(A) we
define G(u,A) = G(v,A), where v is an arbitrary function of LP(Q) which extends u.
Since G is local, the definition of G(u,A) does not depend on the extension v.

Proof of Lemma 2.2. Let (y)e ﬂ\{p(Q). By a general compactness theorem with

respect to the T'-convergence (see [11], Theorem 4.18 and Proposition 4.11) there exist

a subsequence (“c(h)) of (up), a family X ,richin 4, and a local functional

H: LP(Q)xA—[0,+e] such that

2.5) for every Ae R , the functionals [F(:,A) + G
H(-,A) in LP(Q) (hence in LP(A));

2.6) for every Ae A4, the function H(-,A) is lower semicontinuous on LP(Q)
(hence on LP(A));

2.7) for every ue LP(Q), the set function H(u,") is a measure, i.e. H(u,") isthe
trace on 4 of a Borel measure defined on B.

1

“c(h)("A)] I'-converge to

For every Ae 4 and for every ue HL'P(A) we define
2.8) G(u,A) = H(u,A) - F(u,A).
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Then G is a non-negative local functional on HI-P(Q). By definition it follows also
immediately that the set function G(u,-) is a measure for every ue HLP(Q) and that
G(-,A) is lower semicontinuous on H1P(Q) for every Ae 4. Asin Lemma 3.3 (3)
of [2] we get finally that for every Ae A4 the function G(-,A) is increasing. Thus,
the integral representation Theorem 5.7 of [6] yields the existence of a Borel function
g : OxR—[0,+o<] and of two non-negative Radon measures A and v such that

@ for every ue HLP(Q) and forevery Ae A4

(2.9) G(u,A) = J‘ gix,u(x)) dA(x) + v(A) ;
A

(ii) A belongs to H'19(Q), 1/p + 1/q = 1, hence to %(Q) ;
(it) for every xe & the function g(x,-) 1is increasing and lower
semicontinuous on R .

Let Ae 4 with a Lipschitz boundary . Since G is local and every ue H'P(A) can
be extended to a function of HIP(Q), the function G(-,A) is well defined on HI:P(A)
and the integral representation for G in (2.9) is still valid on HYP(A). Since G isa
measure and every open set A can be approximated by means of open sets with a

Lipschitz boundary, it is easy to show that (2.9) holds for every Ae 4 and for every

ue H"P(Q). Since F(0,A) =0 and G'uc(h)(O,A) =0 for every Ac A4, by (2.5) and

(2.8) we get G(0,A) =0 for every Ae R .By (2.9) this implies v=0 on A4 and
gx,0) =0 A-g.e. on Q. To accomplish the proof of the theorem it remains only to
show that there exists e %(Q) such that

(2.10) jg(x,u(x)) A = j(u+)P du
A A

for every Ae 4 and for every ue HLP(A),

To this aim let us observe that, since (F+ th)(-,A) is positively p-homogeneous,
the functional (F + G)(:,A) is positively p-homogeneous on Hl’p(A) for every
A€ R . Furthermore, our assumptions on F imply that G(,A) is positively
p-homogeneous on HLP(A) for every Ae R , and hence for every Ae 4. Therefore
we can apply the next lemma which proves (2.10), and concludes the proof of
Lemma 2.2. |

Lemma 2.3. Let Ae Mi,(Q) and let g : QxR—[0,+] be a Borel function such that

(i) Jor every xeQ, the function g(x,) is increasing and lower semicontinuous on
R;

(ii)  for every AeA,the function u— f A8(x,u) dX is positively  p-homogeneous
on HUP(A);

(iii) gx,0)=0 A-ge. on Q.
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Then, setting a(x) = g(x,1) for xeQ, we get

(2.11) Jg(x,u) dr = J‘a(x)(u+)p dn
A A
for every Ae A and for every ue HIP(A).

Proof of Lemma 2.3. The proof of the lemma is standard when
_[Qg(x,u(x))dk < +oo for every ue HIP(Q). To prove the lemma in the general case,
we consider the set K = {ue HIP(Q): u20 on Q, ,[Qg(x,u(x))dk <+eo}, Since
HIMP(Q) isa separable metric space there exists a sequence (uy) in K which is dense
in K in the strong topology of HIPQ). According to the convention (1.1) we define
the pointwise values of u;, by

=

dy ,
B u, (y) dy
" B(x)

uh(x) = liminf
—0"
and we set E = l:J{uh > 0}. By the density of (u,) we obtain that {u >0} cE p-qe.
for every uek.
Let us prove that the function g(x,") is positively p-homogeneous on R for

A-q.e. xeE. For every Ae 4, for every 1> 0, and for every he N we have

Jg(x,tuh(x)) dh = 1° J-g(x,uh(x)) dh < 400,
A A

Therefore, there exists Ne B such that A(N)=0 and
(2.12) g(x,tup(x)) = P gx,up(x))

for every xe Q\N, he N, and 1eQ, T > 0. By assumption (i) the function g(x,") is
continuous from the left for every xe Q and therefore (2.12) holds also for every 1R,
T > 0. By (iii) there exists a Borel subset N' of Q such that A(N') = 0 and
g(x,n) =0 for every N <0 and for every xe Q\N'. Let xe EA\NUN") and t> 0. By
the definition of E there exists he N such that uy(x) > 0 ; so we can choose
T = t/u,(x) . By (2.12) we get

p 801, (X))

gx.t) =t
(u, (x))"
and therefore, for t = 1, we have
gx,u, (X))
gx,1) = ————p— s
(u, (X))

hence
gxt) = gx,) P .
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Since g(x,n) =0 for every 1 <0, we conclude that
(2.13) gx,t) = gx,1) @ H)P

for every te R and for every xe ENNUN'), which proves our assertion.

Let us prove now that

(2.14) J'g(x,u) di = J‘a(x)(u+)p di
Q Q
for every ue HLP(Q), where a(x) = g(x,1) for xe Q.
Let uve HIP(Q), u>0.1f J Q€(x,u) dA < +eo, by the density property of (u) there
exists a subsequence (uc(h)) which converges to u p-q.e. on Q, which yields that
{u>0} cE p-q.e. By (2.13) we have

g(xu(x)) = ax)(ux)P A-g.e. on {u>0}.
Since g(x,0) =0 =a(x)0 A-qge.on Q, we get
gxu(x)) = a®)ux)?  A-ge. on Q,

which implies (2.14) under the additional assumption that J.Qg(x,u)dk < oo,

If J o8X,ux))dA = +oo, let us suppose by contradiction that ,[ oEGLDW)PAA < +oo,
Then JEg(x,l)(u)Pdl < +eo . Since IEg(x,l)(u)Pdk = J.Eg(x,u)dk , it follows that
J\g80x,u)dA = +eo . This yields that A({u > 0}J~(Q\E)) > 0. By the continuity of A
along increasing sequences there exists € >0 such that A({u > e}N(E\E)) > 0, which
implies
2.15) jg(x,l[u>s})dk = J' g, dh < _l-p '[g(x,l)(u)p dA < +oo .

Q {u’> g} € Q
Since {u>¢€} is p-quasi open, by Lemma 1.5 of [6] there exists an increasing
sequence (vy) in HMXP(Q) converging to 1 {u>g} P-d-€. on Q. By (2.15) it follows
that

J.g(x,vh(X)) dA < 4o,
Q

so vyeK for every heN. Hence {v, >0} CE p-qe. and therefore {u>g} cE
p-g.e., which contradicts A({u > €)N(Q\E)) > 0. So we conclude that
fng(x,l)(u)pdl = +oo, proving (2.14).

To accomplish the proof of the lemma it is clearly enough to show that (2.11) holds
for every ue Hl’p(A), u20.Let A'edq4, A'cc A, and let v be a function of
Hg’p(Q) such that sptvcc A, v=u on A’,and 0<v <u on A. Then (2.14)
implies that
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J.g(x,u) di = J-g(x,v) di < J-g(x,v) d\ = Ja(x)(v)p dir = ja(x)(v)p dA SJ.a(x)(u)p di .
A A' Q Q A

A
By taking the supremum for A'cc A we get

feom ar < faowran
A

A

In a similar way we obtain the opposite inequality and conclude so the proof of
Lemma 2.3. |

Proof of Theorem 2.1. Let () be a sequence of measures of MP(Q). By
Lemma 2.2 there exist a subsequence (uc(h)) , ameasure He ﬂ/[p(Q), and a family X,
richin A, such that

(2.16) [F(v,A)+GL (,A)]  I'-converges to [F(-,A)+GL(-,A)] in LP(A)
o(h)

forevery AeR._.
For every ve %(Q), Ae 4, and ueLP(A) we define

2

J.(u_)p du if ue H'P(A),
G A) =1 A

+oo otherwise,

where u~ = max{-u,0} . Since G\z,(u,A) = G'V(—u,A) and F(u,A) = F(—u,A) , from
(2.16) we obtain that

[F(-,A)+ch(h)(-,A)] T-converges to  [F(,A) + G,(,A)] in LP(A)

. At _ 2 —
for every Ae R . Since F(0,A) = G”c(h)(O’A) = G”o(h)(O’A) = 0, we can apply
Theorem 3.12 of [2], which yields that

[FGA) +GY (,A)+G  (,A)] T<onvergesto [F(-,A)+G;(-,A)+Gi(-,A)]
o(h) o(h)

in LP(A) for every Ae R . The conclusion follows now from the fact that
G, = Gl, +G2 forevery ve Mp(Q). 1
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3. yp-convergence

In this section we introduce the notion of Y-convergence for sequences of measures
in MP(Q) and study the main properties of this convergence. In particular, we show
that the y-convergence is compact and metrizable on %(Q).

To define the y-convergence, we introduce the functional F; defined for every for
every Ae 4 and for every ueLP(A) by

F@,A) if ueHP(A) ,

(3.1) E(uA) =

+o0 otherwise .

Let us point out that the effective domain of this functional takes into account the
boundary condition u=0 on JdA.

Definition 3.1. Let () be a sequence in W[D(Q) and let pe .‘MP(Q). We say that
(Mp) Ygconverges to W if

[Fy(-Q) + Gu (.Q)] T-convergesto  [Fy(-Q) + G”(-,Q)] in LP(Q)
h
according to Definition 1.1.

In the case p =2 and f(x,E) = I/, the Yg-convergence coincides with the
y-convergence introduced in [12] and studied in [4] and [8].
Our main goal in this section is to prove the following theorem.

Theorem 3.2. Ler (W) be a sequence in Mp(Q) and let pe MP(Q). Then the
Sfollowing conditions are equivalen::

(i) (L) Ypconvergesto W ;
(ii) for every Ac A

[F0(~,A)+G“h(-,A)] T-converges to [Fy(,A) +G (AN in L°A) ;

(iii) there exists a family R ,richin A, such that for every Ae R,
[F(-,A) + GLL (wA)] T-converges to  [F(-,A) + G,(A) in L(A) .
h

Proof of Theorem 3.2,
(iii) = (ii) : Assume (iii) and define for every ue LP(A)
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(2 H@A) = inf (iminf [Fy(u,4) + G, (w,A): uu in L")},

3.3) H"(w,A) = inf {}‘iglilp [FO(uh,A) + Guh(uh,A)] fuy—ou in Lp(A) }.

It is easy to see (by a diagonal argument) that the infima in (3.2) and (3.3) are achieved
by suitable sequences and that H'(:,A) and H"(:,A) are lower semicontinuous on
LP(A) (see [14], Proposition 1.8).
To prove (ii) we have to show that

H"(,A) < Fy(u,A) +Gu(u,A) < H'(u,A)
for every Ae .4 and for every ue LP(A),
Let us prove that
(3.4) F (u.A) +Gu(u,A) < H'@uA) .
Fix Ac A4 and ueLP(A) such that H'(u,A) < +e=. Let (u;) be a sequence converging
to u in LP(A) such that
H'@,A) = lx}-rgigf [Fylu,,A) + Guh(uh’A)] .

Since H'(u,A) < +oo , there exist a constant ce R and a subsequence (uc(h)) of (u,)
such that Fy(ug,A) < ¢ for every he N. Hence ugye HLP(A) and, by the
coerciveness of F;, we may assume that (uc(h)) converges weakly to u in H},’p(A).
This implies that ue HP(A), hence

(3.5) F,(w,A) = Fu,A) .
By (iii) there exists a family & ,richin A, such that
F(uw,A) +G (wA") < liminf [Fu ,A) + G (u,,A)]
s htoo By
for every A'e R with A'C A . By taking the supremum over all such A’ we get

F(u,A) + G (u,A) < liminf [F(u,,A) + G (u,A)l < H@A) .
H h—>+oe Ky

This inequality together with (3.5) yields (3.4).
Let us prove that

.(3.6) H'(u,A) < Fj(uA) + Gu(u,A)

Fix AeA and ueLP(A) such that Fy(u,A) + G,(uA) < +e, 5o that ue HyP(A)
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and Fg(u,A) =F(u,A). To prove (3.6) it is enough to show that for every 1 >0
there exists a sequence (up) in H%’P(A) converging to u in LP(A) such that

3.7 F(uwA) + Gu(u,A) +n 2 }ll—n;lillp [F(uh,A) + Guh(uh’A)] .

We first consider the special case spt u ¢ A. By (iii) for every A'e R, with
A’ cc A, there exists a sequence (wy) in HLP(A') which converges to u in
LP(A") and satisfies

Fu,A) + G (wA) 2 limsup [F(w,,A) + G (w,,A)] .

To construct the sequence (u;,) which fulfils (3.7) we use the J-property introduced in
[11], Definition 2.2, which holds uniformly for the sequence F + Guh ( see Theorem

6.1 and Proposition 2.6 of [11]).

Letusfix €>0 and A'e R with A'cc A and choose a compact set K such that
sptu € K ¢ A'cc A . By applying the J-property of F + GMh to connect the

functions wy, (on A’) and 0 (on A\K), we obtain a constant M >0 and a sequence
(uy) in Hg’P(A) converging to u in LP(A) such that

FluyA) + G, () S (1 + e)F(w,A) + G, (w A0 +ellwyif, s 11+

+ Mitw, P
Pk

for every heN. It follows that

limsup [F(u,,A) +G (u,,A)] < (1+8)[FuA)+G (wA)] + iz[llullpp +1]
h—+e Hy u LA
< (1 +&)[Fu,A)+G (uA)] + za[llullpp +1] .
B L7(A)
Since € can be choosen arbitrarily small, we obtain (3.7), and hence (3.6), under the
additional assumption that sptuc A.
To prove (3.6) in the general case ue Hé’P(A) we observe that there exists a

sequence (vp) in H(}’P(A) with sptvy, € A such that (vp) convergesto u in
Hg’P(A) and IvplP t lulP p-g.e.on A.By applying the previous result to v, we get

H"(v,A) < F(v,A) + Gu(vh,A)

for every he N. By the lower semicontinuity of H"(:,A) on LP(A) it follows that
H'(u,A) < liminf H'(v,,A) < lim [F(v,,A) + G (VA .
h—tee h—o+ee Llh

Since the functional F(.,A) is continuous in the strong topology of HI'P(A) and
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Gu(vh,A) converges to Gu(u,A) as h—>+co by Beppo Levi's theorem, we conclude
that
H"(w,A) < F(u,A) +Gu(u,A) ;

which implies (3.6). The proof of (iii) => (ii) is so accomplished.

(i) = (i) : By taking A = Q in (ii) we get immediately @i).

(i) = (iii) : By Theorem 2.1 for every subsequence (p,c(h)) of () there exist a
subsequence (“o(t(h))) of (“c(h))’ a measure Ve %(Q) and a family & ,rich in 4,
such that for every Ae R

(3.8) [F(-,A)+ G (-,A)] T-convergesto [F(-,A)+G (-,A)] in LP(A)
Fotem) v

Since (iii) implies (i) it follows that

[Fo(.+G, ()] TI-convergesto  [Fy(-Q) +G (-Q)] in LQ) .
o(t(h))
By assumption (i) we get then G, (0,Q) = Gu(u,Q) for every ue Hé*P(Q) which
implies that G, (u,A) = Gu(u,A) for every Ae A4 and for every ue Hl’p(A). By
taking this into account in (3.8) we obtain that

[F(-,A)+G (~A)] T-convergesto [F(-A)+G (-,A)] in L)
o) .
for every Ae R . Since the limit functional does not depend on the subsequence,
property (iii) follows immediately from Proposition 4.14 of [11].
The proof of Theorem 3.2 is so accomplished. |

An immediate consequence of Theorems 3.2 and 2.1 is the following result which
asserts that the class of measures MP(Q) is sequentially compact under the
Yg-convergence.

Theorem 3.3. For every sequence (l\y) in MP(Q) there exists a subsequence
(“c(h)) which Yi-converges to a measure \. of the class %(Q).

The notion of Yrconvergence is defined by means of the functionals F, + G“ .
Clearly two measures J{ and v may give rise to the same functional (see [12],

Example 4.5). This leads to the following defintion.

Definition 3.4. We say that two measures W, Vv eMP(Q) are equivalent if
G, Q) =G, ,Q) forevery ue HIP(Q).
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It is easy to see that 1 and v are equivalent if and only if Gu(u,A) =G, (u,A)
for every Ae 4 and for every ue H!-P(A). Moreover, by adapting the proof of
Theorem 2.6 of [8], we can show that p and v are equivalent if and only if
n(U) = v(U) for every p-quasiopenset Uc Q.

In the next theorem we still denote by %(Q) the quotient space with respect to the
equivalence relation introduced in Defintion 3.4, and we identify each measure with its
equivalence class. Note that the defintion of Y-convergence is clearly independent of
the choice of | in its equivalence class in %(Q).

Theorem 3.5. The Yp-convergence is metrizable on ﬂ/[p(Q)‘

Proof. We shall use the following general result for the I'-convergence (see [1],
Section 2.8.3). Let X be a separable metric space and let S(X,y) be the family of all
lower semicontinuous functions F: X—R such that F(v) 2 y(v) for every veX,
where y : X—>R is a given lower semicontinuous coercive function. Then the
T'-convergence in  S(X,y) is metrizable, that is, there exists a metric d in S(X,y)
such that (F) I'-converges to F if and only if d(F,,F)—0.

The metrizability of %(Q) can now be obtained by identifying each element W of
%(Q) with the corresponding functional F(-,Q) +GH(-,Q) defined on LP(Q). 1

4. Localization and Boundary Conditions

In the first part of this section we aim to prove a localization property for measures on
Mp(Q) with respect to the y-convergence. More precisely, we shall establish the
following theorem.

Theorem 4.1. Let (L) be a sequence in MP(Q) which Yp-converges to
ue %(Q). Then there exists a family R, rich in 4, such that

[F(-,Q2) + Gu (¢, A)]  T-converges to  [F(-,Q) + Gu(~,A)] in LX(Q)
h

for every Ae R .

To prove this result we introduce the functionals H' and H" defined for every
ABe A with AcCB and for every ueLP(B) by
4.1 H'(u,B,A) = inf { liminf [Fu,,B) + G (u,,A)]:y,—u in L'®)} ,
h—+eo Hh

“4.2) H"(u,B,A) = inf { limsup [F(uh,B) +G (uh,A)] tu—u in LP(B) }.
h—>+e0 K
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Moreover, for every ue HI'P(B) we set
4.3) G'(u,B,A) = H'(uB,A) — F(u,B) ,
(4.4 G"(u,B,A) = H"(u,B,A) — F(u,B) .

Note that the infima in (4.1) and (4.2) are actually achieved, as one can easily see by
a diagonal argument.

In the next lemma we collect some properties of the functionals G' and G", which
imply immediately Theorem 4.1.

Lemma 4.2. Let (U,) be a sequence in MP(Q) which <Yg-converges to
He M(Q). Let Ay, Aje A with Aj cc Ay and ue H'P(Q). Then

4.5) G”(u,Al) < G'wQ,A) < G'WQA,) |,

4.6) G'(wQ2,A) € G"WQA) < Gu(u,AZ)

Proof. Let us prove (4.5). Let A;, A, and u be as required in the lemma. The
inequality G'(u1,Q,A,) < G"(u,Q2,A,) is trivial. Let us prove that

G“(u,Al) £G'(u,Q,A,) . By (4.3) and (4.1) there exists (u;,) in HI’P(Q) converging
to u in LP(Q) such that

4.7 F(u,Q) + G (1,Q2,A) = liminf [F(u,,.Q)+G (v ,A)] .

‘We may assume that the right hand side of the equality is finite and that the lower limit is
a limit, so that the sequence (u,) converges to u weakly in HLP(Q) by the
coerciveness of F. Since the function

u— Jf(x,Du) dx
B
is lower semicontinuous in the weak topology of HI'P(Q) for every Be B, we have

4.8) J.f(x,Du) dx < liminf If(x,Duh) dx
h—+eo

ow ow'
for every A'e 4. On the other hand, by Theorem 3.2 there exists a family R_, rich
in A4, such that forevery A'e R,

4. F(u,A) + G (u,A) < liminf [F(u ,A) + G (u,,A)] .
(4.9) WA +G (,A) < liminf [F(u,,A) uh(uh ]

By adding (4.8) and (4.9) we get immediately
F(u,Q) + G (w,A") < liminf [F(u ,Q) +G (u,,A)] = Fu,) + G (u,Q,A)
u h—y-+oo K

for every A'’e R, A'C A, . Since Gu(u,-) is a measure, by taking the supremum in
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A’ we obtain finally
Gu(u,Al) < GuQA)

which concludes the proof of (4.5).

Let us prove (4.6). The inequality G'(u,Q,A{) < G"(u,Q,A;) is trivial. It
remains to prove that G"(1,Q,A;) < G“(u,Az).

Let R be the family, rich in A4, given by Theorem 3.2. Thus, for every A'e R
with A; cc A'cc A, we have

"WLALAY) = G A) £ G (u,A) .
G'(u ) u(u ) ”(u 2

By the monotonicity of the function G"(u,A',-) the proof of (4.6) will be accomplished
if we show that

4.10) G"(u,Q,Al) < G"(u,A',Al) .
Let (w;,) be asequence in Hl’p(Q) converging to u in LP(A") such that

(4.11) F(uA) +G' (wA"A,) = limsup [F(w,,A) + G (w,A)] .
h—+eo ”'h

Fix £¢>0 andlet K be a compact set with A; c K c A’ and F(u,A"\K) <&. Again
by the J-property of F (see [11], Theorem 6.1) there exist a constant M >0 and a
sequence (uy) of functions in Hg’P(Q) converging to u in LP(Q) such that u, = wy
on a neighborhood of K, u; =u on O\A' and

412 F@,Q) < (1+8e)[F(w,A)+FuOK)] + eliw I, +l’,  +1)+
h e v

P

+ Milw, —ull
LI 17UV)

for every he N. By the I'-convergence and by (4.12) we get
F(u,Q) + G"(u,Q,Al) < liminf [F(u,,Q) + G (u;,A))]
h—+oo Ky
< (1 +¢) limsup [F(Wh,A') +G (wh,Al)] + (1 +&)F(u,Q2K) +
h—+eo }‘Lh
+ QP +1)
L
< (1 +¢) limsup [F(wh,A') +G (Wh’Al)] + (1+¢e)k +
h—o+eo By

+ (1+e)F(u,QA) +eQlulf, +1) .
L)
By (4.11) it follows that

Fu,Q) +G'w,QA) < (1+&)[Fu,Q) +G'(u,AA)] + (1+ek + s(2l!ullzp(g)+ D.
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Since ¢ is arbitrarily small, it follows G"(u,Q,A)) <G"(u,A'A|) which concludes the
proof of (4.10) and therefore of the lemma. |

Proof of Theorem d4.1. By Lemma 4.2 we obtain that
Gu(u,A) =sup{G'(u,Q,A) : A'e 4, A'ccA) =
= sup{G"(u,Q,A) : A'e g, A'ccA}
for every Ae 4 and ue Hl’p(Q). The functionals Gu(u,A) , G'(u,Q,A), G"(u,Q,A)
are increasing with respect to A and lower semicontinuous with respect to u on

HLP(Q). Therefore, by Proposition 1.14 of [11] there exists a family &', rich in 4,
such that

Gu(u,A) = G'(u,Q,A) = G"(u,Q,A)

for every Ae R’ and for every ue HI-P(Q). By the definitions of G' and G", these
equalities are equivalent to the assertion of the theorem. 1

We now take into account non-homogeneous boundary conditions on 0Q .
Let gpe HIP(Q). For every Ae 4 and for every ue LP(A) we define

F(u,A) if u-pe HyTA)
4.13) F (wA) =

+oo otherwise .
Then the following theorem holds.

Theorem 4.3. Let pe HYP(Q). Fix A cc Q and let (Up) and W be measures on
%(Q) such that

[F(-,Q)+Guh(-,A)] T-converges to [F(-,Q)+Gu(-,A)] in LA(Q) .
Then

[F(p ¢, Q) + Gu ¢,A)] T-converges to [F¢(~,Q) + GH(-,A)] in Lp(Q) .

h

Proof. We shall prove first that, given ue LP(Q) , there exists a sequence (u;,)
converging to u in LP(Q) such that

“4.14) F(P(u,Q) + Gu(u,A) > lﬁ_rilﬂip [F(p(uh,Q) + Gph(uh’A)] .

We may assume that the left hand side of (4.14) is finite, which implies by (4.13) that
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u—Qe Hg’P(Q), and therefore ue HP(Q). Now, by assumption there exists a sequence
(vy) convergingto u in LP(Q) such that

(4.15) F Q) +G WA) = lim [F(v,,Q) + Guh(vh,A)] )

Fix £€>0 and let K be a compact set with A ¢ K < Q such that F(u,2\K) < &.
Moreover, let A' be an open set with K — A' cc Q. By the J-property of F (see
[11], Theorem 6.1) there exist a constant M > 0 and a sequence (up) of functions in
Hg’P(Q) converging to u in LP(Q) such that u, = v, on a neighborhood of K, up, =u
on {NA' (and therefore u,—¢e Hcl,’P(Q)), and

F(u,,Q) < (1+8)[F(v,,,€) + Fu,QK)] + E(thllpp + Ilullpp +1) +
L) L
+ Miv, —ul®
Yh 1P@)
This inequality together with (4.15) yields
limsup [F, (0, + 6, @, A)] < (1+€) limsup [F(v, ) + G, (v, A)] +

+ (1 +e)F(@,QK) + 2P, +1]
' L

IA

a+ e)[F(p(u,Q) + Gu(u,A)] + (1+ &)F(u,Q\K) +

+ e[znunpP +1] .
L

Since F(u,f2\K) <€ and € >0 is arbitrary, we get immediately (4.14).
It remains to prove that for every ue LP(Q) and for every sequence (uy) converging
to u in LP(Q) we have

(4.16) F(P(u,Q) + Gu(u,A) < Eﬁ‘iﬂf [F(p(uh,Q) + Guh(uh,A)] .

Let ue LP(Q) and (u,) be a sequence in LP(Q) converging to u in LP(Q). We may
assume that the right hand side of (4.16) is finite and that the lower limit is a limit. By
passing, if necessary, to a subsequence, we may assume that (uy) convergesto u
weakly in HLP(Q) by the coerciveness of F. Since u,— e Hg’P(Q) we get

u—Qe HévP(Q), so (4.16) follows easily from the definition of F(p and from our
assumption concerning the I'-convergence of F(.,Q) + Guh(-,A). | |
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The next theorem collects some conditions which are equivalent to the
Yr-convergence in %(Q).

Theorem 4.4. Let () be a sequence in Mp(Q), let ue MP(Q), and let
01 HYP(Q). Then the Jfollowing conditions are equivalent:

(i) (M) Yrconvergesto

(ii) for every Ac A

[Fo(-,A) + Gu (,A)] T-converges to [FO(-,A) + Gu("A)] in LP(A) ;

h

(iii) there exists a family R_,richin A, such that for every Ac R,
[F(-,A) + Gu (,A)} T-convergesto [F(,A)+ Gu(-,A)] in Lp(A) ;
h

(iv) there exists a family R ,richin A, such that for every Ae R
[F(-,©) + G}l (-,A)] T-convergesto [F(-,Q)+ Gu(-,A)] in LP(Q) ;
h

(v) there exists afamily R',richin A, such that for every AeR', AccQ ,

[F (,Q+G (,A)] T-converges to [F Q) +G (,A)] in LX(Q) .
¢ Ky ¢ K

Proof. By Theorem 3.2 follows that the conditions (i), (ii), and (iii) are equivalent.
Theorem 4.1 guarantees that (i) implies (iv), while (v) follows from (iv) by Theorem
4.3. To conclude the proof of the theorem we shall show that (v) implies (iii). By
Theorem 2.1 for every subsequence (”c(h)) of (u,) there exist a subsequence
(uc(‘c(h))) of (’J‘c(h))’ ameasure Ve %(Q), and a family ® ,richin 4, such that

@.17 [F(-,A)+ GH (-,A)] T-convergesto [F(-,A)+ GV(-, A)] in LP(A)
o(v(h))

for every Ae f{ Since (iii) implies (v), there exists a family &, richin A, such that

(4.18) [F(P(-,Q) +G (-,A)] T-converges to [F(p(-,Q )+ Gv(-,A)] in LP(Q)
o(u(h)

for every Ae R", A cc Q. On the other hand, by assumption (v) there exists a

family &', richin A4, such that

(4.19) [F (Q)+G (,A)] T-convergesto [F (,Q)+G (-, A) lin LP(Q) .
¢ oGa(h)) ¢ "

for every Ae R, with A cc Q. By (4.18) and (4.19) we have
(4.20) Gu(u,A) = G, (w,A)
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forevery Ae R'NR", AccQ,and for every ue +HLP(Q).

We prove now that (4.20) holds for every Ae A4 and for every ue Hl’p(A)‘ Let us
fix A and u as required. For every Ae R'n R.", with A' cc A, there exists
u'e o+ Hé’P(Q) such that u'=u on A'. Since the functionals GM and G, are local,
by (4.20) we get Gu(u,A') = Gu(u',A') = G, (u,A") = G,(u,A"). By taking the limit
as A'T A we obtain

4.21) G, (,A) = G,(u,A)

for every Ae 4 and for every ue H1P(A).
By (4.17) and (4.21)

[FG,A) + G (~A)]  T-convergesto  [F(,A) +G (-,A)] in LP(A)
o) .

for every Ae i Since the limit does not depend on the subsequence, by Proposition
4.14 of [11] we conclude that there exists a family & ,richin A4, such that
[F(-,A) + G}L ,A)] I"-converges to [F(¢,A) + Gu(-,A)] in Lp(A)
h
for every Ac K.
The proof of Theorem 4.4 is so accomplished. |

Finally, from the properties of the I'-convergence we derive some variational
properties of the Y-convergence.

For every Je %(Q), Ae 4, and geL9(A), 1/p + 1/q = 1, we denote by m(u,g,A)
and M(U,g,A) respectively the minimum value and the set of mimimum points of the
problem

min {Jf(x,Du) dx + J-Iulp du + Jgu dx } .
weH P(A) 3 A A

By applying Theorem 4.4 (the equivalence between (1) and (ii)) and Proposition 1.2
we get to our next result.

Theorem 4.5. Let (W) be a sequence in MP(Q) which Yp-converges to
pe W[p(Q) Then for every Ae A and for every ge LUA), 1/p + 1/q = 1, the following
properties hold:

(i) lim m(uy.g.A) = m(L,gA) ;

h—+eo
(ii) for every neighborhood U of M(U,g,A) in LP(A) there exists ke N such that
M(u,.g,A) € U for every h2k.
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Remark 4.6. It is clear that results analogous to those of Theorem 4.5 can also be
achieved for the minimum problems associated to the other functionals considered in
Theorem 4.4. For example, condition (v) of Theorem 4.4 implies that

im { min1 [Fu,Q)+G (uA)] } = min [F(u,Q2) + G (u,A)]
Bt o geH P@) " u-ge HyP(Q) .

forevery AeR' with A cc Q.

5. Yp-convergence and p-capacity

In this section we establish the equivalence between the <y-convergence of a
sequence of measures (W) of %(Q) and the weak convergence (in the sense of [15])
of the corresponding capacities C(f, W;,").

According to [9], Section 3, for every ue MP(Q) and for every Be B, the
-capacity of B, relative to f, is defined by

3. C(f,it,B) = min { jf(x,Du) dx + Jllulp du:u-1le HB’P(Q) |
Q B

For every pe .‘Mp(Q) the set function C(f,u,") is non-negative, increasing, and
countably subadditive on B,. Moreover, it is strongly subadditive and continuous along
increasing sequences in B, (for a review on the properties of the pi-capacity we refer to
[9], Theorem 3.2).

The measure W is uniquely determined by C(f,it,-). In fact, as proved in [9],
Theorem 4.2, U is the least measure greater than or equal to C(f,u,") on B ; therefore
for every Be B

(5.2) u®) = sip X CEWLB)

where the supremum is taken over all finite Borel partitions (B;);c1 of B.

By Remark 4.6 it follows immediately that the yr-convergence of a sequence (Uy,)
implies the convergence of the sequence of the corresponding p-capacities C(f, Wps)
on a family which is rich in 4. This allows us to obtain the following result.

Theorem 5.1. Let (U,) be a sequence in MP(Q) which *;-converges to W in

%(Q). Then
(5.3) C(f,u,A) < liminf C(f,uh,A)
h—+oe
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and
(54) C(f,u,A) 2 limsup C(f,uh,K)

h—+ee

for every Ae A and for every Ke K with K C A.

Proof. Let A and K be as required in the theorem. By Remark 4.6 there exists a
family R' ,richin A4, such that for every A'e R’

CEpA) = Im CHEN,A) .
h—otoe

For every A'e R' with A'cc A we have
C{f.1,A) < liminf C(f,u,,A) ,
h—o+ee

which implies immediately (5.3) by the continuity properties of the p-capacity.
On the other hand, for A'e ' with K g A'cc A it follows that

C(f1A) 2 Cfp,A) = lim C(Ep A" 2 limsup C(fu, K) ,
h—+oo h—>+eo

which proves (5.4). |

The next corollary follows easily from Theorem 5.1 and from the continuity
properties of the p-capacity mentioned at the beginning of this section.

Corollary 5.2. Let (Uy,) be a sequence in MP(Q) which Yg-converges to U in
%(Q). Then

55 liminf C(f,u. ,K) = li Cup, K) = CEuA
(5.5) ng% limin (1K) ngg limsup & K (f.,A)
Kex Kex

forevery Ae 4.

To identify the set function C(f,jL,) on 130 we introduce a class of measures
contained in %(Q).

Definition 5.3. We denote by M:(Q) the class of all measures e MP(Q) such
that

uB) = inf {u(U) : U p-quasi open, B ¢ U}
for every BeB.

*
In the case p =2 the properties of the class M p(Q) have been studied in [8],

Section 3. Analogous properties can be obtained without any difficulty for 1 <p <n
and shall be summarized in Propositions 5.5 and 5.7.
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Definition 5.4. Let pe Mp(Q). We denote by u* the set function defined by

*
K (B) = inf {p(U) : U p-quasi open, B c U}
for every BeB.

As in Theorems 3.9 and 3.10 of [8] we obtain the following proposition.

*
Proposition 5.5. Lﬁt pe MP(Q). Then the set function L is a Borel measure
*
which belongs to fMp(Q) and | s equivalentto | ,i.e.

(5.6) J-lulp dp = J.Iulp "
A A
for every Ae 4 and for every ueHIP(A).

Remark 5.6. By (5.6) and (5.1) we have C(f,u,A) = C(f,u*,A) for every Ae 4.

Furthermore, (5.6) implies that a sequence (u;) in MP(Q) Yg-converges to
*

ue %(Q) if and only if (W) 7Yrconvergesto W .

*
Let us finally analyze the relationship between C(f,u,) and C(ft ,-) on B,. As
in Proposition 3.11 of [8] we obtain the following result.

Proposition 5.7. Ler ue MP(Q). Then
(57) CEp .B) =inf(CHEu ,A): Ae 4, BC A} = inf(CELA) : Ac A, B C A}

for every Be B,.

We now come to the main result of this section.
Let () be a sequence of measures in ﬂ{p(Q). For every Ke X we define

o'(K) = liminf C(f,uh,K) ,
h—o+ee

a"(K) = limsup C(f,uh,K) .
h—+ee

For every Ae 4 we set

BA) = sup {a'K) : Ke X ,KC A},
B(A) = sup {a"(K):Ke X ,Kc A},
and for every Be B we define
(5.8) B(B) = inf {B'(A):AcA4,Bc A},
5.9 B"(B) = inf {B"(A): Ac A,BC A} .
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Then the following characterization of the Y-convergence in %(Q) holds.

Theorem 5.8. Ler (W) be a sequence in MP(Q) and let B' and B" be the set
functions defined by (5.8) and (5.9). Then (1) 7Yp-converges to a measure W in
Mp(Q) if and only i,j: B'=PB" on B.lIn this case, for every Be B we have
B'(B)=B"(B) = C(f,u .B) and

*
(5.10) W®) = sipZ BB) ,

where the supremum is taken over all finite Borel partitions (By),.1 of B.

Proof. Let (U;) be a sequence in ﬂ/[p(Q) which yp-converges to pe MP(Q)‘ By
Corollary 5.2 we obtain

(5.11) CEp.A) = B(A) = B"(A)

for every Ae 4. By taking (5.11) into account, from Proposition 5.7 together with
(5.8) and (5.9) we get

C(Ep ' B) = inf {B(A): Ae 4, BC A) = inf {B"(A): Ac 4, B C A)

p®) = p"(®)

*
for every Be B. Finally, (5.10) follows from (5.2) applied to { .
Let now (i) be a sequence in Mp(Q) and suppose that B'=p" on B. Let us
define the measure W by the formula

h®) = sup X BBy

where the supremum is taken over all finite Borel partitions (B;);c1 of B. Furthermore,
since the Y-convergence on %(Q) is compact and metrizable (Theorems 3.3 and 3.5),
we may assume that (ll,) Yp-converges to a measure Ve %(Q). Since P' and B" do
not change if we pass to a subsequence of (), by Corollary* 5.2 we have
B'(A) = B"(A) = C(f,v,A) forevery Ae 4 ; hence P'=f"=C(f,v ,) on B by
(5.7), (5.8), and (5.9). By applying (5.2) to v*, we obtain that v* is the least measure
greater than or equal to B' on B. By definition of 1 we have to conclude that v*= M.
Therefore u*=u and Remark 5.6 implies that (L) Yg-converges to U in m{p(Q).
The proof of Theorem 5.8 is so accomplished. |
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6. Nonlinear Dirichlet Problems on Varying Open Sets

We may now apply the results obtained in the previous sections to analyze the
asymptotic behavior of sequences of nonlinear variational problems in varying open sets
with Dirichlet boundary conditions of the form

6.1 min { |f(x,Du)dx + J-gudx },
uEHO’P(Q\Eh) Q\Eh Q\Eh

where (E;) is a sequence of closed subsets of Q and geL9(Q) with 1/p+1/q=1.
We indicate by my(g) and My(g) respectively the minimum value and the set of all
minimum points of problem (6.1) and we identify each ue Hé P(ONE,) with the function
of Hg’p(Q) obtained by the usual extension u=0 on E; .
To put this study in the general setting, for every Ee B we consider the Borel
measure oo defined by

0 if Cp(ENB)= 0,
cop(B) =
+oo if Cp(EmB) >0.

6.2)

Note that the measure oo belongs to %(Q).
For every heN the minimum problem (6.1) is equivalent to the minimum problem

1

(6.3) min {jf(x,Du) dx + J'|u|"doo%+ J-gu dx } .
ue Ho'p(Q) Q Q Q

in the sense that both problems have the same minimum values and the same minimum
points. In fact, for a function ue Hg’P(Q) the condition u=0 p-qe.on E is
equivalent to ue H}P(Q\E) for arbitrary closed sets E < Q (see [3], Theorem 4, and
[16], Lemma 4).

The equivalence between (6.1) and (6.3) enables us to state the convergence
properties of the sequences (my(g)) and (M;(g)) by relying on the properties of the
Y-convergence proved in the previous sections. According to Theorem 3.3, there exist a
subsequence (Ec(h)) of (E;) and a measure Le MP(Q) such that (“Ec(h))
Ye—converges to L. The convergence of the corresponding minimum values mc(h)(g) to
the minimum value m(u,g) of
(6.4) min {Jf(x,Du) dx + 'fluﬂ’dp + J-gu dx }

Q Q

1,p
e H0 @ 9

follows then immediately from Theorem 4.5. Moreover, if M(,g) denotes the set of all
minimum points of (6.4), then Theorem 4.5 implies also that for every neighborhood U
of M(l,g) in LP(Q) there exists ke N such that Mc(h)(g) < U forevery h2k.
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Finally, we point out that the main result of Section 5, concerning a characterization

of the variational convergence by means of the convergence of -capacities, is
particularly meaningful in the case py = ~g, - It can be stated by using the capacity

associated to f and defined for every Ke X by
6.5) C(tK) =inf { Jf(x,Du) dx : ue C';(Q) ,uzlon K}.
Q

In fact, since C(f,oth, K) = C(f,KNEy) , for every Ke X the set functions o' and
o, introduced in Section 5, become
o'(K) = liminf C(f,KnEh) ) o"(K) = limsup C(f,KmEh)
h—eo h—oe
Hence, the sequence (cth) Yp-converges to a measure [ in %(Q) if and only if

sup {a'(K): Ke X ,Kc A} =sup {0"K): Ke X , K c A}

for every Ae A. Furthermore, formula (5.10) allows us to reconstruct the measure
from the knowledge of the function f and of the sequence (E;) by means of the set
function C(f,-) defined in (6.5).
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