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LIMITS OF NONLINEAR DIRICHLET PROBLEMS 

IN VARYING DOMAINS 

Gianni DAL MASO - Anneliese DEFRANCESCHI 

We study the general form of the limit, in the sense of F-convergence, of a sequence of nonlinear 
variational problems in varying domains with Dirichlet boundary conditions. The asymptotic problem is 
characterized in terms of the limit of suitable nonlinear capacities associated to the domains. 

Introduct ion 

The main purpose of this paper is the study of the asymptotic behavior, as h--->+~o, of 

sequences of  minimum problems in varying open sets with Dirichlet boundary 

conditions of  the form 

(0.1) rain { If(x,Du) dx + / g u d x  } , 

u e 4 ' P ( f A E  h) I'~XE h I'zXE h 

where f2 is a bounded open subset of R n, n > 2, and (Eh) is a sequence of  closed 

subsets of ~2. We assume that f(x,~) is measurable in x, convex and p-homogeneous 

in ~, and that 

Cll~[P < f(x,~) < c21~IP 

for suitable constants 0 < c 1 < c 2 < +o% 1 < p < n. 

For every ge Lq(f2), 1/p + 1/q = 1, we denote by mh(g) and Mh(g) respectively the 

minimum value and the set of all minimum points of  problem (0.1). We shall prove the 

following compactness theorem (Section 6): for every sequence (Eh) of closed subsets 

of f2 there exist a subsequence (Ec(h)) and a non-negative Borel measure g, vanishing 

on every subset of  f2 with p-capacity zero, such that 

(0.2) lira ma,h,(g ) = m(g,g) 
h----)+~ ~ z 

for every ge Lq(I2), where 

(0.3) m(g,g) = rain { ff(x,Du) dx + IlulPd~t + f g u d x }  . 
ue 4'P(n) ~ O O 

Moreover, if M(g,g) indicates the set of all minimum points of problem (0.3), then for 
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every neighborhood U of M(g,g) in LP(~) there exists k e N  such that 

Ma(h)(g ) c U for every h > k. 

To achieve this result we introduce the class ffd'p(~) of all non-negative Bore1 

measures on ~ vanishing on all Borel sets with p-capacity zero. An important special 

case of such measures is given, for every Borel set E c ~ ,  by the measure 

I 0 if Cp(EAB) = 0 ,  
(O.4) ~E( B ) ( +~o if Cp(EnB) > 0.  

Indeed, by taking this definition into account, the minimum problem (0.1) becomes 

equivalent to 

(0.5) rain {ff(x,Du)dx + flulPdbh+ f g u d x }  
ue HI0'P(~) fl ~ 

for bh = r176 h. 

In the first part of this paper we analyze the dependence on be ffv/p(~) of the 

minimum value m(p,g) and of the set M(g,g) of the minimum points of the problem 

(0.6) min { I f (x ,Du)dx+ IlulPdp. + Igu dx} 
ueI~0'P(~) ~ ~ 

To reach this goal we introduce on ffC/p(~) the notion of "ff-convergence, which is a 

convergence of variational type related to the F-convergence (see [14], [13], [1]) of the 

corresponding functionals 

If(x,Du) d x +  IluIPdb 

We show that the "/f-convergence is compact and rnetrizable on ffdp(~) (Theorems 

3.3 and 3.5) by using some techniques developed in the study of limits of obstacle 

problems (see [7], [1], [2]). A well-known variational property of the F-convergence 

implies immediately the following result concerning the convergence of the minimum 

values and of the minimum points of problems of the form (0.6): if (gh) 3'f-converges to 

p in 9V/p(~), then (m(bh,g)) converges to m(b,g) and for every neighborhood U of 

M(b,g ) in LP(~) there exists k~ N such that M(bh,g) c U for every h >_ k. 

The results regarding the minimum problems (0.1), mentioned at the beginning, 

fo l low then rather easily from the compactness theorem applied to the sequence 

~h = ~176 h. 
Finally, the 7f-convergence is characterized by means of the notion of b-capacity 

(Section 5). This is a set function defined for every Borel set B __C f~ by 

C(f,b,B) = min{ ~f(x,Du)dx+ IlulPdb : u -  1 e H10'P(~) } . 

B 

We show the equivalence between the "ff-convergence of a sequence of measures (bh) 

252 



DAL MASO - DEFRANCESCHI 

in 9~p(f2) and the weak convergence (in the sense of [15]) of the corresponding 

~t-capacities C(f, Vth,.). More precisely, by setting 

cc'(K) = liminf C(f, Ph,K ) , cz"(K) = limsup C(f,~th,K ) 
h--~+oo h-4+oo 

for every compact set K ___ ~ ,  we show in Theorem 5.8 that (~th) Tf-converges to a 

measure # in 9~p(f2) if and only if 

(0.7) sup {cz'(K) : K compact, K c_ A} = sup {cz"(K) : K compact, K _c A} 

for every open set A c_ f2. In this case both sides of (0.7) are equal to C(f,~t,A) and 

this allows us to obtain an explicit formula for It in terms of the set functions o~' and 

cz" by applying the main theorem of our previous paper [9]. 

These results take on an especially nice form in the case of the Dirichlet problems 

(0.1), as illustrated in Section 6. 

In the case p = 2 and f(x,~) = I~12 , the notion of  Tf-convergence has been 

extensively studied in [12], to which we refer for a wide bibliography on this subject. A 

probabilistic analysis of this notion of convergence is carried out in [4]. 

The first proof of the sufficiency of condition (0.7) in the case f(x,~) = l~l 2 was 

obtained in [5] by probabilisitic methods, under the hypothesis that I.t has (locally) a 

bounded potential. A different proof, which holds for arbitrary ~t, was given in [8] by 

F-convergence methods. 

In the case p # 2 ,  the results obtained in this paper are completely new. The only 

problems of  this kind studied in the literature are two examples discussed in [2], 

Chapter 5, and [17], Chapter 4.2, under the assumption that the sets E h have a periodic 

structure. 

The results of the present paper were announced without proofs in [10]. 

1. Notation and Preliminaries 

Let f2 be a bounded open subset of R n , n _> 2, and let p be a real constant with 

1 < p < n. We denote by A the class of  all open subsets of  s and we say that a 

subset R of  A is rich in A if, for every family (At)te R in A ,  with A s c c  A t 

whenever s, t e R ,  s < t, the set { teR : A t ~ R }  is at most countable. We indicate by 

Kthe  class of all compact subsets of s and by B the ~-field of all Borel subsets of  ~ .  

For every Ke K we define the p-capacity of K with respect to f2 by 

Cp(K) = inf [fiDe0? dx : qge C~0(f2 ) , q) > 1 on K} . 

This definition is extended to Ae A by 
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Cp(A) = sup {Cp(K) : Ke K ,  K c A} ,  

and to arbitrary sets E c ~2 by 

Cp(E) = inf {Cp(A) : A a A , E _ c A } .  

Let E be a subset of f2. If a property P(x) holds for all xe E, except for a set 

Z c E with Cp(Z) = 0, then we say that P(x) holds p-quasi everywhere on E 

(p-q.e. on E) or for p-quasi every x~ E . 

A set U _c f2 is said to be p-quasi open (resp. p-quasi closed ) in g2 if for every 

e > 0 there exists an open (resp. closed) set A c ~ such that Cp(U~A) < c ,  where 

A denotes the symmetric difference and the topological notions are given in the relative 

topology of  f~. In a similar way we give the notion of a p-quasi Borel subset of f~ 

and denote by B o the o-field of all p-quasi Borel subsets of f2. 

By a Borel measure on ~ we mean a non-negative countably additive set function 

: B-o[0,+oo] such that g(O)  = 0 .  We indicate by Mp(Q) the class of  all Borel 

measures g on f2 such that ~t(B)= 0 for every Be B with Cp(B)= 0 .  Every 

measure ~t of the class 9Vfp(f2) can be extended to a unique measure, still denoted by 

g, defined on the c-field B o. 

For every u~ HI'P(~) and for every xe f~ we assume that 

(1.1) liminf ~ 1  ~u(y) dy _< u(x)<_ limsup ~x ~u(y)dy , 
r_oO + IBr(X)l r---~O + IB )l 

B~(x) " Br(x) 

where Br(x) = {yeR n : Ix-yl <r} and IBr(x)l is the Lebesgue measure of  Br(X). With 

this convention, the pointwise value u(x) is determined p-q.e, on ~.  

Let us finally recall the definition and the basic properties of F-convergence as 

formulated in abstract terms in an arbitrary metric space X (see [14]). 

Definition 1.1. Let (F h) be a sequence of  functions from X into R, and let F be 

a function from X into 1~. We say that (F h) F-converges to F in X if the following 

conditions are satisfied: 

(a) for every u~X and for every sequence (u h) converging to u in X 

F(u) _< liminfFh(uQ ; 
h----)-~o 

(b) for every u~X there exists a sequence (u h) converging to u in X such that 

F(u) > limsupFh(Uh) �9 
h--o+~ 

The main motivation of  this convergence is given by the following variational property 

(see [14], Corollary 2.4). 
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Proposition 1.2. Let (Fh) be a sequence of functions which F-converges in X to 

a function F and let G : X---~R be a continuous function. Suppose that for every ~,e R 

there exists a compact set K~, c_ X such that {veX : Fh(v) + G(v) < X} _c KT. for 

every he N. Then F + G attains its minimum in X and 

lim inf [Fh(V) + G(v)] = rain [F(v) + G(v)] . 
h--~+,,* v e X  ve X 

Furthermore, if M h and M denote the set of all minimum points of Fh+ G and F + G 

respectively in X, then for every neighborhood U of M there exists ke  N such that 

M h c U  for  every h>-k. 

2. A Compactness Theorem 

Let us fix a function f : f~xRn---)R and two constants 0 < c 1 -< c 2 < +co which 

satisfy the following conditions: 

(2.1) f(x,~) is Lebesgue measurable in x ,  convex and p-homogeneus in ~ ; 

(2.2) ClI~IP < f(x,~) < c21~IP forevery  (x,~)ef~xR n. 

For every Ae A and for every ue LP(A) we define 

(2.3) 
fff(x,Du(x))dx if ueHI'P(A) , 

F(u,A) = A 

+oo otherwise. 

Moreover, given p,e 9r we define for every Ae A and for every ue LP(A) 

(2.4) G~t (u,A) = 

~lulPdl.t if ue HI'P(A) , 

A 

+oo otherwise. 

We can now state the main result of this section which is a compactness theorem, 

with respect to the F-convergence, for the family of all functionals of the form F + Grt 

with kte 9~p(f2). 

Theorem 2.1. For every sequence ([.th) in Mp(f~) there exist a subsequence 

(/.tcr(h)) of (/.th), a measure kt in 9~lp(f2), and a family R ,  rich in A ,  such that 

[F(.,A) + G~ta(n)(.,A)] F-converges to [F(.,A) + G~t(.,A)] in LP(A) 

for every Ae  R .  
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To prove this theorem we establish first an analogous result for functionals of  the 

i is defined as follows: for every A~ A and form F + G~ , be  YV/p(f~), where a~t 

for every ue LP(A) we set 

f j'(u+fd/.t if u~HI'P(A), 
G1 (u,A) = A 

+,,,, otherwise, 

where u + = max { u,O }. Then the following lemma holds. 

L e m m a  2.2. For every sequence (IXh) in 9~p(f~) there exist a subsequence (B~(h)) 

of (gh)' a measure ~t~ 9V[p(f2), and afamily R ,  rich in A ,  such that 

1 
1 F-converges to [F(.,A) + G~(.,A)] in LP(A) [F(-,A) + Gtx (h)(.,A)] 

for every A~ R .  

Before starting with the proof of  this lemma let us introduce the notion of local 

functional . Let X(f2) be a space of functions defined (a.e.) on ~ .  By a local 

functional on X(f~) we mean a functional G : X ( ~ 2 ) x A ~ R  such that G(u,A) = 

G(v,A) for every Ae  A and for every pair of  functions u, v~ X ( ~ )  which agree 

almost everywhere in A. 

Let then G be a local functional on LP(~) and let A~ A .  The function G(.,A), 

defined on LP(f2), can be extended in a natural way to LP(A) : for every u~ LP(A) we 

define G(u,A) = G(v,A), where v is an arbitrary function of LP(f2) which extends u .  

Since G is local, the definition of G(u,A) does not depend on the extension v .  

P roof  of  L e m m a  2.2. Let (gh)e 9~p(f~). By a general compactness theorem with 

respect to the F-convergence (see [11], Theorem 4.18 and Proposition 4.11) there exist 

a subsequence (P'(~(h)) of  (gh), a family R ,  rich in A ,  and a local functional 

H : LP(f~)xA--)[0,+~] such that 
(2.5) for every Ae R , the functionals [F(.,A) + G~cr(h)(.,A)] F-converge to 

H(.,A) in LP(f~) (hence in LP(A)) ; 

(2.6) for every Ae  A ,  the function H(-,A) is lower semicontinuous on LP(~) 

(hence on LP(A)) ; 

(2.7) for every ue I_,P(~), the set function H(u,.) is a measure, i.e. H(u,.) is the 

trace on A of a Borel measure defined on B .  

For every A~ A and for every u~ H 1,p(A) we define 

(2.8) G(u,A) = H ( u , A ) -  F(u,A).  
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Then G is a non-negative local functional on H 1,p(H). By definition it follows also 

immediately that the set function G(u,.) is a measure for every ue HI,p(H) and that 

G(.,A) is lower semicontinuous on HI,P(~2) for every Ae A .  As in Lemma 3.3 (3) 

of [2] we get finally that for every A~ A the function G(.,A) is increasing. Thus, 

the integral representation Theorem 5.7 of [6] yields the existence of a Borel function 

g : ~2xR---~[0,+oo] and of two non-negative Radon measures 9~ and v such that 

(i) for every ue HI,P(f~) and for every Ae A 

(2.9) G(u,A) = fg(x,u(x))d~.(x) + v(A) ; 
A 

(ii) ~, belongs to H'l,q(f2), 1/p + 1/q = 1, hence to 9kip(H) ; 

(iii) for every x~ ~ the function g(x,.) is increasing and lower 

semicontinuous on R .  

Let Ae A with a Lipschitz boundary. Since G is local and every u~ HI,P(A) can 

be extended to a function of HI'p(ff2), the function G(.,A) is well defined on HI,p(A) 

and the integral representation for G in (2.9) is still valid on HI,P(A). Since G is a 

measure and every open set A can be approximated by means of open sets with a 

Lipschitz boundary, it is easy to show that (2.9) holds for every Ae A and for every 
u~ H I'p (H). Since F(0,A) = 0 and G~c(h)(0,A) = 0 for every Ae A ,  by (2.5) and 

(2.8) we get G(0,A) = 0 for every Ae  R .  By (2.9) this implies v -= 0 on A and 

g(x,0) = 0 ~.-q.e. on f2. To accomplish the proof of  the theorem it remains only to 

show that there exists ~te 9~p(f~) such that 

(2.10) fg(x,u(x))dX = f(u+) p dg 
A A 

for every A~ A and for every ue H I,p(A). 
To this aim let us observe that, since (F + Ghh)(.,A) is positively p-homogeneous, 

the functional (F + G)(.,A) is positively p-homogeneous on HI,p(A) for every 

A e  R .  Furthermore, our assumptions on F imply that G(.,A) is positively 

p-homogeneous on H I,p(A) for every A~ R ,  and hence for every Ae A .  Therefore 

we can apply the next lemma which proves (2.10), and concludes the proof of  

Lemma 2.2. | 

L e m m a  2.3. Let ~.e 9V{p(H) and let g : f2xR---)[0,+oo] be a Borel function such that 

(i) f o r  every xe  if2, the function g(x,.) is increasing and lower semicontinuous on 

R; 
(ii) for  every A e  A ,  the function u ~ fAg(x,u) dX is positively p-homogeneous 

on HI,p(A) ; 

(iii) g(x,0) = 0 ~.-q.e. on H .  
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Then, setting a(x) = g(x,1) for xe f~, we get 

(2.11) fg(x,u) dX = fa(x)(u+) p dX 

A A 

for every Ae A and for every ue H 1,p(A). 

P r o o f  of  L e m m a  2.3. The proof  of  the lemma is standard when 

S~g(x,u(x))dX < +~  for every ue HI,P(f~). To prove the lemma in the general case, 

we consider the set K = {ue HI,P(~)  : u > 0 on f~, Sf~g(x,u(x))d~ <+~o}. Since 

HI,p(f~) is a separable metric space there exists a sequence (Uh) in K which is dense 

in K in the strong topology of HI,P(f2). According to the convention (1.1) we define 

the pointwise values of u h by 

Uh(X ) = liminf 1 ~Uh(Y) dy , 
r-~0+ IBr(X)l B~(x) 

and we set E = ~ {% > 0}. By the density of (%) we obtain that {u > 0} ~ E p-q.e. 

for every ue K. 

Let us prove that the function g(x,.) is posit ively p-homogeneous on R for 

X-q.e. xe E. For every Ae  A ,  for every x > 0, and for every he N we have 

[g(x,'~Uh(X)) d~, = "~P [g(X,Uh(X)) d% < + 
A A 

Therefore, there exists Ne B such that %(N) = 0 and 

(2.12) g(x,zuh(x)) = ,cP g(x,uh(x)) 

for every xe ~'xN, he N, and ze Q, x > 0. By assumption (i) the function g(x,.) is 

continuous from the left for every xe ~ and therefore (2.12) holds also for every "ce R, 

> 0. By (iii) there exists a Borel subset N' of  g~ such that X(N') = 0 and 

g(xJ1) = 0 for every TI -< 0 and for every xe ~kN'. Let xe Ek(NuN') and t > 0. By 

the definition of E there exists he N such that Uh(X) > 0 ; so we can choose 

x = t/uh(x ) . By (2.12) we get 

g(x,t) = t p g(x'uh(x)) 

(Uh(X)) p 

and therefore, for t = 1, we have 

g(X,Uh(X)) 
g(x,1) -- 

(uh(x))P 

hence 
g(x,t) = g(x,1) tP . 
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Since g(x,T1) = 0 for every ~ < 0, we conclude that 

(2.13) g(x,t) = g(x,1) (t +)P 

for every te R and for every xe EN(NuN'), which proves our assertion. 

Let us prove now that 

(2.14) fg(x,u) dL= fa(x)(u+) p dL 
gI f~ 

for every ue HI,p(~),  where a(x) = g(x,1) for x~ f ] .  

Let ue HI,P(f~), u >_ 0. If  Sng(x,u) d~. < +o0, by the density property of (Uh) there 

exists a subsequence (U~(h)) which converges to u p-q.e, on ~ ,  which yields that 

{u > 0} c E p-q.e. By (2.13) we have 

g(x,u(x)) = a(x)(u(x))P ~.-q.e. on {u > 0}. 

Since g(x,0) = 0 = a(x).0 ~.-q.e. on f~, we get 

g(x,u(x)) = a(x)(u(x))P X-q.e. on ~ ,  

which implies (2.14) under the additional assumption that Sng(x,u)d~. < +oo. 

If  Sxag(x,u(x))d). = + ~ ,  let us suppose by contradiction that fng(x,1)(u)Pd)~ < +~,. 

Then ~Eg(x,1)(u)Pd)~ < +oo. Since 5Eg(x,1)(u)Pd~. = 5Eg(x,u)dX , it follows that 

~nxEg(x,u)d)~ = +,~.  This yields that ~.({u > 0}n(~',,E)) > 0. By the continuity of ~. 

along increasing sequences there exists e > 0 such that )~({u > e}n(f~kE)) > 0 ,  which 

implies 

I I 1I (2.15) g(x,l{u>e})d~. = g(x,1) d~, < - -  g(x,1)(u)Pd)~ <+~o . 
n {u>e} d n 

Since {u > e} is p-quasi open, by Lemma 1.5 of  [6] there exists an increasing 

sequence (Vh) in HI,P(f2) converging to l{u>e } p-q.e, on ~.  By (2.15)it follows 

that 

fg(X,Vh(X)) < + ~ , d)~ 

so v h e K  for every heN.  Hence {Vh>0 } c_E p-q.e, and therefore { u > e }  _ E  

p-q.e., which contradicts )~({u > e } n ( f ~ k E ) )  > 0. So we conclude that 

fng(x,  1) (u)Pd~ = +0% proving (2.14). 

To accomplish the proof of  the 1emma it is clearly enough to show that (2.11) holds 

for every ue HI,P(A), u > 0. Let A'e  ..q, A' c c  A ,  and let v be a function of 

HI .P (~ )  such that s p t v c c A ,  v = u  on A' ,and 0 < v < u  on A. Then (2.14) 

implies that 
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fg(x,u) d). = fg(x,v)d~ _< Ig(x,v)d)~ = Ia(x)(v)P d~. 
A' A' ~ f~ 

= fa(x)(v)P d~, 
A 

-< [a(x)(u) p d~ . 
1 /  

A 

By taking the supremum for A' c c  A we get 

Ig(x,u) d~ .<  Ia(x)(u)P d ~ .  

A A 

In a similar way we obtain the opposite inequality and conclude so the proof of 

Lemma 2.3. | 

P roof  of Theorem 2.1. Let (~t h) be a sequence of measures of Mp(f2). By 

Lemma 2.2 there exist a subsequence (~tc(h)), a measure gte YVfp(f2), and a family R,  

rich in A ,  such that 

1 
(2.16) [F(.,A) + G~tc(h)(.,A)] 

1 
F-converges to [F(.,A) + G~t(.,A)] in LP(A) 

for every A~ R .  

For every ve  9Vfp(f2), A~ A ,  and ue LP(A) we define 

I(u-)Pclgt if u~HI'P(A), 

G 2 (u,A) = A 

+~  otherwise, 

where u-  = max{-u,0} . Since G2v(u,A) = Glv(-u,A) and F(u,A) = F(-u,A) , from 

(2.16) we obtain that 

2 
[F(.,A) + G~to(h)(.,A)] F-converges to [F(.,A) + G2~t(.,A)] in LP(A) 

for every Ae R .  Since F(0,A) = G~cs(h)(0,A) = G~o(h)(0,A) = 0, we can apply 

Theorem 3.12 of [2], which yields that 

+ G  1 ( . ,A)+  G 2 1 2  
[F(.,A) (.,A)] F-convergesto [F( - ,A)+G~( . ,A)+G~( . ,A)]  

]'t(y(h ) 1"t~(h) 

in LP(A) for every Ae R �9 The conclusion follows now from the fact that 

G v = Glv + G2v for every ve  Mp(f~). | 
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3. T f - convergenee  

In this section we introduce the notion of yf-convergence for sequences of measures 

in Mp(f~) and study the main properties of this convergence. In particular, we show 

that the yf-convergence is compact and metrizable on 9~p(~). 

To define the 7f-convergence, we introduce the functional F o defined for every for 

every Ae A and for every ue LP(A) by 

(3.1) 
Fo(u'A) = [ F(u,A) if ueH~P(A) 

+ oo other wise . 

Let us point out that the effective domain of this functional takes into account the 

boundary condition u = 0 on 3A. 

Definition 3.1. Let (gh) be a sequence in 9~p(f2) and let ge  9r We say that 

(gh) Tf-converges to [.t if 

[Fo(.,f2) + G h(.,~)] F-converges to [Fo(.,f~) + G~(.,f~)] in LP(~) 

according to Definition 1.1. 

In the case p = 2 and f(x,{) = I~12 , the yf-convergence coincides with the 

y-convergence introduced in [12] and studied in [4] and [8]. 

Our main goal in this section is to prove the following theorem. 

Theorem 3.2. Let  

following conditions are equivalent: 

(i) (~Lh) yf-converges to ~t ; 

(ii) for  every A e  A 

[F0(.,A) + G (.,A)] F-converges to [F0(.,A) + G (.,A)] 

(iii) there exists a family R ,  rich in A ,  such that for  every A e  R 

[F(-,A) + G th(.,A)] F-converges to [F(.,A) + G~t(.,A)] 

6t h) be a sequence in Mp(~)  and let I.Le Mp(~) .  Then the 

in LP(A) ; 

in LP(A) . 

Proof  of  Theorem 3.2. 

(iii) ~ (ii) : Assume (iii) and define for every ue LP(A) 
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(3.2) H' (u,A) = inf {liminfb~+~ [F~ + G ~  (uh'A)] : uh---~u in LP(A) } , 

(3.3) H"(u,A) = inf {limsuph~+~. [F~ + Ggh(Uh'A)] : uh--)u in LP(A) } . 

It is easy to see (by a diagonal argument) that the infima in (3.2) and (3.3) are achieved 

by suitable sequences and that H'(.,A) and H"(.,A) are lower semicontinuous on 

LP(A) (see [14], Proposition 1.8). 

To prove (ii) we have to show that 

H"(u,A) < Fo(u,A ) + G (u,A) < H'  (u,A) g 

for every AE A and for every u~ LP(A). 

Let us prove that 

(3.4)  Fo(u,A) + G (u,A) < H'(u ,A)  . g 

Fix Ae  A and ue LP(A) such that H'(u,A) < + ~ .  Let (Uh) be a sequence converging 

to u in LP(A) such that 

H'(u,A) = liminfh_~_r~ [F.(u~,A). ,, + G th(Uh,A)] . 

Since H'(u,A) < +,,o, there exist a constant ce R and a subsequence (U~(h)) of (u h) 

such that F0(Uc(h),A) < c for every he N. Hence Ue(h)e H01,P(A) and, by the 

coerciveness of F 0 , we may assume that (Ue(h)) converges weakly to u in Ho 1,p(A). 

This implies that ue H 1,p(A), hence 

(3.5) F0(u,A) = F(u,A) . 

By (iii) there exists a family R ,  rich in A ,  such that 

F(u,A') + G (u,A') < liminf [F(uh,A') + G (uh,A')] 
h--~+~ ~h 

for every A'e R with A' c A .  By taking the supremum over all such A' we get 

F(u,A) + Glx(u,A) < liminfh~+~ [F(uh'A) + Ggh(Uh'A)] < H'(u,A) . 

This inequality together with (3.5) yields (3.4). 

Let us prove that 

(3.6) H"(u,A) < Fo(u,A) + G)(u,A) . 

Fix A~ A and u~ LP(A) such that Fo(u,A) + Gg(u,A) < +o~, so that u~ H I,p(A) 
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and F0(u,A ) = F(u,A). To prove (3.6) it is enough to show that for every 1] > 0 

there exists a sequence (u h) in Hol,p(A) converging to u in LP(A) such that 

(3.7) F(u,A) + G (u,A) + r 1 _> limsup [F(uh,A ) + G (Uh,A)] . 
h---)+~ gh 

We first consider the special case spt u c_ A. By (iii) for every A'e R ,  with 

A' ~ c  A ,  there exists a sequence (Wh) in HI,P(A ') which converges to u in 

LP(A') and satisfies 

F(u,A') + G (u,A') > limsup [F(Wh,A') + G (wh,A')] 
P- h---~ gh 

TO construct the sequence (Uh) which fulfils (3.7) we use the J-property introduced in 
[11], Definition 2.2, which holds uniformly for the sequence F + Gg h ( see Theorem 

6.1 and Proposition 2.6 of [11]). 

Let us fix e > 0 and A'e R with A' c c  A and choose a compact set K such that 
s p t u c _ K _ _ _ A ' c c  A . By applying the J-property of F + G g  h to connect the 

functions w h (on A') and 0 (on A',K), we obtain a constant M > 0 and a sequence 

(Uh) in HI,P(A) converging to u in LP(A) such that 

F(Uh,A ) + Ggh(Uh,A ) < (1 + e)[F(wh,A' ) + G (Wh,A')] + e[llw~ll p + 1] + 
gh ~ L~(A') 

+ MIIWhI~LP(A,\ K) 

for every he N. It follows that 

limsup [F(uh,A) + Ggh(uh,A)] < (1 + a)[F(u,A') + G (u,A')] + e[llull p + 11 
h ---) +~ g U(A') 

< (1 + e)[F(u,A)+ G (u,A)] + e[llullP, + 1] . 
U(A) 

Since a can be choosen arbitrarily small, we obtain (3.7), and hence (3.6), under the 

additional assumption that spt u c A .  

To prove (3.6) in the general case ue Hol,P(A) we observe that there exists a 

sequence (Vh) in HI,P(A) with spt v h c A such that (Vh) converges to u in 

Hol,p(A) and IvhlP 1' lulP p-q.e, on A .  By applying the previous result to v h we get 

H"(Vh,A ) < F(Vh,A ) + Gp(vh,A) 

for every he N. By the lower semicontinuity of H"(.,A) on LP(A) it follows that 

H"(u,A) _< liminfh~+~ H"(Vh'A) -< hli~n+~ [ F ( v h ' A ) '  + Gg h(vh'A)] " 

Since the functional F(.,A) is continuous in the strong topology of HI,P(A) and 
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G~t(vh,A) converges to Gg(u,A) as h---~+~o by Beppo Levi's theorem, we conclude 

that 

H"(u,A) < F(u,A) + G (u,A) , 

which implies (3,6). The proof of (iii) ~ (ii) is so accomplished. 

( i i )  ~ ( i )  : By taking A = ~ in (ii) we get immediately (i). 

(i) ~ did : By Theorem 2.1 for every subsequence (tXc(h)) of (~th) there exist a 

subsequence (~o(x(h))) of (g6(h)), a measure ve  YV/p(~2) and a family R ,  rich in A ,  

such that for every Ae R 

(3.8) [F( . ,A)+G (-,A)] F-convergesto [F( . ,A)+G (.,A)] ha LP(A) 
~(~(h)) v 

Since (iii) implies (i) it follows that 

[F0(',~2) + G (.,~)1 F-converges to [Fo(.,f~) + G (.,~)1 in LP(f~) . 
g~(x(h)) V 

By assumption (i) we get then Gv(u,f~ ) = Gg(u,f~) for every ue HI ,P(~)  which 

implies that Gv(u,A ) = Gix(u,A ) for every A~ A and for every ue HI,p(A). By 

taking this into account in (3.8) we obtain that 

[F( . ,A)  + G (-,A)] F-converges to [F(-,A) + O ( . ,  A)] in LP(A) 
I'tO(z(h) ) I "t 

for every A~ R -  Since the limit functional does not depend on the subsequence, 

property (iii) follows immediately from Proposition 4.14 of [11]. 

The proof of Theorem 3.2 is so accomplished. II 

An immediate consequence of Theorems 3.2 and 2.1 is the following result which 

asserts that the class of measures M p ( ~ )  is sequentially compact under the 

7fconvergence. 

Theorem 3.3. For every sequence (gh) in Mp(f2) there exists a subsequence 

(gtcr(h)) which yf-converges to a measure p. of  the class 9V~(f2). 

The notion of "if-convergence is defined by means of the functionals F 0 + G,  . 

Clearly two measures g and v may give rise to the same functional (see [121, 

Example 4.5). This leads to the following defintion. 

Definit ion 3.4. We say that two measures ~t, v e M p ( ~ )  are equivalen t  if 

Gtx(u,~2 ) = Gv(u,f2 ) for every ue HI,P(~).  
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It is easy to see that kt and v are equivalent if and only if Gg(u,A) = Gv(u,A ) 

for every As  A and for every us HI,p(A). Moreover, by adapting the proof of 

Theorem 2.6 of [8], we can show that kt and v are equivalent if and only if 

~t(U) = v(U) for every p-quasi open set U c fL 

In the next theorem we still denote by 9~p(f~) the quotient space with respect to the 

equivalence relation introduced in Defintion 3.4, and we identify each measure with its 

equivalence class. Note that the defintion of 7f-convergence is clearly independent of 

the choice of  g in its equivalence class in Y~p(f~). 

Theorem 3.5. The 7f-convergence is metrizable on 9ffp(f2). 

Proof .  We shall use the following general result for the F-convergence (see [1], 

Section 2.8.3). Let X be a separable metric space and let S(X,g0 be the family of all 

lower semicontinuous functions F : X--*R such that F(v) _> xg(v) for every ve  X, 

where ~ : X---~R is a given lower semicontinuous coercive function. Then the 

F-convergence in S(X,~) is metrizable, that is, there exists a metric d in S(X,~t) 

such that (Fh) F-converges to F if and only if d(Fh,F)--->0. 

The metrizability of 9r can now be obtained by identifying each element g of 

9~p(~) with the corresponding functional F0(.,~ ) + Giz(.,f~ ) defined on LP(f~). l 

4. Localization and Boundary Conditions 

In the first part of this section we aim to prove a localization property for measures on 

Mp(f~) with respect to the yf-convergence. More precisely, we shall establish the 

following theorem. 

Theorem 4.1. Let (kth) be a sequence in Mp(f2) which "~f-converges 

~te 9ffp(f2). Then there exists a family R '  , rich in A ,  such that 

[F(.,f2) + G (-,A)] F-converges to [F(.d2) + G (.,A)] in LP(f2) 
Ix h g 

for  every A s  R '  �9 

to 

To prove this result we introduce the functionals H' and H" defined for every 

A , B e A  with A__B and for evcry ueLP(B) by 

(4.1) H'(u,B,A) = inf { liminfh~+~ [F(uh'B) + Glxh (uh'A)] : Uh--->U in LP(B) } , 

(4.2) H" (u,B,A) = inf { limsup [F(uh,B ) + G (Uh,A)] : Uh--->U in LP(B) } . 
h---~+~ gh 
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Moreover, for every ueHI,p(B) we set 

(4.3) G'(u,B,A) = H'(u,B,A) - F(u,B) , 

(4.4) G"(u,B,A) = H"(u,B,A) - F(u,B) . 

Note that the infima in (4.1) and (4.2) are actually achieved, as one can easily see by 

a diagonal argument. 

In the next lemma we collect some properties of  the functionals G' and G", which 

imply immediately Theorem 4.1. 

L e m m a  4.2. Let  (~th) be a sequence in Mp(E2) which  7f-converges 

~te 9Utp(~2). Let A 1, A 2 e N  with A I c c  A 2 and ueHl'p(f2).  Then 

(4.5) GIs(u,A1) < G'(u,f2,A2) < G"(u,fLA2) , 

(4.6) G'(u,f2,A1) < G"(u,f2,A1) < G (u,A2) 

to 

Proof .  Let us prove (4.5). Let A1, A 2 and u be as required in the lemma. The 

inequa l i ty  G ' ( u d 2 , A 2 )  < G " ( u , f 2 , A 2 )  is trivial. Let us prove  that 

G~(u,A 1) _ G (u,~,A2) By (4.3) and (4.1) there exists (uh) in HI,p(f2) converging 

to u in LP(f~) such that 

(4.7) F(u,f~) + G' (u,~,A2) = liminfh~+~ [F(Uh'~) + Ggh(Uh'A2)] " 

We may assume that the right hand side of the equality is finite and that the lower limit is 

a limit, so that the sequence (Uh) converges to u weakly in HI,p(f~) by the 

coerciveness of F. Since the function 

u [f(x,Du)dx 
w ,  

B 

is lower semicontinuous in the weak topology of HI 'P(~) for every Be B ,  we have 

(4.8) ff(x,Du) dx -< liminf ~f(x,Duh) dx 
h---~+,,,, 

f~'xA' ~ ' ,A '  

for every A'e A .  On the other hand, by Theorem 3.2 there exists a family R ,  rich 

in A ,  such that for every A'e R 

(4.9) F(u,A') + Gg(u,A') < liminfh__)+~ [F(Uh'A') + Ggh(Uh'A')] " 

By adding (4.8) and (4.9) we get immediately 

F(u,~)  + G (u,A') < liminf [F(uh,~ ) + G (uh,A2)] = F(u,~) + G'(u,fXA2) 
h-->+~ Y'h 

for every A'~ R ,  A' c_ A 1 . Since Gg(u,.) is a measure, by taking the supremum in 
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A' we obtain finally 

G t(u,A1) -< G'(u,~,A2) , 

which concludes the proof of (4.5). 

Let us prove (4.6). The inequality G'(u,f~,A1) < G"(u,f2,A1) is trivial. It 

remains to prove that G"(u,fLA1) _< Gg(u,A2). 

Let R be the family, rich in A ,  given by Theorem 3.2. Thus, for every A'e R 

with A 1 c c  A' c c  A 2 we have 

. . . .  G G (u ,A,A) = G (u,A') < (u,A2) . g 

By the monotonicity of the function G"(u,A',.) the proof of (4.6) will be accomplished 

if we show that 

(4.10) G"(u,~,A1) < G"(u,A',A1) . 

Let (Wh) be a sequence in HI,P(f~) converging to u in LP(A') such that 

" i t (4.1 1) F(u,A') + G (u,A ,A1) = limsup [F(wh,A ) + G h~+~ gh (wh'A1)] " 

Fix e > 0 and let K be a compact set with A 1 c K c A' and F(u,A' kK) < e. Again 

by the J-property of F (see [11], Theorem 6.1) there exist a constant M > 0 and a 

sequence (Uh) of functions in H01,P(f~) converging to u in LP(f~) such that u h = w h 

on a neighborhood of K, u h = u on f&A' and 

(4.12) F(Uh,Q ) _< (1 + 8)[F(Wh,A' ) + F(u,f2kK)] + e(IIwhlILP(A') + IlUI[[P(g'~XK)+ 1) + 

+ MIIw. - ull p 
ia L P ( A  ' "xK) 

for every he N. By the F-convergence and by (4.12) we get 

F(u,~) + G"(u,~,A1) < liminf [F(Uh,~) ) + G h--++~ gh (uh'A1)] 

< (1 + e) limsuPh_~+~ [F(Wh'A') + Ggh(Wh'A1)] + (1 + e)F(u,~'xK) + 

+ 8(21lullP. + 1) 
L'(s 

< (1 + e) limsuPh_~+** [F(Wh'A') + Ggh(Wh'A1)] + (1 + e)e + 

+ (1 + e)F(u,~kA') + e(211ul~P + 1) . 
U(~) 

By (4.11) it follows that 

F(u,~)  + G"(u,~,Aa) _< (1+ e)[F(u,~) + G"(u,A',A1)] + (1+ e)e + e(21611P. + 1). 
L'(n) 
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Since ~ is arbitrarily small, it follows G"(u,f2,A1) < G"(u,A',A1) which concludes the 

proof of (4.10) and therefore of the lemma. | 

P roof  of Theorem 4.1. By Lemma 4.2 we obtain that 

G~t(u,A) = sup{G'(u,f~,A') : A ' e A ,  A ' c c A }  = 

= sup{G"(u,ff~,A') : A ' e A ,  A ' c c A }  

for every Ae  A and ue H l,p(f2). The functionals G~t(u,A ) , G'(u,fLA), G"(u,f2,A) 

are increasing with respect to A and lower semicontinuous with respect to u on 

HI,p(f~). Therefore, by Proposition 1.14 of [11] there exists a family R ' ,  rich in A ,  

such that 

G (u,A) = G'(u,f2,A) = G"(u,ULA) 
Ix 

for every Ae R '  and for every ue HI,p(ff2). By the definitions of G' and G", these 

equalities are equivalent to the assertion of the theorem. | 

We now take into account non-homogeneous boundary conditions on Of 2. 

Let q)e H I'p(~). For every Ae A. and for every ue LP(A) we define 

(4.13) F (u,A) = 
cp 

F(u,A) if u-qQ e H0,P(A ) 1  , 

+ oo otherwise. 

Then the following theorem holds. 

Theorem 4.3. Let (pe Hl,p(ff2). Fix A c c  f2 and let (P'h) and g be measures on 

% ( ~ )  such that 

[F(., f~) + Ggh(.,A)] F-converges to [F(.,f~) + G (-,A)] in LP(~) . 

Then 

[F (.,f~) + G (.,A)] F-converges to [F0(.,~ ) + G (-,A)] in LP(f2) . 
qo P'h IX 

Proof .  We shall prove first that, given ue LP(f~) , there exists a sequence (u h) 

converging to u in LP(f~) such that 

(4.14) F (u,f~) + G (u,A) _> limsup [Fqo(Uh,~"2 ) + G (Uh,A)] . 
~o Ix h--~.+~ ~h 

We may assume that the left hand side of (4.14) is finite, which implies by (4.13) that 
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u-q)e H 1,p(~), and therefore ue HI,P(s Now, by assumption there exists a sequence 

(vh) converging to u in LP(f~) such that 

(4.15) F0(u,f~ ) + G (u,A) = h--,+o~lim [F(vh,f~ ) + Ggh(Vh,A)] - 

Fix e > 0 and let K be a compact set with A _c K _c f2 such that F(u,g2XK) < e. 

Moreover, let A' be an open set with K _c A' c c  f2.  By the J-property of F (see 

[11], Theorem 6.1) there exist a constant M > 0 and a sequence (Uh) of functions in 

HI,P(~) converging to u in I_.P(f~) such that u h = v h on a neighborhood of K, u h = u 

on s (and therefore Uh-q)e H01,p(f~)), and 

F(Uh,f~) _< (1 + e)[F(vh,fl) + F(u,~',K)] + e(llv~[IP. 
�9 ~ L~(~) 

+ MIIv h - ullPp(f2 ) 

+ IlullPp(n) + 1) + 

This inequality together with (4.15) yields 

h--4,+,,olimsup [Fq0(Uh,~ ) + Ggh(Uh,A)] -< (1 + E) limSUPh__,+oo [F(Vh'~) + Ggh(Vh,A)] + 

+ (1 + e)F(n,f~xJ() + e[211urlff + 1] 
(n) 

< (1+ e)[F (u,f~) + Gg(u,A)] + (1+ e)F(u,f~',K) + 

+ e[211ull~p(~) + 1] . 

Since F(u,E~XK) < e and e > 0 is arbitrary, we get immediately (4.14). 

It remains to prove that for every ue LP(f~) and for every sequence (%) converging 

to u in LP(~) we have 

(4.16) F (u,O) + G (u,A) < liminfh.__>+oo [F~p (uh'f2) + Ggh(uh'A)] " 

Let ue LP(~) and (u h) be a sequence in LP(f~) converging to u in LP(f2). We may 

assume that the right hand side of (4.16) is finite and that the lower limit is a limit. By 

passing, if necessary, to a subsequence, we may assume that (u h) converges to u 

weakly in HI,P(f2) by the coerciveness of  F. Since Uh-q)e H I , P ( ~ )  we get 

u - tpe  H01,P(E2), so (4.16) follows easily from the definition of Fqo and from our 
assumption concerning the F-convergence of F(.,s + G~th(.,A ). | 
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The next theorem collects some conditions which are equivalent to the 

Tf-convergence in 9~p(~). 

Theorem 4.4. Let  (gh) be a sequence in Mp(~) ,  let ~t~ Mp(f2), and let 

q0e HI,p(~2). Then the following conditions are equivalent: 

(i) (~t h) 7f-converges to ~t ; 

(ii) for  every A e  A 

[F0(.,A) + G (.,A)] F-converges to [F0(.,A ) + G (.,A)] in LP(A) ; 
P'h g 

(iii) there exists a family R ,  rich in A ,  such that for  every Ae  R 

[F(-,A) + G (.,A)] F-converges to [F(.,A) + G t(.,A)] in LP(A) ; 
P'h 

(iv) there exists a family R '  , rich in A ,  such that for  every A e  R '  

[F(.,f~) + G th(.,A)] F-converges to [F(.,f2) + G~t(.,A)] in LP(f~) ; 

(v) there exists a family ~ '  , rich in A ,  such that for  every Ae R ' ,  A c c  f2 , 

[F (.,f~) + G th(.,A)] F-converges to [F0(.,f~) + G~(.,A)] in LP(f2) . 

Proof. By Theorem 3.2 follows that the conditions (i), (ii), and (iii) are equivalent. 

Theorem 4.1 guarantees that (i) implies (iv), while (v) follows from (iv) by Theorem 

4.3. To conclude the proof of the theorem we shall show that (v) implies (iii). By 

Theorem 2.1 for every subsequence (go(h)) of (~th) there exist a subsequence 

(~to(z(h))) of (Go(h)), a measure ve 5k/p(f~), and a family ~ ,  rich in A ,  such that 

(4.17) IF (.,A) + G (-,A)] F-converges to [F(. ,A) + Gv(-, A)] in LP(A) 
~o{'~(h)) 

for every Ae ~. Since (iii) implies (v), there exists a family R", rich in A, such that 

(4.18) [F ( . , f2)+G (.,A)] F-convergesto [F ( . , f2 )+G (.,A)] in LP(f2) 
~t (x(h)) ~ v 

for every Ae R " ,  A c c  f2 .  On the other hand, by assumption (v) there exists a 

family R ' ,  rich in A ,  such that 

(4.19) [F (- , f~)+G (-,A)] F-convergesto [F ( - , f2)+G ( . , A ) ] i n  LP(f2) . 
~(~(h)) ~ 

for every Ae R' ,  with A c c  ~ .  By (4.18) and (4.19) we have 

(4.20) G~t(u,A) = Gv(u,A) 
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for every Ae R'c~ R " ,  A c c  f l ,  and for every us  q0+H01,p(fl). 

We prove now that (4.20) holds for every As  A and for every ue HI,p(A). Let us 

fix A and u as required. For every Ae R ' n  R " ,  with A' c c  A , there exists 

u'~ (p+ HI ,p(~)  such that u' = u on A'. Since the functionals G~t and G v are local, 

by (4.20) we get G~t(u,A') = Gg(u',A') = Gv(u',A' ) = Gv(u,A' ). By taking the limit 

as A' 1" A we obtain 

(4.21) Gix(u,A) = Gv(u,A) 

for every AE A and for every uc HI,p(A). 

By (4.17) and (4.21) 

[F(.,A) + G (.,A)] F-converges to [F(.,A) + G (.,A)] in LP(A) 
g g 

~(~(h)) 

for every Ae '~ .  Since the limit does not depend on the subsequence, by Proposition 

4.14 of [11] we conclude that there exists a family R ,  rich in A ,  such that 

[F(.,A) + G (.,A)] F-converges to [F(.,A) + G (.,A)] in LP(A) 
gh  g 

for every As  R .  

The proof of Theorem 4.4 is so accomplished. | 

Finally, from the properties of the F-convergence we derive some variational 

properties of the yf-convergence. 

For every g e  9~(p(f~), Ae A ,  and ge Lq(A), 1/p + 1/q = 1, we denote by m(~t,g,A) 

and M(g,g,A) respectively the minimum value and the set of mimimum points of the 

problem 

min {If (x ,Du)  dx + IlulPd~t + f g u d x }  . 
ue n0'P(A) "J A A A 

By applying Theorem 4.4 (the equivalence between (i) and (ii)) and Proposition 1.2 

we get to our next result. 

T h e o r e m  4.5. Let (I.th) be a sequence in Mp(f~)  which 7f-converges to 

ge 9Utp(~2). Then for every Ae  A and for every ge Lq(A), 1/p + 1/q = 1, the following 

properties hold: 

(i) lim m(gh,g,A) = m(g,g,A) ; 
h---~+~ 

(ii) for every neighborhood U of M(~t,g,A) in LP(A) there exists ke  N such that 

M(~th,g,A ) c_ U for  every h > k .  
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R e m a r k  4.6. It is clear that results analogous to those of Theorem 4.5 can also be 

achieved for the minimum problems associated to the other functionals considered in 

Theorem 4.4. For example, condition (v) of Theorem 4.4 implies that 

lim { min [F(u,f2) + G (u,A)] } = min [F(u,f'2) + G (u,A)] 
h-o+oo u_(pc Hlo,P(~) Ph u_(pe HIo'P(n) g 

for every Ae R '  with A c c  f2. 

5. "/f-convergence and i t -capac i ty  

In this section we establish the equivalence between the "/f-convergence of a 

sequence of measures (ith) of YVfp(~) and the weak convergence (in the sense of [15]) 

of the corresponding capacities C(f, ith,')" 

According to [9], Section 3, for every ite 9~Cp(f2) and for every Be B 0 the 

it-capacity of  B, relative to f, is defined by 

t '  t" 
(5.1) C(f, it,B) = m i n { -  ] f ( x , D u ) d x +  Jlul p dit :  u - 1  e H10'P(~) ] . 

f~ B 

For every ite 9!,/p(~) the set function C(f,it,.) is non-negative, increasing, and 

countably subadditive on B 0. Moreover, it is strongly subadditive and continuous along 

increasing sequences in B 0 (for a review on the properties of the it-capacity we refer to 

[9], Theorem 3.2). 

The measure it is uniquely determined by C(f, it,.). In fact, as proved in [9], 

Theorem 4.2, it is the least measure greater than or equal to C(f, it,.) on B ; therefore 

for every Be ~B 

(5.2) it(B) = sup ]~ C(f, it,B i) , 
i~I 

where the supremum is taken over all finite Borel partitions (Bi)ie I of B. 

By Remark 4.6 it follows immediately that the "/f-convergence of a sequence (ith) 

implies the convergence of the sequence of the corresponding it-capacities C(f, [th,.) 

on a family which is rich in A .  This allows us to obtain the following result. 

T h e o r e m  5.1. Let  (ith) be a sequence in YC/'p(D) which 7f-converges to it in 

9Utp( ~ ). Then 

(5.3) C(f,g,A) < liminf C(f, ith,A) 
h--->+~ 
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and 

(5.4) C(f,I~,A) > limsup C(f,l.th,K ) 
h---)+~ 

for every Ae A and for every Ke K with K c_ A. 

Proof.  Let A and K be as required in the theorem. By Remark 4.6 there exists a 

family R '  , rich in A ,  such that for every A'e  R '  

C(f,g,A') = lim C(f, gh,A' ) . 
h---)+oo 

For every A'e  R '  with A' c c  A we have 

C(f,~t,A') < liminf C(f, gh,A ) , 
h---)+~ 

which implies immediately (5.3) by the continuity properties of the g-capacity. 

On the other hand, for A'e R '  with K _c A' c c  A it follows that 

C(f,g,A) > C(f,g,A') = lim C(f,g~,A') > limsup C(f, gh,K ) , 
h--*-~ " h--*+~ 

which proves (5.4). | 

The next corollary follows easily from Theorem 5.1 and from the continuity 

properties of the g-capacity mentioned at the beginning of this section. 

Corollary 5.2. Let (gh) be a sequence in Mp(~2) which 7f-converges to g in 

9Utp(f2). Then 

(5.5) sup liminf C(f, gh,K ) = sup limsup C(f, gh,K ) = C(f,~t,A) 
Kc_ A h--~+~ K _ c A  h ~ + ~  
K e K  K e K  

for every Ae A .  

To identify the set function C(f,g,.) on B o we introduce a class of  measures 

contained in 9~p(g~). 

Definition 5.3. We denote by Mp(f~) the class of  all measures ge  Mp(g2) such 

that 

g(B) = inf {g(U) : U p-quasi open, B __ U} 

for every Be B .  

In the case p = 2 the properties of the class Mp(f~) have been studied in [8], 

Section 3. Analogous properties can be obtained without any difficulty for 1 < p < n 

and shall be summarized in Propositions 5.5 and 5.7. 
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Definition 5.4. Let p,e Mp(f2). We denote by /.t the set function defined by 

# (B) = inf {g(U) : U p-quasi open, B _c U} 

for every Be  B .  

As in Theorems 3.9 and 3.10 of [8] we obtain the following proposition. 

Proposi t ion  5.5. Let  ~te Mp(~) .  Then the set function IX 

which belongs to Mp(Xq) and Ix is equivalent to ~t , i.e. 

(5.6) ~,ulP d/.t = IlulP d~* 

A A 

for  every A e  A and fo r  every ue H I,p(A). 

is a Borel measure 

R e m a r k  5.6. By (5.6) and (5.1) we have C(f,~t,A) = C(f, IX ,A) for every A e A .  

Furthermore, (5.6) implies that a sequence (ixh) in Mp(f2)  Tf-converges to 

~te 9~p(f2) if and only if (~t h) 7f-converges to IX . 

Let us finally analyze the relationship between C(f,g,.) and C(f,g ,.) on B o. As 

in Proposition 3.11 of [8] we obtain the following result. 

Proposi t ion  5.7. Let #e Mp(f2). Then 

(5.7) C(f, IX ,B) = inf{C(f,~ ,A) : Ae  ~ B c A} = inf{ C(f,/.t,A) : Ae  A, B ~ A } 

f o r  every Be B o. 

We now come to the main result of  this section. 

Let (gh) be a sequence of measures in 9~p(~2). For every Ke  K we define 

cz'(K) 

cf'(K) 

For every Ae A we set 

6'(A) 

lY'(A) = 

= Iiminf C(f,~twK)_ _ 
h--)+~ 

= limsup C(f, IXh,K) . 
h---)-t-o* 

= sup { o r  , 

sup {ot"(K) : Ke  K ,  K c A} , 

and for every 

(5.8) 

(5.9) 

Be B we define 

[Y(B) = i n f { ~ 3 ' ( A ) : A e A , B c _ A }  , 

~"(B) = i n f { ~ " ( A ) : A e A , B c A }  . 
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Then the following characterization of the 7t-convergence in 5~p(~) holds. 

Theorem 5.8. Let  (ixh) be a sequence in Mp(f2) and let 13' and ~" be the set 

functions defined by (5.8) and (5.9). Then (ixh) 7f -c~ to a measure IX in 

Mp(f~) i f  and only if, 13' = ~" on B .  In this case, f o r  every Be B we have 

~'(B) = 13"(B) = C(f, ix ,B) and 

(5.10) g (B) = sup 13'(Bi) , 

where the supremum is taken over all finite Borel partitions (Bi)ie I of B. 

Proof .  Let (~'h) be a sequence in 5~(p(f2) which 7f-converges to #e  Mp(f~). By 

Corollary 5.2 we obtain 

(5.11) C(f, IX,A) = 13'(A) = [~"(A) 

for every Ae  A .  By taking (5.11) into account, from Proposition 5.7 together with 

(5.8) and (5.9),we get 

C(f, IX ,B) = inf {lY(A) : A e A ,  B c_ A} = inf {[Y'(A) : Ae A ,  B ___ A} 

= ~'(B) = ~"(B) 

for every Be B .  Finally, (5.10) follows from (5.2) applied to ~ . 

Let now (ixh) be a sequence in Mp(gl) and suppose that 13' = 13" on B .  Let us 

define the measure g by the formula 

IX(B) = sup]~ 13'(Bi) , 
i e I  

where the supremum is taken over all finite Borel partitions (Bi)ie I of B. Furthermore, 

since the 7f-convergence on r is compact and metrizable (Theorems 3.3 and 3.5), 

we may assume that (ixh) 7f-converges to a measure w 9~p(f2). Since 13' and [3" do 

not change if we pass to a subsequence of  (~th), by Corollary 5.2 we have 

13'(A) = ~"(A) = C(f,v,A) for every Ae  A ; hence f3' = [3" = C(f,v ,.) on B by 

(5.7), (5.8), and (5.9). By applying (5.2) to v , we obtain that v is the least measure 

greater than or equal to 13' on B.  By definition of IX we have to conclude that v = IX. 

Therefore Ix = IX and Remark 5.6 implies that (Ixh) 7f-converges to ~t in Y~(fl).  

The proof of  Theorem 5.8 is so accomplished. | 
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6. Nonlinear Dirichlet Problems on Varying Open Sets 

We may now apply the results obtained in the previous sections to analyze the 

asymptotic behavior of sequences of nonlinear variational problems in varying open sets 

with Dirichlet boundary conditions of the form 

ff(x,Du) dx + fgu ax ] , (6.1) min { 
ue H10'P(~kEh ) ~kE h ~kE h 

where (Eh) is a sequence of closed subsets of ~ and ge Lq(~) with 1/p + 1/q = 1. 

We indicate by mh(g) and Mh(g) respectively the minimum value and the set of all 

minimum points of problem (6.1) and we identify each ue H 1,p(~kEh) with the function 

of Hol,P(~) obtained by the usual extension u = 0 on E h . 

To put this study in the general setting, for every EE B we consider the Borel 

measure oo E defined by 

0 if Cp(E~B) = 0,  
(6.2) OOE(B) [ +~ if Cp(E(qB) > 0.  

Note that the measure oo E belongs to YV/p(f2). 

For every he N the minimum problem (6.1) is equivalent to the minimum problem 

(6.3) min { f f (x ,Du)dx+ flulPd,,o,+ Igu d x } .  
ue HI'P(~) ~ a 

in the sense that both problems have the same minimum values and the same minimum 

points. In fact, for a function ueH01,P(~) the condition u = 0 p-q.e, on E is 

equivalent to ue H 1,p(~kE) for arbitrary closed sets E c_ ~ (see [3], Theorem 4, and 

[16], Lemma 4). 

The equivalence between (6.1) and (6.3) enables us to state the convergence 

properties of the sequences (mh(g)) and (Mh(g)) by relying on the properties of the 

yf-convergence proved in the previous sections. According to Theorem 3.3, there exist a 
subsequence (Ecr(h)) of (Eh) and a measure ge  !M'p(~) such that (~Ea(h)) 

7f--converges to p.. The convergence of the corresponding minimum values mc(h)(g) to 

the minimum value m(g,g) of 

(6.4) min { [ f (x ,Du)dx+ ~tulPdg + ~gu dx} 
ue H10'P(~) ~ ~ 

follows then immediately from Theorem 4.5. Moreover, if M(~,g) denotes the set of all 

minimum points of (6.4), then Theorem 4.5 implies also that for every neighborhood U 

of M(~,g) in LP(~) there exists ke N such that M~(h)(g)c_ U for every h > k. 
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Finally,  we point  out that the main result of  Section 5, concerning a characterization 

of the var ia t ional  convergence  by means  of  the convergence  of ~t-capacities, is 
particularly meaningful  in the case [.t h = OOEh . It can be stated by using the capacity 

associated to f and defined for every K~ K by 

(6.5) C(f,K) = inf  { f f (x ,Du)  dx : u~ Co(f2) ,  u > 1 on K } . 

f2 
In fact, since C(f, ooEh, K) -- C ( f , K n E h ) ,  for every K~ K the set functions cz' and 

cz", introduced in Section 5, become 

(z'(K) = l iminf  C(f, KC~h) , (z"(K) = l imsup C(f, Kc~Eh) 
h ~  h---~ 

Hence, the sequence (OOEh) yf-converges to a measure ~t in 9Vfp(f2) if and only if 

sup {cz'(K) : Ka  K ,  K c A} = sup {cx"(K) : Ka  K ,  K _c A} 

for every A~ A .  Furthermore, formula (5.10) allows us to reconstruct the measure /.t 

from the knowledge of the function f and of the sequence (Eh) by means of the set 

function C(f,.) defined in (6.5). 
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