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Abstract

We consider a sequence of linear Dirichlet problems as follows{−div(σε∇uε) = f in Ω,

uε ∈ H 1
0 (Ω),

with (σε) uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give an alternative proof of the
compactness of H -convergence, originally proved by Murat and Tartar.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

On considère une suite de problèmes de Dirichlet linéaires définis par{−div(σε∇uε) = f dans Ω,

uε ∈ H 1
0 (Ω),

où (σε) est non-symétrique et uniformément elliptique. En utilisant une approche purement variationnelle on donne une démons-
tration alternative de la compacité de la H -convergence de Murat et Tartar.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The notion of H -convergence was introduced by Murat and Tartar in [9,10] to study a wide class of homogenization
problems for possibly non-symmetric elliptic equations. Let σε ∈ L∞(Ω;Rn×n) be a sequence of matrices satisfying
uniform ellipticity and boundedness conditions on a bounded open set Ω ⊂ R

n. We say that σε H -converges to
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a matrix σ0 ∈ L∞(Ω;Rn×n) satisfying the same ellipticity and boundedness conditions if for every f ∈ H−1(Ω) the
sequence uε of the solutions to the problems{−div(σε∇uε) = f in Ω,

uε ∈ H 1
0 (Ω),

(1.1)

satisfy

uε ⇀ u0 weakly in H 1
0 (Ω) and σε∇uε ⇀ σ0∇u0 weakly in L2(Ω;Rn

)
,

where u0 is the solution to {−div(σ0∇u0) = f in Ω,

u0 ∈ H 1
0 (Ω).

The notion of Γ -convergence was introduced by De Giorgi and Franzoni in [4,5] to study the asymptotic behavior of
the solutions of a wide class of minimization problems depending on a parameter ε > 0, which varies in a sequence
converging to 0. Let (X,d) be a metric space and let Fε : X → R be a sequence of functionals, we say that Fε

Γ (d)-converges to a functional F0 : X → R if for all x ∈ X we have

(i) (liminf inequality) for every sequence xε
d−→ x in X

F0(x) � lim inf
ε→0

Fε(xε);

(ii) (limsup inequality) there exists a sequence x̄ε
d−→ x in X such that

F0(x) � lim sup
ε→0

Fε(x̄ε).

It has been proved that when σε is symmetric, Eq. (1.1) has a variational structure since it can be seen as the Euler–
Lagrange equation associated with

Fε(u) = 1

2

∫
Ω

σε(x)∇u · ∇udx −
∫
Ω

f udx,

or, equivalently, as the solution to the minimization problem

min
{
Fε(u): u ∈ H 1

0 (Ω)
}
. (1.2)

Therefore in this case (1.2) provides a variational principle for the Dirichlet problem (1.1) and the convergence of
the solutions of (1.1) can be equivalently studied by means of the Γ -convergence, with respect to the weak topology
of H 1

0 (Ω), of the associated functionals Fε or in terms of the G-convergence of the uniformly elliptic, symmetric
matrices (σε) (see De Giorgi and Spagnolo [6]).

In this paper we consider the equivalence between H -convergence and Γ -convergence in the possibly non-
symmetric case. To every elliptic matrix σ ∈ L∞(Ω;Rn×n) we associate a suitable quadratic integral functional
F : L2(Ω;Rn) × H 1

0 (Ω) → [0,+∞) (see (2.12)) and we consider the Γ -convergence with respect to the distance d

defined by

d
(
(α,ϕ), (β,ψ)

) = ‖α − β‖H−1(Ω;Rn) + ∥∥div(α − β)
∥∥

H−1(Ω)
+ ‖ϕ − ψ‖L2(Ω).

We prove (Theorem 3.2) that the H -convergence of σε to σ0 is equivalent to the Γ (d)-convergence of the functionals
Fε corresponding to σε to the functional F0 corresponding to σ0. In [2] this result was proved using compactness
properties of H -convergence [9,10], while in the present paper the equivalence is obtained as a consequence of a gen-
eral compactness theorem for integral functionals with respect to Γ (d)-convergence [1]. Moreover, as a consequence
of the results proved in [1], we also give an independent proof (Theorem 3.1) of the compactness of H -convergence
based only on Γ -convergence arguments.



N. Ansini et al. / J. Math. Pures Appl. 99 (2013) 321–329 323
2. Notation and preliminaries

In this section we introduce a few notation and we recall some preliminary results we employ in the sequel. For any
A ∈R

n×n we denote by As and Aa the symmetric and the anti-symmetric part of A, respectively; i.e.,

As := A + AT

2
, Aa := A − AT

2
,

where AT is the transpose matrix of A. We use bold capital letters to denote matrices in R
2n×2n. The scalar product

of two vectors ξ and η is denoted by ξ · η.
Let Ω be an open bounded subset of Rn. For 0 < c0 � c1 < +∞, M(c0, c1,Ω) denotes the set of matrix-valued

functions σ ∈ L∞(Ω;Rn×n) satisfying

σ(x)ξ · ξ � c0|ξ |2, σ−1(x)ξ · ξ � c−1
1 |ξ |2, for every ξ ∈R

n, for a.e. x ∈ Ω, (2.1)

or, equivalently, satisfying

σ(x)ξ · ξ � c0|ξ |2, σ (x)ξ · ξ � c−1
1

∣∣σ(x)ξ
∣∣2

, for every ξ ∈R
n, for a.e. x ∈ Ω. (2.2)

Note that (2.1) (or (2.2)) implies that ∣∣σ(x)
∣∣ � c1 for a.e. x ∈ Ω,

and that necessarily c0 � c1. To not overburden notation, in all that follows we always write σ in place of σ(x).
Given σ ∈ M(c0, c1,Ω) we consider the (2n × 2n)-matrix-valued function Σ ∈ L∞(Ω;R2n×2n) having the

following block structure:

Σ :=
(

(σ s)−1 −(σ s)−1σa

σa(σ s)−1 σ s − σa(σ s)−1σa

)
. (2.3)

Notice that Σ is symmetric. Moreover, the assumption σ ∈M(c0, c1,Ω) easily implies that Σ is uniformly coercive
(see [2, Section 3.1.1] for the details); specifically, there exists a constant C(c0, c1) > 0, depending only on c0 and c1,
such that

Σw · w � C(c0, c1)|w|2, (2.4)

for every w ∈ R
2n, and a.e. in Ω .

If we consider the matrix-valued functions A,B,C ∈ L∞(Ω;Rn×n) defined as

A = (
σ s

)−1
, B = −(

σ s
)−1

σa, C = σ s − σa
(
σ s

)−1
σa, (2.5)

the matrix Σ can be rewritten as

Σ =
(

A B

BT C

)
. (2.6)

We notice that, for a.e. x ∈ Ω , the matrix Σ belongs to the indefinite special orthogonal group SO(n,n); i.e.,

ΣJΣ = J a.e. in Ω, with J =
(

0 I

I 0

)
, (2.7)

where I ∈ R
n×n is the identity matrix (see [2, Section 3.1.1]). Moreover, taking into account the symmetry of Σ , it is

immediate to show that (2.7) is equivalent to the following system of identities for the block decomposition (2.6):⎧⎨
⎩

ABT + BA = 0

AC + B2 = I

CB + BT C = 0

a.e. in Ω. (2.8)

Conversely, one can prove that, if M ∈ L∞(Ω;R2n×2n) is symmetric and has the block decomposition

M =
(

A B
T

)
, (2.9)
B C
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with A,B,C ∈ L∞(Ω;Rn×n), A and C symmetric, and detA 	= 0, then the first two equations in (2.8) imply the third
one, and (2.8) implies that M is equal to the matrix Σ defined in (2.3) with σ = A−1 −A−1B (see [2, Proposition 3.1]).

Throughout the paper the parameter ε varies in a strictly decreasing sequence of positive real numbers converging
to zero. Let (σε) be a sequence in M(c0, c1,Ω) and consider the sequence (Σε) ⊂ L∞(Ω;R2n×2n) defined by (2.3)
with σ = σε . Let Qε:L2(Ω;Rn) × L2(Ω;Rn) → [0,+∞) be the quadratic forms associated with Σε; i.e.,

Qε(a, b) :=
∫
Ω

Σε

(
a

b

)
·
(

a

b

)
dx. (2.10)

Their gradients gradQε:L2(Ω;Rn) × L2(Ω;Rn) → L2(Ω;Rn) × L2(Ω;Rn) are given by

gradQε(a, b) = (
Aεa + Bεb,BT

ε a + Cεb
)
, (2.11)

where Aε,Bε , and Cε are as in (2.5) with σ = σε . We also consider the quadratic forms Fε : L2(Ω;Rn) × H 1
0 (Ω) →

[0,+∞) defined by

Fε(α,ψ) := Qε(α,∇ψ). (2.12)

For every λ,μ ∈ H−1(Ω), we consider the sequence of constrained functionals F
λ,μ
ε :L2(Ω;Rn) × H 1

0 (Ω) →
[0,+∞] defined as follows:

Fλ,μ
ε (α,ψ) :=

{
Fε(α,ψ) − 〈μ,ψ〉 if −divα = λ,

+∞ otherwise,
(2.13)

where 〈·, ·〉 denotes the dual paring between H−1(Ω) and H 1
0 (Ω).

Given a symmetric matrix M ∈ L∞(Ω;R2n×2n), we consider the quadratic functionals QM : L2(Ω;Rn) ×
L2(Ω;Rn) → [0,+∞) and FM : L2(Ω;Rn) × H 1

0 (Ω) → [0,+∞) defined by

QM(a, b) :=
∫
Ω

M
(

a

b

)
·
(

a

b

)
dx and FM(α,ψ) := QM(α,∇ψ). (2.14)

Considering the block decomposition (2.9), the gradient of QM is given by

gradQM(a, b) = (
Aa + Bb,BT a + Cb

)
. (2.15)

Finally, for every λ,μ ∈ H−1(Ω), we consider the constrained functional F
λ,μ

M :L2(Ω;Rn) × H 1
0 (Ω) → [0,+∞]

defined as follows

F
λ,μ

M (α,ψ) :=
{

FM(α,ψ) − 〈μ,ψ〉 if −divα = λ,

+∞ otherwise.

Let w be the weak topology of L2(Ω;Rn) × H 1
0 (Ω) and let d be the distance in L2(Ω;Rn) × H 1

0 (Ω) defined by

d
(
(α,ϕ), (β,ψ)

) := ‖α − β‖H−1(Ω;Rn) + ∥∥div(α − β)
∥∥

H−1(Ω)
+ ‖ϕ − ψ‖L2(Ω) .

The following result is proved in [1, Corollary 2.5].

Theorem 2.1. Let (σε) be a sequence in M(c0, c1,Ω). There exist a subsequences of ε, not relabeled, and a symmetric
matrix M ∈ L∞(Ω;R2n×2n), such that the functionals Fε defined by (2.12) Γ (d)-converge to the functional FM
defined in (2.14). Moreover, M is positive definite and satisfies the coercivity condition (2.4).

The following result is a consequence of [1, Theorem 3.3] and of the stability of Γ -convergence under continuous
perturbations.

Theorem 2.2. Let (σε) be a sequence in M(c0, c1,Ω) and let M ∈ L∞(Ω;R2n×2n) be a symmetric, positive definite
matrix satisfying (2.4). Assume that the functionals Fε defined by (2.12) Γ (d)-converge to the functional FM defined
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in (2.14). Then, for every λ,μ ∈ H−1(Ω), the functionals (F
λ,μ
ε ) defined by (2.13) Γ (w)-converge to the functional

Fλ,μ defined by

Fλ,μ(α,ψ) :=
{

FM(α,ψ) − 〈μ,ψ〉 if −divα = λ,

+∞ otherwise.

For the reader’s sake, here we briefly recall a fundamental tool we employ in what follows, the Cherkaev–Gibiansky
variational principle [3] (see also Fannjiang and Papanicolaou [7] and Milton [8]), which will be presented in the
notational setting which is suitable for our purposes. Loosely speaking, this variational principle amounts to associate
to the two following Dirichlet problems{−div(σε∇uε) = f in Ω,

uε ∈ H 1
0 (Ω),

{
−div

(
σT

ε ∇vε

) = g in Ω,

vε ∈ H 1
0 (Ω).

(2.16)

with f,g ∈ H−1(Ω), a quadratic functional whose Euler–Lagrange equation is solved by a suitable combination of
solutions to (2.16) and of their momenta. We set

aε := σε∇uε and bε := σT
ε ∇vε. (2.17)

For every ε > 0, λ,μ ∈ H−1(Ω) the unique minimizer (αε,ψε) of F
λ,μ
ε satisfies the constraint −divαε = λ and the

following system of Euler–Lagrange equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

(Aεαε + Bε∇ψε) · β dx = 0,

∫
Ω

(
BT

ε αε + Cε∇ψε

) · ∇ϕ dx = 〈μ,ϕ〉,
(2.18)

for every β ∈ L2(Ω;Rn) with divβ = 0 and for every ϕ ∈ H 1
0 (Ω).

If uε, vε satisfy (2.16) then we can prove (see [2, Section 3.2] for details) that the pair

(aε + bε,uε − vε) (2.19)

solves (2.18), with λ = f + g, μ = f − g, and thus minimizes F
f +g,f −g
ε .

In the same way, it can be seen that the pair

(aε − bε,uε + vε) (2.20)

minimizes F
f −g,f +g
ε .

3. The main result

In this section we state and prove the main result of this paper: an alternative and purely variational proof of the
sequential compactness of M(c0, c1,Ω) with respect to H -convergence, originally proved by Murat and Tartar [9,10].

Theorem 3.1 (Compactness of H -convergence). Let (σε) be a sequence in M(c0, c1,Ω). Then there exist a subse-
quence (not relabeled) and a matrix σ0 ∈ M(c0, c1,Ω) such that (σε) H -converges to σ0 and (σ T

ε ) H -converges
to σT

0 .

Proof. By Theorem 2.1 there exist a subsequence of Fε , not relabeled, and a symmetric, positive definite matrix
M ∈ L∞(Ω;R2n×2n), with the block decomposition (2.9), such that Fε Γ (d)-converges to FM. In the rest of this
proof we show that (σε) H -converges to σ0 and (σ T

ε ) H -converges to σT
0 , where σ0 := A−1 − A−1B .

Let f,g ∈ H−1(Ω), let uε, vε be as in (2.16), and let aε, bε be as in (2.17). By standard variational estimates
we have that (uε) and (vε) are bounded in H 1

0 (Ω) while (aε) and (bε) are bounded in L2(Ω;Rn). Therefore, up to
subsequences (not relabeled),



326 N. Ansini et al. / J. Math. Pures Appl. 99 (2013) 321–329
uε ⇀ u0, vε ⇀ v0 weakly in H 1
0 (Ω) and aε ⇀ a0, bε ⇀ b0 weakly in L2(Ω;Rn

)
, (3.1)

for some u0, v0 ∈ H 1
0 (Ω) and a0, b0 ∈ L2(Ω;Rn).

Since (aε + bε,uε − vε) are minimizers of F
f +g,f −g
ε and these functionals Γ -converge to F

f +g,f −g

M by Theo-
rem 2.2, appealing to the fundamental property of Γ -convergence we find that

lim
ε→0

Ff +g,f −g
ε (aε + bε,uε − vε) = F

f +g,f −g

M (a0 + b0, u0 − v0) = minF
f +g,f −g

M . (3.2)

Similarly, since (aε − bε,uε + vε) minimizes F
f −g,f +g
ε , we have also

lim
ε→0

Ff −g,f +g
ε (aε − bε,uε + vε) = F

f −g,f +g

M (a0 − b0, u0 + v0) = minF
f −g,f +g

M . (3.3)

Thanks to Theorem 2.2, (3.2), (3.3), and in view of [1, Proposition 2.6] we are now in a position to invoke the result
about the convergence of momenta proved in [1, Corollary 4.6], hence we obtain

gradQε(aε + bε,∇uε − ∇vε) ⇀ gradQM(a + b,∇u − ∇v), (3.4)

gradQε(aε − bε,∇uε + ∇vε) ⇀ gradQM(a0 − b0,∇u0 + ∇v0) (3.5)

weakly in L2(Ω;Rn) × L2(Ω;Rn). By (2.11) and (2.15), considering only the first component, we get

Aε(aε + bε) + Bε(∇uε − ∇vε) ⇀ A(a0 + b0) + B(∇u0 − ∇v0), (3.6)

Aε(aε − bε) + Bε(∇uε + ∇vε) ⇀ A(a0 − b0) + B(∇u0 + ∇v0) (3.7)

weakly in L2(Ω;Rn). Since by (2.5) Aε(aε +bε)+Bε(∇uε −∇vε) = ∇uε +∇vε and Aε(aε −bε)+Bε(∇uε +∇vε) =
∇uε − ∇vε , from (3.6) and (3.7) we deduce that

∇uε + ∇vε ⇀ A(a0 + b0) + B(∇u0 − ∇v0), (3.8)

∇uε − ∇vε ⇀ A(a0 − b0) + B(∇u0 + ∇v0) (3.9)

weakly in L2(Ω;Rn). Hence, adding up (3.8) and (3.9) entails ∇uε ⇀ Aa0 + B∇u0 in L2(Ω;Rn), which gives
∇u0 = Aa0 + B∇u0 by (3.1). This implies

a0 = σ0∇u0, (3.10)

with

σ0 := A−1 − A−1B. (3.11)

Since −divaε = f , by (2.16) and (2.17) we get that −diva0 = f . Hence, (3.10) implies that u0 is the solution to{−div(σ0∇u0) = f in Ω,

u0 ∈ H 1
0 (Ω).

(3.12)

So far we have proved that for every f ∈ H−1(Ω) the solutions uε of (2.16) converge weakly in H 1
0 (Ω) to the solution

u0 of (3.12) and their momenta σε∇uε converge weakly in L2(Ω;Rn) to σ0∇u0. Thus, to conclude the proof of the
H -convergence of (σε) to σ0 it remains to show that σ0 belongs to M(c0, c1,Ω). To this end, let u ∈ H 1

0 (Ω) and
choose

f := −div(σ0∇u); (3.13)

in this way the solution u0 of Eq. (3.12) coincides with u.
Let ϕ ∈ C∞

c (Ω). Using ϕuε as a test function in the equation −div(σε∇uε) = f and then passing to the limit on ε

we get ∫
f ϕu0 dx = lim

ε→0

∫
f ϕuε dx = lim

ε→0

(∫
(σε∇uε · ∇uε)ϕ dx

)
+

∫
σ0∇u0 · u0∇ϕ dx, (3.14)
Ω Ω Ω Ω
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where to compute the limit of the last term in (3.14) we appealed to the strong L2(Ω) convergence of uε to u0. On
the other hand, since by (3.12)∫

Ω

f ϕu0 dx =
∫
Ω

(σ0∇u0 · ∇u0)ϕ dx +
∫
Ω

σ0∇u0 · u0∇ϕ dx

from (3.14) we deduce that

lim
ε→0

∫
Ω

(σε∇uε · ∇uε)ϕ dx =
∫
Ω

(σ0∇u0 · ∇u0)ϕ dx, (3.15)

for every ϕ ∈ C∞
c (Ω). Hence, choosing ϕ � 0, combining (3.15), the first condition in (2.1), and the equality u = u0,

we have ∫
Ω

(σ0∇u · ∇u)ϕ dx � c0 lim inf
ε→0

∫
Ω

|∇uε|2ϕ dx � c0

∫
Ω

|∇u|2ϕ dx,

the second inequality following from ∇uε ⇀ ∇u0 = ∇u in L2(Ω;Rn). Since this inequality holds true for every
ϕ ∈ C∞

c (Ω), ϕ � 0, we get that

σ0∇u · ∇u� c0|∇u|2 a.e. in Ω, (3.16)

for every u ∈ H 1
0 (Ω). Using the second condition in (2.2), we find∫

Ω

(σ0∇u · ∇u)ϕ dx � c−1
1 lim inf

ε→0

∫
Ω

|σε∇uε|2ϕ dx � c−1
1

∫
Ω

|σ0∇u|2ϕ dx,

since σε∇uε ⇀ σ0∇u0 = σ0∇u in L2(Ω;Rn). From the previous inequality we deduce

σ0∇u · ∇u� c−1
1 |σ0∇u|2 a.e. in Ω, (3.17)

for every u ∈ H 1
0 (Ω). Finally, (2.2) follows from (3.16) and (3.17) by taking u to be affine in an open set ω �Ω .

We now prove that σT
ε H -converges to σT

0 . Subtracting (3.9) from (3.8) gives ∇vε ⇀ Ab0 − B∇v0 weakly in
L2(Ω;Rn); the latter combined with (3.1) imply that ∇v0 = Ab − B∇v0. We deduce then

b0 = σ̃∇v0, (3.18)

where

σ̃ := A−1 + A−1B. (3.19)

Since −divbε = g by (2.16) and (2.17), we get −divb0 = g, so that (3.18) implies that v0 is the solution to{−div(σ̃∇v0) = g in Ω,

v0 ∈ H 1
0 (Ω).

(3.20)

As in the previous part of the proof, this implies that σT
ε H -converges to σ̃ . We want to prove that σ̃ = σT

0 .
To this end, we argue as in the previous step. Let u,v ∈ H 1

0 (Ω). We choose f := −div(σ0∇u) and g :=
−div(σ̃∇v) and we consider the corresponding solutions uε and vε of (2.16). Since u coincides with the solution
u0 of (3.12) and v coincides with the solution v0 of (3.20), the H -convergence of σε entails

uε ⇀ u0 = u weakly in H 1
0 (Ω) and σε∇uε ⇀ σ0∇u0 = σ0∇u weakly in L2(Ω;Rn

)
,

while the H -convergence of (σ T
ε ) yields

vε ⇀ v0 = v weakly in H 1
0 (Ω) and σT

ε ∇vε ⇀ σ̃∇v0 = σ̃∇v weakly in L2(Ω;Rn
)
.
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Let ϕ ∈ C∞
c (Ω); using ϕvε as test function in the equation for uε , we get∫

Ω

f (ϕvε) dx =
∫
Ω

(σε∇uε · ∇vε)ϕ dx +
∫
Ω

σε∇uε · vε∇ϕ dx.

Therefore, appealing to the strong L2(Ω) convergence of vε to v and using ϕv as a test function in (3.12), we obtain

lim
ε→0

∫
Ω

(σε∇uε · ∇vε)ϕ dx =
∫
Ω

f (ϕv)dx −
∫
Ω

σ0∇u · v∇ϕ dx

=
∫
Ω

σ0∇u · ∇(ϕv)dx −
∫
Ω

σ0∇u · v∇ϕ dx =
∫
Ω

(σ0∇u · ∇v)ϕ dx. (3.21)

Moreover, arguing in a similar way, using now ϕuε as test function in the equation for vε , it is easy to show that

lim
ε→0

∫
Ω

(
σT

ε ∇vε · ∇uε

)
ϕ dx =

∫
Ω

(σ̃∇v · ∇u)ϕ dx. (3.22)

Then (3.21) and (3.22) yield∫
Ω

(σ0∇u · ∇v)ϕ dx =
∫
Ω

(σ̃∇u · ∇v)ϕ dx for every ϕ ∈ C∞
c (Ω).

Arguing as in the previous proof of (2.2) we deduce from this equality that

σ0ξ · η = σ̃ η · ξ a.e. in Ω,

for every ξ, η ∈ R
n. This implies that σ̃ = σT

0 a.e. in Ω which concludes the proof of the theorem. �
Given σ0 ∈ M(c0, c1,Ω), the matrix Σ0 and the functionals Q0, F0, and F

λ,μ
0 are defined as in (2.6), (2.10),

(2.12), and (2.13) with σ = σ0.

Theorem 3.2. Let (σε) be a sequence in M(c0, c1,Ω) and let σ0 ∈ M(c0, c1,Ω). The following conditions are
equivalent:

(a) σε H -converges to σ0;
(b) σT

ε H -converges to σT
0 ;

(c) Fε Γ (d)-converges to F0;
(d) F

λ,μ
ε Γ (w) to F

λ,μ
0 for every λ,μ ∈ H−1(Ω).

Proof. The equivalence between (a) and (b) follows immediately from Theorem 3.1. The implication (c) ⇒ (d) is
given by Theorem 2.2. The implication (d) ⇒ (a) is obtained in the proof of Theorem 3.1. It remains to prove that (a)
and (b) imply (c). By Theorem 2.1 we may assume that Fε Γ (d)-converges to FM where M ∈ L∞(Ω;R2n×2n) is a
positive definite, symmetric matrix satisfying the coercivity condition (2.4).

To prove that M ∈ SO(n,n) we consider the block decomposition (2.9). In Theorem 3.1 we proved that σ0 =
A−1 − A−1B and σT

0 = σ̃ = A−1 + A−1B; hence, we immediately deduce that

ABT + BA = 0 a.e. in Ω. (3.23)

It remains to prove the second condition in (2.8). Let us fix f,g ∈ H−1(Ω) and let uε, vε, aε, bε be as in (2.16) and
(2.17). By (2.11), (2.15), (3.4), and (3.5) using only the second component we get

BT
ε (aε + bε) + Cε(uε − vε) = σε∇uε − σT

ε ∇vε ⇀ BT (a0 + b0) + C(∇u0 − ∇v0), (3.24)

BT
ε (aε − bε) + Cε(uε + vε) = σε∇uε + σT

ε ∇vε ⇀ BT (a0 − b0) + C(∇u0 − ∇v0) (3.25)

weakly in L2(Ω;Rn). Then, adding up (3.24) and (3.25) we get
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σε∇uε ⇀ BT a0 + C∇u0

weakly in L2(Ω;Rn); on the other hand, since σε∇uε = aε ⇀ a0 weakly in L2(Ω;Rn), we obtain

a0 = BT a0 + C∇u0.

Since in the proof of Theorem 3.1 we already showed that a0 = (A−1 − A−1B)∇u0, we finally obtain(
I − BT

)(
A−1 − A−1B

)∇u0 = C ∇u0 a.e. in Ω.

Therefore, suitably choosing f as in (3.13) and arguing as in the proof of Theorem 3.1 we can easily deduce that(
I − BT

)(
A−1 − A−1B

)
ξ = Cξ a.e. in Ω, for every ξ ∈R

n,

thus, by the arbitrariness of ξ ∈R
n, we get(

I − BT
)(

A−1 − A−1B
) = C a.e. in Ω.

The latter combined with (3.23) leads to

AC + B2 = I a.e. in Ω. (3.26)

Eventually, by (3.23) and (3.26) we can apply [2, Proposition 3.1] and we deduce that M ∈ SO(n,n) a.e. in Ω and
that M is equal to the matrix Σ defined in (2.3) with σ = A−1 − A−1B . Since we have also σ0 = A−1 − A−1B , we
conclude that M = Σ0. �
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