
The wave equation in bounded domains.
Separation of variables

Let us consider the wave equation in an interval [0, L]:
utt − c2uxx = 0 in [0, L]× (0,∞) ,
u(x, 0) = g(x) in [0, L] ,
ut(x, 0) = h(x) in [0, L] ,
u(0, t) = 0 for t > 0 ,
u(L, t) = 0 for t > 0 ,

(1)

Notice that, we have two initial conditions, u(x, 0) = g(x) and ut(x, 0) = h(x), and
some boundary conditions, telling us what is going on at the boundary points x = 0
and x = L. The particular conditions we are considering here are the homogeneous
Dirichlet conditions

u(0, t) = u(L, t) = 0, ,

for t > 0, saying that our string is fixed at the ending points. We would like to apply
the strategy of separation of variables, developed for the case of the heat equation in
bounded domains, to solve the above problem. We recall that the basic idea is the
following: since we don’t know what the solution can be, we look for a particular kind
of solution, namely one of the form:

u(x, t) = T (t)X(x) ,

for some (one variable) functions T and X. In order for such a function u to solve the
equation

utt − c2uxx = 0 ,

we need the functions T and X to satisfy

T ′′(t)X(x)− c2T (t)X ′′(x) = 0 .

By dividing by DT (t)X(x) (here we are assuming that it is possible to divide by
T (t)X(x). This is just a formal operation. It is possible, and we will do it later on
during the course, to perform this step in a more rigorous way), we get

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
.

since the left-hand side is a function just of the variable t, while the right-hand side is
a function just of the variable x, in order to have the above equality in force for every
x ∈ [0, L] and every t > 0, we must impose both sides to be constant. So, we are lead
to the equations {

T ′′(t) = λc2T (t) ,
X ′′(x) = λX(x) ,

for some arbitrary λ ∈ R. Let us first consider the equation for X. The BCs we have to
impose for u are

0 = u(0, t) = T (t)X(0) , 0 = u(L, t) = T (t)X(L) ,

for every t > 0. In order to satisfy them, we can have T ≡ 0 (but this would implies
that u ≡ 0, and this is a solution if and only if g ≡ h ≡ 0), or we need to impose

X(0) = 0 , X(L) = 0 .



So, we have to solve the problem X ′′(x) = λX(x) in [0, L] ,
X(0) = 0 ,
X(L) = 0 .

(2)

As we did for the heat equation, we have to consider three cases (recall that λ is an
arbitrary number!):

• λ > 0: in this case, the general solution of the above equation is

X(x) = a sinh(
√
λx) + b cosh(

√
λx) .

We now have to impose the boundary conditions. So,

0 = X(0) = b ,

and hence X(x) = a sinh(
√
λx). Moreover, we have to impose impose

0 = X(L) = a sinh(
√
λL) .

Since sinh y 6= 0 if y 6= 0 (and this is the case, since
√
λL 6= 0 - recall that we

are in the case λ > 0), we get that the above equation can be satisfied only if
a = 0. So, we obtain the trivial solution X ≡ 0, leading to the function

u(x, t) = T (t)X(x) ≡ 0 .

So, u can be a solution of problem (1) if and only if g ≡ h ≡ 0 (it is the only
way for the null function to match the initial condition). In the case g, h 6≡ 0,
this cannot be a solution, and thus we have to exclude it.

• λ = 0, in this case, the general solution of the above equation is

X(x) = ax+ b .

By imposing the boundary conditions, we get a = b = 0. Thus, X ≡ 0. By
arguing as before, for a nontrivial initial data, this function cannot lead to a
solution of our problem.

• λ < 0: in this case, the general solution of the equation is given by

X(x) = a cos(
√
−λx) + b sin(

√
−λx) .

By imposing the boundary conditions at x = 0, we get

0 = X(0) = a ,

and hence X(x) = a cosx. Then, by imposing the boundary conditions at x = L,
we get

0 = X(L) = b sin(
√
−λL) .

Since for b = 0 we obtain the trivial solution, we want to impose sin(
√
−λL) = 0.

By recalling that
sinx = 0 ⇔ x = nπ ,

for some n ∈ N, we get
√
−λL = nπ ⇒ λn = −

(nπ
L

)2
.

So, for every n = 1, 2, 3, . . . (because, for n = 0, we obtain λ = 0, and we already
discussed that case), we get that the function

x 7→ bn sin
(nπ
L
x
)
,

where bn ∈ R is arbitrary, is a solution of problem (2) with λn = −
(
nπ
L

)2
.



Let us now consider, for every n = 1, 2, 3, . . . , the corresponding equation for T :

T ′′(t) = λnc
2T (t) ,

whose general solution is of the form

Tn(t) := an cos
( nπ
L
ct
)

+ bn sin
( nπ
L
ct
)
.

Thus, for every n = 1, 2, 3, . . . , we obtain that the function

un(x, t) =
[
an cos

( nπ
L
ct
)

+ bn sin
( nπ
L
ct
) ]

sin
( nπ
L
x
)

satisfies the wave equation and matches the boundary conditions. In order to solve the
problem we also have to satisfy the initial condition. Notice that

un(x, 0) = an sin
( nπ
L
x
)
,

and
∂tun(x, 0) = bn

nπ

L
sin
( nπ
L
x
)
.

That is, the function un solves the problem (1) if and only if the initial data g is of the
form

g(x) = a sin
( nπ
L
x
)
,

and h is of the form
h(x) = b sin

( nπ
L
x
)
,

for some a, b ∈ R. This is too restrictive! We would like to use the above functions un’s
to build a solution for a generic initial data g and h. To this purpose, let us consider

v(x, t) :=
N∑
n=1

[
an cos

( nπ
L
ct
)

+ bn sin
( nπ
L
ct
) ]

sin
( nπ
L
x
)
, (3)

for some N ∈ N. Since the wave equation is linear, any finite sum of the above functions
still satisfies it. So, v still satisfies the equation. Moreover, since the boundary conditions
are homogeneous, v will match them. Again, we see that finite linear combinations
of the un’s require too restrictive assumptions of the form of the initial data. So, as we
did for the heat equation, we set N = +∞ in (3) (making the sum a series), forgetting
about asking ourselves whether it makes sense or not. We just do it!, obtaining the
function

u(x, t) =
∞∑
n=1

[
an cos

( nπ
L
ct
)

+ bn sin
( nπ
L
ct
) ]

sin
( nπ
L
x
)
.

So, we can say that formally (that means, if we believe it!), the above function is still a
solution of the heat equation and it matches the boundary condition (since every finite
sum of the un’s does). Then, in order for u to satisfy the initial problem, it just need
to match the initial condition:

u(x, 0) =
∞∑
n=1

an sin
( nπ
L
x
)

= g(x) ,

and

ut(x, 0) =

∞∑
n=1

bn
nπc

L
sin
( nπ
L
x
)

= h(x) ,

for x ∈ [0, L]. In order to have the above equality satisfies, we will make a further
assumption: we will assume that g is of the form

g(x) =

∞∑
n=1

gn sin
( nπ
L
x
)
, (4)



and that

h(x) =
∞∑
n=1

hn sin
( nπ
L
x
)
,

for some gn, hn ∈ R. Is this too restrictive? We will see, thanks to the theory of Fourier
series, that it is not! So, in order for u to match the initial condition, we need to have

∞∑
n=1

gn sin
( nπ
L
x
)

=

∞∑
n=1

an sin
( nπ
L
x
)
,

and
∞∑
n=1

hn sin
( nπ
L
x
)

=
∞∑
n=1

bn
nπc

L
sin
( nπ
L
x
)

for every x ∈ [0, L]. But two series of functions are equal if and only if all the terms in
the series are the same. That is, we need to impose

gn sin
( nπ
L
x
)

= an sin
( nπ
L
x
)
,

and
hn sin

( nπ
L
x
)

= bn
nπc

L
sin
( nπ
L
x
)
.

for every x ∈ [0, L] and every n = 1, 2, 3, . . . . But these conditions boil down to impose

an = gn , bn =
L

nπc
hn ,

for every n = 1, 2, 3, . . . . Thus, we get that the function u defined as

u(x, t) :=

∞∑
n=1

[
gn cos

( nπ
L
ct
)

+
L

nπc
hn sin

( nπ
L
ct
)]

sin
( nπ
L
x
)
,

is a solution of the problem (1).


