
The Laplacian in polar and spherical coordinates.

Polar coordinates.
The Laplacian is defined with respect the canonical base of RN . Let us consider, for
instance, the following problem

−4u = 0 , in Br̄(0) ,

where Br(0) := {x ∈ R2 : |x| < r̄} is the ball of radius r̄ centered at the origin. Since the
set Br(0) has a spherical symmetry, it is more convenient to describe it with spherical
coordinates (radius r and angle θ). That is, we describe points (x, y) ∈ R2 as{

x = r cos θ ,
y = r sin θ .

DISEGNO!!!
Let us consider the change of variable P : (0,∞)× [0, 2π)→ R2 \ {(0, 0)} given by

P (r, θ) := (r cos θ, r sin θ) .

Notice that, for technical reasons of the change of variable, we are not considering the
origin in the target space. This will not affect our computations. Now, define the
function

v(r, θ) := u (P (r, θ)) = u (r cos θ, r sin θ) .

We want to understand what equation v has to solve in the rectangle [0, r̄) × [0, 2π)
(that is, the set that describes the ball Br̄(0)), in order for the function u to solve the
Laplace equation. In other terms, we want to understand how to write the Laplacian in
polar coordinates. Namely, we would like to write

−4u = −∂2
xxu− ∂2

yyu ,

as something involving only derivatives with respect to r and θ. For, let’s reason as
follows: we first write the first derivatives ∂xu and ∂yu in terms of ∂rv and ∂θv. By
applying the chain rule, we have that{

∂rv = ∂xu ∂rx+ ∂yu ∂ry ,
∂θv = ∂xu ∂θx+ ∂yu ∂θy .

That is {
∂rv = ∂xu cos θ + ∂yu sin θ ,
∂θv = −r∂xu sin θ + r∂yu cos θ .

That is, in a matrix form,(
∂rv
∂θv

)
=

(
cos θ sin θ

−r sin θ r cos θ

)(
∂xu
∂yu

)
= DP (r, θ)

(
∂xu
∂yu

)
,

where DP (r, θ) denotes the differential of the map P at the point (r, θ). Since the above
equation is true for every u (and the correspondent v), we can simply write it as an
equality between differential operators as(

∂r
∂θ

)
=

(
cos θ sin θ

−r sin θ r cos θ

)(
∂x
∂y

)
= DP (r, θ)

(
∂x
∂y

)
.

What we want is ∂x and ∂yu in terms of ∂rv and ∂θv. so, we have to invert the above
equality, that is (

∂x
∂y

)
= (DP (r, θ))−1

(
∂r
∂θ

)
,

where (DP (r, θ))−1 is the inverse of the matrix DP (r, θ), that is

(DP (r, θ))−1 =

(
cos θ − sin

r θ
sin θ cos

r θ

)
.



2

Thus, we get (
∂x
∂y

)
=

(
cos θ − sin

r θ
sin θ cos

r θ

)(
∂r
∂θ

)
,

that is  ∂x = cos θ∂r − sin θ
r ∂θ ,

∂y = sin θ∂r + cos θ
r ∂θ .

We now want to compute ∂2
xx. We have that

∂2
xx = ∂x∂x =

(
cos θ∂r −

sin θ

r
∂θ

)(
cos θ∂r −

sin θ

r
∂θ

)
= cos θ∂r (cos θ∂r) + cos θ∂r

(
−sin θ

r
∂θ

)
− sin θ

r
∂θ (cos θ∂r)−

sin θ

r
∂θ

(
−sin θ

r
∂θ

)
= cos θ(∂r cos θ)∂r + cos2 θ∂r∂r + cos θ∂r

(
−sin θ

r

)
∂θ −

cos θ sin θ

r
∂r∂θ

− sin θ

r
∂θ (cos θ) ∂r −

sin θ cos θ

r
∂θ∂r −

sin θ

r
∂θ

(
−sin θ

r

)
∂θ +

sin2 θ

r2
∂θ∂θ

= 0 + cos2 θ∂2
rr +

1

r2
cos θ sin θ∂θ −

cos θ sin θ

r
∂2
rθ

+
sin2 θ

r
∂r −

cos θ sin θ

r
∂2
rθ +

sin θ cos θ

r2
∂θ +

sin2 θ

r2
∂2
θθ .

With similar computations, we get

∂2
yy = ∂y∂y =

(
sin θ∂r +

cos θ

r
∂θ

)(
sin θ∂r +

cos θ

r
∂θ

)
= sin2 θ∂2

rr −
1

r2
cos θ sin θ∂θ +

cos θ sin θ

r
∂2
rθ

+
cos2 θ

r
∂r +

cos θ sin θ

r
∂2
rθ −

sin θ cos θ

r2
∂θ +

cos2 θ

r2
∂2
θθ .

Thus, we can write

4 = ∂2
rr +

1

r
∂r +

1

r2
∂θθ .

The above is the expression of the Laplacian in polar coordinates. Notice that it is made
by a radial component

∂2
rr +

1

r
∂r ,

and by an angular one

∂θθ .

In our example, this means that, u solves the Laplace equation in the ball Br(0) if
and only if v solves the equation

∂2
rrv +

1

r
∂rv +

1

r2
∂θθv = 0 ,

in the rectangle [0, r) × [0, 2π). Even if at a first glance this does not seem like a good
simplification of the problem we will see that it is possible to solve the equation for v.

Spherical coordinates.
We would like to perform the same computation in dimension N = 3 with the spherical



3

coordinates, that is, when we describe a point (x, y, z) ∈ R3 as x = r sinϕ cos θ ,
y = r sinϕ sin θ ,
z = r cosϕ .

DISEGNO!!!
In order to do so, we will take advantage of the previous computations and we will add
an additional variable (that we will get rid in the end). We call

s :=
√
x2 + y2 = r sinϕ ,

and we write the above system as  x = s cos θ ,
y = s sin θ ,
z = r cosϕ .

By considering the planes xy and, for θ fixed, the plane sz, by the previous computations,
we have that

∂2
xx + ∂2

yy = ∂2
ss +

1

s
∂s +

1

s2
∂θθ ,

∂2
ss + ∂2

zz = ∂2
rr +

1

r
∂r +

1

r2
∂ϕϕ .

Then

4 = ∂2
xx + ∂2

yy + ∂2
zz = ∂2

rr +
1

r
∂r +

1

r2
∂ϕϕ +

1

s
∂s +

1

s2
∂θθ . (1)

We now just have to rewrite the last two terms with respect to derivatives in r, θ, ϕ.
For, notice that, by the definition of s,

1

s2
∂θθ =

r2 sin2 ϕ

∂2
θθ

.

Moreover, by the chain rule, we have that

∂s = ∂r
∂r

∂s
+ ∂ϕ

∂ϕ

∂s
+ ∂θ

∂θ

∂s
.

We have that
∂θ

∂s
= 0 ,

since the variable θ does not depend on s, while

∂r

∂s
=

∂

∂s

√
s2 + z2 =

s

r
.

Finally, in order to compute ∂ϕ
∂s , we reason as follows: by definition

s = r sinϕ .

By differentiating both terms with respect to s, we get

1 =
r

s
sinϕ+ r cos θ

∂ϕ

∂s
.

Thus,
∂ϕ

∂s
=
r − s sinϕ

r2 cosϕ
=

cosϕ

r
.

By plugging in these expression in (1), we finally get

4 = ∂2
rr +

2

r
∂r +

1

r2

[
∂2
ϕϕ +

cosϕ

sinϕ
∂ϕ +

1

sin2 ϕ
∂2
θθ

]
.
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Again, also here we notice that the radial and the angular part are separated. This last
one, is called the Laplace-Beltrami operator, and functions w defined on the sphere
(the boundary of the ball!) for which

∂2
ϕϕw +

cosϕ

sinϕ
∂ϕw +

1

sin2 ϕ
∂2
θθw = 0 ,

are called spherical harmonics.


