
Source in the heat equation in bounded domains

We want to solve the problem
ut −Duxx = f(x, t) in (0, L)× (0,∞) ,
u(x, 0) = g(x) in (0, L) ,
u(0, t) = 0 for t > 0 ,
u(L, t) = 0 for t > 0 ,

(1)

where f : (0, L) × (0,∞) → R is a given function. The above problem models, for
instance, the temperature of a thin object (0, L), where f represents the (density of the)
source of heat.

The idea in order to solve the above problem is similar to the one of the variation of
coefficients for ODEs: we know that the solution of the above problem in the case f ≡ 0
is of the form

u(x, t) =

∞∑
n=1

bn(t) sin
( nπ
L
x
)
,

for some functions bn : [0,∞) → R. The idea is that the solution of (1) is of the same
form. We just have to find the functions bn’s. Formally, we derive the function u above
in order to find

uxx(x, t) = −
∞∑
n=1

bn(t)
(nπ
L

)2
sin
( nπ
L
x
)
,

ut(x, t) =

∞∑
n=1

b′n(t) sin
( nπ
L
x
)
.

We assume that, for every fixed t > 0 it is possible to expand the function x 7→ f(x, t)
as

f(x, t) =
∞∑
n=1

fn(t) sin
( nπ
L
x
)
,

for some fn : [0,∞)→ R. So, the equation

ut −Duxx = f(x, t) ,

writes as
∞∑
n=1

[
b′n(t) +D

(nπ
L

)2
bn(t)

]
sin
( nπ
L
x
)

=
∞∑
n=1

fn(t) sin
( nπ
L
x
)
.

In order to have the above equation in force for every x ∈ (0, L) and every t > 0, we
need to impose the terms of the two series to be equal, that is, we have to impose

b′n(t) +D
(nπ
L

)2
bn(t) = fn(t) ,

for t > 0, for every n = 1, 2, 3, . . . . Thus, the solution of a PDE boils down to solve a
countably many ODEs (in a similar way, in the case f ≡ 0, the solution of the PDE is
down to compute the Fourier coefficients of the initial data, that is, to solve countably
many integrals!). Each of the above equation is couple with an initial condition that we
can derive from the initial condition that u has to satisfy. So, if we assume

g(x) =

∞∑
n=1

gn sin
( nπ
L
x
)
,

the initial condition is bn(0) = gn.



So, let us fix n = 1, 2, 3, . . . , and let us consider the problem{
b′n(t) +D

(
nπ
L

)2
bn(t) = fn(t) ,

bn(0) = gn .

The solution of this problem is

bn(t) = e−D(nπL )
2
t

[
gn +

∫ t

0
fn(s)eD(nπL )

2
s ds

]
.

Notice that these coefficients are the coefficients you would obtain in the case f ≡ 0
with an additional term due to the source term f . Hence, the solution of (1) is given by

u(x, t) =
∞∑
n=1

e−D(nπL )
2
t

[
gn +

∫ t

0
fn(s)eD(nπL )

2
s ds

]
sin
( nπ
L
x
)
.

Bottom line. In order to solve a problem of the form
ut −Duxx = f(x, t) in (0, L)× (0,∞) ,
u(x, 0) = g(x) in (0, L) ,
boundary conditions at
x = 0 and x = L for t > 0 ,

(2)

we proceed as follows: let

u(x, t) =
∑
n

Tn(t)Xn(x) ,

be the general form of the solution in the case f ≡ 0. The particular form of the Xn’s
depends on the boundary conditions of the above problem. By assuming

f(x, t) =
∑
n

fn(t)Xn(x) , g(x) =
∞∑
n=1

gnXn(x) ,

we have that the Tn’s are given by

Tn(t) = e−D(nπL )
2
t

[
gn +

∫ t

0
fn(s)eD(nπL )

2
s ds

]
,

and thus, the solution of (2) is given by

u(x, t) =
∞∑
n=1

e−D(nπL )
2
t

[
gn +

∫ t

0
fn(s)eD(nπL )

2
s ds

]
Xn(x) .

So, once we know the solution of the homogeneous problem, we also know how to solve
the inhomogeneous one.

Notice. We will see in the exercises that, once we are able to solve the above problem,
we are also able to solve problems of the type

ut −Duxx = f(x, t) in (0, L)× (0,∞) ,
u(x, 0) = g(x) in (0, L) ,
u(0, t) = ϕ1(t) for t > 0 ,
u(L, t) = ϕ1(t) for t > 0 ,

where f : (0, L)× (0,∞)→ R, ϕ1 : (0,∞)→ R and ϕ2 : (0,∞)→ R are given functions.


