
Laplace equation in the 2D ball - the Poisson formula

We want to solve the problem{
−4u = 0 in Br̄(0) ,

u = g on ∂Br̄(0) ,
(1)

where
Br̄(0) := { (x, y) ∈ R2 : ‖(x, y)‖ < r̄ } ,

is the (open) ball of radius r̄ centered at the origin,

∂Br̄(0) := { (x, y) ∈ R2 : ‖(x, y)‖ = r̄ } ,
is the circumference of radius r̄ and g : ∂Br̄(0) → R is a given function. Since the set
has a spherical symmetry, it is natural to set the above problem in the space of the polar
coordinates. In polar coordinates, the set Br̄(0) is identified by the sets of points

R := { (r, θ) : r ∈ (0, r̄) , θ ∈ [0, 2π) } ,
while the set ∂Br̄(0) is identified by the sets of points

∂R = { (r̄, θ) : θ ∈ [0, 2π) } .
DISEGNO!!!
So, it is possible to see g as a function g̃ : [0, 2π)→ R as follows:

g̃(ϕ) := g(r̄ cosϕ, r̄ sinϕ) .

Finally, we recall that the Laplacian in polar coordinates writes as

4 = ∂2
rr +

1

r
∂r +

1

r2
∂2
θθ .

Let us consider the function

v(r, θ) := u (r cos θ, r sin θ) .

Then, the function u solves the problem (1) if and only if the function v solves the
following {

∂2
rrv + 1

r∂rv + 1
r2∂

2
θθv = 0 in R ,
u = g̃ on ∂R ,

This problem has an advantage with respect to the previous one: it is settle in a rec-
tangle! So, the idea is to use the technique of separation of variables in order to solve
it. Namely, we look for solutions v of the form

v(r, θ) = R(r)Θ(θ) .

If we insert such a function in the equation we want to solve, and by giving the common
denominator, we get

r2R′′Θ + rR′Θ +RΘ′′ = 0 .

By dividing everything by RΘ, we get

r2R′′ + rR′

R
= −Θ′′

Θ
.

Since the left-hand side is a function of the sole r, while the right-hand side one depends
only on θ, and they have to be equal for all r ∈ [0, r̄) and θ ∈ [0, 2π), we deduce that
both sides has to be constant. So, we get the two equations

r2R′′ + rR′ − λR = 0 ,

and
Θ′′ = −λΘ ,

for some λ ∈ R. We now have to impose the boundary conditions for R and Θ. Let us
start with the latter one. The function Θ describes the angular behavior of the function
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u. Thus, it is natural to ask Θ to be periodic, as well as for its derivatives (since we
want to function u to be regular!), that is we require{

Θ(0) = Θ(2π) ,
Θ′(0) = Θ′(2π) .

On the other hand, for the function R we cannot impose any boundary condition at
r = r̄ in the equation, since we need to let it free in order to match the boundary
conditions. Moreover, since the function R is not defined at r = 0, we cannot ask R to
take a specific value at that point. We simply ask it to be finite when approaching zero,
namely we ask for

lim
r→0
|R(r)| <∞ .

So, we have the problems  Θ′′ = −λΘ in (0, 2π) ,
Θ(0) = Θ(2π) ,
Θ′(0) = Θ′(2π) .

and {
r2R′′ + rR′ − λR = 0 in (0, r̄) ,
limr→0 |R(r)| <∞ .

The first problem has the following general solution

Θn(θ) = An cos(nθ) +Bn sin(nθ) ,

where λ = n2, for n = 0, 1, 2, 3, . . . . Let us now consider, for each n ∈ N, the corre-
sponding problem for R. In the case n = 0, the equation for R reduces to

r2R′′ + rR′ = 0 ,

that is, by dividing by r,

0 = rR′′ +R′ =
(
rR′
)′
.

Thus, we get rR′ = C0, for some constant C0 ∈ R, and in turn

R(r) = C0 log r +D0 ,

for some constant D0 ∈ R. By imposing the limiting behavior at r = 0, we get C0 = 0.
Thus, R0 = D0.

Let us now consider the problem for R in the case n = 1, 2, 3, . . . . The equation is

r2R′′ + rR′ − n2R = 0 .

Such a type of equations are called Euler type of equation: they are ODEs where the
coefficient of the kth derivative is rk, i.e. of the form

D∑
k=1

(
rk

dk

drk
u

)
= 0 .

The idea is to look for solutions of the form (and in one line you’ll get why!)

R(r) = rα ,

for some α ∈ C we have to find (we also want to consider sine and cosine). If we plug
in this expression in the above equation, we get(

α(α− 1) + α− n2
)
rα = 0 ,

that is we reduced an ODE to an algebraic equation. In particular, we get α = ±n. So,
the general solution of the above equation is given by

Rn(r) = Anr
n +

Bn
rn

.

If we now impose that Rn stays bounded as r approaches zero, we get Bn = 0.
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So, we obtain the solution (by using just one name for the constants)

vn(r, θ) =
A0

2
,

in the case n = 0, and

vn(r, θ) = rn (An cos(nθ) +Bn sin(nθ) ) .

So, as usual, we consider the function

v(r, θ) :=
∞∑
n=0

vn(r, θ) =
A0

2
+
∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ) ) .

We now need to impose the boundary condition at r = r̄: we want

g̃(θ) = v(r̄, θ) =
A0

2
+
∞∑
n=1

r̄n (An cos(nθ) +Bn sin(nθ) ) .

Thus, we assume g to be of the form

g̃(θ) =
g̃1

0

2
+
∞∑
n=1

r̄n
(
g̃1
n cos(nθ) + g̃2

n sin(nθ)
)
,

where

g̃1
n =

1

π

∫ 2π

0
g̃(ϕ) cos(nϕ)dϕ , g̃2

n =
1

π

∫ 2π

0
g̃(ϕ) sin(nϕ)dϕ ,

are the Fourier coefficients of g. So, we get

An =
g̃1
n

r̄n
, Bn =

g̃2
n

r̄n
,

and the solution is

v(r, θ) =
g̃1

0

2
+
∞∑
n=1

(r
r̄

)n (
g̃1
n cos(nθ) + g̃2

n sin(nθ)
)
.

You would also be satisfied with this writing of the solution. But sometimes, you need
more. And in this case, you can get more! Indeed, it is remarkable that the above series
can be summed explicitly ! So

v(r, θ) =
g̃1

0

2
+
∞∑
n=1

(r
r̄

)n (
g̃1
n cos(nθ) + g̃2

n sin(nθ)
)

=
1

π

∫ 2π

0
g̃(ϕ)dϕ+

1

π

∞∑
n=1

(r
r̄

)n(∫ 2π

0
g̃(ϕ) cos(nϕ) cos(nθ)dϕ+

∫ 2π

0
g̃(ϕ) sin(nϕ) sin(nθ)dϕ

)

=
1

2π

∫ 2π

0
g̃(ϕ)

[
1 + 2

∞∑
n=1

(r
r̄

)n
cos (n(θ − ϕ))

]
dϕ ,

where in the last step we took the series inside the integral and we used the formula

cos(α− β) =
1

2
(cosα cosβ + sinα sinβ) .

Now, we repeat a computation we did when we proved the pointwise convergence theo-
rem for the Fourier series:

1 + 2
∞∑
n=1

(r
r̄

)n
cos (n(θ − ϕ)) = 1 +

∞∑
n=1

(r
r̄

)n
ein(θ−ϕ) +

∞∑
n=1

(r
r̄

)n
e−in(θ−ϕ)

= 1 +

∞∑
n=1

(
rei(θ−ϕ)

r̄

)n
+

∞∑
n=1

(
re−i(θ−ϕ)

r̄

)n
,



4

where in the first step we used the Euler formula

eiα = cosα+ i sinα ,

and the fact that sin is an odd function. By recalling that
∞∑
n=1

qn =
1

1− q
− 1 ,

if |q| < 1, by setting (for having a lighter notation in the forthcoming computations)

p :=
r

r̄
, t := ei(θ−ϕ) ,

we get

1 +

∞∑
n=1

(pt)n +

∞∑
n=1

(p
t

)n
= 1 +

1

1− pt
− 1 +

1

1− p
t

− 1 = t
1− p2

(1− pt)(t− p)
,

and thus

1 +
∞∑
n=1

(
rei(θ−ϕ)

r̄

)n
+
∞∑
n=1

(
re−i(θ−ϕ)

r̄

)n
= ei(θ−ϕ) 1−

(
r
r̄

)2
(1− r

r̄e
i(θ−ϕ))(ei(θ−ϕ) − r

r̄ )

=
r̄2 − r2

r̄2 + r2 − 2rr̄ cos(θ − ϕ)
.

We would like to rewrite the denominator. By looking at the figure,
DISEGNO!!!
we realize that, by applying the generalized Pythagorean theorem1 we get

r̄2 + r2 − 2rr̄ cos(θ − ϕ) = |P − P̄ |2 , (2)

where P and P̄ are the points given by{
x = r cos θ ,
y = r sin θ ,

{
x = r̄ cosϕ ,
y = r̄ sinϕ ,

respectively. Hence, we get

v(r, θ) =
r̄2 − r2

2π

∫ 2π

0

g̃(ϕ)

r̄2 + r2 − 2rr̄ cos(θ − ϕ)
dϕ . (3)

We would like to have the expression for the function u. Basically, we just have to make
a change of variable (to rescale) the integral: instead of an integral on the circumference
of radius 1, we want an integral on the circumference of radius r̄. The difference between
the length of the two circumferences is r̄. Thus, by recalling (2), we get

u(P ) =
r̄2 − ‖P‖2

2πr̄

∫
∂Br̄(0)

g(Q)

‖P −Q‖2
ds(Q) ,

where the integral is just a way to write (3). This formula is called the Poisson formula.
As you may notice, the above formula is not defined for points in ∂Br̄(0). Nevertheless,
the above function is a solution of our problem, because it is harmonic inside the ball,
and it is possible to prove that

lim
P→Q

u(P ) = g(Q) ,

for every point Q on the circumference of radius r̄, where the points P vary in the ball.
The above formula is important for several reasons: first of all it is an explicit solution

of the Laplace equation in the sphere. Moreover, we can use it to (finally) justify the

1Also called the cosine rule, but it is really better to called it the other way, since, well, that is its
geometric meaning!
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name harmonic for functions satisfying the Laplace equation. Indeed, take P to be the
origin. The above expression for u tells us that

u(0) =
1

2πr̄

∫
∂Br̄(0)

g(Q)ds(Q) ,

namely, u(0) is the average of its values on the circumference. Of course, this holds for
every point and every circumference around that point. By using polar coordinates, it
is also possible to prove that

u(0) =
1

πr̄2

∫
Br̄(0)

u(Q)ds(Q) ,

that is, u(0) is also the average of its values in a ball centered at that point (again, this
holds for every point and every ball around that point). Finally, it is also true that the
above property characterizes harmonic functions, i.e., if u : RN → R is a C2-function
such that

u(x) =
1

πr

∫
Br(x)

u(Q)ds(Q) ,

for every x ∈ RN and every r > 0, then u is harmonic.


