Laplace equation in bounded domains

We now want to consider the Laplace equation in bounded domains, that would be the analogous of problems in intervals in \mathbb{R} . The fact is that the intervals are really simple objects, while a bounded set in \mathbb{R}^N can be very wild.

Definition 0.1. Given a set $\Omega \in \mathbb{R}^N$, we define its *complement* (in \mathbb{R}^N), denoted by Ω^c as the set of points that do no belong to Ω .

Definition 0.2. Given a set $\Omega \in \mathbb{R}^N$, we say that it is *bounded* if there exists a radius R > 0 such that Ω is contained in $B_R(0)$.

Definition 0.3. Let $\Omega \subset \mathbb{R}^N$ be a set. We say that Ω is *open* if for every point $x \in \Omega$, it is possible to find a radius r > 0 such that the ball $B_r(x)$ is contained in Ω .

Definition 0.4. Let $\Omega \subset \mathbb{R}^N$ be a set. We define the *boundary* of Ω , denoted by $\partial\Omega$, as the sets of points $x \in \mathbb{R}^N$ such that for every r > 0 the ball $B_r(x)$ intersects both Ω and its complement Ω^c .

Definition 0.5. Let $\Omega \subset \mathbb{R}^N$ be a set. We define the *closure* of Ω , denoted by $\overline{\Omega}$, as the sets $\Omega \cup \partial \Omega$.

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases}$$
(1)

where $g : \partial \Omega \to \mathbb{R}$ is a given function. The above is called the Dirichlet problem for the Laplace equation. When we say that u is a solution of the above problem, we mean that $u : \overline{\Omega} \to \mathbb{R}$ is a function such that

- u is continuous in $\overline{\Omega}$,
- $u \in C^2(\Omega)$,
- and u solves (1).

Indeed, since the derivative of a function is defined only in points that are *interior* points, we need the set Ω to be open, and u to be regular enough to talk about its Laplacian, namely, we need u to have (at least) two derivatives. Moreover, since we want u to attain a certain value on $\partial\Omega$, we need to make sense of that assertion. That's why we asked u to be continuous up to the boundary.

A fundamental result about the above problem is the following

Theorem 0.6 (Maximum principle). Let $\Omega \subset \mathbb{R}^N$ be an open bounded set, and let $u: \overline{\Omega} \to \mathbb{R}$ be a continuous function such that

$$\begin{cases} -\triangle u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Then, either u is constant, or the maximum and the minimum of u are attained only on $\partial\Omega$.

Remark 0.7. What the above theorem says is that a continuous function u that solves the problem (1) is either constant, or satisfies

$$u(x) < \max_{y \in \partial \Omega} u(y)$$
, $u(x) > \min_{y \in \partial \Omega} u(y)$,

for every $x \in \Omega$.

The maximum principle allows to prove uniqueness for the solution of problem (1).

Theorem 0.8. (Uniqueness) Let $\Omega \subset \mathbb{R}^N$ be an open bounded set. Then the problem

$$\left\{ \begin{array}{rl} -\triangle u=0 & \mbox{in }\Omega\,,\\ u=g & \mbox{on }\partial\Omega\,, \end{array} \right.$$

admits a unique solution.

Proof. Assume that u, v are two solutions of the above problem, and consider the function w := u - v. By using the linearity of the second derivatives, it holds that

$$-\Delta w = -\Delta (u - v) = -\Delta u + \Delta v = 0.$$

Moreover, since both u and v are equal to g on $\partial\Omega$, we get that w = 0 on $\partial\Omega$. Thus, w solves the problem

$$\begin{cases} -\Delta w = 0 & \text{in } \Omega, \\ w = 0 & \text{on } \partial \Omega \end{cases}$$

By applying the maximum principle, we get that either one of the following two cases is true: either w is constant, and in this case w = 0 in Ω , since w = 0 on $\partial\Omega$, or

$$w(x) < \max_{y \in \partial \Omega} w(y) \,, \qquad w(x) > \min_{y \in \partial \Omega} w(y) \,,$$

for every $x \in \Omega$. But we have that

$$w(x) < \max_{y \in \partial \Omega} w(y) = \max_{y \in \partial \Omega} g(y) = 0$$
,

and that means

$$u(x) < v(x)$$
, for every $x \in \Omega$,

and

$$w(x) > \min_{y \in \partial \Omega} w(y) = \min_{y \in \partial \Omega} g(y) = 0$$
,

and that means

$$u(x) > v(x)$$
, for every $x \in \Omega$,

This is clearly a contradiction. Thus, the first case holds, and thus u = v.