
Review on Fourier series and general Fourier expansion

When we apply the technique of separation of variables in order to solve the heat or
the wave equation in a bounded domain, i.e., when seeking for solutions of the form
u(x, t) = T (t)X(x), we have to solve, for the function X, a problem of the form X ′′(x) = λX(x) ,

boundary conditions
at x = 0 and x = L .

Usually, these kind of systems admit a countably many solutions (Xn)n, relative to
different λn’s. Then, if for each n we solve the equation for the function T relative to
the value λn, we find a function un that satisfies the equation and matches the boundary
conditions. In order to obtain a solution of the original problem, we need to satisfy also
the initial condition. The main idea of the separation of variable technique is to use the
family (un)n to build a function

u(x, t) :=
∞∑

n=n0

un(x, t) ,

for some n0, that solves the problem. If we forget for a moment the technical difficulties
of differentiate a series of functions, the main question is the following: how general can
the initial data be in order for a function u like the one above to match them? For
instance, let us consider the heat equation, where the only initial condition is u(x, 0) =
g(x). The question is: how much freedom do we have in the choice of the initial data g,
if we ask it to be of the form

∞∑
n=n0

un(x, 0) ?

The (classical) theory of Fouries series tells us that the data g can be very general
(more or less, according to the boundary conditions we have). Moreover, the so called
L2-theory of Fourier series allows us to choose the initial data in a broader class of
functions, if we are willing to pay the price of relaxing the meaning of u matching the
initial conditions. But this is another story...

We now review the three main Fourier series expansions (relative to the so called
natural boundary conditions) and we will present the generalization of the theory in the
case of more general boundary conditions.

The cosine Fourier series.
Given a function f : [0, L]→ R, we define its cosine Fourier series as

F (x) :=
a0
2

+

∞∑
n=1

an cos
( nπ
L
x
)
,

where

an :=
2

L

∫ L

0
f(y) cos

( nπ
L
y
)

dy .

We have that:

• this expansion corresponds to the case of Neumann boundary conditions, i.e.,
when we have to solve the problem{

X ′′(x) = λX(x) ,
X ′(0) = X ′(L) = 0 .



• the following pointwise convergence theorem holds:
if f and f ′ are piecewise continuous, then

FN (x)→ 1

2

[
f+(x) + f−(x)

]
,

for every x ∈ (0, L) (we are excluding the boundary points!), where

FN (x) :=
a0
2

+
N∑

n=1

an cos
( nπ
L
x
)
.

• the following uniform convergence theorem holds:
if f and f ′ are continuous (in brief, f ∈ C1([0, L])), and f ′(0) = f ′(L) = 0, then

FN → f ,

uniformly for x ∈ [0, L], as N →∞ (we are including the boundary points!).

• if we have a function f : [−L,L], and we want to obtain similar results as the
ones above, that is, we want the cosine Fourier series to converge to f , we need
f to be even! In this case, the Fourier cosine coefficients of f in [−L,L] are
exactly the ones defined above, and the two previous convergence results hold.

The sine Fourier series.
Given a function f : [0, L]→ R, we define its sine Fourier series as

F (x) :=
∞∑
n=1

bn sin
( nπ
L
x
)
,

where

bn :=
2

L

∫ L

0
f(y) sin

( nπ
L
y
)

dy .

We have that:

• this expansion corresponds to the case of Dirichelt boundary conditions, i.e.,
when we have to solve the problem{

X ′′(x) = λX(x) ,
X(0) = X(L) = 0 .

• the following pointwise convergence theorem holds:
if f and f ′ are piecewise continuous, then

FN (x)→ 1

2

[
f+(x) + f−(x)

]
,

for every x ∈ (0, L) (we are excluding the boundary points!), where

FN (x) :=
N∑

n=1

an sin
( nπ
L
x
)
.

• the following uniform convergence theorem holds:
if f and f ′ are continuous (in brief, f ∈ C1([0, L])), and f(0) = f(L) = 0, then

FN → f ,

uniformly for x ∈ [0, L] as N →∞ (we are including the boundary points!).



• if we have a function f : [−L,L], and we want to obtain similar results as the
ones above, that is, we want the sine Fourier series to converge to f , we need f
to be odd! In this case, the Fourier sine coefficients of f in [−L,L] are exactly
the ones defined above, and the two previous convergence results hold.

The full Fourier series.
Given a function f : [−L,L]→ R, we define its full Fourier series as

F (x) :=
a0
2

+
∞∑
n=1

[
an cos

( nπ
L
x
)

+ bn sin
( nπ
L
x
) ]

,

where

an :=
1

L

∫ L

0
f(y) cos

( nπ
L
y
)

dy ,

and

bn :=
1

L

∫ L

0
f(y) sin

( nπ
L
y
)

dy .

We have that:

• this expansion corresponds to the case of periodic boundary conditions, i.e.,
when we have to solve the problem X ′′(x) = λX(x) ,

X(0) = X(L) ,
X ′(0) = X ′(L) .

• the following pointwise convergence theorem holds:
if f and f ′ are piecewise continuous, then

FN (x)→ 1

2

[
f+(x) + f−(x)

]
,

for every x ∈ (−L,L) (we are excluding the boundary points!), where

FN (x) :=
a0
2

+
N∑

n=1

[
an cos

( nπ
L
x
)

+ bn sin
( nπ
L
x
) ]

,

• the following uniform convergence theorem holds:
if f and f ′ are continuous (in brief, f ∈ C1([0, L])), and it holds f(−L) = f(L),
f ′(−L) = f ′(L), then, as N →∞

FN → f ,

uniformly for x ∈ [−L,L], as N →∞ (we are including the boundary points!).

• notice that in the case of the full Fourier series, we need to take the function
on [−L,L] in order to have the above expansion1. This is because∫ L

0
cos
( nπ
L
x
)

sin
( mπ
L
x
)

dx 6= 0 ,

while ∫ L

−L
cos
( nπ
L
x
)

sin
( mπ
L
x
)

dx = 0 ,

for every n,m ∈ N. Moreover, we don’t need to assume any parity condition on
f , since the sum of odd and even functions can be whatever!

1Warning: this is in order to have the expansion as above! It is possible to expand a function
f : [a, b] → R satisfying f(a) = f(b) and f ′(a) = f ′(b) with the appropriate full Fourier series expansion!



General Fourier expansion.
Now, the question follows naturally: what about the case of different boundary condi-
tions? Can we still have some kind of expansion of a function f in a series of functions
like the ones above?

Let us recall the way we ended up talking about Fourier series: by using the separation
of variable technique in order to solve the heat or the wave equation, we had to solve
the following problem  X ′′(x) = λX(x) ,

boundary conditions
at x = 0 and x = L .

(1)

Assume there exist a sequence of countably many values (λn)n and a sequence of count-
ably many functions (Xn)n such that the following system is satisfied for every n: X ′′n(x) = λnXn(x) ,

boundary conditions
at x = 0 and x = L .

We would like to look at the above problem from a different perspective: let us consider
the space

A := {u ∈ C2([0, L]) : u satisfies the boundary conditions of the problem } ,
and the linear operator L : A → C0([0, L]) defined as

Lu := u′′ .

Then, the above problem can be written as

Lu = λu .

Thus, in analogy with linear algebra, we call the sequence (Xn)n the eigenfunctions
of L, and the sequence (λn)n the eigenvalues of L. The idea then, is to consider an
expansion of a general function f : [0, L]→ R in terms of the eigenfunctions of L:

F (x) :=
∞∑
n=0

fnXn(x) .

for some n0. We would like to find the coefficients fn in such a way that (formally)

F (x) = f(x) ,

for every x (again, we do not specify in what set). In order to find the coefficients, we
reason in a similar way as we did in the previous cases: we consider, in the case λn 6= 0,
we take n 6= m, and we consider∫ L

0
XnXm dx =

1

λn

∫ L

0
(λnXn)Xm dx =

1

λn

∫ L

0
X ′′nXm dx ,

thanks to the equation satisfied by Xn. Now, by using integration by parts twice, we
get

1

λn

∫ L

0
X ′′nXm dx =

1

λn

[
X ′nXm

∣∣∣L
0
−
∫ L

0
X ′nX

′
m dx

]
=

1

λn

[
X ′nXm

∣∣∣L
0
−XnX

′
m

∣∣∣L
0

+

∫ L

0
XnX

′′
m dx

]
=

1

λn

[
X ′nXm

∣∣∣L
0
−XnX

′
m

∣∣∣L
0

]
+
λm
λn

∫ L

0
XnXm dx ,



where in the last step we used the equation satisfied by Xm. Thus, we have∫ L

0
XnXm dx =

1

λn

[ (
X ′nXm −XnX

′
m

) ∣∣∣L
0

]
+
λm
λn

∫ L

0
XnXm dx .

Then, we have that∫ L

0
XnXm dx = 0 ⇔

(
X ′nXm −XnX

′
m

) ∣∣∣L
0

= 0 .

We then say that the eigenfunctions of L satisfy symmetric boundary conditions, if(
X ′nXm −XnX

′
m

) ∣∣∣L
0

= 0 ,

for every n and m. In this case, we have that∫ L

0
XnXm dx = 0 ,

whenever n 6= m. By defining

‖Xn‖2L2 :=

∫ L

0
X2

n dx ,

we have that

fn =
fn

‖Xn‖2L2

∫ L

0
X2

n dx =
1

‖Xn‖2L2

∞∑
m=0

∫ L

0
fmXmXn dx

=
1

‖Xn‖2L2

∫ L

0

( ∞∑
m=0

fmXm

)
Xn dx =

1

‖Xn‖2L2

∫ L

0
fXn dx .

Thus, let us define the generalized Fourier series of f with respect to the eigenfunctions
Xn’s, as

F (x) :=
∞∑
n=0

fnXn(x) ,

where

fn :=
1

‖Xn‖2L2

∫ L

0
f(x)Xn(x) dx .

Now, the big question is: when is it possible to have convergence theorems like the ones
we had in the case of the cosine, sine and full Fourier series? The answer is the following:

Uniform convergence theorem for general Fourier expansion.
Let f : [0, L]→ R. Assume that

(i) the eigenfunctions of (1) satisfy symmetric boundary conditions,
(ii) f , f ′ and f ′′ exists and are continuous, in brief f ∈ C2([0, L]),

(iii) f satisfies the boundary conditions of (1).

For every N ∈ N, let

FN (x) :=

N∑
n=0

fnXn(x) ,

the fn’s are defined as above. Then

FN → f

uniformly in [0, L], as N →∞.

Remark: for the classical Fourier series we did not assume the existence of f ′′!


