Fourier series - computation of the coefficients

Let us consider a function g : [0, L] — R and assume that it is possible to write g as

g<w>=§_jlgnsm(7x),

for every z € (0, L), where g, € R. We would like to find to find the coefficients g,’s.
For, let us recall the identity

sin(a) sin(B) = %[cos(a —B) —cos(a+ )] .
Then, we have that

L /nr ./ mT 1 [F (n—m)m 1 [t (n+m)m
/0 sm(fx>sm<7$) da::2/0 cos(La:> dx—Q/O cos<Lx) dx .

So, in the case n = m, we find that
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while, in the case n # m, we get
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We now argue as follows: for all n > 1, it holds that
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where the previous to last step (taking the series inside the integral) is not completely
justified (but we believe it!).

Thus,

The bottom line is the following: if it is possible to write a function g : [0, L] — R as

g(z) = Z:lgnsin<rfx) ,

2 L
Gn = L/o g(x)sin(%x) dz.

With a similar argument, it is possible to find the coefficients in the case of the cosine
or the full Fourier series (see HM4-Ex.8).

then we must have



