
Fourier series - computation of the coefficients

Let us consider a function g : [0, L]→ R and assume that it is possible to write g as
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∞∑
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( nπ
L
x
)
,

for every x ∈ (0, L), where gn ∈ R. We would like to find to find the coefficients gn’s.
For, let us recall the identity
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while, in the case n 6= m, we get∫ L
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Thus, ∫ L
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We now argue as follows: for all n ≥ 1, it holds that
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where the previous to last step (taking the series inside the integral) is not completely
justified (but we believe it!).

The bottom line is the following: if it is possible to write a function g : [0, L]→ R as

g(x) =

∞∑
n=1

gn sin
( nπ
L
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)
,

then we must have
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With a similar argument, it is possible to find the coefficients in the case of the cosine
or the full Fourier series (see HM4-Ex.8).


